Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/20860
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSan-Payo, G.-
dc.contributor.authorFerreira, J.-
dc.contributor.authorSantos, P.-
dc.contributor.authorMartins, A.-
dc.date.accessioned2020-11-25T16:13:14Z-
dc.date.issued2020-
dc.identifier.issn1868-5137-
dc.identifier.urihttp://hdl.handle.net/10071/20860-
dc.description.abstractIn this work, we propose and develop a classification model to be used in a quality control system for clothing manufacturing using machine learning algorithms. The system consists of using pictures taken through mobile devices to detect defects on production objects. In this work, a defect can be a missing component or a wrong component in a production object. Therefore, the function of the system is to classify the components that compose a production object through the use of a classification model. As a manufacturing business progresses, new objects are created, thus, the classification model must be able to learn the new classes without losing previous knowledge. However, most classification algorithms do not support an increase of classes, these need to be trained from scratch with all . Thus. In this work, we make use of an incremental learning algorithm to tackle this problem. This algorithm classifies features extracted from pictures of the production objects using a convolutional neural network (CNN), which have proven to be very successful in image classification problems. We apply the current developed approach to a process in clothing manufacturing. Therefore, the production objects correspond to clothing itemseng
dc.language.isoeng-
dc.publisherSpringer-
dc.relationUID/MULTI/0446/2013-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147442/PT-
dc.rightsopenAccess-
dc.subjectQuality controleng
dc.subjectIncremental learningeng
dc.subjectImage classificationeng
dc.subjectDefect detection systemeng
dc.titleMachine learning for quality control systemeng
dc.typearticle-
dc.pagination4491 - 4500-
dc.peerreviewedyes-
dc.journalJournal of Ambient Intelligence and Humanized Computing-
dc.volume11-
dc.number11-
degois.publication.firstPage4491-
degois.publication.lastPage4500-
degois.publication.issue11-
degois.publication.titleMachine learning for quality control systemeng
dc.date.updated2020-11-25T16:12:20Z-
dc.description.versioninfo:eu-repo/semantics/submittedVersion-
dc.identifier.doi10.1007/s12652-019-01640-4-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
dc.subject.fosDomínio/Área Científica::Engenharia e Tecnologia::Engenharia Eletrotécnica, Eletrónica e Informáticapor
dc.date.embargo2020-12-15-
iscte.subject.odsIndústria, inovação e infraestruturaspor
iscte.subject.odsCidades e comunidades sustentáveispor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-64225-
iscte.alternateIdentifiers.wosWOS:000574435900004-
iscte.alternateIdentifiers.scopus2-s2.0-85076621157-
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica
ISTAR-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
Machine Learning for Quality Control System.pdfVersão Submetida6,73 MBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.