Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/23459
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAntonio, N.-
dc.contributor.authorde Almeida, A.-
dc.contributor.authorNunes, L.-
dc.date.accessioned2021-11-03T14:29:10Z-
dc.date.available2021-11-03T14:29:10Z-
dc.date.issued2017-
dc.identifier.isbn978-1-5386-1417-4-
dc.identifier.urihttp://hdl.handle.net/10071/23459-
dc.description.abstractBooking cancellations have significant impact on demand-management decisions in the hospitality industry. To mitigate the effect of cancellations, hotels implement rigid cancellation policies and overbooking tactics, which in turn can have a negative impact on revenue and on the hotel reputation. To reduce this impact, a machine learning based system prototype was developed. It makes use of the hotel’s Property Management Systems data and trains a classification model every day to predict which bookings are “likely to cancel” and with that calculate net demand. This prototype, deployed in a production environment in two hotels, by enforcing A/B testing, also enables the measurement of the impact of actions taken to act upon bookings predicted as “likely to cancel”. Results indicate good prototype performance and provide important indications for research progress whilst evidencing that bookings contacted by hotels cancel less than bookings not contacted.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.rightsopenAccess-
dc.subjectBookings cancellationeng
dc.subjectHospitalityeng
dc.subjectMachine learningeng
dc.subjectPredictive modelingeng
dc.subjectPrototypingeng
dc.subjectRevenue managementeng
dc.titlePredicting hotel bookings cancellation with a machine learning classification modeleng
dc.typeconferenceObject-
dc.event.typeConferênciapt
dc.event.locationCancuneng
dc.event.date2017-
dc.pagination1049 - 1054-
dc.peerreviewedyes-
dc.journal16th IEEE International Conference on Machine Learning and Applications (ICMLA)-
degois.publication.firstPage1049-
degois.publication.lastPage1054-
degois.publication.locationCancuneng
degois.publication.titlePredicting hotel bookings cancellation with a machine learning classification modeleng
dc.date.updated2021-11-03T14:28:37Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1109/ICMLA.2017.00-11-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-44810-
iscte.alternateIdentifiers.wosWOS:000425853000176-
iscte.alternateIdentifiers.scopus2-s2.0-85048477289-
Appears in Collections:ISTAR-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceObject_44810.pdfVersão Aceite394,42 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.