Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/23187
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRibeiro, E.-
dc.contributor.authorBatista, F.-
dc.contributor.authorTrancoso, I.-
dc.contributor.authorRibeiro, R.-
dc.contributor.authorMatos, D. M. de.-
dc.contributor.editorMateo, C. G., Ortega, A., Abad, A., Mamede, N., Martínez Hinarejos, C. D., Teixeira, A., Batista, F., and Perdigão, F.-
dc.date.accessioned2021-09-17T10:30:37Z-
dc.date.available2021-09-17T10:30:37Z-
dc.date.issued2016-
dc.identifier.isbn978-3-319-49169-1-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/10071/23187-
dc.description.abstractHyperarticulation is a speech adaptation that consists of adopting a clearer form of speech in an attempt to improve recognition levels. However, it has the opposite effect when talking to ASR systems, as they are not trained with such kind of speech. We present approaches for automatic detection of hyperarticulation, which can be used to improve the performance of spoken dialog systems. We performed experiments on Let’s Go data, using multiple feature sets and two classification approaches. Many relevant features are speaker dependent. Thus, we used the first turn in each dialog as the reference for the speaker, since it is typically not hyperarticulated. Our best results were above 80 % accuracy, which represents an improvement of at least 11.6 % points over previously obtained results on similar data. We also assessed the classifiers’ performance in scenarios where hyperarticulation is rare, achieving around 98 % accuracy using different confidence thresholds.eng
dc.language.isoeng-
dc.publisherSpringer International Publishing-
dc.relationinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/147282/PT-
dc.relation644187-
dc.rightsopenAccess-
dc.subjectHyperarticulationeng
dc.subjectSpeecheng
dc.subjectLet’s Goeng
dc.titleAutomatic detection of hyperarticulated speecheng
dc.typeconferenceObject-
dc.event.titleThird International Conference, IberSPEECH 2016-
dc.event.typeConferênciapt
dc.event.locationLisboaeng
dc.event.date2016-
dc.pagination182 - 191-
dc.peerreviewedyes-
dc.journalAdvances in Speech and Language Technologies for Iberian Languages. IberSPEECH 2016. Lecture Notes in Computer Science-
dc.volume10077-
degois.publication.firstPage182-
degois.publication.lastPage191-
degois.publication.locationLisboaeng
degois.publication.titleAutomatic detection of hyperarticulated speecheng
dc.date.updated2021-09-17T11:24:33Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/978-3-319-49169-1_18-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Matemáticaspor
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-30891-
iscte.alternateIdentifiers.wosWOS:000389797600018-
iscte.alternateIdentifiers.scopus2-s2.0-84997171436-
Appears in Collections:IT-CRI - Comunicações a conferências internacionais

Files in This Item:
File Description SizeFormat 
conferenceobject_30891.pdfVersão Aceite237,84 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.