Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/21305| Author(s): | Bettencourt, G. H. Mendes, S. |
| Date: | 2020 |
| Title: | A note on the minimal displacement function |
| Volume: | 72 |
| Number: | 4 |
| Pages: | 297 - 302 |
| ISSN: | 2406-0682 |
| Keywords: | Minimal displacement function Metric space Subadditivity |
| Abstract: | Let (X,d) be a metric space and Iso(X,d) the associated isometry group. We study the subadditivity of the minimal displacement function $f : Iso(X, d) \to R$ for different metric spaces. When (X,d) is ultrametric, we prove that the minimal displacement function is subadditive. We show, by a simple algebraic argument, that subadditivity does not hold for the direct isometry group of the hyperbolic plane. The same argument can be used for other metric spaces. |
| Peerreviewed: | yes |
| Access type: | Open Access |
| Appears in Collections: | DM-RI - Artigos em revistas científicas internacionais com arbitragem científica |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| mv20402.pdf | Versão Editora | 285,04 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.












