Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/26522
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSusskind, Z.-
dc.contributor.authorBacellar, A. T. L.-
dc.contributor.authorArora, A.-
dc.contributor.authorVillon, L. A. Q.-
dc.contributor.authorMendanha, R.-
dc.contributor.authorAraújo, L. S. de.-
dc.contributor.authorDutra, D. L. C.-
dc.contributor.authorLima, P. M. V.-
dc.contributor.authorFrança, F. M. G.-
dc.contributor.authorMiranda, I. D. S.-
dc.contributor.authorBreternitz Jr., M.-
dc.contributor.authorJohn, L. K.-
dc.date.accessioned2022-12-05T12:31:40Z-
dc.date.available2022-12-05T12:31:40Z-
dc.date.issued2022-
dc.identifier.citationSusskind, Z., Bacellar, A. T. L., Arora, A., Villon, L. A. Q., Mendanha, R., Araújo, L. S. de., Dutra, D. L. C., Lima, P. M. V., França, F. M. G., Miranda, I. D. S., Breternitz Jr., M., & John, L. K. (2022). Pruning weightless neural networks. In ESANN 2022 proceedings (pp. 37-42). https://doi.org/10.14428/esann/2022.ES2022-55-
dc.identifier.isbn978287587084-1-
dc.identifier.urihttp://hdl.handle.net/10071/26522-
dc.description.abstractWeightless neural networks (WNNs) are a type of machine learning model which perform prediction using lookup tables (LUTs) instead of arithmetic operations. Recent advancements in WNNs have reduced model sizes and improved accuracies, reducing the gap in accuracy with deep neural networks (DNNs). Modern DNNs leverage “pruning” techniques to reduce model size, but this has not previously been explored for WNNs. We propose a WNN pruning strategy based on identifying and culling the LUTs which contribute least to overall model accuracy. We demonstrate an average 40% reduction in model size with at most 1% reduction in accuracy.eng
dc.language.isoeng-
dc.publisherESANN-
dc.relation3015.001/3016.00-
dc.relationPOCI-01-0247-FEDER-045912-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04466%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04466%2F2020/PT-
dc.relation.ispartofESANN 2022 proceedings-
dc.rightsopenAccess-
dc.titlePruning weightless neural networkseng
dc.typeconferenceObject-
dc.event.title30th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning-
dc.event.typeConferênciapt
dc.event.locationBruges (online)eng
dc.event.date2022-
dc.pagination37 - 42-
dc.peerreviewedyes-
dc.date.updated2022-12-05T12:27:28Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.14428/esann/2022.ES2022-55-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-91315-
Appears in Collections:ISTAR-CRI - Comunicações a conferências internacionais

Files in This Item:
File SizeFormat 
conferenceobject_91315.pdf1,44 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.