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Abstract

In this paper we address the problem of clustering interval data, adopting

a model-based approach. To this purpose, parametric models for interval-

valued variables are used which consider configurations for the variance-

covariance matrix that take the nature of the interval data directly into

account. Results, both on synthetic and empirical data, clearly show the

well-founding of the proposed approach. The method succeeds in finding

parsimonious heterocedastic models which is a critical feature in many ap-

plications. Furthermore, the analysis of the different data sets made clear

the need to explicitly consider the intrinsic variability present in interval

data.
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1 Introduction

Symbolic Data, introduced by E. Diday in the late eighties of the last cen-

tury (see, for instance, [2], [22] [34]), is concerned with the analysis of data

presenting intrinsic variability, which should be explicitly taken into account.

This happens, in particular, when huge data bases are aggregated on the

basis of some descriptors that define groups of interest - which constitute

the statistical units to be analyzed. It is also the case when the entities

under analysis are not single elements, but rather classes or concepts, for

instance, not a particular car, but a car model, not a particular flight, but

the airport traffic, not the particular flower I am picking, but the flower

species. In all these cases, we are dealing with statistical units which have

inherent variability that should be taken into account. The alternative of

representing variable values by central measures such as averages, medians

or modes entails a too important loss of information. Symbolic Data Anal-

ysis (henceforth, SDA) provides a convenient framework to represent data

with such variability. New variable types were introduced that allow for the

representation of the intrinsic variability of the data.

As in the classical case, symbolic variables may be either numerical or

categorical. Different kinds of numerical and categorical variables may then

be considered, and classical numerical and categorical variables are just spe-

cial cases of symbolic variables. A numerical (or quantitative) variable is

single-valued (real or integer) if it takes one single value of an underlying

domain for each entity. It is multi-valued if its values are finite subsets of

the domain and it is an interval-valued variable if its values are intervals of

IR. When an empirical distribution over a set of subintervals is given, the

variable is called a histogram-valued variable. As in the classical context,

data are presented in a matrix, or data-array, now called a “symbolic data
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table”, where each row corresponds to a group, or concept, i.e., the entity

of interest, and each column corresponds to a “symbolic variable”. Non-

parametric approaches for symbolic data have been presented in e.g., [2],

[22], and [34]); parametric modelling has been discussed, for instance, in [5],

[6], and [9].

In this paper we propose a model-based approach for clustering interval

data, extending the Gaussian models proposed in [9] to the model-based

clustering context. For this purpose, we adapt the EM algorithm to the

likelihood maximization in our models, for different covariance configura-

tions. The proposed methodology is illustrated with synthetic data and

further explored on real data sets with different characteristics. In recent

years finite mixture aka latent class modelling has been applied extensively.

Apart from other applications (e.g., density estimation, outlier detection,

measurement error modelling), finite mixture models have been extensively

used as a clustering technique. In this case one assumes that there is discrete

population heterogeneity with K subpopulations or clusters that can be un-

mixed. Because, each cluster or component is characterized by a specific

density function, this approach has been called model-based clustering.

The remaining of the paper is organized as follows. In Section 2 interval-

valued variables are formally introduced and different representation of interval-

data are considered. Parametric modelling of interval data, which will be

used in the sequel, is recalled. Section 3 reviews existing proposals for the

non-parametric clustering of interval data. Section 4 describes the proposed

methodology for clustering interval data. Section 5 illustrates the proce-

dure using two synthetic data sets. Section 6 reports the application of the

method to three data sets of different nature and sizes. The article ends by

highlighting the main conclusions, advantages of this model-based clustering
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method, and desirable further extensions.

2 Interval data

Interval data occur in various contexts. When describing ranges of variable

values, as it is the case, for instance, for daily stock prices or temperature

ranges, we obtain native interval data; in the aggregation of huge data bases

into groups of interest, real values describing the individual observations

(the microdata) lead to intervals describing the groups formed; descriptions

of biological species or technical specifications are often presented in the

form of intervals for the different variables.

Let S = {s1, . . . , sn}, be the set of n entities under analysis. Formally,

an interval-valued variable is defined by an application

Y : S → T such that si → Y (si) = [li, ui]

where T is the set of intervals of an underlying set O ⊆ IR.

Let I be an n × p matrix representing the values of p interval-valued

variables on S. Each si ∈ S is represented by a p-dimensional vector of

intervals, Ii = (Ii1, . . . , Iip), i = 1, . . . , n, with Iij = [lij , uij ], j = 1, . . . , p

(see Table 1).

TABLE 1 ABOUT HERE

The value of an interval-valued variable Yj for each si ∈ S is naturally

defined by the lower and upper bounds lij and uij of Iij = Yj(si). For

modelling purposes an alternative parameterization consists in representing

Yj(si) by the MidPoint cij =
lij + uij

2
and Range rij = uij − lij of Iij .
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Consider each interval Iij represented by its MidPoint cij and Range rij .

The Gaussian model (see [9]) assumes a multivariate Normal distribution for

MidPoints C and the logs of the RangesR, R∗ = ln(R), (C,R∗) ∼ N2p(µ,Σ),

with µ =
[
µt
C ,µ

t
R∗
]t

and Σ =

 ΣCC ΣCR∗

ΣR∗C ΣR∗R∗

 where µC and µR∗ are

p-dimensional column vectors of the mean values of, respectively, the Mid-

Points and Log-Ranges, and ΣCC ,ΣCR∗ ,ΣR∗C and ΣR∗R∗ are p×p matrices

with their variances and covariances.

This model has the advantage of allowing for the application of clas-

sical inference methods; nevertheless it is important to keep in mind that

the MidPoint cij and the Range rij of the value of an interval-valued vari-

able Iij = Yj(si) are two quantities related to one same variable, and must

therefore be considered together. As a consequence, the global covariance

matrix should take into account the link that may exist between MidPoints

and Ranges of the same or different variables. Intermediate parameteriza-

tions between the non-restricted and the non-correlation setup considered

for real-valued data are relevant for the specific case of interval data. In this

paper, we shall consider the following cases:

1. Non-restricted case: allowing for non-zero correlations among all Mid-

Points and Log-Ranges;

2. Interval-valued variables Yj are independent, but for each variable,

the MidPoint may be correlated with its Log-Range: ΣCC ,ΣCR∗ =

ΣR∗C ,ΣR∗R∗ all diagonal;

3. MidPoints (Log-Ranges) of different variables may be correlated, but

no correlation between MidPoints and Log-Ranges is allowed: ΣCR∗ =

ΣR∗C = 0;
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4. All MidPoints and Log-Ranges are uncorrelated, both among them-

selves and between each other: Σ diagonal.

From the Normality assumption it obviously follows that imposing non-

correlations with Log-Ranges is equivalent to imposing non-correlations with

Ranges. It should be remarked that in Cases 2, 3 and 4, Σ can be written

as a diagonal by blocks matrix, after a possible rearrangement of rows and

columns. This is particularly important for maximum likelihood estimation.

In a full complete setup another case could still be considered, namely, al-

lowing for non-null correlation between the MidPoint of each variable and

its Log-Range, but not between MidPoints and Log-Ranges of different vari-

ables. This case appears to be less natural, and leads to considerably com-

putational complexity, and will therefore not be considered in the present

investigation.

3 Non-parametric clustering

Clustering of interval data has been addressed by several authors, under

non-parametric exploratory approaches.

Methods based on dissimilarities, generally adaptations of K-means,

have been developed, for instance in [36], [15] and [12]. These approaches

propose suitable dissimilarity measures for interval data, and then use the

K-means algorithm to obtain a partition that locally optimizes a criterion

measuring the fit between the cluster composition and their prototypes.

In [36], a City-Block L1 distance between intervals is used, d1(Ii, Ij) =

|li − lj |+ |ui − uj |, whereas in [15] a L2 distance is considered: d2(Ii, Ij) =√
(li − lj)2 + (ui − uj)2. In [12] different measures are used and results

discussed. SCLUST (see [17]) is a module of the SODAS package that

performs non-hierarchical clustering on symbolic data, using a K-means-
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like method; for interval-data the Hausdorff distance between intervals,

dH(Ii, Ij) = max {{|li − lj | , |ui − uj |} is used by default.

Fuzzy clustering has been developed by different authors. The first fuzzy

clustering method for interval data has been proposed in [23]. Other ap-

proaches followed, see [37], [14], [19], and [30]. Fuzzy K-means methods

for interval data generally result from adapting the classical fuzzy c-means

algorithm, using appropriate distances, as is done for the crisp algorithms.

Other extensions, using adaptive distances [16] or based on multiple

dissimilarity matrices [18] have also been investigated.

A method based on Poisson point processes has been proposed in [28].

The first part of the method consists in a monothetic divisive clustering

procedure where the cutting rule uses an extension of the Hypervolumes

criterion to interval data. The pruning step uses two likelihood ratio tests

based on the homogeneous Poisson point process, the Hypervolumes test

and the Gap test, leading to a decision tree. A merging procedure then

allows improving the clustering obtained in the first step.

A method for conceptual ascending hierarchical or pyramidal clustering

has been proposed in [7] and [8], which may be summarized as follows: for

each candidate cluster, a description is built, generalizing the descriptions

corresponding to the clusters to be merged, a candidate cluster is eligible

only if this new description covers all cluster elements and none other. When

two given clusters are merged, it is described, for each variable, by the min-

imum interval that covers them. Each cluster formed is hence associated

with a conjunction of properties on the descriptive variables, which consti-

tutes a necessary and sufficient condition for cluster membership. To choose

among the different aggregations meeting the above condition, a “generality

degree” evaluates the proportion of the representation space covered by the
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considered description; it is computed variable-wise and the values for each

variable are then combined to obtain a measure of the variability of the full

description. The aggregation leading to the cluster with lower generality is

selected.

A monothetic clustering method using a divisive approach is proposed in

[11]; each cluster formed is again associated with a conjunction of properties

on the descriptive variables, constituing a necessary and sufficient condition

for cluster membership. The method uses a criterion that measures intra-

class dispersion using distances appropriate to interval-valued variables. The

algorithm successively splits one cluster into two sub-clusters, according to

a condition expressed as a binary question on the values of one variable;

the cluster to be split and the condition to be considered at each step are

selected based on the minimization of the intra-cluster dispersion on the

next step.

Approaches that use Kohonen maps for clustering interval data have also

been developed; in the SODAS software Kohonen maps are constructed by

the module SYKSOM - see [3] and [4]. Other approaches are investigated

in [26], [13], and [39].

Clustering and validation of interval data are discussed in [27].

However, none of above described proposals has taken a model-based

approach.

4 Model-based clustering of interval data

Let x = (x1, ...,xn) denote a sample of size n, p represent the number of

interval-valued variables, and xij indicate the observed value for variable j

in observation i, with i = 1, ..., n, j = 1, ..., 2p. The finite mixture model
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with K components for xi = (xi1, ..., xi,2p) is defined by

f(xi;ϕ) =
K∑
k=1

τkfk(xi;θk), (1)

where component proportions τk are positive and sum to one; and θk denotes

parameters of the conditional distribution of cluster k. Model parameters

are ϕ = (τ ,θ), with τ = (τ1, ..., τK−1) and θ = (θ1, ...,θK). The number

of free parameters in vectors τ and θ are dτ = K − 1 and dθ, respectively.

The number of free parameters is dϕ = dτ + dθ.

For continuous metric data, finite mixtures of Gaussian distributions

have been extensively applied [32]. For this specification, the conditional

distribution is given by N (µk,Σk), where µk and Σs are the mean vector

and covariance matrix, respectively. For instance, heteroscedastic Case 1

contains dϕ = Kp(2p+ 3) +K − 1 free parameters.

Maximum likelihood (ML) parameter estimation involves the maximiza-

tion of the log-likelihood function: `(ϕ; x) =
∑n

i=1 ln f(xi;ϕ), a problem

that can be tackled by the Expectation-Maximization (EM) algorithm [20].

E-step computes the joint conditional distribution of the missing data given

observed data and provisional estimates of model parameters. In the M-step,

standard complete data ML methods are used to update the unknown model

parameters using an expanded data matrix with the estimated densities of

the missing data (posterior cluster probabilities) as weights.

An important modelling issue is the selection of the number of com-

ponents (K). We use the Bayesian Information Criterion (BIC) [35] given

by

BIC = −2`(ϕ̂; x) + dϕ ln(n), (2)

where dϕ is the number of free parameters in the model. We notice that

BIC is a consistent criterion, whereas the AIC is a biased estimate of the

true number of latent classes ([29], and [21]).
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In model-based clustering of interval data, Xi =
[
Ct
i , R

∗
i
t
]t

is defined as

the 2p dimensional column vector comprising all the MidPoints and Log-

Ranges for si, and the “complete” data are considered to be yi = (xi, zi),

where zi = (zi1, . . . , ziK) is assumed as the “missing” data, with

zik =

1 if observation xi belongs to group k

0 otherwise

It is well known (see, e.g, [32], [24], [10]) that in this case the E-step

consists in replacing zik by the estimated conditional probabilities, ẑik and

the M-step consists in the maximization of

F (ϕ|x1, . . . ,xn, ẑ) =

K∑
k=1

n∑
i=1

ẑik ln(τk φ(xi|θk)) =

K∑
k=1

n∑
i=1

ẑik

(
ln τk − p ln(2π)− 1

2
ln |Σk| −

1

2
(xi − µk)tΣ−1

k (xi − µk)

)
(3)

In all models and cases, the updating formulas for τk and µk are

τ̂k =

∑n
i=1 ẑik
n

; µ̂k =

∑n
i=1 ẑikxi∑n
i=1 ẑik

; (4)

and Σ̂ (homocedastic models), Σ̂k (heterocedastic models) can be updated,

by maximizing respectively

constant − n

2
ln |Σ| − 1

2
trEΣ−1 (5)

constant − nk
2

ln |Σk| −
1

2
trEkΣ

−1
k (6)

with nk =
∑n

i=1 ẑik, Ek =
∑n

i=1 ẑik(xi − x̄k)(xi − x̄k)t and E =
∑K

k=1 Ek.

In the unrestricted case the M-step formulas for Σ̂, Σ̂k are obviously

the classical ones, Σ̂ = E/n, Σ̂k = Ek/nk. In [9] it is shown that when Σ

is restricted to be a diagonal by blocks matrix, with q blocks:
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Σ =



Σ(1)

Σ(2) 0

0 . . .

Σ(q)


(5) is maximized when Σ(h) = Σ̂(h) = E(h)/n, for h = 1, . . . , q where E(h)

is the block of E corresponding to Σ(h). The same argument can show that

(6) is maximized by Σ
(h)
k = Σ̂

(h)
k = E

(h)
k /nk, with E

(h)
k defined in the same

way.

In our implementation, to try avoiding local optima, each search of the

EM algorithm is replicated many times from different starting points. The

first starting point is based on the zik estimates returned by the unrestricted

model of the R MCLUST package [25], and the remaining ones are obtained

from random perturbations applied to the current best solution.

5 Synthetic data sets

This section applies the model-based clustering procedure to two synthetic

interval data sets. As the structure of the problems is known, we can further

understand the performance of the proposed method.

5.1 Synthetic data set 1

The first synthetic data contains 2000 observations (n) and two interval-

valued variables (p). We assume three components (K) with same size

(τk = 1/3). Conditional on the cluster (k), the simulated values are given
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by Xi|k ∼ N (µk,Σ), where

µ1 =



1

ln 2

0

ln 2


, µ2 =



6

ln 4

1.5

ln 1


, µ3 =



5

ln 2

4.5

ln 2


, and Σ =



0.5 − 0.2 −

− 0.5 − 0.2

0.2 − 0.5 −

− 0.2 − 0.5


.

The setting assumes homoscedasticy, i.e., clusters share the same covari-

ance matrix. This example specifies a Case 3 configuration, where Midpoints

and Log-Ranges are not associated for the same variable, but we allow that

Midpoints and Log-Ranges for different variables may be associated. Fig-

ure 1 depicts the first 20 observations of this data set. It also adds the

centroids of these three components.

FIGURE 1 ABOUT HERE

Table 2 reports model selection results. As competing models to the

data generating process described above, we allow different homoscedastic

configurations (Cases 1, 2, and 4) under the same number of components

(K). BIC identifies the correct configuration, i.e., Case 3.

TABLE 2 ABOUT HERE

Model estimates show that the component sizes are well retrieved, i.e.,

proportions estimates (τ̂k) are 0.335, 0.330, and 0.335. Observations are

correctly allocated into clusters and proportions of the mixture are virtually
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identical. Mean vector and covariance matrix estimates are:

µ̂1 =



0.98

0.74

0.01

0.72


, µ̂2 =



5.00

0.69

4.50

0.70


, µ̂3 =



6.00

1.42

1.54

0.01


, Σ̂ =



0.52 − 0.22 −

− 0.50 − 0.21

0.22 − 0.50 −

− 0.21 − 0.49


.

We notice that ln 2 and ln 4 are 0.693 and 1.386, respectively. Overall,

this model-based clustering method retrieves the true values.

5.2 Synthetic data set 2

Regarding the second synthetic data set, we consider four variables (p) and

1000 observations. It specifies a two-component mixture model with τk =

1/2. This synthetic data set is simulated under Case 2, i.e., Midpoints and

Log-Ranges are associated only within each variable. Conditional on the

cluster (k), the simulated values are given by Xi|k ∼ N (µk,Σ) where

µ1 =



−1

0

−1

0

−1

0

−1

0



, µ2 =



1

0

1

0

1

0

1

0



, Σ =



1 0.8 − − − − − −

0.8 1 − − − − − −

− − 1 0.8 − − − −

− − 0.8 1 − − − −

− − − − 1 0.8 − −

− − − − 0.8 1 − −

− − − − − − 1 0.8

− − − − − − 0.8 1



.

Analyzing model selection from these four configurations of the covari-

ance structure (Table 3), we conclude that BIC identifies the correct one

(Case 2).
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TABLE 3 ABOUT HERE

Component-sizes are 0.509 and 0.491 for component 1 and 2, respec-

tively. Conditional mean estimates and the unconditional covariance matrix

estimate are

µ̂1 =



−0.95

0.05

−1.02

0.01

−1.01

0.02

−1.02

0.001



, µ̂2 =



1.02

0.01

1.06

0.07

1.08

0.09

0.98

−0.01



, Σ̂ =



1.00 0.82 − − − − − −

0.82 1.03 − − − − − −

− − 1.14 0.91 − − − −

− − 0.91 1.11 − − − −

− − − − 1.04 0.81 − −

− − − − 0.81 0.98 − −

− − − − − − 1.00 0.81

− − − − − − 0.81 1.02



.

Overall, this method retrieves the data generating process for Case 2.

All estimates are close to the true values.

6 Applications

In this section we apply the proposed model to three data sets of different

nature and size: the first one concerns meteorological data in the USA, the

second one is on income and debt variables, and the last and the last comes

from a Portuguese employment survey. In the first application we deal with

native interval data, since data are directly available in the form of minima

and maxima values. In the other two applications, interval data result from

the aggregation of micro data. However, the resulting number of observa-

tions differs considerably between them. While the Income-debt data set
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comprehends 297 observations, in the Unemployment data only 58 observa-

tions are available. This latter case illustrates a common situation where

the choice of a parsimonious model is particularly important and the use of

the BIC value should not be understood as a quest for the “true” model but

rather as the selection of a parameter subset comprising the most relevant

ones for the clustering problem. The main characteristics of these data sets

are summarized in Table 4. To highlight the added value of the interval-data

model-based approach, we compared our results with those provided by the

well-known MCLUST [25] methodology for model-based clustering of real

data.

Table 4 ABOUT HERE

In each case, from the interval data matrix, and for each interval-valued

observation Yj(si) = [lij , uij ], MidPoints cij and Log-Ranges r∗ij were com-

puted. Then, models were estimated for partitions with different numbers of

components, in both homocedastic and heterocedastic setups, and consider-

ing the different proposed configurations for the variance-covariance matrix

(Cases 1 to 4) (see Section 2). To minimize the effect of local optima, in each

case 1000 different random starting points were used for the EM algorithm;

BIC values were computed for each solution.

6.1 USA meteorological data

Our first application concerns temperatures and pluviosity measured in 282

meteorological stations in the USA. We consider the temperature ranges

in January and July, and the annual pluviosity range measured in each

station. All these values are based on 30 years averages (1970-2000). Data
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were retrieved from the USA National Environmental Satellite, Data and In-

formation Service, at http://www1.ncdc.noaa.gov/pub/data/ccd-data (files

nrmmin.txt, nrmmax.txt, nrmpct.txt); Temperatures are represented in the

Fahrnheit scale, Pluviosity is measured in Inches. Table 5 shows the ob-

served data for some stations, indicating also the corresponding State.

TABLE 5 ABOUT HERE

The method described in Section 4 was applied to these data set, result-

ing in the BIC values given in Table 6.

TABLE 6 ABOUT HERE

The lowest BIC value is observed for the unrestricted (Case 1) hetero-

cedastic solution with six clusters and is shown in Figure 2 (Negative Longi-

tude values indicate Longitude West). Component proportions, component-

wise mean-vectors and variances are given in Table 7.

FIGURE 2 ABOUT HERE

TABLE 7 ABOUT HERE
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In Cluster 1 we find mainly the stations in the desertic inland areas, with

high intrinsic temperature variability, and very low pluviosity, also with low

intrinsic variability. Cluster 2, consisting of the Alaska stations, shows low

temperatures, both in winter and in summer, with low intrinsic variability

(low Log-Ranges). The stations in Cluster 3 are mostly in the Southeast;

this cluster is the warmest in the summer. Cluster 4, formed by stations

in the Northeast and Midwest, is the second coldest in the winter. Cluster

5 groups the Pacific Islands, and San Jose of Puerto Rico, characterised by

high temperatures, close to those of Cluster 3 in July but much higher in

January, and high pluviosity with high intrinsic variability. The West coast

stations, together with Key-West (FL) are grouped in Cluster 6, presenting

mild temperatures all year round, and low pluviosity but with relatively

high intrinsic variability. It becomes clear that clusters are differentiated

not only by the MidPoint but also by the Log-Range variables, putting in

evidence the importance of taking intrinsic variability of data into account.

Moreover, Cluster 2 presents very high variance values for the January Mid-

Point variable, while Cluster 1 and Cluster 6 present very high variance

values for the July MidPoint variable. Moreover, Cluster 2 has a high vari-

ance for the Log-Range of the pluviosity and Cluster 6 for the Log-Range

of the temperature in July. This stark difference illustrates well the need of

a heterocedastic setup for these data.

For comparison purposes, Ward hierarchical clustering, using the Eu-

clidean distances on standardized data has also been applied to this data

set. To decide upon the number of components to retain, we have consid-

ered the explained inertia of each partition. These values are presented in

Table 8 for partitions between 2 and 10 classes. Based on the values of

the explained inertia a partition in 4 clusters appears to be a natural one;
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for comparison purposes we consider the partition in six clusters. Figure

3 shows the partition in 4 clusters and Figure 4 the partition in 6 clusters

obtained by the Ward method.

TABLE 8 ABOUT HERE

FIGURE 3 ABOUT HERE

FIGURE 4 ABOUT HERE

These two partitions are clearly different from the one obtained by the

model-based method, which appears more natural. In particular, the model-

based method separates cold Alaska from warm Pacific-Islands and Puerto-

Rico, which is not the case for the Ward method. This may be explained

by the fact that the Ward method somehow imposes a similar covariance

structure for all clusters, while some natural clusters, the Alaska one being

the most obvious example, require larger variances than others. Therefore

heterocedastic models seem to be required to properly model these data.

We have also applied the SCLUST algorithm from the SODAS package

(see [22]), which is based on the K-means methodology, using the Hausdorff

distance to compare interval observations. Figure 5 shows the corresponding

partition in 6 clusters. As it was the case for the Ward method, this partition
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does not seem very natural. The Alaska and the arid regions are well iden-

tified, but the remaining clusters are difficult to interpret. In particular, the

Pacific Islands and the West coast are scattered by several groups. Probably

this is again a consequence of the somehow homocedastic structure imposed.

FIGURE 5 ABOUT HERE

Finally, we applied MCLUST to the Midpoints data, and obtained the

heterocedastic seven cluster solution shown in Figure 6.

FIGURE 6 ABOUT HERE

As it can be observed, the results are comparable to our solution, with

the main exception of the Alaska cluster, which does not appear well defined.

6.2 Income-debt data

In a second application, we used survey data included as sample in the SPSS

package (named “customer.dbase”). Among the large set of variables avail-

able, we focused on income and debt variables: Household Income (HI), Debt

to Income Ratio (× 100) (DIR), Credit Card Debt (in thousands) (CCD)

and Other Debts (OD). The 5000 individual observations have been aggre-

gated on the basis of Gender (F, M), Age Category (18-24, 25-34, 35-49,

50-64, more than 65 years old), Level of education (did not complete high

school, high-school degree, some college, college degree, post-undergraduate

degree), and Job Category (managerial and professional, sales and office,

service, agricultural and natural resources, precision production, craft, re-

pair, operation, fabrication, general labour), leading to 297 groups described

by the intervals of observed values on these four variables. The objective
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is to investigate how the different sociological groups are related regarding

income and debt variables. Table 9 shows the observed data for some groups.

TABLE 9 ABOUT HERE

The method described in Section 4 was applied to these data. BIC val-

ues are reported in Table 10.

TABLE 10 ABOUT HERE

The lowest BIC value is observed for the solution in nine components,

with a heterocedastic setup and Case 2, i.e., independent interval-valued

variables. Component proportions and the component-wise mean-vectors

are given in Table 11.

TABLE 11 ABOUT HERE

Clusters 1 and 2 are those where groups (our statistical units) present

the lower Household Incomes and lower Credit-Card Debt and Other Debts,

all with the lower variability (measured by the Log-Ranges). Furthermore,

Cluster 1 presents the lowest Debt-Income Ratio, with low intrinsic variabil-

ity. Cluster 2, although similar to Cluster 1 in terms of Household Income,

has much larger Debts, and higher variability in all variables. Groups in

Cluster 6 have the second highest Household Incomes, Credit-Card Debt
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and Other Debts and the largest Debt-Income Ratio, all with large variabil-

ity. Cluster 9 clearly stands out as the cluster of groups where the Household

Income is higher; it is also the one where the Credit-Card Debt and Other

Debts are higher, all these variables presenting a high variability. The other

clusters show intermediate patterns. As it may be seen in the Appendix, the

estimated variance-covariance matrices are clearly different across groups,

with noteworthy though different correlations between MidPoints and Log-

Ranges of the same interval-valued variables. All these correlations are pos-

itive, showing that the higher the MidPoint of an interval-valued variable

the higher the corresponding intrinsic variability.

MCLUST applied to the Midpoints data produced a heterocedastic five

cluster solution; the consideration of Log-Ranges together with Midpoints

in this example clearly allows for a finer partitioning of the groups.

6.3 Employment survey data

The third application concerns the Portuguese Employment Survey, from the

1st semester of 2008. The quite large original micro data set comprehends a

total of 42226 records. We only considered people who were unemployed at

the time of the survey (had no job and were looking for one), i.e., 1540 cases,

and focused on the two following variables: activity time (in years)(AT) and

unemployment time (in months) (UT). These micro data were gathered on

the basis of Gender (M, F), Region (North, Centre, Lisbon and Tagus Val-

ley (TV), South), Age-Group (15-24, 25-44, 45-64, over 65) and Education

(Basic or less, Secondary, Higher), leading to 58 sociological groups, which

constitute the statistical units of interest to be analysed.

Table 12 shows the observed data for some of these groups.
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TABLE 12 ABOUT HERE

The method described in Section 4 was applied to these data set, re-

sulting in the BIC values in Table 13. Empty cells indicate cases where the

number of observations does not allow the estimation of all the parameters.

TABLE 13 ABOUT HERE

The lowest BIC value is reached for the five-component solution, with

a heterocedastic setup and Case 2, i.e., independent interval-valued vari-

ables. Component proportions and component-wise mean-vectors are given

in Table 14.

In this application, where the number of observations is relatively low,

a restricted though heterocedastic model has been identified as the best fit.

This clearly illustrates the point that the method chose the best parameter

configuration for clustering, preferring a heterocedastic (and therefore heav-

ier in the number of parameters) model to a “lighter” homocedastic one,

but picking up a restricted configuration for the variance-covariance matrix,

where interval-valued variables are assumed independent. Choosing Case 2

as opposed to Case 3, also means that correlation between the two parts of

the interval-variables is considered more important than correlation between

different variables.

TABLE 14 ABOUT HERE
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Table 15 shows the composition of each cluster. Cluster 2 is a clus-

ter of young people with secondary or higher education from both genders,

which explains that they still have not worked long, and are looking for a

new job for a short time. Cluster 1 has similar demographics, with groups

of slightly higher age. Activity time and specially unemployment time are

higher, and have higher intrinsic variability (measured by the corresponding

Log-Ranges). Cluster 3 is mainly formed by groups with low education,

with ages between 25 and 64 years old - they have worked for a large time

already and are having a very hard time in finding a new job. In Cluster 4,

the activity time is high, with large intrinsic variability, but specially, the

unemployment time is the highest (MidPoint more than twice as large as

the second one, observed in Cluster 3). This cluster gathers groups with

basic education or less and age above 45 years old, the only exception being

women aged 25-44 from the North. It is known that in this region many

textile companies which used to hire young women closed doors. Finally,

the groups forming Cluster 5 have a long activity time, are no longer young,

but have a secondary or higher education level. Therefore, although the

MidPoint of Activity Time is at the same level of Cluster 3, they are look-

ing for a job for a shorter time. It should also be noticed that clusters

differ not only in terms of MidPoints, but also in terms of Log-Ranges, i.e.,

variability inherent to the data differs from cluster to cluster. This stresses

the fact that when analysing data with intrinsic variability, the use of just

a central measure (average, median) would not capture all the pertinent as-

pects of the reality. Furthermore, heterocedastic models were preferred to

homocedastic ones, showing that different dispersions amongst clusters are

also relevant - as can also be confirmed from the variance values in Table 14.
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TABLE 15 ABOUT HERE

Applying MCLUST to the Midpoints of the two interval-valued variables

produced a heterocedastic three cluster partition. Two of those clusters

correspond roughly to our clusters 2 and 4; however the remaining groups

are not separated, in particular the cluster of higher educated people is not

identified. Again, the consideration of Log-Ranges together with Midpoints

provides a finer partitioning, with important distinctive characteristics.

7 Conclusion

In this paper we proposed a probabilistic approach to the clustering of inter-

val data. The proposed framework relies on parametrizations that take into

account the inherent variability of the relevant data units and the relation

that may exist between this variability and the corresponding value levels.

To this aim the EM algorithm was suitably adapted. Using both synthetic

and empirical data sets the pertinence of the methodology proposed was

demonstrated.

In particular, its flexibility to identify heterocedastic models, even in

situations with limited information, was put in evidence. Moreover, consid-

ering special configurations of the variance-covariance matrix, adapted to

specific nature of interval data, proved to be the adequate approach. The

presented study also made clear the need to consider both the information

about position (conveyed by the MidPoints) and intrinsic variability (con-

veyed by the Log-Ranges) when analysing interval data.

Further research can compare this proposed framework with a multi-
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level setting as MidPoints and Log-Ranges are clustered within variables.

In particular, our fixed effects approach can gain additional insights by con-

trasting it with a random effects approach to between and within variables

variability. Other research lines comprise the use of alternative models for

interval data. In particular, our approach relies on a Gaussian assumption

and may not be advisable when Midpoints / Log-Ranges have highly skewed

distributions. In such case, our approach can be easily adapted to models

based on the families of skew distributions, e.g., skew-Normal and skew-t

(see [1], [31], and [38]). On the other hand to mitigate influence of pos-

sible outliers robust parameter estimators (see, e.g., [33]) may replace the

traditional maximum likelihood ones. Finally, extensions to other kinds of

symbolic data should be investigated.
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TABLE 1

Table 1: Matrix I of interval data

Y1 . . . Yj . . . Yp

s1 [l11, u11] . . . [l1j , u1j ] . . . [l1p, u1p]

. . . . . . . . . . . .

si [li1, ui1] . . . [lij , uij ] . . . [lip, uip]

. . . . . . . . . . . .

sn [ln1, un1] . . . [lnj , unj ] . . . [lnp, unp]
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TABLE 2

Table 2: Model selection (Synthetic data set 1)

Cases Log-likelihood # parameters BIC

Case 1 -10389.6 24 20961.5

Case 2 -10772.7 20 21697.4

Case 3 -10390.1 20 20932.3

Case 4 -10773.1 18 21682.9
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TABLE 3

Table 3: Model selection (Synthetic data set 2)

Cases Log-likelihood # parameters BIC

Case 1 -10084.0 53 20535.0

Case 2 -10096.0 29 20393.0

Case 3 -11985.0 37 24225.0

Case 4 -12122.0 25 24417.0
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TABLE 4

Table 4: Data sets

Name Nb. cases Nb. interval Missing values Data type

variables

USA metereological data 282 3 NO Native data

Income-debt data 297 4 NO Aggregated data

Employment survey data 58 2 NO Aggregated data
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TABLE 5

Table 5: USA meteorological data

Station State January July Annual

Temperature Temperature Pluviosity

HUNTSVILLE AL [32.3, 52.8] [69.7, 90.6] [3.23, 6.10]

ANCHORAGE AK [9.3, 22.2] [51.5, 65.3] [0.52, 2.93]

NEW YORK (JFK) NY [24.7, 38.8] [66.7, 82.9] [2.70, 4.13]

. . . . . . . . . . . . . . .

SAN JUAN PR [70.8, 82.4] [76.9, 87.4] [2.14, 6.17]
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TABLE 6

Table 6: USA meteorological data - BIC values

Nb. Homocedastic Heterocedastic

components

K Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

2 5569.8 6032.7 5722.0 6100.0 5078.2 5841.7 5382.4 5952.1

3 5409.3 5893.3 5575.0 5976.8 4808.8 5481.5 5102.9 5658.7

4 5311.3 5745.5 5467.7 5843.1 4678.3 5214.9 4939.7 5379.4

5 5264.3 5680.6 5379.0 5739.2 4658.7 5116.0 4871.2 5275.3

6 5239.8 5611.5 5315.2 5674.9 4640.4 5053.2 4863.3 5209.4

7 5184.2 5555.3 5271.8 5596.9 4662.8 5015.6 4860.8 5172.4

8 5151.9 5496.5 5224.8 5547.7 4732.3 5007.2 4842.8 5156.6

9 5125.9 5446.2 5189.4 5478.1 4762.2 4975.7 4856.6 5131.2

10 5085.5 5413.7 5152.8 5446.0 4873.3 5003.2 4866.7 5109.3
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TABLE 7

Table 7: USA meteorological data - Component Proportions, Mean-Vectors

and Variances

C1 C2 C3 C4 C5 C6

Proportions 0.176 0.084 0.175 0.413 0.053 0.098

MIDPT-JAN 30.64 12.51 49.64 25.41 77.65 47.20

LNRG-JAN 3.08 2.55 3.02 2.84 2.45 2.68

Mean MIDPT-JUL 74.25 55.33 82.54 73.96 80.57 71.09

Values LNRG-JUL 3.42 2.66 2.97 3.04 2.45 2.95

MIDPT-PREC 1.23 3.88 4.26 3.16 7.76 2.85

LNRG-PREC 0.38 1.15 1.24 0.77 1.78 1.39

MIDPT-JAN 94.26 263.52 53.71 76.94 14.33 69.85

LNRG-JAN 0.07 0.05 0.01 0.02 0.04 0.06

Variances MIDPT-JUL 50.18 24.13 2.16 15.37 3.01 58.43

LNRG-JUL 0.02 0.08 0.01 0.02 0.04 0.20

MIDPT-PREC 0.20 13.03 0.93 0.43 18.14 1.37

LNRG-PREC 0.23 0.49 0.10 0.13 0.23 0.16
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TABLE 8

Table 8: Explained inertia of the partitions obtained by the Ward method

Nb. components 2 3 4 5 6 7 8 9 10

Explained inertia 0.21 0.36 0.48 0.55 0.60 0.63 0.67 0.70 0.72
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TABLE 9

Table 9: Income and Debt interval data

Group HI DIR CCD OD

Male, 8-24 [15, 61] [0.1, 23.4] [0.0, 6.57] [0.02, 7.71]

High school degree, Service

Male, 35-49, College degree, [19, 190] [1.4, 20.4] [0.04, 16.6] [0.12, 15.39]

Sales and Office

Female, 25-34, Some college [17, 100] [0.8, 31.7] [0.05, 6.57] [0.09, 7.65]

Managerial and Professional

. . . . . . . . . . . . . . .
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TABLE 10

Table 10: Income-debt data - BIC values
Nb. Homocedastic Heterocedastic

comp.

K Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

2 9336.91 10312.07 10304.42 11557.28 8533.95 9222.99 9770.38 10641.34

3 9188.08 9985.10 10117.64 10733.92 7836.8 8057.74 9504.75 9890.29

4 9088.40 9546.50 9959.48 10273.03 7699.80 7772.59 9318.83 9534.24

5 9061.25 9406.52 9885.04 10124.77 7522.50 7281.54 9148.90 9341.71

6 8956.95 9366.33 9829.76 10000.48 7564.48 7055.61 9138.57 9174.65

7 8939.25 9171.05 9713.20 9897.91 — 7011.45 9160.22 9051.77

8 8902.65 9050.61 9654.98 9861.26 — 6859.76 9128.54 8977.98

9 8838.82 8992.64 9590.98 9780.71 — 6831.01 9278.78 8925.87

10 8852.52 9054.11 9595.48 9711.42 — 6870.38 9249.67 8924.33
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TABLE 11

Table 11: Income-debt data - Component Proportions and Mean-Vectors

C1 C2 C3 C4 C5 C6 C7 C8 C9

Proportions 0.112 0.193 0.149 0.152 0.083 0.028 0.218 0.053 0.013

Hinc-MidP 35.72 34.25 124.31 78.86 138.88 221.78 86.88 141.69 495.38

Hinc-LogR 3.08 3.50 5.33 4.75 5.40 5.95 4.74 4.90 6.87

DIncR-MidP 7.91 12.51 15.10 13.43 13.06 17.64 11.62 11.39 16.16

DIncR-LogR 2.10 2.99 3.28 3.20 3.04 3.41 2.84 2.01 3.30

CCDbt-MidP 0.75 1.480 6.87 3.34 9.68 16.92 3.26 3.617 40.23

CCDbt-LogR -0.06 0.93 2.57 1.87 2.90 3.45 1.71 1.46 4.29

ODbt-MidP 1.73 2.65 13.06 6.44 13.09 14.72 5.97 8.73 56.73

ODbt-LogR 0.53 1.49 3.22 2.48 3.08 3.34 2.29 2.23 4.68
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TABLE 12

Table 12: Unemployment data

Group Activity time Unemployment time

Female, Centre, 15-24, Basic or less [0, 4] [3, 49]

Female, Lisbon and Tagus Valley, 45-64, Higher [12, 32] [8, 27]

Male, North, 15-24, Secondary [1, 4] [1, 15]

Male, South, 25-44, Higher [5, 20] [4, 18]

. . . . . . . . .
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TABLE 13

Table 13: Unemployement data - BIC values

Nb. Homocedastic Heterocedastic

components

K Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

2 1271.3 1288.1 1335.7 1361.8 1203.2 1196.1 1296.4 1305.2

3 1242.9 1265.0 1308.7 1311.5 1137.3 1141.4 1262.6 1268.4

4 1239.0 1237.6 1290.6 1283.2 — 1098.7 1247.3 1239.5

5 1239.4 1238.0 1283.7 1283.8 — 1080.3 1234.4 1227.9

6 1243.7 1240.8 1279.2 1279.6 — — — —

7 1241.8 1238.1 1271.8 1278.0 — — — —
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TABLE 14

Table 14: Unemployement data - Component Proportions, Mean-Vectors

and Variances

C1 C2 C3 C4 C5

Proportions 0.271 0.206 0.227 0.103 0.191

AT MidP 8.662 3.785 23.237 33.750 26.627

Mean AT LogR 2.553 1.600 3.197 3.578 2.748

Values UT MidP 31.985 7.495 66.990 150.500 18.869

UT LogR 4.042 2.110 4.849 5.690 3.060

AT MidP 17.065 4.963 73.153 57.479 78.060

Variances AT LogR 0.340 0.544 0.119 0.040 0.182

UT MidP 101.545 7.841 230.649 468.583 54.774

UT LogR 0.113 0.685 0.057 0.021 0.225
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TABLE 15

Table 15: Unemployment data - Clusters

CLUSTER 1 CLUSTER 2

Female, Centre, 15-24, Basic or less Female, Centre, 15-24, Secondary

Female, Centre, 25-44, Secondary Female, Centre, 25-44, Higher

Female, Lisbon and TV, 25-44, Secondary Female, Lisbon and TV, 15-24, Basic or less

Female, Lisbon and TV, 25-44, Higher Female, Lisbon and TV, 15-24, Secondary

Female, North, 15-24, Basic or less Female, North, 15-24, Secondary

Female, North, 25-44, Secondary Female, South, 15-24, Higher

Female, North, 25-44, Higher Male, Centre, 15-24, Basic or less

Female, South, 15-24, Basic or less Male, Centre, 15-24, Secondary

Female, South, 15-24, Secondary Male, Centre, 25-44, Higher

Female, South, 25-44, Secondary Male, Lisbon and TV, 15-24, Basic or less

Male, Lisbon and TV, 25-44, Higher Male, Lisbon and TV, 15-24, Secondary

Male, North, 15-24, Basic or less Male, North, 15-24, Secondary

Male, North, 25-44, Secondary

Male, North, 25-44, Higher

Male, South, 15-24, Basic or less

Male, South, 15-24, Secondary

CLUSTER 3 CLUSTER 4

Female, Centre, 25-44, Basic or less Female, Lisbon and TV, 45-64, Basic or less

Female, Centre, 45-64, Basic or less Female, North, 25-44, Basic or less

Female, Lisboa, and TV, 25-44, Basic or less Female, North, 45-64, Basic or less

Female, Lisbon and TV, 45-64, Secondary Female, South, 45-64, Basic or less

Female, North, 45-64, Secondary Male, Lisbon and TV, 45-64, Basic or less

Female, South, 25-44, Basic or less Male, South, 45-64, Basic or less

Male, Centre, 25-44, Basic or less CLUSTER 5

Male, Centre, 45-64, Basic or less Female, Lisbon and TV, 45-64, Higher

Male, Lisbon and TV, 25-44, Basic or less Female, South, 25-44, Higher

Male, Lisbon and TV, 25-44, Secondary Female, South, 45-64, Secondary

Male, North, 25-44, Basic or less Male, Centre, 45-64, Secondary

Male, North, 45-64, Basic or less

Male, South, 25-44, Basic or less
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TABLE 16

Table 16: Income-Debt data - Component 1 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 294.299 15.764 – – – – – –

V2:Hinc-LogR 15.764 1.110 – – – – – –

V3:DIncR-MidP – – 3.599 0.395 – – – –

V4:DIncR-LogR – – 0.395 0.192 – – – –

V5:CCDbt-MidP – – – – 0.116 0.179 – –

V6:CCDbt-LogR – – – – 0.179 0.393 – –

V7:ODbt-MidP – – – – – – 0.929 0.609

V8:ODbt-LogR – – – – – – 0.609 0.721
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TABLE 17

Table 17: Income-Debt data - Component 2 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 80.904 3.795 – – – – – –

V2:Hinc-LogR 3.795 0.228 – – – – – –

V3:DIncR-MidP – – 9.062 0.681 – – – –

V4:DIncR-LogR – – 0.681 0.073 – – – –

V5:CCDbt-MidP – – – – 0.303 0.231 – –

V6:CCDbt-LogR – – – – 0.231 0.187 – –

V7:ODbt-MidP – – – – – – 0.794 0.325

V8:ODbt-LogR – – – – – – 0.325 0.143
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TABLE 18

Table 18: Income-Debt data - Component 3 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 1061.778 8.913 – – – – – –

V2:Hinc-LogR 8.913 0.080 – – – – – –

V3:DIncR-MidP – – 8.475 0.664 – – – –

V4:DIncR-LogR – – 0.664 0.059 – – – –

V5:CCDbt-MidP – – – – 3.567 0.524 – –

V6:CCDbt-LogR – – – – 0.524 0.078 – –

V7:ODbt-MidP – – – – – – 4.943 0.360

V8:ODbt-LogR – – – – – – 0.360 0.027
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TABLE 19

Table 19: Income-Debt data - Component 4 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 674.648 10.054 – – – – – –

V2:Hinc-LogR 10.054 0.168 – – – – – –

V3:DIncR-MidP – – 5.988 0.440 – – – –

V4:DIncR-LogR – – 0.440 0.035 – – – –

V5:CCDbt-MidP – – – – 0.331 0.097 – –

V6:CCDbt-LogR – – – – 0.097 0.029 – –

V7:ODbt-MidP – – – – – – 3.820 0.603

V8:ODbt-LogR – – – – – – 0.603 0.098
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TABLE 20

Table 20: Income-Debt data - Component 5 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 1523.248 13.789 – – – – – –

V2:Hinc-LogR 13.789 0.144 – – – – – –

V3:DIncR-MidP – – 5.460 0.598 – – – –

V4:DIncR-LogR – – 0.598 0.106 – – – –

V5:CCDbt-MidP – – – – 8.444 0.798 – –

V6:CCDbt-LogR – – – – 0.798 0.078 – –

V7:ODbt-MidP – – – – – – 53.712 3.786

V8:ODbt-LogR – – – – – – 3.786 0.278

51



TABLE 21

Table 21: Income-Debt data - Component 6 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 4982.894 20.273 – – – – – –

V2:Hinc-LogR 20.273 0.087 – – – – – –

V3:DIncR-MidP – – 10.580 0.851 – – – –

V4:DIncR-LogR – – 0.851 0.073 – – – –

V5:CCDbt-MidP – – – – 25.369 1.729 – –

V6:CCDbt-LogR – – – – 1.729 0.123 – –

V7:ODbt-MidP – – – – – – 4.858 0.348

V8:ODbt-LogR – – – – – – 0.348 0.025
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TABLE 22

Table 22: Income-Debt data - Component 7 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 1134.334 16.626 – – – – – –

V2:Hinc-LogR 16.626 0.308 – – – – – –

V3:DIncR-MidP – – 10.780 1.082 – – – –

V4:DIncR-LogR – – 1.082 0.147 – – – –

V5:CCDbt-MidP – – – – 1.967 0.609 – –

V6:CCDbt-LogR – – – – 0.609 0.196 – –

V7:ODbt-MidP – – – – – – 5.983 1.026

V8:ODbt-LogR – – – – – – 1.026 0.188
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TABLE 23

Table 23: Income-Debt data - Component 8 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 5540.152 45.424 – – – – – –

V2:Hinc-LogR 45.424 0.784 – – – – – –

V3:DIncR-MidP – – 26.234 3.176 – – – –

V4:DIncR-LogR – – 3.176 1.173 – – – –

V5:CCDbt-MidP – – – – 6.603 1.987 – –

V6:CCDbt-LogR – – – – 1.987 0.701 – –

V7:ODbt-MidP – – – – – – 38.454 2.938

V8:ODbt-LogR – – – – – – 2.938 0.429
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TABLE 24

Table 24: Income-Debt data - Component 9 Covariance Matrix

V1 V2 V3 V4 V5 V6 V7 V8

V1:Hinc-MidP 3509.047 7.942 – – – – – –

V2:Hinc-LogR 7.942 0.018 – – – – – –

V3:DIncR-MidP – – 14.115 1.008 – – – –

V4:DIncR-LogR – – 1.008 0.077 – – – –

V5:CCDbt-MidP – – – – 241.252 7.142 – –

V6:CCDbt-LogR – – – – 7.142 0.216 – –

V7:ODbt-MidP – – – – – – 239.983 4.765

V8:ODbt-LogR – – – – – – 4.765 0.095
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CAPTION OF FIGURE 1

First 20 observations and three-cluster means (Synthetic data set 1)

CAPTION OF FIGURE 2

Partition in six clusters obtained by the model-based method for the USA

meteorological data

CAPTION OF FIGURE 3

Partition in four clusters obtained by the Ward method for the USA mete-

orological data

CAPTION OF FIGURE 4

Partition in six clusters obtained by the Ward method for the USA me-

teorological data

CAPTION OF FIGURE 5

Partition in six clusters obtained by the SCLUST method for the USA me-

teorological data

CAPTION OF FIGURE 6

Partition in seven clusters obtained by MCLUST for the USA meteorological
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MidPoints data
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FIGURE 1

Figure 1: First 20 observations and three-cluster means (Synthetic data set

1)
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FIGURE 2

Figure 2: Partition in six clusters obtained by the model-based method for

the USA meteorological data
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FIGURE 3

Figure 3: Partition in four clusters obtained by the Ward method for the

USA meteorological data
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FIGURE 4

Figure 4: Partition in six clusters obtained by the Ward method for the

USA meteorological data
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FIGURE 5

Figure 5: Partition in six clusters obtained by the SCLUST method for the

USA meteorological data

62



FIGURE 6

Figure 6: Partition in seven clusters obtained by MCLUST for the USA

meteorological data

63


