Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/22106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLabiadh, M.-
dc.contributor.authorObrecht, C.-
dc.contributor.authorFerreira da Silva, C.-
dc.contributor.authorGhodous, P.-
dc.date.accessioned2021-02-22T10:41:07Z-
dc.date.issued2021-
dc.identifier.issn1863-2386-
dc.identifier.urihttp://hdl.handle.net/10071/22106-
dc.description.abstractSupervised deep learning has achieved remarkable success in various applications. Successful machine learning application however depends on the availability of sufficiently large amount of data. In the absence of data from the target domain, representative data collection from multiple sources is often needed. However, a model trained on existing multi-source data might generalize poorly on the unseen target domain. This problem is referred to as domain shift. In this paper, we explore the suitability of multi-source training data selection to tackle the domain shift challenge in the context of domain generalization. We also propose a microservice-oriented methodology for supporting this solution. We perform our experimental study on the use case of building energy consumption prediction. Experimental results suggest that minimal building description is capable of improving cross-building generalization performances when used to select energy consumption data.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relationUIDB/04466/2020-
dc.rightsopenAccess-
dc.subjectData selectioneng
dc.subjectDomain generalizationeng
dc.subjectKnowledge transfereng
dc.subjectData-driven modelingeng
dc.subjectEnergy consumption modelingeng
dc.titleA microservice-based framework for exploring data selection for cross-building knowledge transfereng
dc.typearticle-
dc.pagination97 - 107-
dc.peerreviewedyes-
dc.journalService Oriented Computing and Applications-
dc.volume15-
dc.number2-
degois.publication.firstPage97-
degois.publication.lastPage107-
degois.publication.issue2-
degois.publication.titleA microservice-based framework for exploring data selection for cross-building knowledge transfereng
dc.date.updated2021-05-17T14:07:38Z-
dc.description.versioninfo:eu-repo/semantics/acceptedVersion-
dc.identifier.doi10.1007/s11761-020-00306-w-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologiaspor
dc.date.embargo2021-11-11-
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.subject.odsProdução e consumo sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-75455-
iscte.alternateIdentifiers.wosWOS:000588279300001-
iscte.alternateIdentifiers.scopus2-s2.0-85095749343-
Appears in Collections:ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
2020-SOCA-POST-PRINT.pdfVersão Aceite679,74 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.