Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/27774
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilvestre, C.-
dc.contributor.authorCardoso, M.-
dc.contributor.authorFigueiredo, M.-
dc.contributor.editorCorreia, L., Reis, L. P., and Cascalho, J.-
dc.date.accessioned2023-02-07T13:21:35Z-
dc.date.available2023-02-07T13:21:35Z-
dc.date.issued2013-
dc.identifier.citationSilvestre, C., Cardoso, M., & Figueiredo, M. (2013). Clustering and selecting categorical features. In L. Correia, L. P. Reis, & J. Cascalho (Eds.) Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science (vol. 8154, pp. 331-342). Springer. https://doi.org/10.1007/978-3-642-40669-0_29-
dc.identifier.isbn978-3-642-40669-0-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/10071/27774-
dc.description.abstractIn data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relation.ispartofProgress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science-
dc.rightsopenAccess-
dc.subjectCluster analysiseng
dc.subjectFinite mixtures modelseng
dc.subjectEM algorithmeng
dc.subjectFeature selectioneng
dc.subjectCategorical variableseng
dc.titleClustering and selecting categorical featureseng
dc.typeconferenceObject-
dc.event.title16th Portuguese Conference on Artificial Intelligence, EPIA 2013-
dc.event.typeConferênciapt
dc.event.locationAngra do Heroísmoeng
dc.event.date2013-
dc.pagination331 - 342-
dc.peerreviewedyes-
dc.volume8154-
dc.date.updated2023-02-07T13:19:49Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/978-3-642-40669-0_29-
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-75041-
Appears in Collections:BRU-CRI - Comunicações a conferências internacionais

Files in This Item:
File SizeFormat 
conferenceobject_75041.pdf198,87 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.