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Abstract

In this paper we address the problem of clustering interval data, adopting
a model-based approach. To this purpose, parametric models for interval-
valued variables are used which consider configurations for the variance-
covariance matrix that take the nature of the interval data directly into
account. Results, both on synthetic and empirical data, clearly show the
well-founding of the proposed approach. The method succeeds in finding
parsimonious heterocedastic models which is a critical feature in many ap-
plications. Furthermore, the analysis of the different data sets made clear
the need to explicitly consider the intrinsic variability present in interval

data.
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1 Introduction

Symbolic Data, introduced by E. Diday in the late eighties of the last cen-
tury (see, for instance, [2], [22] [34]), is concerned with the analysis of data
presenting intrinsic variability, which should be explicitly taken into account.
This happens, in particular, when huge data bases are aggregated on the
basis of some descriptors that define groups of interest - which constitute
the statistical units to be analyzed. It is also the case when the entities
under analysis are not single elements, but rather classes or concepts, for
instance, not a particular car, but a car model, not a particular flight, but
the airport traffic, not the particular flower I am picking, but the flower
species. In all these cases, we are dealing with statistical units which have
inherent variability that should be taken into account. The alternative of
representing variable values by central measures such as averages, medians
or modes entails a too important loss of information. Symbolic Data Anal-
ysis (henceforth, SDA) provides a convenient framework to represent data
with such variability. New variable types were introduced that allow for the
representation of the intrinsic variability of the data.

As in the classical case, symbolic variables may be either numerical or
categorical. Different kinds of numerical and categorical variables may then
be considered, and classical numerical and categorical variables are just spe-
cial cases of symbolic variables. A numerical (or quantitative) variable is
single-valued (real or integer) if it takes one single value of an underlying
domain for each entity. It is multi-valued if its values are finite subsets of
the domain and it is an interval-valued variable if its values are intervals of
IR. When an empirical distribution over a set of subintervals is given, the
variable is called a histogram-valued variable. As in the classical context,

data are presented in a matrix, or data-array, now called a “symbolic data



table”, where each row corresponds to a group, or concept, i.e., the entity
of interest, and each column corresponds to a “symbolic variable”. Non-
parametric approaches for symbolic data have been presented in e.g., [2],
[22], and [34]); parametric modelling has been discussed, for instance, in [5],
[6], and [9].

In this paper we propose a model-based approach for clustering interval
data, extending the Gaussian models proposed in [9] to the model-based
clustering context. For this purpose, we adapt the EM algorithm to the
likelihood maximization in our models, for different covariance configura-
tions. The proposed methodology is illustrated with synthetic data and
further explored on real data sets with different characteristics. In recent
years finite mixture aka latent class modelling has been applied extensively.
Apart from other applications (e.g., density estimation, outlier detection,
measurement error modelling), finite mixture models have been extensively
used as a clustering technique. In this case one assumes that there is discrete
population heterogeneity with K subpopulations or clusters that can be un-
mixed. Because, each cluster or component is characterized by a specific
density function, this approach has been called model-based clustering.

The remaining of the paper is organized as follows. In Section 2 interval-
valued variables are formally introduced and different representation of interval-
data are considered. Parametric modelling of interval data, which will be
used in the sequel, is recalled. Section 3 reviews existing proposals for the
non-parametric clustering of interval data. Section 4 describes the proposed
methodology for clustering interval data. Section 5 illustrates the proce-
dure using two synthetic data sets. Section 6 reports the application of the
method to three data sets of different nature and sizes. The article ends by

highlighting the main conclusions, advantages of this model-based clustering



method, and desirable further extensions.

2 Interval data

Interval data occur in various contexts. When describing ranges of variable
values, as it is the case, for instance, for daily stock prices or temperature
ranges, we obtain native interval data; in the aggregation of huge data bases
into groups of interest, real values describing the individual observations
(the microdata) lead to intervals describing the groups formed; descriptions
of biological species or technical specifications are often presented in the
form of intervals for the different variables.

Let S = {s1,...,5,}, be the set of n entities under analysis. Formally,

an interval-valued variable is defined by an application
Y : S — T such that s; — Y (s;) = [l;, u;]

where T is the set of intervals of an underlying set O C IR.

Let I be an n x p matrix representing the values of p interval-valued
variables on S. Each s; € S is represented by a p-dimensional vector of
intervals, I; = (Lin,...,Lip),4 = 1,...,n, with Ijj = [l;j,u;],7 = 1,...,p
(see Table 1).

TABLE 1 ABOUT HERE

The value of an interval-valued variable Y; for each s; € S is naturally
defined by the lower and upper bounds l;; and wu;; of I;; = Yj(s;). For
modelling purposes an alternative parameterization consists in representing

Y;(s;) by the MidPoint ¢;; = % and Range r;; = u;j — l;; of I;.



Consider each interval I;; represented by its MidPoint ¢;; and Range 7;;.

The Gaussian model (see [9]) assumes a multivariate Normal distribution for

MidPoints C and the logs of the Ranges R, R* = In(R), (C, R*) ~ N, (p, X),
Yco  Xcge

with p = [uto,u'}%*]t and ¥ = where pc and pp+ are

Yr:c YRR+
p-dimensional column vectors of the mean values of, respectively, the Mid-

Points and Log-Ranges, and X¢c¢, Xor+, X r+c and X g+« are p X p matrices
with their variances and covariances.

This model has the advantage of allowing for the application of clas-
sical inference methods; nevertheless it is important to keep in mind that
the MidPoint ¢;; and the Range 7;; of the value of an interval-valued vari-
able I;; = Yj(s;) are two quantities related to one same variable, and must
therefore be considered together. As a consequence, the global covariance
matrix should take into account the link that may exist between MidPoints
and Ranges of the same or different variables. Intermediate parameteriza-
tions between the non-restricted and the non-correlation setup considered
for real-valued data are relevant for the specific case of interval data. In this

paper, we shall consider the following cases:

1. Non-restricted case: allowing for non-zero correlations among all Mid-

Points and Log-Ranges;

2. Interval-valued variables Y; are independent, but for each variable,
the MidPoint may be correlated with its Log-Range: 3o, Yo+ =

ZR*Ca ER* R* all diagonal;

3. MidPoints (Log-Ranges) of different variables may be correlated, but
no correlation between MidPoints and Log-Ranges is allowed: X¢og+ =

Ypo=0;



4. All MidPoints and Log-Ranges are uncorrelated, both among them-

selves and between each other: 3 diagonal.

From the Normality assumption it obviously follows that imposing non-
correlations with Log-Ranges is equivalent to imposing non-correlations with
Ranges. It should be remarked that in Cases 2, 3 and 4, 3 can be written
as a diagonal by blocks matrix, after a possible rearrangement of rows and
columns. This is particularly important for maximum likelihood estimation.
In a full complete setup another case could still be considered, namely, al-
lowing for non-null correlation between the MidPoint of each variable and
its Log-Range, but not between MidPoints and Log-Ranges of different vari-
ables. This case appears to be less natural, and leads to considerably com-
putational complexity, and will therefore not be considered in the present

investigation.

3 Non-parametric clustering

Clustering of interval data has been addressed by several authors, under
non-parametric exploratory approaches.

Methods based on dissimilarities, generally adaptations of K-means,
have been developed, for instance in [36], [15] and [12]. These approaches
propose suitable dissimilarity measures for interval data, and then use the
K-means algorithm to obtain a partition that locally optimizes a criterion
measuring the fit between the cluster composition and their prototypes.
In [36], a City-Block L; distance between intervals is used, di([;,I;) =

|li — lj] + |ui — uj|, whereas in [15] a Lo distance is considered: da(I;, ;) =

V(i —1)? + (u; —uj)?. In [12] different measures are used and results

discussed. SCLUST (see [17]) is a module of the SODAS package that

performs non-hierarchical clustering on symbolic data, using a K-means-



like method; for interval-data the Hausdorff distance between intervals,
du(I;, I;) = max {{|l; — ;| , |u; — u;|} is used by default.

Fuzzy clustering has been developed by different authors. The first fuzzy
clustering method for interval data has been proposed in [23]. Other ap-
proaches followed, see [37], [14], [19], and [30]. Fuzzy K-means methods
for interval data generally result from adapting the classical fuzzy c-means
algorithm, using appropriate distances, as is done for the crisp algorithms.

Other extensions, using adaptive distances [16] or based on multiple
dissimilarity matrices [18] have also been investigated.

A method based on Poisson point processes has been proposed in [28].
The first part of the method consists in a monothetic divisive clustering
procedure where the cutting rule uses an extension of the Hypervolumes
criterion to interval data. The pruning step uses two likelihood ratio tests
based on the homogeneous Poisson point process, the Hypervolumes test
and the Gap test, leading to a decision tree. A merging procedure then
allows improving the clustering obtained in the first step.

A method for conceptual ascending hierarchical or pyramidal clustering
has been proposed in [7] and [8], which may be summarized as follows: for
each candidate cluster, a description is built, generalizing the descriptions
corresponding to the clusters to be merged, a candidate cluster is eligible
only if this new description covers all cluster elements and none other. When
two given clusters are merged, it is described, for each variable, by the min-
imum interval that covers them. Each cluster formed is hence associated
with a conjunction of properties on the descriptive variables, which consti-
tutes a necessary and sufficient condition for cluster membership. To choose
among the different aggregations meeting the above condition, a “generality

degree” evaluates the proportion of the representation space covered by the



considered description; it is computed variable-wise and the values for each
variable are then combined to obtain a measure of the variability of the full
description. The aggregation leading to the cluster with lower generality is
selected.

A monothetic clustering method using a divisive approach is proposed in
[11]; each cluster formed is again associated with a conjunction of properties
on the descriptive variables, constituing a necessary and sufficient condition
for cluster membership. The method uses a criterion that measures intra-
class dispersion using distances appropriate to interval-valued variables. The
algorithm successively splits one cluster into two sub-clusters, according to
a condition expressed as a binary question on the values of one variable;
the cluster to be split and the condition to be considered at each step are
selected based on the minimization of the intra-cluster dispersion on the
next step.

Approaches that use Kohonen maps for clustering interval data have also
been developed; in the SODAS software Kohonen maps are constructed by
the module SYKSOM - see [3] and [4]. Other approaches are investigated
in [26], [13], and [39].

Clustering and validation of interval data are discussed in [27].

However, none of above described proposals has taken a model-based

approach.

4 Model-based clustering of interval data

Let x = (x1,...,Xy) denote a sample of size n, p represent the number of
interval-valued variables, and z;; indicate the observed value for variable j

in observation i, with ¢ = 1,...,n, 7 = 1,...,2p. The finite mixture model



with K components for x; = (1, ..., Z; 2p) is defined by

K
Fxis) =D T fr(xi; Ok), (1)
k=1

where component proportions 7 are positive and sum to one; and 8;, denotes
parameters of the conditional distribution of cluster k. Model parameters
are ¢ = (7,0), with 7 = (71,...,7xk—1) and 8 = (04, ...,0k). The number
of free parameters in vectors 7 and @ are d- = K — 1 and dg, respectively.
The number of free parameters is d, = d, + dg.

For continuous metric data, finite mixtures of Gaussian distributions
have been extensively applied [32]. For this specification, the conditional
distribution is given by N (g, Xg), where gy and X are the mean vector
and covariance matrix, respectively. For instance, heteroscedastic Case 1
contains d, = Kp(2p + 3) + K — 1 free parameters.

Maximum likelihood (ML) parameter estimation involves the maximiza-
tion of the log-likelihood function: ¢(y;x) = > ;" In f(xi;¢), a problem
that can be tackled by the Expectation-Maximization (EM) algorithm [20].
E-step computes the joint conditional distribution of the missing data given
observed data and provisional estimates of model parameters. In the M-step,
standard complete data ML methods are used to update the unknown model
parameters using an expanded data matrix with the estimated densities of
the missing data (posterior cluster probabilities) as weights.

An important modelling issue is the selection of the number of com-
ponents (K). We use the Bayesian Information Criterion (BIC) [35] given
by

BIC = =2{(¢;x) + dy In(n), (2)
where d,, is the number of free parameters in the model. We notice that

BIC is a consistent criterion, whereas the AIC is a biased estimate of the

true number of latent classes ([29], and [21]).



In model-based clustering of interval data, X; = [C’f , R t}t is defined as
the 2p dimensional column vector comprising all the MidPoints and Log-
Ranges for s;, and the “complete” data are considered to be y; = (x;, %),

where z; = (21,..., zix) is assumed as the “missing” data, with

1 if observation x; belongs to group k
Zik =
0 otherwise

It is well known (see, e.g, [32], [24], [10]) that in this case the E-step
consists in replacing z;; by the estimated conditional probabilities, Z;; and
the M-step consists in the maximization of

K n
Fplxi,.. . xn,2) = > Y ZIn(m ¢(xi|0)) =

k=11i=1
K

n
. 1 1 _
DD za (1ﬂ T = pIn(27) — 5 In || = o (xi — ) g (i — Mk))

k=1 i=1
(3)
In all models and cases, the updating formulas for 7 and py are
L s Bk D Bk
T = = N S el 4
n Z:‘L:1 Zik @)
and 3 (homocedastic models), 3, (heterocedastic models) can be updated,

by maximizing respectively

1
constant — g In|¥|— B trEX! (5)

1
constant — % In || — 3 trE ;! (6)

with ng = Z?:l Zik, Er = Z?:l éik(xi — )_(k)(XZ‘ — }_(k)t and E = zz{:l E;..
In the unrestricted case the M-step formulas for 3, 3, are obviously
the classical ones, 3 = E/n, 3= Ej/ni. In [9] it is shown that when ¥

is restricted to be a diagonal by blocks matrix, with g blocks:

10



(5) is maximized when X" = 3" = EM® /n_ for h = 1,...,q where E®
is the block of E corresponding to $("). The same argument can show that
(6) is maximized by E;h) = 25;0 = Elgh)/ ng, with E,(Ch) defined in the same
way.

In our implementation, to try avoiding local optima, each search of the
EM algorithm is replicated many times from different starting points. The
first starting point is based on the z;; estimates returned by the unrestricted
model of the R MCLU ST package [25], and the remaining ones are obtained

from random perturbations applied to the current best solution.

5 Synthetic data sets

This section applies the model-based clustering procedure to two synthetic
interval data sets. As the structure of the problems is known, we can further

understand the performance of the proposed method.

5.1 Synthetic data set 1

The first synthetic data contains 2000 observations (n) and two interval-
valued variables (p). We assume three components (K) with same size

(1 = 1/3). Conditional on the cluster (k), the simulated values are given

11



by X;|k ~ N (g, X), where

1 6 5 05 — 0.2
In2 In4 In2 — 05 -
K1 = y M2 = y M3 = ) and 3 =
0 1.5 4.5 02 — 05
In2 Inl In2 - 02 -

The setting assumes homoscedasticy, i.e., clusters share the same covari-
ance matrix. This example specifies a Case 3 configuration, where Midpoints
and Log-Ranges are not associated for the same variable, but we allow that
Midpoints and Log-Ranges for different variables may be associated. Fig-
ure 1 depicts the first 20 observations of this data set. It also adds the

centroids of these three components.

FIGURE 1 ABOUT HERE

Table 2 reports model selection results. As competing models to the
data generating process described above, we allow different homoscedastic
configurations (Cases 1, 2, and 4) under the same number of components

(K). BIC identifies the correct configuration, i.e., Case 3.

TABLE 2 ABOUT HERE

Model estimates show that the component sizes are well retrieved, i.e.,
proportions estimates (7;) are 0.335, 0.330, and 0.335. Observations are

correctly allocated into clusters and proportions of the mixture are virtually

12
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identical. Mean vector and covariance matrix estimates are:

i 0.98 ]
0.74
0.01

i 0.72 |

5.00

0.70

0.69
4.50

6.00
1.42

1.54

0.01

™M»
I

0.52

0.22

— 0.50

- 0.21

0.22

0.50

We notice that In2 and In4 are 0.693 and 1.386, respectively. Overall,

this model-based clustering method retrieves the true values.

5.2 Synthetic data set 2

Regarding the second synthetic data set, we consider four variables (p) and

1000 observations. It specifies a two-component mixture model with 7, =

1/2. This synthetic data set is simulated under Case 2, i.e., Midpoints and

Log-Ranges are associated only within each variable. Conditional on the

cluster (k), the simulated values are given by X;|k ~ N (ug, X) where

M1

0

0

Analyzing model selection from these four configurations of the covari-

ance structure (Table 3), we conclude that BIC identifies the correct one

(Case 2).
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TABLE 3 ABOUT HERE

Component-sizes are 0.509 and 0.491 for component 1 and 2, respec-
tively. Conditional mean estimates and the unconditional covariance matrix

estimate are

[ 095 | 102 | 100 082 - - — — —  _ ]
0.05 0.01 082 103 - - — — - _
~1.02 1.06 ~ ~ 114 091 - - - -
0.01 0.07 . -~ 091 111 - - - -

= , 2 = , X =

~1.01 1.08 ~ -~ — 104 081 - -
0.02 0.09 ~ —  —  — 081 098 - —
~1.02 0.98 - - - =~ — 100 081

| 0.001 | | —0.01 | - - -~~~ 081 102

Overall, this method retrieves the data generating process for Case 2.

All estimates are close to the true values.

6 Applications

In this section we apply the proposed model to three data sets of different
nature and size: the first one concerns meteorological data in the USA, the
second one is on income and debt variables, and the last and the last comes
from a Portuguese employment survey. In the first application we deal with
native interval data, since data are directly available in the form of minima
and maxima values. In the other two applications, interval data result from
the aggregation of micro data. However, the resulting number of observa-

tions differs considerably between them. While the Income-debt data set

14



comprehends 297 observations, in the Unemployment data only 58 observa-
tions are available. This latter case illustrates a common situation where
the choice of a parsimonious model is particularly important and the use of
the BIC value should not be understood as a quest for the “true” model but
rather as the selection of a parameter subset comprising the most relevant
ones for the clustering problem. The main characteristics of these data sets
are summarized in Table 4. To highlight the added value of the interval-data
model-based approach, we compared our results with those provided by the
well-known MCLUST [25] methodology for model-based clustering of real

data.

Table 4 ABOUT HERE

In each case, from the interval data matrix, and for each interval-valued
observation Yj(s;) = [li;, uij], MidPoints ¢;; and Log-Ranges r;; were com-
puted. Then, models were estimated for partitions with different numbers of
components, in both homocedastic and heterocedastic setups, and consider-
ing the different proposed configurations for the variance-covariance matrix
(Cases 1 to 4) (see Section 2). To minimize the effect of local optima, in each
case 1000 different random starting points were used for the EM algorithm;

BIC values were computed for each solution.

6.1 USA meteorological data

Our first application concerns temperatures and pluviosity measured in 282
meteorological stations in the USA. We consider the temperature ranges
in January and July, and the annual pluviosity range measured in each

station. All these values are based on 30 years averages (1970-2000). Data

15



were retrieved from the USA National Environmental Satellite, Data and In-
formation Service, at http://wwwl.ncdc.noaa.gov/pub/data/ccd-data (files
nrmmin.txt, nrmmax.txt, nrmpct.txt); Temperatures are represented in the
Fahrnheit scale, Pluviosity is measured in Inches. Table 5 shows the ob-

served data for some stations, indicating also the corresponding State.

TABLE 5 ABOUT HERE

The method described in Section 4 was applied to these data set, result-

ing in the BIC values given in Table 6.

TABLE 6 ABOUT HERE

The lowest BIC value is observed for the unrestricted (Case 1) hetero-

cedastic solution with six clusters and is shown in Figure 2 (Negative Longi-

tude values indicate Longitude West). Component proportions, component-

wise mean-vectors and variances are given in Table 7.

FIGURE 2 ABOUT HERE

TABLE 7 ABOUT HERE
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In Cluster 1 we find mainly the stations in the desertic inland areas, with
high intrinsic temperature variability, and very low pluviosity, also with low
intrinsic variability. Cluster 2, consisting of the Alaska stations, shows low
temperatures, both in winter and in summer, with low intrinsic variability
(low Log-Ranges). The stations in Cluster 3 are mostly in the Southeast;
this cluster is the warmest in the summer. Cluster 4, formed by stations
in the Northeast and Midwest, is the second coldest in the winter. Cluster
5 groups the Pacific Islands, and San Jose of Puerto Rico, characterised by
high temperatures, close to those of Cluster 3 in July but much higher in
January, and high pluviosity with high intrinsic variability. The West coast
stations, together with Key-West (FL) are grouped in Cluster 6, presenting
mild temperatures all year round, and low pluviosity but with relatively
high intrinsic variability. It becomes clear that clusters are differentiated
not only by the MidPoint but also by the Log-Range variables, putting in
evidence the importance of taking intrinsic variability of data into account.
Moreover, Cluster 2 presents very high variance values for the January Mid-
Point variable, while Cluster 1 and Cluster 6 present very high variance
values for the July MidPoint variable. Moreover, Cluster 2 has a high vari-
ance for the Log-Range of the pluviosity and Cluster 6 for the Log-Range
of the temperature in July. This stark difference illustrates well the need of
a heterocedastic setup for these data.

For comparison purposes, Ward hierarchical clustering, using the Eu-
clidean distances on standardized data has also been applied to this data
set. To decide upon the number of components to retain, we have consid-
ered the explained inertia of each partition. These values are presented in
Table 8 for partitions between 2 and 10 classes. Based on the values of

the explained inertia a partition in 4 clusters appears to be a natural one;

17



for comparison purposes we consider the partition in six clusters. Figure
3 shows the partition in 4 clusters and Figure 4 the partition in 6 clusters

obtained by the Ward method.

TABLE 8 ABOUT HERE

FIGURE 3 ABOUT HERE

FIGURE 4 ABOUT HERE

These two partitions are clearly different from the one obtained by the
model-based method, which appears more natural. In particular, the model-
based method separates cold Alaska from warm Pacific-Islands and Puerto-
Rico, which is not the case for the Ward method. This may be explained
by the fact that the Ward method somehow imposes a similar covariance
structure for all clusters, while some natural clusters, the Alaska one being
the most obvious example, require larger variances than others. Therefore
heterocedastic models seem to be required to properly model these data.

We have also applied the SCLUST algorithm from the SODAS package
(see [22]), which is based on the K-means methodology, using the Hausdorff
distance to compare interval observations. Figure 5 shows the corresponding

partition in 6 clusters. As it was the case for the Ward method, this partition

18



does not seem very natural. The Alaska and the arid regions are well iden-
tified, but the remaining clusters are difficult to interpret. In particular, the
Pacific Islands and the West coast are scattered by several groups. Probably

this is again a consequence of the somehow homocedastic structure imposed.

FIGURE 5 ABOUT HERE

Finally, we applied MCLUST to the Midpoints data, and obtained the
heterocedastic seven cluster solution shown in Figure 6.

FIGURE 6 ABOUT HERE

As it can be observed, the results are comparable to our solution, with

the main exception of the Alaska cluster, which does not appear well defined.

6.2 Income-debt data

In a second application, we used survey data included as sample in the SPSS
package (named “customer.dbase”). Among the large set of variables avail-
able, we focused on income and debt variables: Household Income (HI), Debt
to Income Ratio (x 100) (DIR), Credit Card Debt (in thousands) (CCD)
and Other Debts (OD). The 5000 individual observations have been aggre-
gated on the basis of Gender (F, M), Age Category (18-24, 25-34, 35-49,
50-64, more than 65 years old), Level of education (did not complete high
school, high-school degree, some college, college degree, post-undergraduate
degree), and Job Category (managerial and professional, sales and office,
service, agricultural and natural resources, precision production, craft, re-
pair, operation, fabrication, general labour), leading to 297 groups described

by the intervals of observed values on these four variables. The objective

19



is to investigate how the different sociological groups are related regarding

income and debt variables. Table 9 shows the observed data for some groups.

TABLE 9 ABOUT HERE

The method described in Section 4 was applied to these data. BIC val-

ues are reported in Table 10.

TABLE 10 ABOUT HERE

The lowest BIC value is observed for the solution in nine components,
with a heterocedastic setup and Case 2, i.e., independent interval-valued
variables. Component proportions and the component-wise mean-vectors

are given in Table 11.

TABLE 11 ABOUT HERE

Clusters 1 and 2 are those where groups (our statistical units) present
the lower Household Incomes and lower Credit-Card Debt and Other Debts,
all with the lower variability (measured by the Log-Ranges). Furthermore,
Cluster 1 presents the lowest Debt-Income Ratio, with low intrinsic variabil-
ity. Cluster 2, although similar to Cluster 1 in terms of Household Income,
has much larger Debts, and higher variability in all variables. Groups in

Cluster 6 have the second highest Household Incomes, Credit-Card Debt

20



and Other Debts and the largest Debt-Income Ratio, all with large variabil-
ity. Cluster 9 clearly stands out as the cluster of groups where the Household
Income is higher; it is also the one where the Credit-Card Debt and Other
Debts are higher, all these variables presenting a high variability. The other
clusters show intermediate patterns. As it may be seen in the Appendix, the
estimated variance-covariance matrices are clearly different across groups,
with noteworthy though different correlations between MidPoints and Log-
Ranges of the same interval-valued variables. All these correlations are pos-
itive, showing that the higher the MidPoint of an interval-valued variable
the higher the corresponding intrinsic variability.

MCLUST applied to the Midpoints data produced a heterocedastic five
cluster solution; the consideration of Log-Ranges together with Midpoints

in this example clearly allows for a finer partitioning of the groups.

6.3 Employment survey data

The third application concerns the Portuguese Employment Survey, from the
1%t semester of 2008. The quite large original micro data set comprehends a
total of 42226 records. We only considered people who were unemployed at
the time of the survey (had no job and were looking for one), i.e., 1540 cases,
and focused on the two following variables: activity time (in years)(AT) and
unemployment time (in months) (UT). These micro data were gathered on
the basis of Gender (M, F), Region (North, Centre, Lisbon and Tagus Val-
ley (TV), South), Age-Group (15-24, 25-44, 45-64, over 65) and Education
(Basic or less, Secondary, Higher), leading to 58 sociological groups, which
constitute the statistical units of interest to be analysed.

Table 12 shows the observed data for some of these groups.
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TABLE 12 ABOUT HERE

The method described in Section 4 was applied to these data set, re-
sulting in the BIC values in Table 13. Empty cells indicate cases where the

number of observations does not allow the estimation of all the parameters.

TABLE 13 ABOUT HERE

The lowest BIC value is reached for the five-component solution, with
a heterocedastic setup and Case 2, i.e., independent interval-valued vari-
ables. Component proportions and component-wise mean-vectors are given
in Table 14.

In this application, where the number of observations is relatively low,
a restricted though heterocedastic model has been identified as the best fit.
This clearly illustrates the point that the method chose the best parameter
configuration for clustering, preferring a heterocedastic (and therefore heav-
ier in the number of parameters) model to a “lighter” homocedastic one,
but picking up a restricted configuration for the variance-covariance matrix,
where interval-valued variables are assumed independent. Choosing Case 2
as opposed to Case 3, also means that correlation between the two parts of
the interval-variables is considered more important than correlation between

different variables.

TABLE 14 ABOUT HERE
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Table 15 shows the composition of each cluster. Cluster 2 is a clus-
ter of young people with secondary or higher education from both genders,
which explains that they still have not worked long, and are looking for a
new job for a short time. Cluster 1 has similar demographics, with groups
of slightly higher age. Activity time and specially unemployment time are
higher, and have higher intrinsic variability (measured by the corresponding
Log-Ranges). Cluster 3 is mainly formed by groups with low education,
with ages between 25 and 64 years old - they have worked for a large time
already and are having a very hard time in finding a new job. In Cluster 4,
the activity time is high, with large intrinsic variability, but specially, the
unemployment time is the highest (MidPoint more than twice as large as
the second one, observed in Cluster 3). This cluster gathers groups with
basic education or less and age above 45 years old, the only exception being
women aged 25-44 from the North. It is known that in this region many
textile companies which used to hire young women closed doors. Finally,
the groups forming Cluster 5 have a long activity time, are no longer young,
but have a secondary or higher education level. Therefore, although the
MidPoint of Activity Time is at the same level of Cluster 3, they are look-
ing for a job for a shorter time. It should also be noticed that clusters
differ not only in terms of MidPoints, but also in terms of Log-Ranges, i.e.,
variability inherent to the data differs from cluster to cluster. This stresses
the fact that when analysing data with intrinsic variability, the use of just
a central measure (average, median) would not capture all the pertinent as-
pects of the reality. Furthermore, heterocedastic models were preferred to
homocedastic ones, showing that different dispersions amongst clusters are

also relevant - as can also be confirmed from the variance values in Table 14.
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TABLE 15 ABOUT HERE

Applying MCLUST to the Midpoints of the two interval-valued variables
produced a heterocedastic three cluster partition. Two of those clusters
correspond roughly to our clusters 2 and 4; however the remaining groups
are not separated, in particular the cluster of higher educated people is not
identified. Again, the consideration of Log-Ranges together with Midpoints

provides a finer partitioning, with important distinctive characteristics.

7 Conclusion

In this paper we proposed a probabilistic approach to the clustering of inter-
val data. The proposed framework relies on parametrizations that take into
account the inherent variability of the relevant data units and the relation
that may exist between this variability and the corresponding value levels.
To this aim the EM algorithm was suitably adapted. Using both synthetic
and empirical data sets the pertinence of the methodology proposed was
demonstrated.

In particular, its flexibility to identify heterocedastic models, even in
situations with limited information, was put in evidence. Moreover, consid-
ering special configurations of the variance-covariance matrix, adapted to
specific nature of interval data, proved to be the adequate approach. The
presented study also made clear the need to consider both the information
about position (conveyed by the MidPoints) and intrinsic variability (con-
veyed by the Log-Ranges) when analysing interval data.

Further research can compare this proposed framework with a multi-
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level setting as MidPoints and Log-Ranges are clustered within variables.
In particular, our fixed effects approach can gain additional insights by con-
trasting it with a random effects approach to between and within variables
variability. Other research lines comprise the use of alternative models for
interval data. In particular, our approach relies on a Gaussian assumption
and may not be advisable when Midpoints / Log-Ranges have highly skewed
distributions. In such case, our approach can be easily adapted to models
based on the families of skew distributions, e.g., skew-Normal and skew-t
(see [1], [31], and [38]). Omn the other hand to mitigate influence of pos-
sible outliers robust parameter estimators (see, e.g., [33]) may replace the
traditional maximum likelihood ones. Finally, extensions to other kinds of

symbolic data should be investigated.
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TABLE 1

Table 1: Matrix I of interval data

Y3 . Y; . Y,
S1 [l117 u11] e [llja ulj] e [llpa Ulp]
S; [lih uil] . [lij, uij] c. [lip, uip]
Sn [lnl, unl] e Unja unj] e [lnpa unp]
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TABLE 2

Table 2: Model selection (Synthetic data set 1)

Cases Log-likelihood # parameters BIC

Case 1 -10389.6 24 20961.5
Case 2 -10772.7 20 21697.4
Case 3 -10390.1 20 20932.3
Case 4 -10773.1 18 21682.9
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TABLE 3

Table 3: Model selection (Synthetic data set 2)

Cases Log-likelihood # parameters BIC

Case 1 -10084.0 53 20535.0
Case 2 -10096.0 29 20393.0
Case 3 -11985.0 37 24225.0
Case 4 -12122.0 25 24417.0
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TABLE 4

Table 4: Data sets

Name Nb. cases Nb. interval Missing values Data type
variables
USA metereological data 282 3 NO Native data
Income-debt data 297 4 NO Aggregated data
Employment survey data 58 2 NO Aggregated data

35



TABLE 5

Table 5: USA meteorological data

Station State January July Annual
Temperature Temperature Pluviosity
HUNTSVILLE AL [32.3,52.8] [69.7,90.6]  [3.23,6.10]
ANCHORAGE AK [9.3,22.2] [51.5,65.3]  [0.52,2.93]
NEW YORK (JFK) NY [24.7,38.8] [66.7,82.9]  [2.70,4.13]
SAN JUAN PR [70.8,82.4] [76.9,87.4]  [2.14,6.17]
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TABLE 6

Table 6: USA meteorological data - BIC values

Nb. Homocedastic Heterocedastic
components

K Casel Case2 Case3 Case4 | Casel Case2 Case3d Case4
2 5569.8 6032.7 5722.0 6100.0 | 5078.2  5841.7 53824  5952.1
3 5409.3  5893.3 5575.0 5976.8 | 4808.8  5481.5 5102.9  5658.7
4 5311.3 5745.5  5467.7  5843.1 4678.3  5214.9  4939.7  5379.4
5 5264.3 5680.6 5379.0 5739.2 | 4658.7  5116.0 4871.2  5275.3
6 5239.8 5611.5 5315.2 5674.9 | 4640.4 5053.2 4863.3  5209.4
7 5184.2  5555.3  5271.8 5596.9 | 4662.8 5015.6 4860.8 5172.4
8 5151.9  5496.5  5224.8 5547.7 | 4732.3  5007.2 4842.8 5156.6
9 5125.9 5446.2 5189.4  5478.1 4762.2 4975.7  4856.6  5131.2
10 5085.5 5413.7  5152.8  5446.0 4873.3 5003.2  4866.7  5109.3
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TABLE 7

Table 7: USA meteorological data - Component Proportions, Mean-Vectors

and Variances

C1 C2 C3 C4 Ch C6

Proportions 0.176 0.084 0.175 0.413 0.053 0.098

MIDPT-JAN | 30.64 12.51 49.64 25.41 77.65 47.20
LNRG-JAN 3.08 2.55 3.02 284 245 2.68

Mean MIDPT-JUL | 74.25 55.33 8254 73.96 80.57 71.09
Values LNRG-JUL 3.42 2.66 297 304 245 295
MIDPT-PREC | 1.23 3.88 426 316 7.76  2.85
LNRG-PREC | 0.38 1.15 1.24 077 178 1.39
MIDPT-JAN | 94.26 263.52 53.71 76.94 14.33 69.85
LNRG-JAN 0.07 0.05 0.01 0.02 0.04 0.06

Variances  MIDPT-JUL | 50.18 24.13 2.16 1537 3.01 58.43
LNRG-JUL 0.02 0.08 0.01 0.02 004 0.20
MIDPT-PREC | 0.20 13.03 0.93 0.43 18.14 1.37
LNRG-PREC | 0.23 0.49 0.10 013 023 0.16
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TABLE 8

Table 8: Explained inertia of the partitions obtained by the Ward method

Nb. components 2 3 4 5 6 7 8 9 10

Explained inertia | 0.21 0.36 0.48 055 0.60 0.63 0.67 0.70 0.72
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TABLE 9

Table 9: Income and Debt interval data
Group HI DIR CCD oD

Male, 8-24 [15,61] [0.1,23.4] [0.0,6.57]  [0.02,7.71]

High school degree, Service

Male, 35-49, College degree, | [19,190] [1.4,20.4] [0.04,16.6] [0.12,15.39]

Sales and Office

Female, 25-34, Some college | [17,100] [0.8,31.7] [0.05,6.57] [0.09,7.65]

Managerial and Professional
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TABLE 10

Table 10: Income-debt data - BIC values

Nb. Homocedastic Heterocedastic
comp.

K Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4
2 9336.91 10312.07 10304.42 11557.28 | 8533.95  9222.99  9770.38 10641.34
3 9188.08  9985.10  10117.64 10733.92 | 7836.8 8057.74  9504.75  9890.29
4 9088.40 9546.50 9959.48 10273.03 | 7699.80 7772.59 9318.83 9534.24
5 9061.25 9406.52 9885.04 10124.77 | 7522.50 7281.54 9148.90 9341.71
6 8956.95  9366.33 9829.76  10000.48 | 7564.48  7055.61  9138.57  9174.65
7 8939.25  9171.05 9713.20 9897.91 — 7011.45  9160.22  9051.77
8 8902.65  9050.61 9654.98 9861.26 — 6859.76  9128.54  8977.98
9 8838.82  8992.64 9590.98 9780.71 — 6831.01 9278.78  8925.87
10 8852.52  9054.11 9595.48 9711.42 — 6870.38  9249.67  8924.33
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TABLE 11

Table 11: Income-debt data - Component Proportions and Mean-Vectors

C1 C2 C3 C4 C5 C6 c7 C8 C9

Proportions 0.112  0.193 0.149 0.152  0.083 0.028  0.218  0.053 0.013

Hinc-MidP 35.72 34.25 124.31 78.86 138.88 221.78 86.88 141.69 495.38
Hinc-LogR 3.08 3.50 5.33 4.75 5.40 5.95 4.74 4.90 6.87

DIncR-MidP 7.91 12.51 15.10 13.43 13.06 17.64 11.62 11.39 16.16
DIncR-LogR 2.10 2.99 3.28 3.20 3.04 3.41 2.84 2.01 3.30
CCDbt-MidP 0.75 1.480 6.87 3.34 9.68 16.92 3.26 3.617 40.23
CCDbt-LogR | -0.06 0.93 2.57 1.87 2.90 3.45 1.71 1.46 4.29

ODbt-MidP 1.73 2.65 13.06 6.44 13.09 14.72 5.97 8.73 56.73

ODbt-LogR 0.53 1.49 3.22 2.48 3.08 3.34 2.29 2.23 4.68

42



TABLE 12

Table 12: Unemployment data

Group

Activity time

Unemployment time

Female, Centre, 15-24, Basic or less
Female, Lisbon and Tagus Valley, 45-64, Higher

Male, North, 15-24, Secondary

Male, South, 25-44, Higher

[0, 4]
[12,32)
[1,4]
5, 20]

(3, 49]
8, 27]
[1,15]
[4, 18]
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TABLE 13

Table 13: Unemployement data - BIC values

Nb. Homocedastic Heterocedastic
components
K Casel Case2 Case3 Case4 | Casel Case 2 Case 3 Case4
2 1271.3  1288.1  1335.7 1361.8 | 1203.2 1196.1 1296.4  1305.2
3 1242.9  1265.0 1308.7 1311.5 | 1137.3 1141.4 1262.6  1268.4
4 1239.0 1237.6 1290.6  1283.2 — 1098.7 1247.3  1239.5
5 1239.4  1238.0 1283.7 1283.8 — 1080.3 12344 12279
6 1243.7  1240.8 1279.2  1279.6 — — —
7 1241.8  1238.1 1271.8  1278.0 — — —
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TABLE 14

Table 14: Unemployement data - Component Proportions, Mean-Vectors

and Variances

C1 C2 C3 C4 Ch

Proportions | 0.271  0.206  0.227 0.103 0.191

AT MidP 8.662  3.785 23.237  33.750 26.627
Mean AT LogR 2,553 1.600  3.197 3.578 2.748
Values UT MidP 31.985 7.495 66.990 150.500 18.869
UT LogR 4.042  2.110 4.849 5.690 3.060

AT MidP 17.065 4.963 73.153  57.479  78.060
Variances AT LogR 0.340 0.544  0.119 0.040 0.182
UT MidP | 101.545 7.841 230.649 468.583 54.774
UT LogR 0.113  0.685  0.057 0.021  0.225
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TABLE 15

Table 15: Unemployment data - Clusters

CLUSTER 1

CLUSTER 2

Female, Centre, 15-24, Basic or less
Female, Centre, 25-44, Secondary
Female, Lisbon and TV, 25-44, Secondary
Female, Lisbon and TV, 25-44, Higher
Female, North, 15-24, Basic or less
Female, North, 25-44, Secondary
Female, North, 25-44, Higher
Female, South, 15-24, Basic or less
Female, South, 15-24, Secondary
Female, South, 25-44, Secondary
Male, Lisbon and TV, 25-44, Higher
Male, North, 15-24, Basic or less
Male, North, 25-44, Secondary
Male, North, 25-44, Higher
Male, South, 15-24, Basic or less
Male, South, 15-24, Secondary

Female, Centre, 15-24, Secondary
Female, Centre, 25-44, Higher
Female, Lisbon and TV, 15-24, Basic or less
Female, Lisbon and TV, 15-24, Secondary
Female, North, 15-24, Secondary
Female, South, 15-24, Higher
Male, Centre, 15-24, Basic or less
Male, Centre, 15-24, Secondary
Male, Centre, 25-44, Higher
Male, Lisbon and TV, 15-24, Basic or less
Male, Lisbon and TV, 15-24, Secondary
Male, North, 15-24, Secondary

CLUSTER 3

CLUSTER 4

Female, Centre, 25-44, Basic or less
Female, Centre, 45-64, Basic or less
Female, Lisboa, and TV, 25-44, Basic or less
Female, Lisbon and TV, 45-64, Secondary
Female, North, 45-64, Secondary
Female, South, 25-44, Basic or less
Male, Centre, 25-44, Basic or less
Male, Centre, 45-64, Basic or less
Male, Lisbon and TV, 25-44, Basic or less
Male, Lisbon and TV, 25-44, Secondary
Male, North, 25-44, Basic or less
Male, North, 45-64, Basic or less
Male, South, 25-44, Basic or less

Female, Lisbon and TV, 45-64, Basic or less
Female, North, 25-44, Basic or less
Female, North, 45-64, Basic or less
Female, South, 45-64, Basic or less

Male, Lisbon and TV, 45-64, Basic or less
Male, South, 45-64, Basic or less

CLUSTER 5

Female, Lisbon and TV, 45-64, Higher
Female, South, 25-44, Higher
Female, South, 45-64, Secondary
Male, Centre, 45-64, Secondary
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TABLE 16

Table 16

: Income-Debt data - Component 1 Covariance Matrix

V1

V2

V3

V4

V5

V6

V7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

294.299
15.764

15.764
1.110

3.599
0.395

0.395
0.192

0.179
0.393

0.929
0.609

0.609
0.721
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TABLE 17

Table 17: Income-Debt data - Component 2 Covariance Matrix

V1 V2 V3 V4 V5 V6 v7 V8

V1:Hinc-MidP 80.904  3.795 - - - - - -
V2:Hinc-LogR 3.795 0.228 - - - - - -
V3:DIncR-MidP - - 9.062 0.681 - - - -

V4:DIncR-LogR -
V5:CCDbt-MidP - - - - 0.303 0.231 - -

0.681 0.073 - - - -

V6:CCDbt-LogR - - - - 0.231 0.187 - -
V7:0Dbt-MidP - - - - - - 0.794 0.325

V8:0ODbt-LogR - - - - - - 0.325  0.143
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TABLE 18

Table 18

: Income-Debt data - Component 3 Covariance Matrix

V1

V2 V3

V4

V5

V6

vT7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

1061.778
8.913

8.913 -
0.080 -
- 8.475

|
o
(=)
=
=~

0.524
0.078

4.943
0.360

0.360
0.027
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TABLE 19

Table 19

: Income-Debt data - Component 4 Covariance Matrix

V1

V2

V3

V4

V5

V6

V7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

674.648
10.054

10.054
0.168

5.988
0.440

0.440
0.035

0.097
0.029

3.820
0.603

0.603
0.098
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TABLE 20

Table 20

: Income-Debt data - Component 5 Covariance Matrix

V1

V2

V3

V4

V5

V6

V7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

1523.248
13.789

13.789
0.144

5.460
0.598

0.598
0.106

8.444
0.798

0.798
0.078

53.712
3.786

3.786
0.278

o1



TABLE 21

Table 21

: Income-Debt data - Component 6 Covariance Matrix

V1

V2

V3 V4

\'%

V6

vT7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

4982.894
20.273

20.273
0.087

10.580  0.851
0.851 0.073

25.369
1.729

1.729
0.123

4.858
0.348

0.348
0.025
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TABLE 22

Table 22

: Income-Debt data - Component 7 Covariance Matrix

V1

V2

V3 V4

V5

V6

V7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

1134.334
16.626

16.626
0.308

10.780  1.082
1.082  0.147

0.609
0.196

5.983
1.026

1.026
0.188
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TABLE 23

Table 23

: Income-Debt data - Component 8 Covariance Matrix

V1

V2

V3 V4

V5

V6

V7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

5540.152
45.424

45.424
0.784

26.234  3.176
3.176 1.173

1.987
0.701

38.454
2.938

2.938
0.429
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TABLE 24

Table 24

: Income-Debt data - Component 9 Covariance Matrix

V1

V2

V3

V4

V5

V6

V7

V8

V1:Hinc-MidP
V2:Hinc-LogR
V3:DIncR-MidP
V4:DIncR-LogR
V5:CCDbt-MidP
V6:CCDbt-LogR
V7:0Dbt-MidP
V8:0Dbt-LogR

3509.047
7.942

7.942
0.018

14.115

1.008

1.008
0.077

241.252
7.142

7.142
0.216

239.983
4.765

4.765
0.095
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CAPTION OF FIGURE 1

First 20 observations and three-cluster means (Synthetic data set 1)

CAPTION OF FIGURE 2

Partition in six clusters obtained by the model-based method for the USA

meteorological data

CAPTION OF FIGURE 3

Partition in four clusters obtained by the Ward method for the USA mete-

orological data

CAPTION OF FIGURE 4

Partition in six clusters obtained by the Ward method for the USA me-

teorological data

CAPTION OF FIGURE 5

Partition in six clusters obtained by the SCLUST method for the USA me-

teorological data

CAPTION OF FIGURE 6

Partition in seven clusters obtained by MCLUST for the USA meteorological
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FIGURE 1
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Figure 1: First 20 observations and three-cluster means (Synthetic data set

1)
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FIGURE 2
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Figure 2: Partition in six clusters obtained by the model-based method for

the USA meteorological data
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FIGURE 3
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Figure 3: Partition in four clusters obtained by the Ward method for the

USA meteorological data
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FIGURE 4
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Figure 4: Partition in six clusters obtained by the Ward method for the

USA meteorological data
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FIGURE 5
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Figure 5: Partition in six clusters obtained by the SCLUST method for the

USA meteorological data
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FIGURE 6
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Figure 6: Partition in seven clusters obtained by MCLUST for the USA

meteorological data
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