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ABSTRACT

Estimation of the one sided error component in stochastic frontier models may erroneously
attribute firm characteristics to inefficiency if heterogeneity is unaccounted for. However,
it is not clear in general in which component of the error distribution the covariates should
be included. In the classical context, some studies include covariates in the scale parameter
of the inefficiency with the property of preserving the shape of its distribution. We ex-
tend this idea to Bayesian inference for stochastic frontier models capturing both observed
and unobserved heterogeneity under half normal, truncated and exponential distributed
inefficiencies. We use the WinBugs package to implement our approach throughout. Our
findings using two real data sets, illustrate the relevant effects on shrinking and separating
individual posterior efficiencies when heterogeneity affects the scale of the inefficiency. We
also see that the inclusion of unobserved heterogeneity is still relevant when no observable
covariates are available.

JEL classification: C11; C23; C51; D24
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I. Introduction

Stochastic frontier models, first introduced in Aigner et al. (1977) and Meeusen and van den

Broeck (1977), are important tools for efficiency measurement. These models require the speci-

fication of an economic, functional form based on a production or cost function which includes
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a composite error term. This error term can be decomposed into two parts, firstly a two-sided,

idiosyncratic error and secondly, a non-negative inefficiency component. Measures of efficiency

are obtained from this one-sided error, which typically is assumed to follow some specific dis-

tribution. The most common distributions for the one-sided error are the half-normal (Aigner

et al., 1977), exponential (Meeusen and van den Broeck, 1977), truncated normal (Stevenson,

1980), and gamma (Greene, 1990).

However, the estimated inefficiency component often includes some firm characteristics other

than outputs, inputs, or prices defined from the production or cost function, which should not

be attributed to inefficiency. These firm characteristics are exogenous variables (e.g. type of

ownership, GDP level in the country of operation) that have an effect on the technology used by

the firms or directly on their inefficiency. If these variables are not taken into account in the model

specification, this may affect the estimation of the inefficiencies or of the frontier significantly.

The distinction between heterogeneity and inefficiency has become a very important issue in

stochastic frontier models.

Firm characteristics can be modeled in the frontier if they imply heterogenous technologies

or in the one-sided error component if they affect the inefficiency. In the former case, covariates

are directly included in the functional form and the main interest is to model unobserved het-

erogeneity (see Greene, 2005). For the case of heterogeneity in the inefficiency, covariates are

usually included in the parameters of the one-sided error distribution (see Huang and Liu, 1994).

Heterogeneity in stochastic frontier models has also been studied from the Bayesian con-

text. The Bayesian approach to stochastic frontiers introduced by van den Broeck et al. (1994)

presents advantages in terms of formally deriving posterior densities for individual efficiencies,

incorporating economic restrictions, and in the easy modeling of random parameters through hi-

erarchical structures. Hierarchical models have been used to capture heterogeneous technologies

(see Tsionas, 2002) and heterogeneity in the inefficiency has been considered through covariates

in the distribution of the non-negative error component (see Koop et al., 1997). Modeling ob-

served heterogeneity using non parametric and flexible mixtures of inefficiency distributions are
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other interesting recent contributions (see Griffin and Steel, 2004, 2008). However, the treatment

of unobserved heterogeneity in the non-negative error component has been little explored.

Here, we propose the modeling of both observed and unobserved heterogeneity in the ineffi-

ciency within a Bayesian framework. In particular, we extend the model of Caudill et al. (1995),

where in the classical context, observed covariates were included in the scale parameter of a

half normal inefficiency distribution. This model has the property of changing the scale while

preserving the shape of the inefficiency distribution. This is called the scaling property in Wang

and Schmidt (2002) and Alvarez et al. (2006) and allows us to think of the inefficiency as being

composed of two parts where the first component captures random managerial skills and the

second depends on firm characteristics. Here, we include heterogeneity in the parameters of half

normal, truncated normal and exponential distributed inefficiencies in such a way that they are

allowed to vary over time and that the scaling property is preserved.

For illustration, we use two data sets which have been previously analyzed only in the classical

context. The first data set is from a controversial report by the World Health Organization

(WHO) on the efficiency of national health systems (see WHO, 2000), while the second evaluates

the economic efficiency of US domestic airlines. Results are compared against a base model with

no heterogeneity and a model with covariates in the frontier.

The rest of this paper is organized as follows. Section II presents a brief literature review

on heterogeneity in stochastic frontier models and the proposed model. Section III presents the

Bayesian inference and model selection criteria. Section IV reports the applications to the WHO

and the US domestic airlines data sets. Finally, in Section V we provide conclusions and consider

some possible extensions of our approach.
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II. Heterogeneity in stochastic frontier models

A. A brief literature review

The original stochastic frontier model introduced by Aigner et al. (1977) and Meeusen and

van den Broeck (1977) has the following form:

yit = xitβ + vit − uit (1)

where yit represents the output for firm i at time t, xit is a vector that contains the input

quantities used in the production process, vit is an idiosyncratic error that is typically assumed

to follow a normal distribution and uit is a one-sided component representing the inefficiency and

following some non-negative distribution.

However, firm specific factors not specified in (1) can be mistaken for inefficiency if they are

not identified. Heterogeneity can either shift the efficiency frontier or change the location and

scale of the inefficiency estimations (see Kumbhakar and Lovell, 2000; Greene, 2008, for complete

reviews). In general, when external factors are supposed to capture technological differences and

these are out of the firms’ control, heterogeneity should be specified in the frontier. In this

case, the main interest is capturing unobserved effects. In the classical context, this has been

modeled through fixed and random effects or models with random parameters (see Greene, 2005).

Bayesian approaches have been based on frontier models with hierarchical structures (see Tsionas,

2002; Huang, 2004).

When heterogeneity is more related to efficiency and thus more likely to be under firms’

control, then this should affect directly the one-sided error term. In the parametric context,

inefficiency heterogeneity is often included in the location or scale parameters of the inefficiency

distribution. For example, covariates shift the underlying mean of inefficiency in Kumbhakar

et al. (1991), Huang and Liu (1994) and Battese and Coelli (1995). A reduced form of these

models assumes that the location parameter of uit depends on a vector of covariates zit and
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parameters δ as follows:

uit = |Uit|; Uit ∼ N(µit, σ
2
u)

µit = zitδ.
(2)

The scale parameter of the one-sided error component has also been modeled as a function

of firm characteristics. Reifschnieder and Stevenson (1991) provided one of the first linear spec-

ifications where this parameter varies across firms. A similar model was proposed by Caudill

et al. (1995) with the aim of treating heteroscedasticity in frontier models. These authors found

biased inefficiency estimations when heteroscedasticity was not accounted for.1 The proposed

model specifies the variance of a half normal distributed inefficiency as an exponential function

of time invariant covariates:

ui = |Ui|; Ui ∼ N(0, σ2
Ui

)

σUi
= σU · exp(ziγ).

(3)

This specification has the characteristic of changing the scale of the inefficiency distribution

while preserving its shape and is referred in the literature as the scaling property (see Wang and

Schmidt, 2002; Alvarez et al., 2006). In general, this property allows us to think about inefficiency

as being composed of two parts: uit = u∗it · f(zit, δ). The first component is a base inefficiency,

which is not affected by firm characteristics and captures random managerial skills, while the

second component is a function of heterogeneity variables determining how well management

is performed under these conditions. Another interesting feature of this property is that the

interpretation of the effects of covariates on the inefficiency is direct and independent of the

inefficiency distribution. The scaling property also holds when the inefficiency is exponentially

distributed (see Simar et al., 1994), or in a particular case of truncated normal inefficiency where

both parameters are an exponential function of firm characteristics as follows (see Wang and

Schmidt, 2002; Alvarez et al., 2006):

1In a previous study, Caudill and Ford (1993) also found biased estimates of the frontier parameters.

5



uit = |Uit|; Uit ∼ N(µit, σ
2
Uit

)

µit = µ · exp(zitδ)

σUit
= σU · exp(zitδ).

(4)

Specification (4) for the inefficiency is a variation of a previous proposal by Wang (2002)

where both the mean and the variance of truncated normal inefficiencies are simultaneously

affected by the same covariates but with different coefficients. Other authors have also proposed

heterogeneity specifications that include firm characteristics in the variance of the idiosyncratic

error with the aim of treating heteroscedasticity in frontier models (see Hadri, 1999).

In the Bayesian context, Koop et al. (1997) presented different structures for the mean of

the inefficiency component as Bayesian counterparts to the classical fixed and random effects

models. One of these specifications is the varying efficiency distribution model, which includes

firm specific covariates in the parameter of an exponential distribution. These covariates link the

firm effects and only the efficiencies of firms sharing common characteristics are drawn from the

same distribution. The following is the specification where a time invariant inefficiency depends

on a vector of binary covariates wit and parameters γ:

ui ∼ Ex(λ−1i )

λi = exp(wiγ).
(5)

The literature on modeling of unobserved firm characteristics in the inefficiency is still scarce.

In the frequentist context, Greene (2005) proposed a model where the coefficients of the observed

covariates are allowed to be firm specific and vary randomly. In the Bayesian framework, the

marginally independent efficiency distribution model proposed by Koop et al. (1997) may capture

unobserved inefficiency heterogeneity through exponentially distributed inefficiencies with firm

specific mean λi and independent priors.
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B. The Model

In this section, we present a general stochastic frontier model for panel data that allows the

modeling of both observed and unobserved inefficiency heterogeneity and preserves the scaling

property. Inefficiencies are assumed to follow: a) a half normal distribution, which is an an

extension of the specification for the scale parameter in (3), b) a truncated normal distribution,

which extends the scaled Stevenson model in (4), or c) an exponential distribution that can be

seen as an extension of model in (5). The general model is:

yit = xitβ + zitδ + vit − uit

vit ∼ N(0, σ2); uit = |Uit|

a) Uit ∼ N(0, σ2
U · (exp(hitγI1 + τitI2))

2)

b) Uit ∼ N(µ · exp(hitγI1 + τitI2), σ
2
U · (exp(hitγI1 + τitI2))

2)

c) Uit ∼ Ex(λ · exp(hitγI1 + τitI2)),

(6)

where zit is the vector of the observed heterogeneity variables that affect the technology; hit is

the vector of all covariates with effects in the scale of inefficiency; τit is an unknown parameter

which intends to capture time varying unobserved firm effects in the inefficiency; and, β, δ, and

γ are vectors of the estimated parameters. I1 and I2 are indicator variables taking the value of

1 when either observed covariates or unobserved heterogeneity are accounted for, respectively.

It is easy to extend this specification to a hierarchical model which also allows for additional,

unobserved, firm effects in the technology. However, in practical applications, mean posterior

efficiencies are found to be very close to 1 for almost all firms (see Huang, 2004; Tsionas, 2002,

for similar results). From our point of view, these results are inconclusive as they do not allow

us to get reliable efficiency rankings.
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III. Bayesian inference

The use of Bayesian methods in stochastic frontier analysis was introduced by van den Broeck

et al. (1994) and has become very common in recent applications. Bayesian approaches have

various attractive properties and, in particular, restrictions such as regularity conditions are easily

incorporated and parameter uncertainty is formally considered in deriving posterior densities for

individual efficiencies.

All the models derived from the general specification in (6) are fitted by Bayesian methods. In

order to do this, we first need to introduce prior distributions for the model parameters. Here we

assume proper but relatively disperse prior distributions throughout. The distributions assumed

for the parameters in the frontier function are as follows: β ∼ N(0,Σ−1β ), δ ∼ N(0,Σ−1δ ) with

diffuse, inverse gamma priors for the variances. Regularity conditions are imposed on those

parameters in β that must be positive in order to satisfy the theoretical economic constraints on

the frontier. Finally, the variance of the idiosyncratic error term is also inverse gamma, that is

σ−2 ∼ G(aσ−2 , bσ−2) with low values of the shape and scale parameters.

Regarding observed inefficiency heterogeneity, the distribution of the one-sided error compo-

nent for the half-normal and truncated normal models are: u|γ,h ∼ N+(0, λ−1 · (exp(hγ))2),

and u|γ,h ∼ N+(θ · exp(hγ), λ−1 · (exp(hγ))2), respectively; where the superscript + denotes

truncation to positive values, θ is the mean parameter, and λ is the precision parameter. For

the exponential model the distribution is: u|γ,h ∼ G(1, λ · exp(hγ)), with shape parameter

equal to 1 and scale parameter λ. For all models, γ is normally, N(0,Σ−1γ ) distributed with a

diffuse prior for the covariance matrix. Parameters θ and λ are defined for each distribution as in

Griffin and Steel (2007). Priors for these parameters are also valid in the case of models without

heterogeneity in the inefficiency, where exp(hγ) = 1.

In the case of unobserved heterogeneity in the inefficiency, the unknown parameter is specified

as: τ ∼ N(τ ,σ−2τ ), where τ ∼ N(0,σ−2τ ) and σ−2τ ∼ G(aσ−2
τ
, bσ−2

τ
), with diffuse priors.

The complexity of these models makes necessary to use numerical integration methods such

as Markov Chain Monte Carlo (MCMC), and in particular the Gibbs sampling algorithm with
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data augmentation as introduced by Koop et al. (1995). For our models, implementation was

carried out using the WinBUGS package following the general procedure outlined in Griffin and

Steel (2007). For all our applications, the MCMC algorithm involved 50000 MCMC iterations

where the first 10000 were discarded in a burn-in phase.

Finally, although we do not display the details here, we should also note that in our applica-

tions, some sensitivity analysis of our results to changes in the prior parameters was carried out.

Results showed that the posterior inference was relatively insensitive to small changes in these

parameters.

A. Model selection

The different models are evaluated in terms of three criteria, the Deviance Information Criterion

(DIC), the Log Predictive Score (LPS) and the Mean Square Error (MSE) of predictions. The

former is a within sample measure of fit introduced by Spiegelhalter et al. (2002) commonly used

in Bayesian analysis. Defining the deviance of a model with parameters θ asD(θ) = −2 log p(y|θ),

where y are the data, then the DIC is

DIC = D̄ + pD

where D̄ is the expected deviance and pD is a complexity term such that pD = D̄−D(θ̄), where

θ̄ is the mean of the posterior parameter distribution. The DIC can be evaluated automatically

within the WinBugs setup and a good description of its use in stochastic frontier models can be

seen in Griffin and Steel (2007).

The LPS is a scoring rule developed in Good (1952) and is defined as the average of log

predictive density functions evaluated at observed out-of-sample values. In general, it compares

the predictive distribution of a model with observations that are not used in the inference sample.

To do this, we split the sample into two parts. The first set of n traininng data is used to fit

the model and the predictive performance of the model is calculated on the second set of q data.
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In our case, the training data set contains all observations except one for every firm, and the

second data set just contains the last observation of every individual unit. In stochastic frontier

frameworks, Griffin and Steel (2004) and Ferreira and Steel (2007) employed this criterion for

model comparison. The formulation is the following:

LPS =
−1

q

q∑
i=1

log p(yn+i|y1, ..., yn)

In this work, we also compare the models in terms of predictive mean squared error (MSE).

This measure involves again the partition of the sample into two parts as above. The models are

fitted using the training sample and their estimated parameters are used to predict the data for

the last observation of every firm. The MSE is calculated as follows:

MSE =
1

k

k∑
i=1

(yi − E [(β′xi − ui)|y1, . . . , yn])
2
,

where k is the number of firms, ui is the mean of the inefficiency component, which is different

depending on the distribution and varies with the firm for models with heterogeneity in the

inefficiency.

IV. Empirical applications

In this section, we analyze two data sets, estimate the models presented in section II and interpret

the results.

A. Application to WHO data set

Tandon et al. (2000) estimated the technical efficiency of 191 countries in the provision of health

by using a classical fixed effects stochastic frontier model for an unbalanced panel. The original

data set covers 5 years from 1993 to 1997 and the production function model proposed was the
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following:

ln(DALEit) = αi + β1 ln(HExpit) + β2 ln(Educit) + β3
1

2
ln2(Educit) + vit,

where DALE is the disability adjusted life expectancy, a measure that considers mortality and

illness and represents health output. Input amounts are measured by HExp and Educ, which

are health expenditure and the average years of education, respectively.

Their results were reported by the WHO and suffered from several criticisms since the authors

did not consider the effects of heterogeneity in their study, even though the sample included

countries with very different characteristics such as Switzerland, China, or Zimbabwe. This led

to unexpected country health system performance rankings.

Greene (2004), using a classical random effects model, found that country rankings change

when technology and inefficiency heterogeneity are considered. The author proposed to capture

differences among countries by including eight exogenous variables separated into two groups:

zi = [Tropicsi, PopDeni] and hi = [GEffi, V oicei, Ginii, GDPi, PubF ini, OECDi]. Tropics is

a binary variable that takes the value 1 if the country is located in the tropic and 0 otherwise;

PopDen is the country population density, which may capture effects of dispersion but also

congestion in the provision of health. GEff is an indicator of government efficiency; V oice is

a measure of political democratization and freedom; Gini is the income inequality coefficient;

GDP is the per capita country gross domestic product; PubF in is the proportion of health care

financed with public resources, and OECD is a binary variable that takes the value 1 if the

country belongs to the organization and 0 otherwise. Variables in zi are assumed to shift the

frontier itself and then they are included as covariates in the production function. Variables in hi

are more under the control of countries and policy related but it is not clear where they should

be located.2

In order to assess the effects of heterogeneity under the Bayesian approach, we propose

2Greene (2004) chose a model with all covariates in the production function excluding Gini and GDP, which
were included in the mean of a truncated normal distributed inefficiency.

11



four different models starting from our proposal in (6) using the covariates in zi and hi.
3 The

inefficiency component may follow: a) half-normal, b) truncated normal, or c) exponential dis-

tributions.

ln(DALEit) = α + β1 ln(HExpit) + β2 ln(Educit) + β3
1
2

ln2(Educit) + β4Tropicsi

+β5 ln(PopDeni) + hiδ + vit − uit

vit ∼ N(0, σ2
v); uit = |Uit|

a) Uit ∼ N(0, σ2
U · (exp(hiγI1 + τitI2))

2)

b) Uit ∼ N(µ · exp(hiγI1 + τitI2), σ
2
U · (exp(hiγI1 + τitI2))

2)

c) Uit ∼ exp(λ · exp(hiγI1 + τitI2)).

(7)

The base model, denoted Model I, does not consider any type of heterogeneity in the in-

efficiency, and only variables in zi are included in the production function. Model II includes

the covariates in hi as technology heterogeneity variables but not in the inefficiency. Therefore,

these two models assume I1, I2 = 0. Models III and IV incorporate our proposal of heterogeneity

that changes the scale but not the shape of the inefficiency. In particular, Model III allows the

parameters of the inefficiency component to vary across countries through the random parameter

τit that captures unobserved heterogeneity. For this model, δ = 0, I1 = 0 and I2 = 1. Finally,

Model IV captures observed heterogeneity in the inefficiency through covariates in hi and the

unknown parameter is omitted. Then, δ = 0, I1 = 1 and I2 = 0.4

Model comparison criteria for the four models and the three distributions are presented in

Table I. In general, similar conclusions are obtained from the three criteria. Results show that

models including either observed or unobserved heterogeneity improve from the base model. In

particular, the model that exhibits the best fit and predictive performance includes observed

heterogeneity in the inefficiency, which suggests that covariates in hi are inefficiency related.

Regarding the inefficiency distributions, the half-normal and truncated normal models present

3Regularity conditions are imposed on β1 and β2.
4A model including observed and unobserved heterogeneity in the inefficiency parameters simultaneously was

also fitted but we omit the results because they were roughly the same as those obtained with Model IV. This
could imply that the observed covariates in hi capture all relevant heterogeneity in the inefficiency.
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Table I

Model comparison criteria assuming different inefficiency distributions

Distribution Model I Model II Model III Model IV
Half normal DIC -2251.7150 -2598.3080 -2423.3160 -2914.7370

LPS -97.1690 -132.7610 -154.8950 -196.4420
MSE 0.1382 0.0864 0.0906 0.0736

Truncated normal DIC -2292.7710 -2593.1280 -2495.1400 -2884.9030
LPS -122.8900 -130.4520 -146.7710 -185.9830
MSE 0.1387 0.1051 0.1084 0.0869

Exponential DIC -2223.7420 -2568.4380 -2231.4950 -2580.1720
LPS -95.9810 -121.5150 -123.3560 -132.2700
MSE 0.1392 0.1153 0.1281 0.1085

better indicators and seem to be better alternatives, specially for those models considering ob-

served heterogeneity in uit. However, efficiency rankings are almost perfectly correlated across

distributions as we can observe for Model IV in Figure 1.
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Figure 1. Efficiency rankings in Model IV across distributions

Hereafter, we report the results for the half-normal distribution given the better performance

indicators obtained for model IV. Table II reports the mean of the posterior distributions of

the parameters for the four models. In general, we observe that including covariates affecting

the scale of the inefficiency component increases the mean and diminishes the dispersion of

the predictive posterior efficiency. Regarding the coefficients, preserving the scaling property

allows us to interpret directly the effect of covariates on the inefficiency in Model IV given that

γ = ∂ lnuit/∂hi. We limit the analysis to the signs, which suggest that higher equality, income,

government efficiency or pertaining to the OECD increase the efficiency of health provision as
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could be intuitively expected. In contrast, higher levels of democracy and public finance of health

services lead to lower efficiency.

Table II

Posterior means of the parameter distributions with half-normal distributed
inefficiency

Parameters Model I Model II Model III Model IV
α 3.5272 3.4343 3.5854 3.8071
lnHExp 0.0678 0.0237 0.0594 0.0382
lnEduc 0.2386 0.2256 0.2163 0.1502
1
2

ln2Educ -0.0387 -0.0471 -0.0385 -0.0308
Tropics -0.0239 -0.0153 -0.0142 -0.0124
lnPopDen 0.0025 -0.0006 -0.0001 0.0017
Gini - -0.2559 - 4.3871
lnGDP - 0.0796 - -0.5945
GEff - -0.0199 - -0.0939
V oice - 0.0237 - 0.0884
OECD - -0.0418 - -0.7439
lnPubF in - -0.0432 - 0.0681
τ - - -2.2678 -
σu 0.1379 0.1299 0.1055 0.0836
σv 0.0412 0.0367 0.0355 0.0292
mean pred. eff. 0.8569 0.8543 0.89291 0.8984
sd pred. eff. 0.0987 0.1010 0.0916 0.0721
DIC -2251.7150 -2598.3080 -2423.3160 -2914.7370
LPS -97.1690 -132.7610 -154.8950 -196.4420
MSE 0.1388 0.0861 0.0903 0.0730

However, the most interesting conclusions come from the efficiency rankings since they allow

for comparisons among countries. Figure 2 shows efficiency rankings’ scatter plots comparing

the base model against the other three models. For Model II, which includes the covariates in

the frontier, most countries preserve a similar position except for small changes in the middle

rankings. The ranking correlation to the base model is 0.94. Model III, capturing unobserved

heterogeneity in the inefficiency, shows a greater dispersion in middle positions but the first

and last ranked countries barely change. The ranking correlation to the base model is 0.87.

Finally, Model IV, the one with observed covariates in the scale parameter of the inefficiency,

exhibits the greatest changes specially in top and middle positions, and presents the lowest
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correlation against the base model (0.67). In particular, the highest ranked countries present

major movements in their positions, specially when covariates are included in the inefficiency;

while badly performing countries are always roughly the same regardless of the model used. This

latter group is composed mainly of central African countries (e.g. Zambia, Botswana, Zimbabwe),

which share some characteristics related to low income, tropical diseases, etc.

 
1 50 100 150 191

Model IV

 

 

1 50 100 150 191

Model III

 

 

1 50 100 150 191
1

50

100

150

191

B
as

e 
M

od
el

Model II

 

 

Figure 2. Efficiency rankings - Base model vs. heterogeneity models

In order to observe in detail the changes that occur in the top ranked countries under the

different models, Table III shows the top 20 most efficient countries under all four models.

Although there are differences, the ranking is quite stable when we consider the first three

models. All of these include countries from Middle East, Asia, North of Africa and Latin America.

However, this changes completely when observed heterogeneity affects the scale of inefficiencies.

In Model IV, the developed countries rank in the first positions as might be intuitively expected.

For example, Japan, Sweden and Norway are the top 3 countries under this model while they are

ranked 30, 55 and 58 under the base model. The opposite is also observed for some developing

countries which are surprisingly very efficient when heterogeneity is not considered such as Yemen

and Cape Verde, among others.

Changing the scale of the inefficiency through observed covariates has an effect over the

rankings and this is illustrated in Figure 3. While most of the African countries continue to show

low efficiency; there is a significant change in the classification of the top and middle ranked

observations. The best performing countries, in particular, the developed countries are very
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Table III

Top 20 most efficient countries

Model I Model II Model III Model IV
1. Yemen 1. Jamaica 1. Jamaica 1. Japan
2. Oman 2. Yemen 2. Oman 2. Sweden
3. Jamaica 3. Honduras 3. Georgia 3. Spain
4. Morocco 4. Cuba 4. Sri Lanka 4. Norway
5. Cape Verde 5. Morocco 5. Morocco 5. Greece
6. Sri Lanka 6. Armenia 6. Yemen 6. Austria
7. Solomon Islands 7. Turkey 7. Armenia 7. Jamaica
8. Georgia 8. Oman 8. Cape Verde 8. Italy
9. Indonesia 9. Cape Verde 9. China 9. France
10. Armenia 10. El Salvador 10. Indonesia 10. Luxembourg
11. Venezuela 11. China 11. Solomon Islands 11. Belgium
12. El Salvador 12. Nicaragua 12. Malta 12. United Kingdom
13. Honduras 13. Mexico 13. Saudi Arabia 13. Finland
14. China 14. Costa Rica 14. Venezuela 14. Canada
15. Saudi Arabia 15. Sri Lanka 15. Greece 15. Georgia
16. Dominican R. 16. Moldova 16. El Salvador 16. Netherlands
17. Egypt 17. Chile 17. Singapore 17. Iceland
18. Azerbaijan 18. Paraguay 18. Spain 18. Switzerland
19. Turkey 19. Spain 19. Dominican R. 19. Australia
20. Costa Rica 20. Greece 20. Honduras 20. Singapore

sensitive to the inclusion of relevant covariates such as income and inequality that distinguish

them from developing countries.

The difference in the rankings obtained with Model IV is justified by significant moves and

shrinkages of the individual posterior efficiency distributions. Figure 4 shows the posterior 90%

credible intervals of efficiencies for some selected countries. It can be seen that the intervals are

narrower when the observed heterogeneity affects the scale of the inefficiency since the estimations

uncertainty diminishes. Moreover, the gap between the worst and the best performing countries

increases under Model IV, resulting in less overlaps of the posterior distributions. Countries

with the lowest indicators on the heterogeneity variables such as the African countries obtain

even lower scores, while developed countries improve. The case of US is remarkable, it occupies

position 45 under Model IV, while it ranks 140 under the base model. Less dispersion and

overlaps of the posterior efficiency distributions allow for more reliable conclusions about the
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Figure 3. Countries’ efficiency rankings by color

rankings obtained.

As mentioned previously, one of the advantages of preserving the scaling property is the de-

composition of the one-sided error term into a base and a heterogeneity component. In particular,

considering half-normal distributed inefficiencies, uit = |U∗it| · exp(hi,γ) where U∗it ∼ N(0, σ2
U).

Table IV presents this decomposition in terms of efficiency for the selected countries in Figure 4.

We observe that countries such as Yemen, Brazil and Colombia present higher base efficiency but

lower total efficiency than developed countries. This may indicate that these countries present

good managerial skills in health provision but under their specific characteristics, they exploit
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Figure 4. 90% credible intervals of the posterior efficiency distributions for selected countries
with half-normal inefficiencies

their management abilities to a lesser extent than the developed countries. One of the countries

taking great advantage of environmental characteristics is the USA, whose efficiency in health

provision seems to be almost totally dependent in their particular attributes. These results are

in line with those obtained by contrasting the base model and Model IV. Other group of coun-

tries, mainly from Africa exhibit low base and low total efficiency. This may indicate both, poor

natural managerial abilities, and inability to perform well under their relative bad conditions.

This may explain why these countries present very bad performance under all models whether

heterogeneity is considered or not.

Overall, we observe that allowing heterogeneity to change the scale but not the shape of inef-

ficiency distributions has relevant effects on shrinking and moving the distributions of posterior

individual efficiencies. The covariates are found to be inefficiency related and their inclusion

affecting the scale of the one sided error component distribution has a large impact on the coun-

tries’ efficiency ranking. This may change the conclusions derived from the study and have

possible implications over health policies.

18



Table IV

Efficiency decomposition for selected countries

Country Total efficiency Base efficiency
Angola 0.6518 0.0425
Australia 0.9860 0.1635
Brazil 0.8979 0.3126
Brunei 0.9088 0.0857
Cameroon 0.6897 0.0259
Canada 0.9877 0.1367
Colombia 0.9345 0.4489
Japan 0.9929 0.2135
Qatar 0.9310 0.0868
Sierra Leone 0.4466 0.0763
Spain 0.9908 0.3120
United Kingdom 0.9880 0.2106
United States 0.9672 0.0532
Yemen 0.9128 0.4543
Zimbabwe 0.5273 0.0266

B. Application to Airlines

The airline industry is an interesting sector where performance and efficiency have been studied

in the literature through parametric and non-parametric methods. Usually, production functions

are employed to evaluate technical efficiency and environmental covariates are often included in

the frontier as exogenous variables (see Coelli et al., 1999).

In this application we use a Cobb-Douglas cost function with an output quadratic term to

evaluate economic efficiency of the airline industry. The model in (6) can be easily extended to a

cost function and as in the previous application we consider individual characteristics to capture

firms heterogeneity. We use a data set of 24 US domestic airlines over 15 years, from 1970 to

1984, with a total of 246 observations. This is a revised sample obtained from a data set used

by Greene (2008).5

We estimate four stochastic frontier models similar to those proposed in the previous ap-

plication. For each model the inefficiency component is assumed to follow: a) half-normal, b)

5The original data set includes 256 observations, ten years of observations for an extra airline company. We
excluded this firm since we do not have data for the exogenous variables of this airline.
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truncated normal, or c) exponential distributions. We impose regularity conditions on prices and

output in order to accomplish positive elasticities. The general specification that encompasses

our four models is the following:

lnCit = α + β1 lnPmit + β2 lnPfit + β3 lnPlit + β4 lnPeit

+ β5 ln(yit) + β6
1
2

ln2(yit) + β7t+ β8t
2 + hitδ + vit + uit

vit ∼ N(0, σ2
v); uit = |Uit|

a)Uit ∼ N(0, σ2
Uit · (exp(hitγI1 + τitI2))

2)

b)Uit ∼ N(µ · exp(hitγI1 + τitI2), σ
2
Uit · (exp(hitγI1 + τitI2))

2)

c)Uit ∼ exp(λit · exp(hitγI1 + τitI2)),

(8)

where Cit is the total cost supported by airline i at time t in the output production, and Pmit,

Pfit, Plit, Peit are the input prices of material, fuel, labor and equipment, respectively. Cost

and prices are normalized by the property price. yit is the output of airline i at time t and it is

an index that aggregates regular passenger, mail, charter, and other freight services. With the

purpose to capture possible technological changes over the 15 years covered by the sample we

include a trend and its square into the model.

Regarding heterogeneity, the vector of observed covariates is hit = [Loadit, Stageit, Pointsit],

and τit is the unobserved heterogeneity unknown parameter. Variables in hit are load factor,

average stage length and points served. Load factor is the effective performed tonne-passenger

per kilometer by the airline as a proportion of the total available tonne-passenger per kilometer.

This is a capital utilization ratio which can be seen as a measure of either demand or operational

optimization. Stage length is the ratio of total performed kilometers to the total number of

departures. It defines whether or not the airline makes long or short flights and measures scale

effects. Finally, the number of points served is a measure of network size and its effects.6

The base model (Model I) does not consider any type of heterogeneity; therefore, δ = 0,

γ = 0 and I1 = I2 = 0. The last two assumptions apply for Model II, which considers only

6The first two covariates are commonly used in productivity and efficiency applications as well as other variables
of size. Coelli et al. (1999) use aircraft capacity besides stage length and load factor.
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technological heterogeneity by including hit in the cost function. As in the WHO application,

Model III accounts only for unobserved inefficiency heterogeneity through τit. Also, it is possible

to think of covariates in hit to be related with inefficiencies in the sense that the length of flights

may have an effect on the unproductive time of aircrafts; different utilizations of the aircrafts

may imply different fix costs sharing; and, the network size may affect coordination and routes

optimization. Therefore, Model IV considers the scale of the non-negative error component to

be affected by these observed covariates.7

Table V

Model comparison criteria assuming different distributions for the inefficiency

Distribution Model I Model II Model III Model IV Model V
Half normal DIC -332.6250 -479.2080 -350.2240 -374.8520 -485.1709

LPS -32.1260 -77.6020 -40.1970 -52.5360 -78.5218
MSE 0.0264 0.0093 0.0259 0.0172 0.0112

Truncated normal DIC -403.6720 -606.3150 -413.9810 -525.8170 -614.7094
LPS -13.7340 -33.6520 -15.3840 -21.6690 -33.6910
MSE 0.0257 0.0096 0.0255 0.0178 0.0093

Exponential DIC -309.3740 -455.6980 -317.1460 -353.3810 -453.8130
LPS -1.5550 -11.6580 -2.1830 -9.5760 -11.6927
MSE 0.0318 0.0207 0.0297 0.0238 0.0214

From Table V we observe that the results are robust, both in terms of fit and predictive

performance, to the inefficiency component distributions. Models that include either observed or

unobserved heterogeneity present better values for the DIC, LPS and MSE than those obtained

with the base models. Moreover, the best performance is exhibited by models that include

exogenous variables in the cost function. Therefore, we conclude that load factor, stage length

and the number of served points are more likely to be technological related than inefficiency

related factors. This leads us to propose an extra model (Model V) that includes the observed

covariates in the frontier but also accounts for unobserved heterogeneity in the inefficiency. This

model presents improvements in most of the performance indicators across distributions.

7We considered a fifth model that included both observed and unobserved heterogeneity in the sale parameter
of inefficiency, but the results were roughly the same than those obtained in Model IV. As in the WHO application,
this could mean that the covariates used capture all relevant heterogeneity in the inefficiency.
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These results differ from those obtained by Greene (2008), where no differences were reported

when heterogeneity variables were included in the mean of a truncated inefficiency component

compared to a model with the covariates in the cost function. This could be due to the fact that

we include the covariates in a way that they affect the scale but not the shape of the inefficiency

distribution. Also, we impose regularity conditions in prices, which lead our models to present

the expected coefficient signs.8

Regarding distributions, it is not possible to identify which one leads the different models to

perform the best. In general, models with inefficiency component following a half-normal distri-

bution exhibit the best LPS and models with truncated normal distributed inefficiencies present

the best DIC. However, as in the WHO application, rankings are almost unaltered across distri-

butions. So, hereafter, we report results with truncated normal inefficiencies. Table VI reports

the posterior means of the parameter distributions. We can observe that the inclusion of either

unobserved or observed heterogeneity that affects the scale but not the shape of the inefficiencies

diminishes the predictive efficiency dispersion and moves its mean toward 1. Regarding the coef-

ficients, we can check that increasing the aircraft utilization and the flights length have negative

effects in costs and inefficiency, while a larger network has the opposite effect. Interpretations of

the effect of covariates over inefficiency can be done in the same way as in the WHO case given

the scaling property.

Including any type of heterogeneity change, the estimations of posterior mean efficiencies with

respect to the base model as we observe in Figure 5. Also choosing where to include covariates is

important. Figure 6 shows that mean efficiencies are very different if we include them in the cost

function or in the inefficiency parameters. Moreover, if covariates are found to be technological

related as in this case, we still can model unobserved effects on the inefficiency. In fact, including

unobserved heterogeneity in Model V has important effects on shrinking and moving the posterior

efficiencies compared to Model II. In Figure 6, we observe that posterior mean efficiencies move

close to the frontier for most of observations. This may indicate that the unobserved component

8Greene (2008) obtains wrong signs for three of the price coefficients.
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Table VI

Posterior means of the parameter distributions with truncated normal distributed
inefficiencies

Parameters Model I Model II Model III Model IV Model V
α 1.7774 2.4628 1.7182 1.6229 3.1134
lnPm 0.3595 0.1483 0.5046 0.2890 0.1521
lnPf 0.1755 0.1952 0.1610 0.2243 0.2307
lnPl 0.2361 0.4844 0.1467 0.2170 0.3371
lnPe 0.0520 0.1890 0.0456 0.1372 0.2049
ln y 0.9421 0.9598 0.9531 0.9654 0.9787
1
2

ln2 y 0.0884 0.0385 0.0932 0.0442 0.0439
t -0.0286 -0.0379 -0.0313 -0.0368 -0.0287
t2 0.0006 0.0005 0.0002 0.0001 -0.0003
Load - -0.9135 - -0.8045 -0.8456
lnStage - -0.2173 - -0.4924 -0.2290
lnPoints - 0.1498 - 0.3058 0.1363
τ - - -1.8905 - -3.0540
σu 0.1843 0.1245 0.1170 0.1272 0.0477
σv 0.0649 0.0881 0.0860 0.0631 0.0849
µ 0.0214 0.2092 0.0695 0.3514 0.2472
mean pred. eff. 0.8687 0.7862 0.8729 0.7095 0.9569
sd pred. eff. 0.1007 0.1275 0.0956 0.0873 0.0432
DIC -403.6720 -606.3150 -413.9810 -525.8170 -614.7094
LPS -13.7340 -33.6520 -15.3840 -21.6690 -33.6910
MSE 0.0257 0.0096 0.0255 0.0178 0.0093

captures some factors that were attributed to inefficiency under Model II. However, their relative

positions are preserved and the effect on rankings is very little. At an individual level, Figure

7 shows 90% posterior credible intervals for posterior efficiencies for 10 selected airlines in their

last observed year. We can see a strong shrinkage effect on these intervals when we take into

account the unobserved heterogeneity in the inefficiency that preserves the scaling property.

Preserving the scaling property makes individual inefficiency decomposition possible. In

this case, for the truncated normal inefficiency: uit = |U∗it| · exp(τit) where U∗it ∼ N(µ, σ2
U).

Table VII presents this decomposition in terms of efficiency for Model V and for the 10 selected

airlines plotted in Figure 7. Although there are small differences in the total efficiency among

airlines, when it is decomposed we observe large differences in their natural managerial skills. The

difference between the base and total efficiency allows us to distinguish the way unobserved firm
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Figure 5. Mean efficiencies under truncated normal distribution - Base model vs. heterogeneity
models

Figure 6. Mean efficiencies under truncated normal distribution - Model II vs. Model IV and
Model V

effects are handled by airlines managers. For instance, airline 12 presents lower base efficiency

but higher total efficiency than airline 17, suggesting that the former handles better their specific

characteristics.

Summing up, performance indicators suggest that firm characteristics such as the distance

among destinations, the capacity offered, and the size of the network differentiates the airlines in

terms of technology (e.g. type of aircraft). However, dispersion of individual posterior efficiencies

is the lowest when exogenous variables are included in the inefficiency component when the scaling

property is preserved. This holds when observed covariates are technological and unobserved

heterogeneity in the inefficiency is added.
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Figure 7. 90% credible intervals of the posterior efficiency distributions for selected airlines
with truncated normal inefficiencies

Table VII

Efficiency decomposition for selected airlines

Airline ID Total efficiency Base efficiency
1 0.9651 0.4568
2 0.9411 0.2822
5 0.9562 0.3888
7 0.9488 0.3499
8 0.9803 0.6404
9 0.9527 0.3641
12 0.9713 0.3211
17 0.9472 0.5270
18 0.9728 0.5505
19 0.9537 0.3707

V. Conclusions and Extensions

In stochastic frontier analysis the inefficiency component may be erroneously estimated when

firm characteristics are not taken into account. These firm characteristics induce heterogeneity

that might result in different firm frontiers, or may have an impact directly on the inefficiencies.

In this work we put forward the modeling of heterogeneity in a Bayesian context by capturing

both the observed and unobserved heterogeneity in the inefficiency component distribution. Firm

characteristics are included through either exogenous variables or a random parameter which are

allowed to be time-varying and such that the scale but not the shape of the inefficiency is
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altered. The inefficiencies are assumed to follow half-normal, truncated normal and exponential

distributions that preserves this property. Finally, the models were fitted to two, well known,

data sets previously studied only in the frequentist context. The WinBugs package was used to

implement the Bayesian inference. Results were compared to those obtained with frontier models

that ignore heterogeneity or include heterogeneity just in the frontier.

Our findings suggest that considering firms’ heterogeneity that have effects on the scale but

not in the shape of inefficiencies leads the models to improve in terms of goodness of fit and

predictive performance, and has a shrinkage effect that reduces the uncertainty on mean scores

and rankings. The inclusion of unobserved heterogeneity in the inefficiency is also found to be

relevant when exogenous variables are not available or when they are found to be technology

related and consequently, should be more investigated. Regarding this issue, we propose a

very intuitive procedure by including a random parameter in the parameters of the inefficiency

component distribution.

A future research possibility is the study of different specifications to capture unobserved

effects in the inefficiency, as well as, the use of different distributions. A second area is the

inclusion of dynamic effects in the inefficiency specification, see e.g. Tsionas (2006). Work is

currently in progress on these areas.
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