Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/31155
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOliveira, João Pedro-
dc.contributor.advisorRosário, Luís Afonso Brás Simões do-
dc.contributor.authorNeto, António Maria Sousa Gomes-
dc.date.accessioned2024-02-22T10:42:37Z-
dc.date.available2024-02-22T10:42:37Z-
dc.date.issued2023-11-30-
dc.date.submitted2023-10-
dc.identifier.citationNeto, A. M. S. G. (2023). Fully automatic assessment for left ventricle image segmentation and feature extraction [Dissertação de mestrado, Iscte - Instituto Universitário de Lisboa]. Repositório Iscte. http://hdl.handle.net/10071/31155por
dc.identifier.urihttp://hdl.handle.net/10071/31155-
dc.description.abstractThe segmentation and measurement of the left ventricle (LV) and the myocardium (MYO) are common clinical practices in the diagnosis of left ventricular conditions. Magnetic resonance (MRI) is recognized as a reference for non-invasive assessment of left ventricular function. Many studies over the last decades have focused on improving automatic segmentation and classification approaches, with multiple datasets for cardiac MRI. However, most automatic methods fail to provide reasoning and clinically relevant data to support the diagnosis. In this dissertation, we propose a novel fully automatic pipeline for left-ventricular segmentation and function assessment. The proposed pipeline leverages a state-of-the-art segmentation method (nnU-Net), which is then enhanced through the application of two active contours for smoother and more robust contour delineation. Automatic feature extraction methods are then proposed for the assessment of both local and global features within cardiac structures. Results show that the presented segmentation enhancements approach maintains accuracy while improving feature-extraction capabilities and robustness. Furthermore, the proposed feature extraction methods proved effective in providing clinically relevant data for assessing left ventricular function.por
dc.description.abstractA segmentação e medições do ventrículo esquerdo, assim como do miocárdio, são práticas clínicas comuns no diagnóstico de doenças associadas ao ventrículo esquerdo. A técnica de ressonância magnética é vastamente reconhecida como uma referência para a avaliação não invasiva da função do ventrículo esquerdo. Na última década muitos estudos foram desenvolvidos com o objetivo de melhorar técnicas de segmentação e classificação automáticas, em vários datasets de ressonância cardíaca. Contudo, a maioria dos métodos propostos não produz justificações nem dados clinicamente relevantes que suportem o diagnóstico. Para colmatar esta falha, nesta dissertação, propomos um pipeline automático para a segmentação do ventrículo esquerdo, assim como a avaliação da sua função. O pipeline proposto tem por base um método de segmentação, estado da arte (nnU-Net), cujo resultado é melhorado através da aplicação de dois active contours para delinear contornos mais suaves e robustos. Posteriormente, métodos automáticos de extração de medidas foram propostos para a identificação de características locais e globais das estruturas segmentadas. Os resultados obtidos mostram que o método proposto para otimização da segmentação mantém a precisão, enquanto permite uma melhor extração de características do ventrículo, produzindo uma segmentação mais robusta. Além do mais, o método de extração de características proposto provou-se eficaz na produção de dados clinicamente relevantes para a avaliação da função do ventrículo esquerdo.por
dc.language.isoengpor
dc.rightsopenAccesspor
dc.subjectDeep learningpor
dc.subjectMachine learningpor
dc.subjectLeft ventriclepor
dc.subjectMedical image segmentationpor
dc.subjectFeature extractionpor
dc.subjectCardiac MRIpor
dc.subjectVentrículo esquerdopor
dc.subjectSegmentação de imagem médicapor
dc.subjectExtração de característicaspor
dc.subjectRessonância magnéticapor
dc.titleFully automatic assessment for left ventricle image segmentation and feature extractionpor
dc.typemasterThesispor
dc.peerreviewedyespor
dc.identifier.tid203534778por
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologiaspor
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
thesis.degree.nameMestrado em Informática e Gestãopor
thesis.degree.departmentDepartamento de Ciências e Tecnologias da Informaçãopor
Appears in Collections:T&D-DM - Dissertações de mestrado

Files in This Item:
File Description SizeFormat 
master_antonio_gomes_neto.pdf3,49 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.