Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/9338
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRaposo, F.-
dc.contributor.authorRibeiro, R.-
dc.contributor.authorde Matos, D. M.-
dc.date.accessioned2015-07-17T13:58:12Z-
dc.date.available2015-07-17T13:58:12Z-
dc.date.issued2015-
dc.identifier.issn1070-9908-
dc.identifier.urihttp://hdl.handle.net/10071/9338-
dc.description.abstractSeveral generic summarization algorithms were developed in the past and successfully applied in fields such as text and speech summarization. In this paper, we review and apply these algorithms to music. To evaluate their performance, we adopt an extrinsic approach: we compare a Fado genre classifier's performance using truncated contiguous clips against the summaries extracted with those algorithms on two different datasets. We show that Maximal Marginal Relevance (MMR), LexRank, and Latent Semantic Analysis (LSA) all improve classification performance in both datasets used for testing.eng
dc.language.isoeng-
dc.publisherIEEE-
dc.relationinfo:eu-repo/grantAgreement/FCT/3599-PPCDT/133002/PT-
dc.rightsopenAccesspor
dc.subjectAutomatic music summarizationeng
dc.subjectGeneric summarization algorithmseng
dc.titleOn the application of generic summarization algorithms to musiceng
dc.typearticle-
dc.pagination26 - 30-
dc.publicationstatusPublicadopor
dc.peerreviewedyes-
dc.journalIEEE Signal Processing Letters-
dc.distributionInternacionalpor
dc.volume22-
dc.number1-
degois.publication.firstPage26-
degois.publication.lastPage30-
degois.publication.issue1-
degois.publication.titleOn the application of generic summarization algorithms to musiceng
dc.date.updated2019-05-03T17:15:18Z-
dc.description.versioninfo:eu-repo/semantics/submittedVersion-
dc.identifier.doi10.1109/LSP.2014.2347582-
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-23306-
iscte.alternateIdentifiers.wosWOS:000350867000005-
iscte.alternateIdentifiers.scopus2-s2.0-84906536550-
Appears in Collections:CTI-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
IEEE_Signal_Processing_Letters.pdfPré-print156,94 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.