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Abstract

There is by now a large consensus in modern monetary policy. This consensus has
been built upon a dynamic general equilibrium model of optimal monetary policy
as developed by, e.g., Goodfriend and King (1997), Clarida et al. (1999), Svens-
son (1999) and Woodford (2003). In this paper we extend the standard optimal
monetary policy model by introducing nonlinearity into the Phillips curve. Under
the specific form of nonlinearity proposed in our paper (which allows for convexity
and concavity and secures closed form solutions), we show that the introduction
of a nonlinear Phillips curve into the structure of the standard model in a discrete
time and deterministic framework produces radical changes to the major conclu-
sions regarding stability and the efficiency of monetary policy. We emphasize the
following main results: (i) instead of a unique fixed point we end up with multiple
equilibria; (ii) instead of saddle–path stability, for different sets of parameter val-
ues we may have saddle stability, totally unstable equilibria and chaotic attractors;
(iii) for certain degrees of convexity and/or concavity of the Phillips curve, where
endogenous fluctuations arise, one is able to encounter various results that seem
intuitively correct. Firstly, when the Central Bank pays attention essentially to in-
flation targeting, the inflation rate has a lower mean and is less volatile; secondly,
when the degree of price stickiness is high, the inflation rate displays a larger mean
and higher volatility (but this is sensitive to the values given to the parameters of
the model); and thirdly, the higher the target value of the output gap chosen by the
Central Bank, the higher is the inflation rate and its volatility.
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Introduction

Since the early 1990s we have witnessed an increasing consensus in the conduct
of modern monetary policy. Goodfriend and King (1997) have labelled this new
consensus as ”The New Neoclassical Synthesis and the Role of Monetary Pol-
icy”, while Clarida et al. (1999) called it the ”The Science of Monetary Policy:
A New Keynesian Perspective”. This new framework is a natural extension
of the seminal idea developed by Taylor (1993), in which the central bank
should conduct monetary policy through an aggressive and publicly known
rule with commitment. In fact, this emerging consensus turned upside down
the basic prescriptions of monetary and fiscal policies of the old Neoclassical
Synthesis of the 60’s and 70’s, and has led to a standard DGEM so successful
that, as Laurence Ball has recently commented, ”the model is so hot that the
Keynesians and Classicals fight over who gets credit for it” (2005, 265).

In this paper we extend the standard model by introducing nonlinearity into
the Phillips curve. As the linear Phillips curve seems to be at odds with em-
pirical evidence and basic economic intuition, a similar procedure has already
been undertaken in a series of papers over the last few years, e.g., Schaling
(1999), Semmler and Zhang (2004), Zhang and Semmler (2003), Nobay and
Peel (2000), Tambakis (1999), and Dolado et al. (2004). However, these papers
were mainly concerned with analyzing the problem of inflation bias, deriving
an interest rate rule which is nonlinear. The issue of stability and the possible
existence of endogenous cycles in such a framework were totally overlooked in
these papers. One possible justification for this fact is the type of nonlinearity
that is introduced into the standard model, because, as it is well known in the
literature, quadratic preferences by the central bank with a convex Phillips
Curve, as the one used by most of those papers, do not secure closed form
solutions.

In contrast, under the specific form of nonlinearity proposed in our paper,
which allows for convexity and concavity and secures closed form solutions,
we show that the introduction of a nonlinear Phillips curve into the structure
of the standard model in a discrete time and deterministic framework produces
radical changes to the major conclusions regarding stability and the efficiency
of monetary policy under the new framework.

1 The Model

Assume that the Central Bank has quadratic loss preferences over the rate of
inflation (πt) and the output gap (xt). It’s objective is to minimize the squared
errors of these two state variables with respect to their target values (π∗, x∗)
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fixed and publicly announced by the bank

Vt =
1

2
Et

{
∞∑
t=0

βt
[
α(xt − x∗)2 + (πt − π∗)2

]}
(1)

where Vt is the Central Bank objective function and α is the relative weight
of the output gap in the bank’s loss function, 0 ≤ α ≤ 1. Et is the expectation
operator, and β is the gross rate of intertemporal discount. It should be also
stressed that the parameters that reflect the options of the Central Bank
concerning optimal monetary policy are essentially three in this model: α, x∗

and π∗. Firstly, if α = 0, then the Central Bank is only concerned about the
control of inflation, with no concern at all about real variables like the output
gap, employment, or consumption. Secondly, if x∗ = 0 the Central Bank wants
to achieve an expected value of output exactly equal to the long term trend
value of such variable. Thirdly, if π∗ = 0 then the Central Bank aims to achieve
an expected value for the rate of inflation that is zero over time.

The objective function is optimized subject to two constraints. The first is
a forward looking Investment-Savings function (IS function) derived from an
optimal intertemporal problem in which families evaluate the trade-off between
consumption vs savings and leisure vs labour and is given by

xt = −ϕ(it − Etπt+1) + Etxt+1 + gt, x0 given (2)

where it stands for the nominal interest rate; Etπt+1 is the private sector
expected rate of inflation at t + 1; Etxt+1 is the expected output gap at t +
1; and gt stands for aggregate demand shocks (e.g. changes in government
expenditures) and defined as an autoregressive Markov process: gt = µgt−1+ĝt,
0 ≤ µ ≤ 1, ĝt ∼ iid(0, σ2

g). Notice that the term it − Etπt+1 gives the level of
the real expected interest rate, and ϕ > 0 is the interest elasticity with respect
to the output gap. Moreover, notice also that in this optimal control problem
the rate of interest (it) is the control or co-state variable of the problem.

The second constraint is an aggregate supply function describing the behavior
of firms. It is presented as a new Keynesian Phillips curve, and in fact it is the
old Phillips Curve but now derived from microeconomic principles. Following
Calvo (1983), at time t only a proportion of firms (1 − ν) can adjust prices
due to market imperfections, which leads to the following supply function

πt = F (xt) + βEtπt+1 + ut, π0 given, (3)

where ut is also defined by a Markov process, ut = ρ.ut−1 + ût, 0 ≤ ρ ≤ 1,
ût ∼ iid(0, σ2

u).

Notice that the standard model assumes F (xt) to be linear, F (xt) = λxt,
where 0 < λ < 1 represents the level of price stickiness in the economy (which
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is decreasing in ν), such that the higher is λ, the lower is the level of price
rigidity.

The optimal intertemporal problem consists in optimizing (1) subject to con-
straints (2) and (3). The problem can be solved using the usual tools of dy-
namic optimization. To maximize the objective function of the Central Bank
the current value Hamiltonian takes the form

ℵ(it, xt, πt)=−
1

2
[α(xt − x∗)2 + (πt − π∗)2]

+βqt+1ϕ

[

it −
1

β
πt +

1

β
F (xt)

]

(4)

+βpt+1

[
1 − β

β
πt −

1

β
F (xt)

]

where qt and pt are shadow-prices associated with xt and πt, respectively. No-
tice that, the expectations operators for next period inflation and output gap
and the stochastic factors have been removed in the Hamiltonian, because
from now onwards we assume two crucial assumptions: (i) we will work under
a deterministic framework, and (ii) agents are fully rational. The adoption of
these two assumptions leads to a fully deterministic perfect foresight equilib-
rium and in practical terms it means that Etπt+1 = πt+1 and Etxt+1 = xt+1.

First order necessary conditions are

ℵi = 0 ⇒ qt+1 = 0 (5)

βqt+1 − qt = α(xt − x∗) − ϕqt+1F
′(xt) + pt+1F

′(xt) (6)

βpt+1 − pt = πt − π∗ + ϕqt+1 − (1 − β)pt+1 (7)

lim
t→+∞

qtβ
txt = lim

t→+∞

ptβ
tπt = 0 (8)

Simple manipulation of these conditions allow us to arrive at the first equation
of the reduced form of our system

xt+1 − x∗

F ′(xt+1)
=

xt − x∗

F ′(xt)
−

1

αβ
[πt − F (xt) − βπ∗ − ut] (9)

while the second equation is given by the Phillips curve.

1.1 The nonlinear case

We consider two alternative cases for the introduction of nonlinearity into
the Phillips curve. The two cases can be separately analyzed and they depend

4



essentially on whether the currently perceived output gap by the Central Bank
is higher than its target value (x0 > x∗) or lower than the perceived value
(x0 < x∗). Defining a positive parameter φ, the two specific nonlinear functions
are

F (xt)= λ[(xt − x∗)φ + (x∗)φ], x0 > x∗

F (xt)= λ[(x∗)φ
− (x∗

− xt)
φ], x0 < x∗

Notice that the two above functions contain the properties required for our
Phillips curve. First, for φ = 1, the functions are identical and we are back
to the linear case (F (xt) = λxt). Second, the function can be either concave
or convex for both cases depending on the value of φ and on whether the
initial condition is to the left/right of the target value of the output gap.
Third, regarding the nonlinear functions presented in the literature previously
referred to, these functions have the advantage of allowing for closed form
solutions which can be treated in an analytical way, and moreover, they also
lead to both positive and negative values of the output gap.

Under the specific nonlinear functions chosen for F (xt), the following two
systems should be evaluated in order to derive any results from the model.

i) x0 > x∗:

πt+1 =
1

β
πt −

λ

β

[
(xt − x∗)φ + (x∗)φ

]
(10)

xt+1 = x∗ +

{

(xt − x∗)2−φ −
λφ

αβ

[
πt − λ((xt − x∗)φ + (x∗)φ) − βπ∗

]}1/(2−φ)

ii) x0 < x∗:

πt+1 =
1

β
πt −

λ

β

[
(x∗)φ − (x∗ − xt)

φ
]

(11)

xt+1 = x∗ −

{

(x∗ − xt)
2−φ −

λφ

αβ

[
πt − λ((x∗)φ − (x∗ − xt)

φ) − βπ∗

]}1/(2−φ)

Systems (10) and (11) change significantly the results of the monetary policy
problem as far as the standard model is concerned. It can be shown that
for several sets of parameter values the nonlinear model leads to multiple
equilibria, and large instability arising from deterministic endogenous cycles.
As we can see in both systems, the power of the second equation shows that
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there are always two equilibria in each case. However, due to space limitations,
we are forced to illustrate here only one equilibrium point of the second case
above referred to (where x0 < x∗) as this case is the one that is usually most
found in contemporary economics.

2 Local and global dynamics

In this section we present the dynamic behavior of the system defined in (11).
There are two real equilibrium points but only one is compatible with rea-
sonable parameter value restrictions. This equilibrium point is analytically
determined and discussed in what follows. Saddle-node bifurcations are possi-
ble and a Neimark-Sacker (or torus breakdown) bifurcation route to chaos is
encountered when the parameter β is varied. Since we have power functions
we have to consider positive square powers in order to ensure the existence
of real iterations. This is the reason why in the numerical examples presented
below we almost always assume φ = 1.5 (which gives 1/(2 − φ) = 2).

2.1 The case: x0 < x∗

Proposition 1 The dynamic system (11) has always an unstable equilibrium
given by the following point

πt = π∗, xt = x∗ −

(

(x∗)φ
−

1 − β

λ
π∗

)1/φ

.

Proof. The stability of this fixed point is analyzed using the sufficient con-
ditions, where J is the Jacobian matrix computed at the fixed point. We have
then 





2 +
2

β
+

λ2φ2

αβ (2 − φ)
v2 > 0 iff φ < 2

−
λ2φ2

αβ (2 − φ)
v2 > 0 iff φ > 2

1 −
1

β
> 0 iff β > 1

where

v =

(

(x∗)φ
−

(1 − β)

λ
π∗

)φ−1
φ

.

This means that there is no stable equilibrium, independently of the value of
φ.
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Analogous to the first model if we solve the conditions






1 + trace(J) + det(J) = 2 +
2

β
+

λ2φ2

αβ (2 − φ)
v2 = 0

1 − trace(J) + det(J) = −
λ2φ2

αβ (2 − φ)
v2 = 0

1 − det(J) = 1 −
1

β
= 0

we may obtain the first period-doubling bifurcation location, the Neimark-
Sacker and the Saddle-Node bifurcation points. For

π∗ =
λ

β − 1




(

2α (φ − 2) (β + 1)

λ2φ2

) φ

2(φ−1)

− (x∗)φ



 with φ > 2

there is a period-doubling bifurcation (again, the result is not relevant, because
it implies a strong degree of nonlinearity). For

π∗ =
λ (x∗)φ

1 − β

we have a saddle-node bifurcation and for β = 1 there is a Neimark-Sacker
bifurcation.

We assume the following parameter calibration: α = 0.1; π∗ = 0.02; x∗ = 0.04,
φ = 1.5; λ = 0.8, and let for now the parameter β to vary in order to study
how this parameter affects the global dynamics of the model. As it is shown
in Figure 1, when β is varied the dynamics is characterized by high order
Neimark-Sacker bifurcations, breakdown of closed invariant curves, stretching
and folding, and all this route leads the system to settle down in chaotic
dynamics.

Let us assume that β = 0.99 in order to study the impact of variations on
two other fundamental parameters of the model: α, λ. When we vary these
two parameters in the interval ]0, 1[ the system is also always chaotic, with
eigenvalues with modulus greater than 1; which means that the first bifurca-
tions occur for parameter values outside the given intervals. Figure 2 shows
the complex motion of the model, where some stability windows, quasi-regular
and chaotic motion can be observed.

We may also analyze the impact upon the dynamics if the central bank decides
to accept higher target values for the output gap (x∗). Figure 3 shows the
bifurcation diagram of the variable πt when x∗ is increased, illustrating several
stability windows, where high order Neimark-Sacker bifurcations take places.
In these windows several closed invariant curves start to stretch and fold, and
after all breakdown and join in a chaotic attractor. We can also observe the
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Fig. 1. Bifurcation diagram for the variable xt when β is varied

Fig. 2. Bifurcation diagram for the inflation rate (π) when α and λ are varied

increasing of volatility in the inflation rate if the central bank fixes a target
value for the output gap relatively high.

Finally, Figures 4 and 5 show the attractor and the correspondent time series
of the rate of inflation for the calibration above presented, with a small dif-
ference. While the former assumes all the values of the calibration, including
the values for the target variables (π∗ = 0.02, x∗ = 0.04) , the latter takes a
slightly change in the values of these parameters (π∗ = 0.03, x∗ = 0.06). The
initial conditions are x(0) = 0.01; π(0) = 0.02. so that the condition x0 < x∗ is
satisfied. Two points should be highlighted. First, the time series show figures
for the rate of inflation that are not far from those we find in contemporary
advanced economies. Secondly, the mean of the rate of inflation in each simu-
lation is very close to the target value of the Central Bank; however, there is
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Fig. 3. Bifurcation diagram for the inflation rate (π) when the target value for the
output gap (x∗) is increased
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Fig. 4. Strange attractor and time series of πt variable

significant volatility showing that the bank may have some control on inflation
but it is very hard to control the rate in a very efficient way (that is, to reduce
or eliminate the volatility in inflation).

3 Conclusions

A nonlinear Phillips curve produces radical changes to the major conclusions
regarding stability and the efficiency of monetary policy. The main results
are the following: (i) instead of a unique fixed point we end up with multiple
equilibria; (ii) instead of saddle–path stability, for different sets of parameter
values we may have saddle stability, totally unstable equilibria and chaotic
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Fig. 5. Strange attractor and time series of πt variable

attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips
curve, where endogenous fluctuations arise, one is able to encounter some
results that seem intuitively correct. Firstly, when the Central Bank pays
attention essentially to inflation targeting, the inflation rate has a lower mean
and is less volatile (as one can see in the upper panel of Figure 2). Secondly,
changes in the degree of price stickiness may (or may not) affect the levels
of the mean and the variance of the inflation rate, depending on the specific
values of the various parameters (see the lower panel of Figure 2). Thirdly,
the higher the target value of the output gap chosen by the Central Bank, the
higher is the inflation rate and its volatility (see Figure 3).

Moreover, the existence of endogenous cycles due to chaotic motion may raise
serious questions about whether the old dictum of monetary policy (that the
Central Bank should conduct policy with some level of discretion instead of
pure commitment) is not still in the business of monetary policy.
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