Please use this identifier to cite or link to this item:
http://hdl.handle.net/10071/10908Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Gomes, A. | - |
| dc.contributor.author | Dias, J. G. | - |
| dc.date.accessioned | 2016-02-22T12:04:43Z | - |
| dc.date.available | 2016-02-22T12:04:43Z | - |
| dc.date.issued | 2015 | - |
| dc.identifier.issn | 1050-8414 | - |
| dc.identifier.uri | http://hdl.handle.net/10071/10908 | - |
| dc.description.abstract | Latent growth mixture modeling is a statistical approach that models longitudinal data, grouping individuals who share similar longitudinal data patterns into latent classes. We evaluated the application of this method in a sample of ab initio pilot applicants (N = 297), using longitudinal data collected from a military flight-screening program (where the applicants flew seven required flights), resulting in a final pass–fail outcome. Results showed the existence of a two-class solution (Cluster 1 presented an initially higher performance and contained 75% of the Pass candidates) and the psychomotor coordination and general adaptability showed a significant effect. | eng |
| dc.language.iso | eng | - |
| dc.publisher | Taylor and Francis | - |
| dc.relation | info:eu-repo/grantAgreement/FCT/5876/147442/PT | - |
| dc.rights | embargoedAccess | por |
| dc.title | Improving the selection of pilot air force candidates using latent trajectories: an application of latent growth mixture modeling | eng |
| dc.type | article | - |
| dc.pagination | 108 - 121 | - |
| dc.publicationstatus | Publicado | por |
| dc.peerreviewed | yes | - |
| dc.journal | International Journal of Aviation Psychology | - |
| dc.distribution | Internacional | por |
| dc.volume | 25 | - |
| dc.number | 2 | - |
| degois.publication.firstPage | 108 | - |
| degois.publication.lastPage | 121 | - |
| degois.publication.issue | 2 | - |
| degois.publication.title | Improving the selection of pilot air force candidates using latent trajectories: an application of latent growth mixture modeling | eng |
| dc.date.updated | 2019-05-16T10:36:55Z | - |
| dc.description.version | info:eu-repo/semantics/publishedVersion | - |
| dc.identifier.doi | 10.1080/10508414.2015.1130489 | - |
| dc.subject.fos | Domínio/Área Científica::Ciências Sociais::Psicologia | por |
| iscte.subject.ods | Saúde de qualidade | por |
| iscte.subject.ods | Trabalho digno e crescimento económico | por |
| iscte.identifier.ciencia | https://ciencia.iscte-iul.pt/id/ci-pub-28331 | - |
| iscte.alternateIdentifiers.wos | WOS:000375234700004 | - |
| iscte.alternateIdentifiers.scopus | 2-s2.0-84957803975 | - |
| Appears in Collections: | BRU-RI - Artigos em revistas científicas internacionais com arbitragem científica | |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| Gomes_and_Dias__2016_.pdf Restricted Access | Versão Editora | 661,88 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.












