Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/15400
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMoro, S.-
dc.contributor.authorCortez, P.-
dc.contributor.authorRita, P.-
dc.date.accessioned2018-03-20T10:52:25Z-
dc.date.available2018-03-20T10:52:25Z-
dc.date.issued2017-
dc.identifier.issn0941-0643-
dc.identifier.urihttp://hdl.handle.net/10071/15400-
dc.description.abstractThe need to leverage knowledge through data mining has driven enterprises in a demand for more data. However, there is a gap between the availability of data and the application of extracted knowledge for improving decision support. In fact, more data do not necessarily imply better predictive data-driven marketing models, since it is often the case that the problem domain requires a deeper characterization. Aiming at such characterization, we propose a framework drawn on three feature selection strategies, where the goal is to unveil novel features that can effectively increase the value of data by providing a richer characterization of the problem domain. Such strategies involve encompassing context (e.g., social and economic variables), evaluating past history, and disaggregate the main problem into smaller but interesting subproblems. The framework is evaluated through an empirical analysis for a real bank telemarketing application, with the results proving the benefits of such approach, as the area under the receiver operating characteristic curve increased with each stage, improving previous model in terms of predictive performance.eng
dc.language.isoeng-
dc.publisherSpringer-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147280/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147442/PT-
dc.rightsopenAccess-
dc.subjectFeature selectioneng
dc.subjectDecision supporteng
dc.subjectData miningeng
dc.subjectTelemarketingeng
dc.subjectBank marketingeng
dc.titleA framework for increasing the value of predictive data-driven models by enriching problem domain characterization with novel featureseng
dc.typearticle-
dc.pagination1515 - 1523-
dc.publicationstatusPublicadopor
dc.peerreviewedyes-
dc.journalNeural Computing and Applications-
dc.distributionInternacionalpor
dc.volume28-
dc.number6-
degois.publication.firstPage1515-
degois.publication.lastPage1523-
degois.publication.issue6-
degois.publication.titleA framework for increasing the value of predictive data-driven models by enriching problem domain characterization with novel featureseng
dc.date.updated2019-04-05T16:19:41Z-
dc.identifier.doi10.1007/s00521-015-2157-8-
dc.subject.fosDomínio/Área Científica::Ciências Naturais::Ciências da Computação e da Informaçãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-26072-
iscte.alternateIdentifiers.wosWOS:000403939000025-
iscte.alternateIdentifiers.scopus2-s2.0-84953410389-
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
2017_NCAA-MoroCortezRita-PosPrint.pdfPós-print329,78 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.