Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/27931
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarujo, L.-
dc.contributor.authorRibeiro, R.-
dc.contributor.authorMatos, D. M. de.-
dc.contributor.authorNeto, J. P.-
dc.contributor.authorGershman, A.-
dc.contributor.authorCarbonell, J.-
dc.contributor.editorSojka, P., Horák, A., Kopeček, I., and Pala, K.-
dc.date.accessioned2023-02-15T16:29:08Z-
dc.date.available2023-02-15T16:29:08Z-
dc.date.issued2012-
dc.identifier.citationMarujo, L., Ribeiro, R., Matos, D. M. de., Neto, J. P., Gershman, A., & Carbonell, J. (2012). Key phrase extraction of lightly filtered broadcast news. In P. Sojka, A. Horák, I. Kopeček, & K. Pala (Eds.) Text, Speech and Dialogue. TSD 2012. Lecture Notes in Computer Science (vol 7499, pp. 290-297). Springer. https://doi.org/10.1007/978-3-642-32790-2_35-
dc.identifier.isbn978-3-642-32790-2-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/10071/27931-
dc.description.abstractThis paper explores the impact of light filtering on automatic key phrase extraction (AKE) applied to Broadcast News (BN). Key phrases are words and expressions that best characterize the content of a document. Key phrases are often used to index the document or as features in further processing. This makes improvements in AKE accuracy particularly important. We hypothesized that filtering out marginally relevant sentences from a document would improve AKE accuracy. Our experiments confirmed this hypothesis. Elimination of as little as 10% of the document sentences lead to a 2% improvement in AKE precision and recall. AKE is built over MAUI toolkit that follows a supervised learning approach. We trained and tested our AKE method on a gold standard made of 8 BN programs containing 110 manually annotated news stories. The experiments were conducted within a Multimedia Monitoring Solution (MMS) system for TV and radio news/programs, running daily, and monitoring 12 TV and 4 radio channels.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relationinfo:eu-repo/grantAgreement/FCT/FARH/SFRH%2FBD%2F33769%2F2009/PT-
dc.relation.ispartofText, Speech and Dialogue. TSD 2012. Lecture Notes in Computer Science-
dc.rightsopenAccess-
dc.subjectKeyphrase extractioneng
dc.subjectSpeech summarizationeng
dc.subjectSpeech browsingeng
dc.subjectBroadcast news speech recognitioneng
dc.titleKey phrase extraction of lightly filtered broadcast newseng
dc.typeconferenceObject-
dc.event.title15th International Conference on Text, Speech and Dialogue, TSD 2012-
dc.event.typeConferênciapt
dc.event.locationBrnoeng
dc.event.date2012-
dc.pagination290 - 297-
dc.peerreviewedyes-
dc.volume7499-
dc.date.updated2023-02-15T16:26:35Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/978-3-642-32790-2_35-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências Físicaspor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-11366-
iscte.alternateIdentifiers.wosWOS:WOS:000337298700035-
iscte.alternateIdentifiers.scopus2-s2.0-84865506016-
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File SizeFormat 
conferenceobject_11366.pdf427,99 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.