Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/36026
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZheng, H.-
dc.contributor.authorRamalho, J. J. S.-
dc.contributor.authorRoseta-Palma, C.-
dc.date.accessioned2026-01-19T15:22:44Z-
dc.date.available2026-01-19T15:22:44Z-
dc.date.issued2025-
dc.identifier.citationZheng, H., Ramalho, J. J. S., & Roseta-Palma, C. (2025). Dealing with endogeneity in stochastic frontier models: A comparative assessment of estimators. Energy Economics, 151, Article 108922. https://doi.org/10.1016/j.eneco.2025.108922-
dc.identifier.issn0140-9883-
dc.identifier.urihttp://hdl.handle.net/10071/36026-
dc.description.abstractEndogeneity poses a major challenge for Stochastic Frontier Analysis, as input choices may be endogenous to unobserved components of the error term, resulting in biased efficiency estimates. This paper compares leading estimators that address this issue, including control-function estimator (Kutlu, 2010), Generalized Method of Moments (GMM) (Tran and Tsionas, 2013) and copula (Tran and Tsionas, 2015) approaches, as well as the instrumental variable based maximum likelihood estimator (Karakaplan and Kutlu, 2017a,b; Karakaplan, 2022). Monte Carlo simulations reveal distinct bias–variance trade-offs: likelihood-based estimators provide more precise efficiency scores, while GMM and copula can be advantageous in specific contexts. An empirical application to the Portuguese thermal power subsector (2006-2021) shows that accounting for endogeneity significantly alters coefficients and efficiency distributions. These results demonstrate that estimator choice affects policy-relevant indicators such as efficiency scores and determinants of cost performance. Despite data limitations, the study underscores the importance of treating endogeneity and provides methodological guidance for applied efficiency analysis.eng
dc.language.isoeng-
dc.publisherElsevier-
dc.relationUID/04105/2023-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00315%2F2020/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F05069%2F2020/PT-
dc.rightsopenAccess-
dc.subjectStochastic frontier analysiseng
dc.subjectTechnical efficiencyeng
dc.subjectEndogeneityeng
dc.subjectInstrumental variableseng
dc.subjectEnergy sectoreng
dc.titleDealing with endogeneity in stochastic frontier models: A comparative assessment of estimatorseng
dc.typearticle-
dc.peerreviewedyes-
dc.volume151-
dc.date.updated2026-01-19T15:20:33Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.1016/j.eneco.2025.108922-
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-115512-
iscte.alternateIdentifiers.wosWOS:WOS:001584908900004-
iscte.alternateIdentifiers.scopus2-s2.0-105017010306-
iscte.journalEnergy Economics-
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File SizeFormat 
article_115512.pdf2,22 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.