Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/22565
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMessejana, J.-
dc.contributor.authorPereira, R.-
dc.contributor.authorFerreira, J. C.-
dc.contributor.authorBaptista, M.-
dc.contributor.editorS. I. Ao and Len Gelman and David WL Hukins and Andrew Hunter and A. M. Korsunsky-
dc.date.accessioned2021-05-12T10:07:25Z-
dc.date.available2021-05-12T10:07:25Z-
dc.date.issued2019-
dc.identifier.isbn978-988-14048-6-2-
dc.identifier.issn2078-0958-
dc.identifier.urihttp://hdl.handle.net/10071/22565-
dc.description.abstractA high number of IT organizations have problems when deploying their services, this alongside with the high number of services that organizations have daily, makes Incident Management (IM) process quite demanding. An effective IM system need to enable decision makers to detect problems easily otherwise the organizations can face unscheduled system downtime and/or unplanned costs. By predicting these problems, the decision makers can better allocate resources and mitigate costs. Therefore, this research aims to help predicting those problems by looking at the history of past deployments and incident ticket creation and relate them by using machine learning algorithms to predict the number of incidents of a certain deployment. This research aims to analyze the results with the most used algorithms found in the literature.eng
dc.language.isoeng-
dc.publisherNewswood Limited-
dc.relationCIT INOV-INESC INOVAÇÃO-Financiamento Base-
dc.rightsopenAccess-
dc.subjectPredictive analysiseng
dc.subjectIncident managementeng
dc.subjectSoftware deploymenteng
dc.subjectMachine learningeng
dc.titlePredictive analysis of incidents based on software deploymentseng
dc.typeconferenceObject-
dc.event.titleWorld Congress on Engineering-
dc.event.typeConferênciapt
dc.event.locationLondoneng
dc.event.date2019-
dc.pagination150 - 155-
dc.peerreviewedyes-
dc.journalProceedings of World Congress on Engineering 2019-
degois.publication.firstPage150-
degois.publication.lastPage155-
degois.publication.locationLondoneng
degois.publication.titlePredictive analysis of incidents based on software deploymentseng
dc.date.updated2021-05-12T11:03:31Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-81014-
Appears in Collections:ISTAR-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_81014.pdfVersão Editora1,06 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.