Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/9951
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPaiva, C.-
dc.contributor.authorMatos, S.-
dc.date.accessioned2015-10-08T13:22:38Z-
dc.date.available2015-10-08T13:22:38Z-
dc.date.issued2012-
dc.identifier.issn0018-926Xpor
dc.identifier.urihttps://ciencia.iscte-iul.pt/public/pub/id/6941-
dc.identifier.urihttp://hdl.handle.net/10071/9951-
dc.descriptionWOS:000306138900018 (Nº de Acesso Web of Science)-
dc.description.abstractThe perfect electromagnetic conductor (PEMC) was introduced as an observer-independent "axion medium" that generalizes the concepts of perfect electric conductor (PEC) and perfect magnetic conductor (PMC). Following the original boundary definition, its 3-D medium definition corresponds to a 4-D representation that is, actually, observer-dependent (i.e., it is not isotropic for the whole class of inertial observers), leading to a nonunique characterization of the electromagnetic field inside. This characterization of the PEMC, then, violates the boundary conditions-unless some extraneous waves, called "metafields," are surgically extracted from the final solution. In this paper, using spacetime algebra, we define the PEMC as the unique limit of the most general class of isotropic media in Minkowskian spacetime, which we call Minkowskian isotropic media (MIM). An MIM is actually a "dilaton-axion medium." Its isotropy is a Lorentz invariant characterization: It is an observer-independent property, contrary to isotropy in 3-D Gibbsian characterization. Hence, a more natural definition of a PEMC is herein presented: It leads to a unique electromagnetic field in its interior; it corresponds, though, to the same original boundary definition. This new approach is applied to the analysis of an air-MIM interface that, as a particular case, reduces to an air-PEMC interface.por
dc.language.isoengpor
dc.publisherIEEE - Institute of electrical electronics and engineerspor
dc.rightsembargoedAccesspor
dc.subjectBianisotropic mediapor
dc.subjectElectromagnetic propagationpor
dc.subjectGeometric algebrapor
dc.subjectLorentz covariancepor
dc.subjectLorentz invariancepor
dc.subjectPerfect electromagnetic conductor (PEMC)por
dc.subjectSpecial relativitypor
dc.titleMinkowskian isotropic media and the perfect electromagnetic conductorpor
dc.typearticleen_US
dc.pagination3231-3245por
dc.publicationstatusPublicadopor
dc.peerreviewedSimpor
dc.relation.publisherversionThe definitive version is available at: http://dx.doi.org/10.1109/TAP.2012.2196929por
dc.journalIEEE Transactions on Antennas and Propagationpor
dc.distributionInternacionalpor
dc.volume60por
dc.number7por
degois.publication.firstPage3231por
degois.publication.lastPage3245por
degois.publication.issue7por
degois.publication.titleIEEE Transactions on Antennas and Propagationpor
dc.date.updated2015-10-08T13:20:40Z-
Appears in Collections:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
publisher_version_IEEE_Trans_Antennas_Prop.pdf
  Restricted Access
3,67 MBAdobe PDFView/Open Request a copy


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.