Please use this identifier to cite or link to this item: http://hdl.handle.net/10071/12131
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSuleman, A.-
dc.contributor.authorSuleman, F.-
dc.contributor.authorReis, E.-
dc.date.accessioned2016-12-02T17:03:08Z-
dc.date.available2016-12-02T17:03:08Z-
dc.date.issued2016-
dc.identifier.issn1611-1699-
dc.identifier.urihttp://hdl.handle.net/10071/12131-
dc.description.abstractMeasures of stock of skills alternative to human capital have raised fresh difficulties, especially in data managing. We propose to empirically compare the efficiency of a hierarchical cluster analysis and a fuzzy clustering in reducing discrete skill data. The outcomes of both methods are subsequently used to measure the impact of skills on earnings in addition to human capital. The proposed methodological comparison was made using an original dataset of retail bankers’ skills assessed by supervisors. Empirical evidence shows that the fuzzy approach is more efficient than the hierarchical clustering: the resulting clusters are fewer and easier to interpret. Furthermore, the earnings equation enriched with skill variables allowed us to correct the education premium, and provides information on monetary incentives related to individual skills. Our paper attempts to raise researchers’ and practitioners’ awareness of data reducing methods, and their implications for wage determinants.eng
dc.language.isoeng-
dc.publisherVilnius Gediminas Technical University-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147442/PT-
dc.relationinfo:eu-repo/grantAgreement/FCT/5876/147301/PT-
dc.rightsopenAccesspor
dc.subjectHuman capitaleng
dc.subjectSkillseng
dc.subjectEarningseng
dc.subjectData reductioneng
dc.subjectHierarchical cluster analysiseng
dc.subjectFuzzy setseng
dc.subjectGrade of membership modeleng
dc.titleFuzzy approach to discrete data reduction: an application in economics for assessing the skill premiumeng
dc.typearticle-
dc.event.date2019-
dc.pagination414 - 429-
dc.publicationstatusPublicadopor
dc.peerreviewedyes-
dc.journalJournal of Business Economics and Management-
dc.distributionInternacionalpor
dc.volume17-
dc.number3-
degois.publication.firstPage414-
degois.publication.lastPage429-
degois.publication.issue3-
degois.publication.titleFuzzy approach to discrete data reduction: an application in economics for assessing the skill premiumeng
dc.date.updated2019-02-20T16:05:42Z-
dc.description.versioninfo:eu-repo/semantics/publishedVersion-
dc.identifier.doi10.3846/16111699.2014.978361-
dc.subject.fosDomínio/Área Científica::Ciências Sociais::Economia e Gestãopor
iscte.identifier.cienciahttps://ciencia.iscte-iul.pt/id/ci-pub-23880-
iscte.alternateIdentifiers.wosWOS:000378815000006-
iscte.alternateIdentifiers.scopus2-s2.0-84930268067-
Appears in Collections:BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica
DINÂMIA'CET-RI - Artigos em revistas internacionais com arbitragem científica

Files in This Item:
File Description SizeFormat 
2246-Article Text-4878-1-10-20180606.pdfVersão Editora389,97 kBAdobe PDFView/Open


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpaceOrkut
Formato BibTex mendeley Endnote Logotipo do DeGóis Logotipo do Orcid 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.