Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/9725
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNikolaeva, R.-
dc.contributor.authorBhatnagar, A.-
dc.contributor.authorGhose, S.-
dc.date.accessioned2015-09-11T14:11:32Z-
dc.date.available2015-09-11T14:11:32Z-
dc.date.issued2015-
dc.identifier.issn1094-4281-
dc.identifier.urihttp://hdl.handle.net/10071/9725-
dc.description.abstractImprecise theories do not give enough guidelines for empirical analyses. A paradigmatic shift from linear to curvilinear relationships is necessary to advance management theories. Within the framework of the abductive generation of theories, the authors present a data exploratory technique for the identification of functional relationships between variables. Originating in medical research, the method uses fractional polynomials to test for alternative curvilinear relationships. It is a compromise between nonparametric curve fitting and conventional polynomials. The multivariable fractional polynomial (MFP) technique is a good tool for exploratory research when theoretical knowledge is nonspecific and thus very useful in phenomena discovery. The authors conduct simulations to demonstrate MFP’s performance in various scenarios. The technique’s major benefit is the uncovering of nontraditional shapes that cannot be modeled by logarithmic or quadratic functions. While MFP is not suitable for small samples, there does not seem to be a downside of overfitting the data as the fitted curves are very close to the true ones. The authors call for a routine application of the procedure in exploratory studies involving medium to large sample sizes.eng
dc.language.isoeng-
dc.publisherSAGE Publications-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147442/PT-
dc.rightsopenAccesspor
dc.subjectFractional polynomialseng
dc.subjectCurvilinear relationshipseng
dc.subjectNon-monotonic curveseng
dc.subjectAbductive methodeng
dc.titleExploring curvilinearity through fractional polynomials in management researcheng
dc.typearticle-
dc.pagination738 - 760-
dc.publicationstatusPublicadopor
dc.peerreviewedyes-
dc.journalOrganizational Research Methods-
dc.distributionInternacionalpor
dc.volume18-
dc.number4-
degois.publication.firstPage738-
degois.publication.lastPage760-
degois.publication.issue4-
degois.publication.titleExploring curvilinearity through fractional polynomials in management researcheng
dc.date.updated2019-05-10T10:24:51Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1177/1094428115584006-
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Psicologiapor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-24123-
iscte.alternateIdentifiers.wosWOS:000361111900012-
iscte.alternateIdentifiers.scopus2-s2.0-84941369438-
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
Exploring Curvilinearity.pdfPós-print1,66 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.