

Escola de Ciências Sociais e Humanas

Departamento de Economia Política

A relação entre o desemprego e o incumprimento bancário

José Paulo Santos Gabriel

Dissertação submetida como requisito parcial para obtenção do grau de

Mestre em Economia Monetária e Financeira

Doutor Emanuel Cláudio Reis Carvalho Leão

Professor Auxiliar com Agregação

ISCTE - Instituto Universitário de Lisboa

Dezembro, 2013

Resumo

Este estudo pretende analisar a relação entre o incumprimento bancário e o desemprego em Portugal, no período entre o primeiro trimestre de 1998 e o último trimestre de 2012. A análise será composta por um resumo de literatura sobre estes temas, designadamente, a modelação do incumprimento, a definição de perfis de devedores, a análise de risco de crédito e informação estatística sobre o desemprego neste país. Posteriormente, será efetuada uma análise gráfica às variáveis em estudo, nomeadamente, a taxa de desemprego, a taxa de crescimento do PIB, os rácios de incumprimento no segmento de habitação, consumo e total. Para perceber a interação entre as variáveis, será construído um modelo econométrico que permitirá responder à pergunta deste estudo experimental. Os resultados deste trabalho sugerem que em períodos de recessão económica, o desemprego e o incumprimento tendem a aumentar. O aumento do incumprimento no crédito ao consumo antecipa um crescimento da taxa de desemprego. Por outro lado, não existe relação entre o incumprimento no crédito à habitação e o desemprego, uma vez que estão associadas garantias hipotecárias e prazos longos.

Palavras-chave

Desemprego, Incumprimento, Crescimento Económico, Modelo VAR

Classificação JEL

C32, E24

Abstract

This study aims to examine the relationship between banking default and the unemployment in Portugal, in the period between the first quarter of the year 1998 and the last quarter of the year 2012. The analysis will consist of a summary of the literature on these topics, namely, the modeling of default, the profiling of borrowers, the analysis of the credit risk and statistical information on unemployment in this country. Subsequently, a graphical analysis will be performed to study variables, including the unemployment rate, the growth rate of GDP, the default ratios in housing segment, consumption and total. In order to understand the interaction between the variables, it will be built an econometric model that will answer the question of this experimental study. These results suggest that during periods of economic recession, unemployment and default tend to increase. The increase defaults in consumer anticipates an increase in the unemployment rate. On the other hand, there is no relationship between the default on mortgages and unemployment, since they are associated with mortgage securities and long-term.

Key-words

Unemployment, Default, Economic Growth, VAR Model

JEL classification

C32, E24

Agradecimentos

A elaboração desta dissertação de mestrado marca a concretização de uma importante etapa da minha vida pessoal e académica. Para vencer os obstáculos com os quais me deparei, foi necessária dedicação, persistência, empenho e motivação, e para ter tudo isso, foi essencial o apoio prestado por todas as pessoas que me ajudaram.

Não sendo possível nomear todos que, de alguma forma, contribuíram para a realização desta tese, não posso deixar de manifestar o meu apreço e agradecimento sinceros.

Ao meu orientador, Prof. Doutor Emanuel Leão, agradeço a sua disponibilidade e conhecimentos transmitidos, essenciais na execução deste trabalho.

Ao Prof. Doutor Sérgio Lagoa, agradeço o apoio prestado nos vários momentos em que solicitei a sua ajuda.

Aos professores do Mestrado em Economia Monetária e Financeira do ISCTE-IUL, agradeço a qualidade da formação que me prestaram.

Agradeço aos professores que, durante a minha vida académica, me ensinaram e deram o seu melhor para que eu me tornasse uma pessoa útil à sociedade.

Agradeço aos meus pais que sempre acreditaram em mim e me encorajaram perante os desafios e que, apesar de todos os sacrifícios que a vida impunha, nunca hesitaram em me dar tudo o que eu precisava para me valorizar.

À minha namorada, ouvinte atenta de várias inquietações, desânimos e sucessos, agradeço a confiança e valorização do meu trabalho.

Agradeço aos meus colegas de mestrado e de trabalho, com quem tenho vivido um ambiente de verdadeira aprendizagem em equipa.

A todos, obrigado por tudo!

Índice Geral

1. I	INTRODUÇÃO	1
2. 8	SÍNTESE DE LITERATURA	3
2.1	Probabilidade de Incumprimento das Famílias	3
2.2	MODELAÇÃO DO INCUMPRIMENTO DOS PARTICULARES	3
2.3	PERFIL DE CRÉDITO DOS DEVEDORES	4
2.4	ESTIMATIVAS DE PROBABILIDADES DE INCUMPRIMENTO EM CONTEXT	ГО
MACROECO	ONÓMICO	6
2.5	GESTÃO E ANÁLISE DE RISCO DE CRÉDITO	8
2.6	ESTATÍSTICAS DO EMPREGO	10
3. A	ANÁLISE GRÁFICA DAS VARIÁVEIS	11
3.1	Taxa de Desemprego	11
3.2	TAXA DE CRESCIMENTO DO PIB REAL	12
3.1	RÁCIOS DE CRÉDITO DE COBRANÇA DUVIDOSA	13
4. N	MODELO VAR	16
4.1	Estacionaridade	17
4	1.1.1 Teste Dickey – Fuller Aumentado (ADF)	19
4	1.1.2 Teste Phillips – Perron (PP)	20
4	1.1.3 Teste Kwiatkowski – Phillips – Schmidt – Shin (KPSS)	21
4.2	ESCOLHA DO LAG ÓTIMO	22
4.3	Teste de Autocorrelação dos Resíduos	23
4.4	TESTE DE NORMALIDADE MULTIDIMENSIONAL	24
4.5	Teste de Heterocedasticidade dos Resíduos	24
5. (COINTEGRAÇÃO E VECM	26
5.1	TESTE DE COINTEGRAÇÃO	28
5.2	Modelo VECM	28
5.3	Teste de Causalidade à Granger	30
5.4	Função Impulso Resposta	31
5.5	Decomposição da Variância do Erro de Previsão	33

	6. CONCLUSÃO	.35
	7. BIBLIOGRAFIA	.37
	8. ANEXOS	.40
	Índice de Gráficos	
	Gráfico 1: Taxa de Desemprego.	11
	Gráfico 2: Taxa de Crescimento do PIB (Base 2006).	12
	Gráfico 3: Rácios de Crédito de Cobrança Duvidosa em % (Total, Habitaçã	o e
Consu	mo)	14
	Gráfico 4: Séries taxa de desemprego e crédito de cobrança duvidosa	ao
consur	mo	18
	Gráfico 5: FIR – VAR(8)	31
	Gráfico 6: FIR – VAR(4)	31
	Gráfico 7: FIR – VAR(1)	31
	Gráfico 8: FIR – VAR(2)	31
	Gráfico 9: FIR – VECM com constante	32
	Gráfico 10: Decomposição da Variância VAR(1)	33
	Gráfico 11: Decomposição da Variância VAR(2)	33
	Gráfico 13: Decomposição da Variância VAR(8)	33
	Gráfico 12: Decomposição da Variância VAR(4)	33
	Gráfico 14: VECM com constante	34
	Índice de Tabelas	
		10
	Tabela 1: Teste ADF	
	Tabela 2: Teste PP	
	Tabela 3: Teste KPSS	
	Tabela 4: Critérios de escolha do lag ótimo	
	Tabela 5: Teste de Autocorrelação dos Resíduos	23

Tabela 6: Teste JB	. 24
Tabela 7: Teste de Heterocedasticidade dos Resíduos	. 24
Tabela 8 : Método de Johansen	. 28
Tabela 9: Teste de Causalidade à Granger	. 30

Índice de Anexos

Anexo A: Volume de empréstimos concedidos e de cobrança duvidosa a
empresas e particulares (total e por segmento) entre o terceiro trimestre de 2007 e o
quarto trimestre de 2012
Anexo B: Volume de empréstimos concedidos e de cobrança duvidosa a
empresas e particulares (total e por segmento) entre o primeiro trimestre de 2002 e o
segundo trimestre de 2007
Anexo C: Volume de empréstimos concedidos e de cobrança duvidosa a
empresas e particulares (total e por segmento) entre o primeiro trimestre de 1998 e o
quarto trimestre de 2001. 42
Anexo D: Taxa de Desemprego e Taxa de Crescimento do PIB (os dados
encontram-se corrigidos de efeitos sazonais, ano de referência 2006) entre o quarto
trimestre de 2003 e o quarto trimestre de 2012
Anexo E: Taxa de Desemprego e Taxa de Crescimento do PIB (os dados
encontram-se corrigidos de efeitos sazonais, ano de referência 2006) entre o primeiro
trimestre de 1998 e o terceiro trimestre de 2003
Anexo F: Séries económicas em análise
Anexo G: Valores dos testes AIC, HQ, SC e FPE
Anexo H: Valores considerados para as séries – Estacionaridade
Anexo I: Outputs software R – testes de estacionaridade
Anexo J: Testes de selecção do lag óptimo
Anexo K: Teste de Heterocedasticidade dos Resíduos – VAR(1) 63
Anexo L: Teste de Heterocedasticidade dos Resíduos – VAR(4) 64
Anexo M: Teste de Heterocedasticidade dos Resíduos – VAR(2) 64
Anexo N: Teste de Heterocedasticidade dos Resíduos – VAR(8) 65

A relação entre o desemprego e o incumprimento bancário

Anexo O: Teste de Autocorrelação
Anexo P: Teste de Normalidade dos Resíduos
Anexo Q: Teste à Heterocedasticidade
Anexo R: Teste à Cointegração
Anexo S: Modelo VECM
Anexo T: Teste de Causalidade à Granger
Siglas e Abreviaturas
ADF - Augmented Dickey - Fuller
BdP - Banco de Portugal
CCDC - Crédito de Cobrança Duvidosa sobre o Consumo
CRC - Central de Responsabilidades de Crédito do Banco de Portugal
EUA - Estados Unidos da América
FIR - Função Impulso Resposta
INE - Instituto Nacional de Estatística
KPSS - Kwiatkowskii Phillips Schmidt Shin
LCCDC - Logaritmo do Crédito de Cobrança Duvidosa sobre o Consumo
PP - Phillips - Perron
PIB - Produto Interno Bruto
TXDSP - Taxa de Desemprego
VAR - Vector Autoregressive Model
VECM - Vector Error Correction Mechanism

1. Introdução

Com a entrada na zona euro, as empresas e cidadãos portugueses obtiveram melhores condições de acesso ao financiamento bancário, com custos mais reduzidos que anteriormente. Este enquadramento conduziu a um aumento dos rácios de endividamento. A primeira década do século XXI termina após duas relevantes recessões (2001-2003 e 2008-2009) e a primeira metade da segunda década deste século ficará seguramente marcada por uma crise económica e financeira, enquanto assistirá a uma complexa e lenta reestruturação dos modelos de organização de empresas, fontes de geração de riqueza, formas de regular os mercados, bem como políticas económicas e sociais a adotar.

Nos últimos anos, os agentes económicos têm assistido a maiores dificuldades das instituições bancárias europeias no acesso aos mercados de dívida por grosso, dificultando assim o financiamento das empresas e de particulares. Não obstante, os efeitos secundários da consolidação orçamental sobre as perspetivas de diminuição da procura interna e redução do rendimento têm conduzido a uma diminuição da procura de crédito. Simultaneamente, também se constata um significativo aumento de desemprego, bem como níveis de crescimento económico muito aquém do desejável, em particular, ao longo da última década.

As atuais e futuras adversidades da economia conduzem a um aumento do risco para as instituições financeiras e consequentemente a uma análise mais seletiva e criteriosa na aprovação de propostas de crédito. Paralelamente, também se constata uma tendência de acompanhamento entre o desemprego e a taxa de crescimento do PIB, uma vez que é possível verificar uma diminuição de desemprego em períodos de crescimento económico relevante e vice-versa.

Este estudo visa analisar a relação entre o incumprimento bancário no crédito ao consumo e o desemprego em Portugal, no período entre o primeiro trimestre de 1998 e o último trimestre de 2012. Apesar de se ter idealizado uma amostra mais ampla em termos temporais, tal não foi possível, pois só a partir do último trimestre de 1997 se iniciaram as primeiras observações sobre algumas das variáveis chave estudadas. No

decurso deste trabalho, também se verificou que os estudos sobre esta problemática em Portugal são escassos.

A análise será precedida de um resumo de literatura sobre esta temática, nomeadamente, a modelação do incumprimento, a definição de perfis de devedores, a análise de risco de crédito e informação estatística sobre o desemprego neste país. Posteriormente, será efetuada uma análise gráfica às variáveis em estudo, designadamente, a taxa de desemprego, a taxa de crescimento do PIB, o crédito de cobrança duvidosa ao consumo, habitação e total. Em seguida será realizado um estudo empírico, assente em testes econométricos, no sentido de verificar a existência de cointegração e causalidade entre as diversas variáveis, bem como a forma de interação entre elas. Desta forma, pretende-se investigar de que modo o desemprego pode influenciar o incumprimento bancário. No final deste estudo, será elaborado um resumo com as principais conclusões e uma análise crítica sobre o que poderá ser realizado no futuro, com o intuito de clarificar dúvidas que não podem ser respondidas no presente.

2. Síntese de Literatura

2.1 Probabilidade de Incumprimento das Famílias

Num artigo do Banco de Portugal publicado por Costa, S. (2012), foi estimada uma probabilidade de incumprimento das famílias face às características económicas e socio demográficas, ponderando o facto de existirem choques que afetam negativamente a estabilidade financeira das famílias. A análise é baseada nos dados obtidos no Inquérito à Situação Financeira das Famílias relativo ao segundo trimestre de 2010. Os resultados deste inquérito permitem selecionar as famílias que tiveram atrasos ou falhas nos pagamentos das prestações de crédito durante o último ano anterior à realização do inquérito.

Os resultados obtidos indicaram que a probabilidade de incumprimento é maior nas famílias com rendimentos mais reduzidos, com despesa e dívida superiores, nas famílias com crianças, quando o indivíduo de referência está desempregado ou nas famílias em que o indivíduo de referência tem menos qualificações académicas. A idade do indivíduo não tem relevância na probabilidade de incumprimento.

2.2 Modelação do Incumprimento dos Particulares

Noutro artigo do Banco de Portugal, publicado por Alves, N. e Ribeiro, N. (2013), é analisado o segmento de crédito a particulares, onde são estimados dois modelos econométricos, sendo um deles para aquisição de habitação e outro para aquisição de bens de consumo.

Não foram utilizadas medidas baseadas nos saldos dos empréstimos com montantes em incumprimento, uma vez que estas contemplam a acumulação passada de empréstimos com incumprimento, sendo indicadores com memória longa e pouco adequados à questão.

A opção considerada foi através da utilização de fluxos de empréstimos de cobrança duvidosa em percentagem do saldo vivo de empréstimos. Este indicador pode ser interpretado como uma taxa de incumprimento, visto que, ao longo da amostra, a taxa a que os devedores individuais regularizam a sua situação de incumprimento ao longo do tempo mantém proporcionalidade face à taxa a que novos devedores entram em incumprimento ao longo da vida dos respetivos empréstimos. Estimou-se uma

equação linear multivariada, em vez de um modelo VAR, visto que toma em consideração todas as possíveis interações entre as variáveis. Foi apresentada uma metodologia com base em dados agregados, pois permite prever o incumprimento face a alterações no enquadramento macroeconómico. Neste ponto, foi feita uma ressalva, visto existir uma sensibilidade entre as variáveis que representam o risco de crédito e as variáveis macroeconómicas, na medida em que é frequente variar no tempo e ao longo do ciclo económico. Na amostra considerada, existe uma relação de longo prazo entre o fluxo anual de empréstimos vencidos e outros de cobrança duvidosa para consumo e outros fins, a taxa de desemprego e a taxa de juro dos empréstimos para consumo e outros fins. Este facto foi confirmado nos resultados dos testes de cointegração de *Johansen*. Os resultados fora da amostra projetam uma subida dos fluxos anuais de empréstimos vencidos e outros de cobrança duvidosa nos trimestres seguintes à amostra, levando em consideração as condições adversas que a economia portuguesa atravessa, mesmo prevalecendo taxas de juro baixas no mercado monetário.

Na sequência das orientações do acordo de Basileia II, Pederzolli, C. e Torricelli, C. (2005) elaboraram um modelo que relacionou os ciclos económicos com as taxas de incumprimento, considerando os períodos de expansão e os de recessão. A base de dados teve origem nos EUA e o período analisado foi entre 1971-2002. Neste modelo, foi possível comprovar a importância da exigência de requisitos mínimos de capital, dada a sensibilidade do risco nos períodos de contraciclo.

2.3 Perfil de Crédito dos Devedores

No Relatório de Estabilidade Financeira de Novembro de 2010, publicado pelo Banco de Portugal, os autores Farinha, L. e Lacerda, A. (2010) elaboraram um artigo que difere da restante literatura, porque em vez de se basear na relevância das alterações adversas das condições de emprego e do estado de saúde dos indivíduos para explicar o incumprimento no crédito, deu relevância à relação entre este fenómeno e o perfil de crédito do devedor. Neste artigo, observaram-se as interações entre os diferentes produtos de crédito e a sua relação com a situação de incumprimento.

A análise efetuada foi direcionada para quatro segmentos de crédito: crédito à habitação, crédito automóvel, dívida associada a cartão de crédito e outro crédito para

consumo, sendo que foram também consideradas as interações entre os diferentes segmentos, constituindo uma inovação neste trabalho.

Ao contrário do habitual neste tipo de estudos, os dados não são provenientes de um inquérito a uma amostra de famílias. A base de dados utilizada neste artigo contém informação sobre os saldos de crédito de todas as famílias, relativamente ao sistema bancário residente em Portugal, desagregada por tipo de crédito e instituição financeira. A fonte utilizada foi a Central de Responsabilidades de Crédito do Banco de Portugal. A diversidade da base de dados permitiu caracterizar o perfil dos devedores em vários aspetos, nomeadamente, tipos de crédito, dimensão das suas exposições, número de relações bancárias, número de empréstimos, prazos médios dos empréstimos e situação face a garantias de crédito. No entanto, esta base de dados não retém informação sobre características sociais e económicas dos indivíduos, para além da idade, local de residência e o facto de ter (ou não) atividade por conta própria. Este estudo avaliou o impacto de várias alterações na situação das famílias no mercado de crédito sobre a sua probabilidade de incumprimento, tendo sido feita uma análise isoladamente por segmento. Considerou-se que existe incumprimento num segmento se o devedor tiver crédito vencido há pelo menos três meses seguidos, não tendo incumprido nos três meses anteriores.

Para cada segmento de crédito, o primeiro conjunto de variáveis inclui *dummies* para indicar se o devedor tem ou não crédito de um determinado segmento. Ao incluir estas variáveis, é possível identificar o efeito direto do crédito num segmento sobre a probabilidade de incumprimento desse segmento, assim como as interações entre o crédito num segmento e o incumprimento nos outros segmentos.

Um maior número de empréstimos e um maior número de relações bancárias podem antever um nível de risco de crédito superior, visto que os devedores com uma posição financeira mais sólida tendem a ter relações exclusivas, e consequentemente, a diversificação pode ser interpretada como um indicador de dificuldade em obter crédito no banco habitual.

Utilizou-se uma amostra com cerca de três milhões de devedores e efetuaram-se comparações entre os devedores que têm incumprimento e os que não têm, através de dois testes estatísticos, um teste t de igualdade de médias e um teste não paramétrico de

igualdade de medianas. Os devedores com incumprimento apresentam valores mais elevados da média e da mediana dos empréstimos.

De modo a analisar o impacto de algumas características dos devedores acerca da sua probabilidade de incumprimento, estimou-se um modelo de regressão para cada segmento de crédito.

Os resultados deste artigo apontam que caso um devedor tenha crédito habitação nas suas responsabilidades, a probabilidade de entrar em incumprimento diminui nos restantes segmentos. No artigo, também se verifica que os detentores de posições mais elevadas tendem a ter menor probabilidade de incumprimento, no entanto, no caso de se tratar de cartão de crédito, quanto maior a dívida, maior será a probabilidade de incumprimento neste segmento. Os resultados sugerem que as famílias com maior número de empréstimos têm uma probabilidade de incumprimento superior. A probabilidade de incumprimento dos devedores mais jovens é significativamente superior à dos devedores mais velhos. Se o devedor for empresário em nome individual, a probabilidade de incumprir é superior à dos restantes devedores, dado que a volatilidade dos rendimentos aumenta o risco de crédito.

2.4 Estimativas de Probabilidades de Incumprimento em Contexto Macroeconómico

De acordo com Bernanke, B. (1994) pode constatar-se que modificações realizadas no mercado de crédito levam a alterações nos níveis de crescimento económico. Por um lado, quando ocorre uma alteração favorável no acesso ao crédito, o crescimento económico acelera, por outro lado, se a alteração for desfavorável, a economia abranda.

Os autores Antunes, A., Ribeiro, N. e Antão, P. (2005) utilizaram uma base de dados cadastral, facultada pelo Banco de Portugal, onde existem dados sobre o universo das sociedades não financeiras. Desta forma, foi feita uma abordagem para determinar a probabilidade de incumprimento de sociedades não financeiras, utilizando dados da CRC e dados dos sectores de atividade em Portugal. Assim, os efeitos de uma aceleração ou abrandamento económico são refletidos nas estimativas de incumprimento de crédito, possibilitando simular as perdas esperadas pelas instituições

financeiras que concedem crédito no momento em que a economia está sujeita a choques adversos (*stress tests*).

O modelo foi analisado em dois cenários macroeconómicos diferentes. No primeiro cenário, a economia evolui em linha com as projeções do Banco de Portugal em Dezembro de 2005. No segundo cenário efetuou-se um *stress test* que simula uma situação extrema, em que os desequilíbrios macroeconómicos que caracterizam a economia global são abruptamente corrigidos no início de 2006. Em ambos os cenários, calcularam-se os valores das probabilidades de incumprimento por sector e dimensão da empresa, possibilitando simular o valor das perdas esperadas por incumprimento, conforme a carteira de empréstimos de cada instituição de crédito.

A unidade de observação foi cada empréstimo, em vez de cada empresa, existindo três tipos de variáveis. A primeira variável diz respeito ao empréstimo em si; o segundo tipo de variável diz respeito à empresa a que corresponde o empréstimo sob observação; e o terceiro tipo de variável consiste em grandezas que afetam todas as empresas, como por exemplo, a taxa de juro ou contração do PIB. Os pressupostos utilizados no cenário de *stress* foram o súbito declínio na procura de ativos denominados em dólares, uma forte apreciação do euro face ao dólar, um aumento das taxas de juro de longo prazo do dólar, uma queda acentuada dos mercados acionistas globais em 2006, a propagação da recessão norte americana às restantes economias mundiais e uma recessão económica em Portugal.

Os resultados obtidos indicam que numa situação de crescimento moderado e manutenção das taxas de juro, a probabilidade de incumprimento não sofre alterações, contudo, à medida que o crescimento económico diminui, a probabilidade de incumprimento tende a aumentar.

Com o intuito de estimar probabilidades de incumprimento, Simons, D. e Rolwes, F. (2009) construíram um modelo macroeconómico baseado em dados holandeses. Na primeira parte do modelo, é estudada a relação entre variáveis macroeconómicas e o perfil de incumprimento dos holandeses. Na segunda parte criamse cenários de *stress test*, simulando uma estagnação do crescimento económico durante dois trimestres e o seu efeito sobre o risco de crédito e as taxas de incumprimento. Na conclusão deste estudo verificou-se que, caso o crescimento do PIB seja nulo durante dois trimestres, a taxa de incumprimento não sofre alterações significativas, contudo,

verificou-se que o risco de crédito é subestimado durante um período de expansão económica.

Para compreender o comportamento cíclico das taxas de incumprimento nos bancos italianos entre 1985 e 2004, Marcucci, J. e Quagliariello, M. (2006) utilizaram um modelo VAR para analisar em que medida os choques macroeconómicos podem afetar o sector bancário. Os resultados apontaram para a importância dos bancos utilizarem rácios de capital elevado, de modo a manterem uma oferta de crédito adequada nos períodos de contração económica.

2.5 Gestão e Análise de Risco de Crédito

Os autores Stiglitz e Weiss (1981), salientam o racionamento de crédito como consequência da informação assimétrica existente, isto é, quanto maior for a assimetria de informação, maior será o racionamento de crédito, pois as instituições financeiras encontram-se numa posição de desvantagem face aos clientes. Para combater esta desvantagem, os bancos recorrem a centrais de informação, tais como *bureaus* de crédito, agências de *rating*, centrais de responsabilidades e outras instituições.

Silva, J. (1998) pretende responder à questão que todas as instituições de crédito colocam, nomeadamente, como avaliar o risco de crédito de um cliente. Assim, para determinar o risco de crédito com maior exatidão, convém separar os diferentes tipos de crédito, que podem variar consoante o tipo de cliente, o tipo de produtos e serviços disponibilizados, o montante e a entidade que concede o crédito. Em termos gerais, existem três tipos de crédito, o que é concedido por empresas comerciais, o que é atribuído nas vendas ao público e empresas e o que é concedido pelas instituições financeiras a particulares e empresas.

Nas vendas ao público, o prazo de pagamento é curto e, na maioria dos casos, o crédito é concedido pelas pequenas e médias empresas, com base na confiança gerada entre cliente e empresa, com uma análise da capacidade de pagamento da dívida muito superficial. Nas empresas de maior dimensão, são criadas linhas de crédito especiais, em parceria com instituições financeiras especializadas na concessão de crédito, sendo esta a entidade que avalia o risco do cliente através do pedido de uma série de

informações, tais como a última declaração de rendimentos e as responsabilidades de crédito que já tenha anteriormente.

Na venda a empresas, os prazos de pagamento são mais alargados e os montantes em causa são mais elevados, sendo que a avaliação de risco engloba um maior número de indicadores.

No crédito concedido por instituições financeiras, estas procuram fazer uma análise mais exaustiva na avaliação do risco dos clientes, tendo disponíveis diversas linhas de crédito diferenciadas, conforme os produtos e os segmentos de clientes. Quando se trata de clientes com um risco de crédito superior ao desejável, existe a possibilidade de recorrer a fiança de terceiros ou outras garantias. Neste caso, são utilizadas várias metodologias para calcular a probabilidade de incumprimento, tais como o *credit scoring* ou o *risk rating*.

De acordo com Weston, F. e Brigham, E. (1972), uma análise de crédito tem de passar necessariamente por uma avaliação composta por cinco fatores: caráter, capacidade, capital, colaterais e condições. Para realizar uma análise assertiva, é necessário que as instituições tenham acesso a informações sobre o devedor, tais como os rendimentos auferidos, situação laboral, capacidade de poupança, registos de incumprimento, perfil de consumidor, entre outros.

No que diz respeito ao fator carácter, é medido o grau de intenção de cumprir o contrato estabelecido, podendo ser feito através de entrevistas pessoais. Relativamente à componente capacidade, é feita uma avaliação sobre os meios que o devedor dispõe para cumprir as responsabilidades contratualizadas, isto é, as instituições financeiras calculam a taxa de esforço do cliente relativamente aos rendimentos que recebe e às despesas que tem. No que concerne às componentes capital e colaterais, estas representam garantias às instituições, pois poderão vir a ter utilidade futura em caso de incumprimento. Por último, o fator condições surge associado à conjuntura económica ao longo do tempo, uma vez que um dado adquirido hoje poderá ser diferente no futuro, e é necessário assegurar que o devedor assuma os seus compromissos até ao final do contrato.

Esta análise que é sugerida pode demorar algum tempo, dependendo dos valores em causa, dos níveis de competência necessários à aprovação do crédito e sobretudo da exposição ao risco.

2.6 Estatísticas do Emprego

Segundo o Relatório de Estatísticas do Emprego do INE, referente ao quarto trimestre de 2012, a população empregada diminuiu em 2012 face ao período homólogo, sendo que o grupo populacional na faixa etária entre os 25 e os 34 anos, com nível escolar básico, a trabalhar na indústria, construção, energia e água, foi o que mais contribuiu para o decréscimo verificado.

Em 2012, o aumento do desemprego ocorreu em quase todos os segmentos populacionais, incrementando para cerca de 860 mil pessoas nesta situação profissional, isto é, houve um aumento de 150 mil pessoas face ao ano anterior, estimando-se uma taxa de desemprego de 15,7%, mais 2,9 p.p. relativamente ao ano anterior.

A taxa de desemprego jovem (entre 15 a 24 anos) foi de 37,7% em 2012, mais 7,6 p.p. que no período homólogo de 2011. O número de desempregados jovens representava 18,7% do total da população desempregada.

O aumento do desemprego das pessoas com ensino superior contribuiu menos para o aumento global do desemprego. O aumento do número de pessoas à procura de novo emprego teve origem, essencialmente, no sector dos serviços, observando-se um aumento de 22,1%.

O número de desempregados à procura de novo emprego há 12 ou mais meses, aumentou 24,2% e explicou 59% do aumento global do desemprego.

A população inativa manteve-se quase inalterada face ao ano 2011, estimando-se em cerca de 5000 pessoas.

3. Análise Gráfica das Variáveis

Dado que o estudo pretende verificar a relação entre o incumprimento bancário e o desemprego em Portugal, no período entre o primeiro trimestre de 1998 e o último trimestre de 2012, obtiveram-se dados estatísticos provenientes do INE relativamente à taxa de desemprego e à taxa de crescimento do PIB e calcularam-se rácios de crédito de cobrança duvidosa com base em dados do BdP.

3.1 Taxa de Desemprego

A taxa de desemprego corresponde à proporção de pessoas aptas a entrar no mercado de trabalho, mas que, por diversos motivos, não se encontram empregados. Esta taxa permite observar a dimensão da população desempregada face à população ativa

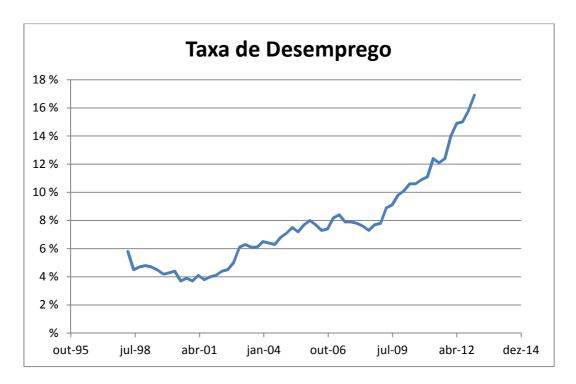


Gráfico 1: Taxa de Desemprego.

Fonte: INE

Ao observar o Gráfico 1, verifica-se uma tendência crescente no período analisado, sendo que, a partir de 2008, o aumento do desemprego tem vindo a aumentar de forma mais acentuada, registando-se um valor máximo de 16,9% no último trimestre de 2012. O ano 2000 foi a época do período analisado onde a taxa de desemprego foi mais reduzida, registando-se valores inferiores a 4%.

3.2 Taxa de Crescimento do PIB real

O Produto Interno Bruto corresponde ao valor de todos os bens e serviços finais produzidos numa determinada economia e resulta do somatório dos valores monetários do consumo (C), das compras do Estado em bens e serviços (G), do investimento (I) e das exportações líquidas (X). Por sua vez, a taxa de crescimento do PIB é um bom indicador para refletir sobre a evolução do crescimento económico.

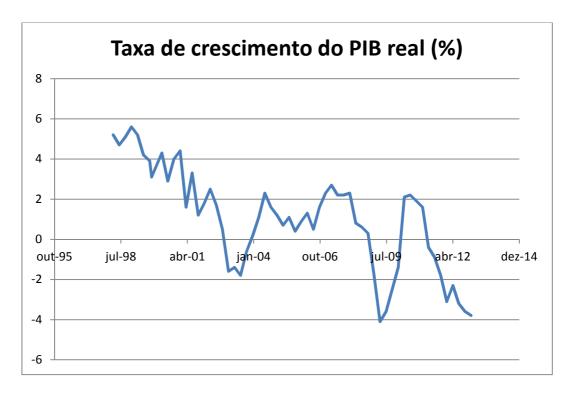


Gráfico 2: Taxa de Crescimento do PIB real (Base 2006).

Fonte: INE

Ao observar o Gráfico 2, verifica-se uma tendência de queda da taxa de crescimento real entre 1998 e 2012. No intervalo de tempo analisado, constatam-se três períodos de crescimento e três períodos de recessão económica. Isto é, entre o primeiro trimestre de 1998 e o terceiro trimestre de 2002, Portugal apresentou uma taxa de crescimento do PIB positiva, sendo que em 1998, os valores de crescimento eram superiores a 5%, podendo ter como justificação a realização da Expo 98. Entre o quarto trimestre de 2002 e o terceiro trimestre de 2003, o país apresentou uma recessão. O período de crescimento económico seguinte, entre o quarto trimestre de 2003 e o terceiro trimestre de 2008 não foi tão expressivo como nos anos 90, não indo além de 2,7% no terceiro trimestre de 2007. Posteriormente, entre o quarto trimestre de 2008 e o

1

 $^{^{1}}PIB = C + G + I + X$

quarto trimestre de 2009, Portugal apresentou uma recessão económica, atingindo um pico negativo na amostra de -4,1%. Depois, a economia do país mostrou crescimento positivo, apenas, durante o ano de 2010. A partir do primeiro trimestre de 2011 e até ao final do período analisado, o gráfico evidencia que Portugal "mergulhou" numa recessão. A crise internacional vivida nos últimos anos, juntamente com os problemas estruturais da economia portuguesa contribuíram em grande medida para a recessão registada nos últimos anos da amostra.

3.1 Rácios de crédito de cobrança duvidosa

Por consulta aos dados fornecidos pelo BdP, foi possível obter os valores respeitantes ao volume de créditos de cobrança duvidosa de particulares e empresas, assim como os valores de empréstimos concedidos a particulares e a empresas. A amostra começa apenas em 1998, visto que só a partir desta data se iniciou a contabilização destas observações. Dentro do segmento de empréstimos a particulares, foram escolhidos os dois subsegmentos mais representativos, nomeadamente, empréstimos à habitação e empréstimos ao consumo.

Neste estudo, foram escolhidos os rácios de crédito de cobrança duvidosa como interpretação de taxa de incumprimento, à semelhança do trabalho realizado por Alves, N. e Ribeiro, N (2013). Estes indicadores mostram a taxa a que os devedores individuais regularizam a sua situação de incumprimento ao longo do tempo e mantém proporcionalidade face à taxa a que novos devedores entram em incumprimento ao longo da vida dos respetivos empréstimos. Além disso, caso se utilizassem dados baseados nos saldos dos empréstimos com montantes em incumprimento, por exemplo, crédito vencido e abatido ao ativo, o estudo ficaria enviesado, na medida em que estes indicadores contemplam a acumulação passada de empréstimos com incumprimento, isto é, são dados com memória longa e, certamente, não seriam adequados à questão.

Os rácios de crédito de cobrança duvidosa foram calculados, dado que são bons indicadores que revelam o peso do crédito de cobrança duvidosa sobre o crédito total concedido na economia portuguesa.

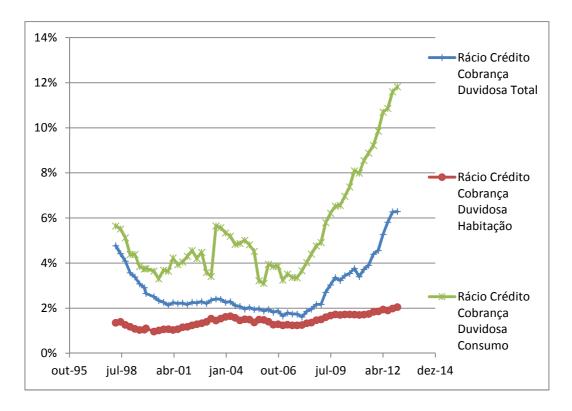


Gráfico 3: Rácios de Crédito de Cobrança Duvidosa em % (Total, Habitação e Consumo).

Fonte: Cálculos do autor baseados em dados do BdP.

Ao analisar o Gráfico 3, verifica-se uma tendência de aumento do crédito de cobrança duvidosa. No entanto, verifica-se que o rácio de crédito de cobrança duvidosa ao consumo apresenta maior volatilidade ao longo do tempo e a tendência de crescimento é bastante superior face ao crédito de cobrança duvidosa habitação, que apesar da tendência de crescimento, tem evoluído de forma estável durante o período analisado.

Além disso, como o crédito à habitação apresenta níveis de imparidades inferiores aos outros segmentos, significa que, em geral, este segmento tem colaterais, isto é, tem associadas hipotecas sobre os imóveis, justificando assim a menor volatilidade durante o período analisado. Por outro lado, o crédito ao consumo é o tipo de crédito mais "sensível" quando comparado com o crédito habitação e com o crédito a empresas, pois na generalidade dos casos, não existem garantias, sejam elas hipotecárias, aplicações financeiras ou fianças. Desta forma, é possível constatar que o crédito ao consumo é o segmento de crédito mais arriscado para as instituições financeiras, tendo como contrapartida um agravamento dos *spreads* praticados. Neste sentido, é expectável que, às primeiras dificuldades financeiras das famílias, o primeiro

tipo de crédito a entrar em incumprimento seja o crédito ao consumo. Esta apreciação revela-se fundamental no rumo a seguir neste estudo, mais precisamente, sobre a seleção das variáveis a testar.

Nesta matéria, e considerando os dados constantes nos anexos A, B e C, convém realçar que, em termos absolutos, o peso do segmento habitação preenche uma grande "fatia" do volume total de crédito a particulares, isto é, enquanto o crédito à habitação é caracterizado por ter montantes elevados e com prazos longos, o crédito ao consumo é caracterizado por valores reduzidos e com prazos relativamente curtos.

Esta análise gráfica e observação dos dados manifesta-se crucial para selecionar as variáveis de interesse a serem testadas pelos modelos econométricos no próximo capítulo. Assim, optou-se por testar a influência do desemprego no crédito de cobrança duvidosa ao consumo de particulares, enquanto representação do incumprimento bancário. A exclusão da variável crédito de cobrança duvidosa habitação deve-se ao facto de enviesar o estudo, na medida em que a amostra não é suficientemente longa para mostrar a relação entre incumprimento e desemprego e os resultados não teriam interpretação estatística, de acordo com as características citadas anteriormente. Por outro lado, também se optou por excluir a variável PIB, uma vez que a sua influência é quase decisiva sobre a evolução do desemprego, isto é, quando o PIB cresce, o desemprego tende a diminuir e quando o PIB cai, maior será a tendência do desemprego aumentar. Assim, como a influência do PIB é muito superior à influência do crédito de cobrança duvidosa, esta deixaria de ter peso no estudo econométrico adotado e desta forma, os resultados não iriam responder à questão desta investigação.

4. Modelo VAR

Os testes estatísticos e econométricos são amplamente utilizados para estudar as relações dinâmicas entre variáveis. Para conhecer a relação entre o incumprimento bancário e o desemprego em Portugal, no período entre o primeiro trimestre de 1998 e o quarto trimestre de 2012, recolheram-se séries disponibilizadas pelo INE e BdP que serão testadas num modelo econométrico, ainda que simplificado, que explique essa relação.

O modelo de Vetor Auto Regressivo será o suporte empírico deste estudo. O modelo VAR traduz-se numa ferramenta essencial para conhecer a interdependência das séries económicas analisadas de modo agregado. As principais vantagens deste modelo são a sua simplicidade, dado que todas as variáveis são endógenas e o método dos mínimos quadrados (MQO) pode ser aplicado separadamente a cada equação. Além disso, as previsões obtidas a partir do modelo VAR são, muitas vezes, melhores que as obtidas por modelos mais complexos de equações simultâneas. No entanto, os críticos do modelo VAR apontam como desvantagens o facto de ser a-teórico e apenas ser eficaz perante séries não estacionárias, sendo muitas vezes difícil interpretar os coeficientes individuais do modelo.²

² É possível verificar uma extensa literatura sobre este modelo econométrico através de vários autores, tais como Hamilton (1994), Hendry (1995), Johansen (1995) ou Lutkepohl (2006).

4.1 Estacionaridade

De forma a averiguar a existência de uma relação entre a Taxa de Desemprego e o Crédito de Cobrança Duvidosa ao Consumo e a construir um modelo, ainda que simplificado, que explique essa relação, selecionaram-se as seguintes variáveis:

ccdc: Crédito de Cobrança Duvidosa sobre o Consumo;

txdsp: Taxa de Desemprego.

Para tal, recolheram-se as séries trimestrais disponibilizadas pelo Banco de Portugal e pelo Instituto Nacional de Estatística, entre o primeiro trimestre de 1998 e o último trimestre de 2012. Embora as séries contenham apenas 60 valores, esta dimensão está acima do mínimo recomendado de 50, de acordo com Box, G., Jenkins, G. e Reinsel, G. (2008). A dimensão pouco longa deve-se ao facto da contabilização dos dados relativos ao crédito de cobrança duvidosa ter sido iniciado pelo BdP apenas no final de 1997.

A variável **ccdc** foi transformada pela aplicação da função logaritmo. Esta transformação tem como objetivos reduzir a variância dos valores da série e poder interpretar as primeiras diferenças como uma variação percentual da variável entre períodos consecutivos, conforme Franses (1998)³. Os valores considerados para estas séries encontram-se no Anexo H e o Gráfico 4 mostra a sua evolução.

17

 $[\]frac{1}{g_{t}^{3}} \frac{1}{yt = log(wt) \Rightarrow yt - yt - I = log(\frac{wt}{wt - 1}) \approx (\frac{wt}{wt - 1} - I) \text{ para pequenos valores de } (\frac{wt}{wt - 1} - I)$

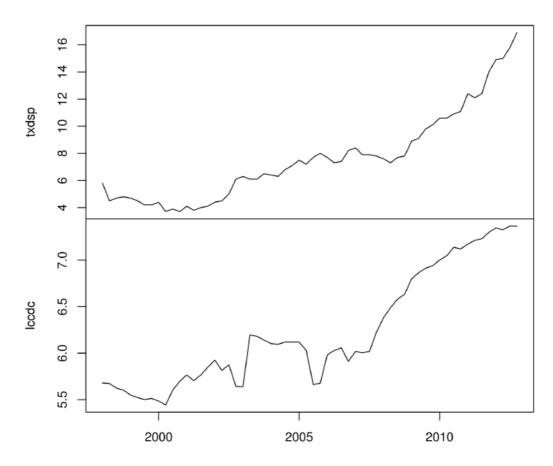


Gráfico 4: Séries taxa de desemprego e crédito de cobrança duvidosa ao consumo

Da análise gráfica é evidente a tendência crescente e paralela de ambos, pelo que se impõe um estudo sobre a estacionaridade das séries. O tratamento das séries será efetuado de acordo com uma metodologia adotada ao software R, conforme Pfaff, B. (2008).

De forma a poder ser estudada uma série temporal, tem de existir um carácter estacionário, ou seja, os desvios entre os valores medidos e os valores estimados pelo modelo da série temporal terão de ser considerados aleatórios e apresentar, de preferência, uma distribuição normal com média igual a zero e uma variância conhecida ou estimada, de forma a prever os erros do modelo. Para tal, existem vários testes estatísticos que se podem aplicar à série, bem como às suas primeiras diferenças, uma vez que esta é uma transformação simples da série para a tornar estacionária. Nas tabelas seguintes apresentam-se os resumos dos testes efetuados, encontrando-se no anexo I os outputs completos entre os quais, os testes de Augmented Dickey - Fuller (ADF), Phillips - Perron (PP) e Kwiatkowski - Phillips - Schmidt - Shin (KPSS).

4.1.1 Teste Dickey – Fuller Aumentado (ADF)

 H_0 : a série tem raiz unitária

 H_1 : a série não tem raiz unitária

						res Crí	ticos	
		Variáveis Determinísticas	Lags	Valor do Teste	1%	5%	10%	Conclusão
	nível	tendência, constante	2	0,508	-4,04	-3,45	-3,15	0,508 > -3,15 Aceita-se H_0
txdsp	primeiras diferenças	constante	1	-4,4632	-3,51	-2,89	-2,58	-4,4632 < - 3,51 Rejeita-se <i>H</i> ₀
laada	nível	tendência, constante	2	-1,9263	-4,04	-3,45	-3,15	-1,9263 > - 3,15 Aceita-se H_0
lccdc	primeiras diferenças	constante	1	-6,4175	-3,51	-2,89	-2,58	-6,4175 < - 3,51 Rejeita-se H_0

Tabela 1: Teste ADF

Pelo teste ADF aceita-se que ambas as séries são integradas de primeira ordem I(1), ou seja, não são estacionárias em níveis, uma vez que os respetivos p-values são superiores a 0,1. Contudo, ao transformar as séries pela aplicação de primeiras diferenças, aceitam-se como estacionárias, dado que os respetivos p-values são muito inferiores a 0,01.

4.1.2 Teste Phillips – Perron (PP)

 H_0 : a série tem raiz unitária

 H_1 : a série não tem raiz unitária

		p-value	Conclusão
	nível	0,9851	Aceita-se H_0
txdsp	primeiras diferenças	< 0,01	Rejeita-se H ₀
	nível	0,654	Aceita-se H_0
lccdc	primeiras diferenças	< 0,01	Rejeita-se H_0

Tabela 2: Teste PP

Através da análise à Tabela 2, o teste PP indica que se deve aceitar as séries **txdsp** e **lccdc** como não estacionárias em níveis. No entanto, às primeiras diferenças, ambas as séries são estacionárias, dado que os respetivos *p-values* são inferiores a 0,01, ou seja, são integradas de ordem um I(1).

4.1.3 Teste Kwiatkowski – Phillips – Schmidt – Shin (KPSS)

 H_0 : a série é estacionária

 H_1 : a série não é estacionária

						ores Crít	icos	
		Variáveis Determinísticas	Lags	Valor do Teste	10%	5%	1%	Conclusão
	nível	tendência e constante	2	0,3154	0,119	0,146	0,216	$0.3154 > 0.216$ Aceita- se H_0
prim	primeiras	constante	1	0,9878	0,347	0,463	0,739	$0.9878 > 0.739$ Aceita- se H_0
txdsp	tendência	tendência e constante	1	0,1169	0,119	0,146	0,216	0,1169 < 0,119 Rejeita-se H_0
	segundas diferenças	constante	1	0,04	0,347	0,463	0,739	$0.04 < 0.347$ Rejeita-se H_0
landa	nível	tendência e constante	2	0,3446	0,119	0,146	0,216	0,3446 > 0,119 Aceita-se <i>H</i> ₀
lccdc	primeiras diferenças	constante	1	0,1681	0,347	0,463	0,739	0.1681 < 0.347 Rejeita- se H_0

Tabela 3: Teste KPSS

Como se pode observar na Tabela 3, as séries são todas integradas de ordem um I(1) e o teste KPSS indica que a série **txdsp** é integrada de ordem dois I(2).

4.2 Escolha do Lag Ótimo

Antes de se estimar o modelo VAR, é necessário proceder à seleção do respetivo lag (ou desfasamento) ótimo, pelo que serão testados os lags até valores máximos de 4 e 8, de forma a capturar algum efeito de sazonalidade presente nas séries, aplicando-se os testes estatísticos recomendados na metodologia, obtendo-se os resultados na Tabela 4, extraídos do Anexo J.

Critérios							
Lag máximo	Akaike Information Criteria (AIC)	Hannan - Quinn Criteria (HQ)	Schwarz Criteria (SC) ou Bayesian Information Criteria (BC)	Akaike Final Prediction Error (FPE)			
4	2	1	1	2			
8	2	1	1	2			

Tabela 4: Critérios de escolha do lag ótimo

É possível observar que os lags selecionados pelos diferentes critérios mantêmse constantes pelo que se irá optar por especificar um modelo VAR(1) e um modelo VAR(2), cujas especificações matriciais se apresentam de seguida, respetivamente, com tendência e termo constante e sem ruído.

$$\begin{bmatrix} txdsp_{t} \\ lccdc_{t} \end{bmatrix} = \begin{bmatrix} 0.927 & 0.544 \\ -0.002 & 0.866 \end{bmatrix} \begin{bmatrix} txdsp_{t-1} \\ lccdc_{t-1} \end{bmatrix} + \begin{bmatrix} 0.008 \\ 0.006 \end{bmatrix} t + \begin{bmatrix} -2.882 \\ 0.699 \end{bmatrix}$$

$$\begin{bmatrix} txdsp_{t} \\ lccdc_{t} \end{bmatrix} = \begin{bmatrix} 0.829 & -0.510 \\ 0.001 & 0.968 \end{bmatrix} \begin{bmatrix} txdsp_{t-1} \\ lccdc_{t-1} \end{bmatrix} + \begin{bmatrix} 0.010 & 1.356 \\ 0.000 & -0.127 \end{bmatrix} \begin{bmatrix} txdsp_{t-2} \\ lccdc_{t-2} \end{bmatrix} + \begin{bmatrix} -0.002 \\ 0.825 \end{bmatrix} t + \begin{bmatrix} -4.398 \\ 0.825 \end{bmatrix}$$

Assim, para a variável **lccdc**, obtiveram-se, respetivamente, as seguintes equações:

$$\begin{split} & lccdc_{t} = -0.002 \, txdsp_{t-1} + 0.866 \, lccdc_{t-1} + 0.699 + 0.006 \, t \\ & {}_{(0.014)} \\ & lccdc_{t} = 0.001 \, txdsp_{t-1} + 0.968 \, lccdc_{t-1} - 0.000 \, txdsp_{t-2} - 0.127 \, lccdc_{t-2} + 0.825 + 0.006 \, t \\ & {}_{(0.038)} \\ & {}_{(0.039)} \\ & {}_{(0.037)} \\ & {}_{(0.037)} \\ \end{split}$$

Em seguida, foram realizados testes de diagnóstico aos modelos VAR.

4.3 Teste de Autocorrelação dos Resíduos

 H_0 : resíduos sem autocorrelação até lag <= 16

Modelo VAR(P)	Portmanteau Assimptótico Q_{16} p-value	Portmanteau Ajustado Q_{16}^* $p-value$	Breusch and Godfrey (BG) χ^2 $p-value$	Edgerton and Shukur (ES) F p-value
p = 1	Chi-squared = 66,5138; df = 60; <i>p-value</i> = 0,2628	Chi-squared = 78,4849; df = 60; <i>p-value</i> = 0,05487	Chi-squared = 21,0612; df = 20; <i>p-value</i> = 0,3935	F statistic = 0,9667; df1 = 20; df2 = 88; <i>p-value</i> = 0,5088
p = 2	Chi-squared = 61,2699; df = 56; <i>p-value</i> = 0,2926	Chi-squared = 72,7189; df = 56; <i>p-value</i> = 0,06592	Chi-squared = 20,0118; df = 20; <i>p-value</i> = 0,4572	F statistic = 0,8595; df1 = 20; df2 = 82; <i>p-value</i> = 0,6362
p = 4	Chi-squared = 48,2473; <i>p</i> -value = 0,4628	Chi-squared = 58,166; <i>p-value</i> = 0,1494	Chi-squared = 27,1259; <i>p-value</i> = 0,1318	F statistic = 1,1282; <i>p-value</i> = 0,3429
p = 8	Chi-squared = 36,9977; <i>p</i> -value = 0,2491	Chi-squared = 47,2107; <i>p</i> -value = 0,0406	Chi-squared = 20,6145; <i>p-value</i> = 0,4201	F statistic = 0,5741; <i>p-value</i> = 0,9108

Tabela 5: Teste de Autocorrelação dos Resíduos

De acordo com o teste Q_{16} , apenas o modelo VAR(4) não apresenta autocorrelação nos seus resíduos. Este resultado tem algum significado neste contexto, porque de acordo com Pfaff (2008), este é um teste que se recomenda quando temos uma pequena amostra. No entanto, os restantes testes estatísticos validam os modelos VAR(1) e VAR(2).

4.4 Teste de Normalidade Multidimensional

 H_0 : Resíduos seguem distribuição normal

Modelo VAR (P)	Jarque Bera JB_{mv} $p-value$
p = 1	143,2488 < 2,2 e-16
p = 2	137,162 < 2,2 e-16
p = 4	89,3856 < 2,2 e-16
p = 8	49,941 < 3,715 e-10

Tabela 6: Teste JB

Após efetuar o teste de normalidade multidimensional, é possível constatar que os resíduos não seguem uma distribuição normal.

4.5 Teste de Heterocedasticidade dos Resíduos

 H_0 : Ausência de componentes ARCH para lags < 8

Modelo VAR (P)	Autoregressive Conditional Heteroskedasticity $MARCH_8$ p-value
p = 1	72,2005; <i>p-value</i> = 0,4712
p = 2	63,5989; <i>p-value</i> = 0,7496
p = 4	65,2551; <i>p-value</i> = 0,7001

Tabela 7: Teste de Heterocedasticidade dos Resíduos

Relativamente ao teste da Tabela 7, os resultados não detetaram componentes de variação heterocedástica.

Da análise aos testes efetuados, pode concluir-se que os modelos VAR são adequados, exceto quanto à normalidade dos resíduos. Uma explicação empírica pode ser obtida pela análise dos gráficos dos resíduos da variável **lccdc**, onde se observa que estes têm uma distribuição multimodal muito acentuada para as várias ordens do modelo VAR.

Assim, conclui-se que o modelo VAR é demasiado restritivo para a análise das séries em causa, pelo que se considerou a especificação de um modelo vetorial de correção de erros (VECM).

5. Cointegração e VECM

Um conjunto de séries temporais pode ser considerado cointegrado se, individualmente, forem I(1) – integradas de ordem um – e se existir pelo menos uma combinação linear das séries, que seja estacionária, ou de ordem I(0). Tal significa que, embora possam verificar-se ocorrências que provocam alterações permanentes nas séries, individualmente, existe uma relação de equilíbrio entre elas a longo prazo, representada por essa combinação linear, conforme Hamilton (1994).

Consideremos a seguinte representação um modelo VAR(2) com séries I(1), sem termo constante, sem tendência e sem ruído ou erro.

$$y_t = A_1 y_{t-1} + A_2 y_{t-2}$$

onde y_t é o vetor das séries e A_1 e $_2$ são as matrizes dos coeficientes das variáveis do modelo.

Considerando que as séries são I(1), podemos definir as diferenças de primeira ordem $\Delta y = y_t - y_{t-1}$ e $\Delta y_{t-1} = y_{t-1} - y_{t-2}$, reescrevê-las como $y_t = y_{t-1} + \Delta y_t$, $y_{t-1} = y_t - \Delta y_t$ e $y_{t-2} = y_{t-1} - \Delta y_{t-1}$ e substitui-las na equação do modelo VAR, ficando com:

$$y_{t-1} + \Delta y_t = A_1 (y_t - \Delta y_t) + A_2 (y_{t-1} - \Delta y_{t-1})$$

que rearranjada fica:

$$\Delta y_{t} = -(I - A_{1} - A_{2})y_{t-1} - A_{2}\Delta y_{t-1}$$

A matriz $\Pi = -(I - A_1 - A_2)$ pode ser decomposta em $\Pi = \alpha \beta^T$, onde β^T é a matriz dos vetores (transpostos) de cointegração, α é a matriz dos vetores de ajustamento e Πy_{t-1} é o termo de correção de erro. Assim, é possível apresentar o modelo designado por Vector Error Correction Model (VECM), com as simplificações acima consideradas, por

$$\Delta y_t = \Pi y_{t-1} - A \Delta \Delta_t$$

Uma vez que o modelo VECM implica a existência de pelo menos um vetor de cointegração e que este implica que, a longo prazo, a série integrada seja estacionária, isto é, que uma combinação linear das série originais seja de ordem I(0), então pode considerar-se que, a longo prazo, a diferença entre dois termos consecutivos das séries integrada é nula, pelo que se pode escrever, considerando o modelo VECM acima e $y_{t-1} = y^*$

$$\Delta y_{t} = 0 \implies \Pi y^{*} = 0$$

que pode ser rescrito:

$$\Pi y^* = \alpha (\beta' y^*) = 0$$

No entanto, como o número de soluções diferentes de zero do sistema de equações lineares definido por $\beta^T y^* = 0$ é igual ao número de vetores de cointegração (ou linearmente independentes) que compõem a matriz β^T , a longo prazo, a relação entre as séries originais é a definida pelos respetivos vetores de cointegração.

Contudo, a curto prazo, considera-se que as séries integradas não asseguram esta relação estacionária de longo prazo, pelo que entre duas amostras consecutivas existirá um desvio dessa estacionaridade, que pode ser expressa por:

$$\beta' y_{t-1} = e_{t-1} \neq 0$$

Estes desvios multiplicados pelos coeficientes da matriz α induzem o ajustamento das séries, de forma que estas se movam na direção do equilíbrio.

5.1 Teste de Cointegração

As séries em causa verificam a primeira condição de serem I(1), pelo que se realizaram testes de cointegração através do método de Johansen. Em seguida apresenta-se um resumo dos resultados na Tabela 8, encontrando-se os respetivos outputs no Anexo R.

Teste			Valores Críticos		
H_0	p = 2	p = 4	10%	5%	1%
r <= 1	6,5	6,13	10,49	12,25	16,26
r = 0	29,52	22,21	22,76	25,32	30,45

Tabela 8 : Método de Johansen

Ao analisar os resultados obtidos, conclui-se que as séries são cointegradas.

5.2 Modelo VECM

Uma vez detetada a relação de cointegração, estimaram-se dois modelos VECM para as séries. Um com constante no termo de correção de erro e outro com tendência linear, encontrando-se os respetivos outputs no Anexo S.

Assim, o modelo com constante fica alterado da seguinte forma:

$$\alpha \left(\beta^{\mathrm{T}} y_{t} + c_{0} \right)$$

onde c_0 é a constante. Tal implica que o valor médio de $\beta^T y_t$ seja igual $a-c_0$, isto é, a longo prazo, a relação entre as variáveis cointegradas é fixa.

O modelo com tendência fica alterado da seguinte forma:

$$\alpha \left(\beta^{\mathrm{T}} y_{t} + c_{1} t \right)$$

mantendo-se a interpretação idêntica ao caso anterior, apesar de neste caso, a longo prazo, a relação entre as variáveis cointegradas varia linearmente.

A especificação matricial do modelo VECM com constante no termo de correção é a seguinte, sem o termo de ruído:

$$\begin{bmatrix} \Delta lccdc_{t} \\ \Delta txdsp_{t} \end{bmatrix} = \begin{bmatrix} 0,021 \\ 0,757 \end{bmatrix} \begin{bmatrix} 1 & -0,085 \end{bmatrix} \begin{bmatrix} lccdc_{t-1} \\ txdsp_{t-1} \end{bmatrix} - \begin{bmatrix} const \\ 5,211 \end{bmatrix} + \begin{bmatrix} 0,097 & 0,012 \\ -1,330 & -0,108 \end{bmatrix} \begin{bmatrix} \Delta lccdc_{t-1} \\ \Delta txdsp_{t-1} \end{bmatrix}$$

Assim, a longo prazo, a equação que define a variável lccdc é dada por:

$$lccdc_{t-1} = 0.085 txdsp_{t-1} - 5.211_{(0.023)}$$

A especificação matricial do modelo VECM com tendência é a seguinte, mais uma vez sem o termo de ruído:

$$\begin{bmatrix} \Delta lccdc_t \\ \Delta txdsp_t \end{bmatrix} = \begin{bmatrix} -0,036 \\ 0,857 \end{bmatrix} \begin{bmatrix} 1 & -0,083 \end{bmatrix} \begin{bmatrix} txdsp_{t-1} \\ lccdc_{t-1} \end{bmatrix} - \begin{bmatrix} trend \\ 0,003t \\ -1,330 & -0,108 \end{bmatrix} \begin{bmatrix} \Delta lccdc_{t-1} \\ \Delta txdsp_{t-1} \end{bmatrix}$$

e a equação de longo prazo da variável **lccdc** é dada por:

$$lccdc_{t-1} = 0.083 txdsp_{t-1} - 0.003 t$$

Analisando a primeira e segunda equações de longo prazo, verifica-se que a taxa de desemprego influencia o crédito de cobrança duvidosa ao consumo quase da mesma forma. No entanto, na primeira equação podemos interpretar o valor médio como uma diferença estrutural fixa entre as variáveis. Na segunda equação, a tendência negativa indica que, virtualmente e no limite, o valor de **lccdc** será nulo.

Comparando os *p-values* dos coeficientes da equação com constante (0.000 e 0.000) com os da equação com tendência (0,100 e 0,767) será de aceitar a primeira equação para explicar o comportamento destas séries a longo prazo.

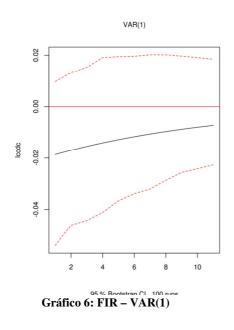
5.3 Teste de Causalidade à Granger

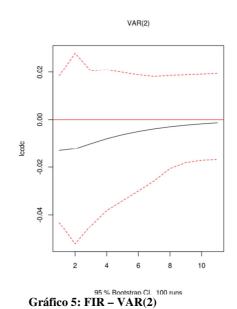
H₀: **txdsp** não causa à Granger **lccdc**

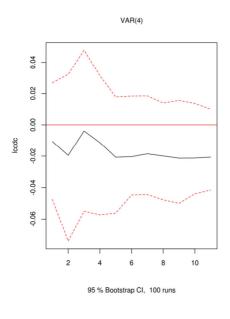
H₁: **txdsp** causa à Granger **lccdc**

	Granger causality	F - Test	
VAR(P)	H ₀ : V1 do not Granger-cause V2	p - value	Conclusões
	V1 = txdsp	F-Test = 0.0192, $df1 = 1$, $df2 =$	Aceita-se H ₀
p = 1	V2 = lccdc	110, p-value = 0.8902	riceita se rio
	V1 = lccdc	F-Test = 4.1783, $df1 = 1$, $df2 =$	Rejeita-se H ₀
	V2 = txdsp	110, p-value = 0.04333	Kejena-se 11 ₀
	V1 = txdsp	F-Test = 9e-04, $df1 = 2$, $df2 =$	A soite se II
p = 2	V2 = lccdc	104, p-value = 0.9991	Aceita-se H ₀
	V1 = lccdc	F-Test = 7.3371, $df1 = 2$, $df2 =$	Dojojta sa U
	V2 = txdsp	104, p-value = 0.001045	Rejeita-se H ₀
	V1 = txdsp	F-Test = 0.4576, $df1 = 4$, $df2 =$	Aceita-se H ₀
p = 4	V2 = lccdc	92, p-value = 0.7666	Aceita-se 11 ₀
	V1 = lccdc	F-Test = 3.4821, df1 = 4, df2 =	Daiaita aa H
	V2 = txdsp	92, p-value = 0.01076	Rejeita-se H ₀
	V1 = txdsp	F-Test = 0.765, $df1 = 8$, $df2 = 68$,	Aggita sa U
p = 8	V2 = lccdc	p-value = 0.6345	Aceita-se H ₀
	V1 = lccdc	F-Test = 2.0699, $df1 = 8$, $df2 =$	Dajaita sa U
	V2 = txdsp	68, p-value = 0.05089	Rejeita-se H ₀

Tabela 9: Teste de Causalidade à Granger


Relativamente ao teste de causalidade efetuado, a Tabela 9 indica que em todos os VAR, a taxa de desemprego não causa à Granger incumprimento no crédito ao consumo. No entanto, segundo este teste, o incumprimento no crédito ao consumo causa à Granger desemprego.


Poderá ser feita uma interpretação económica, segundo a qual, as dificuldades económicas que levam ao incumprimento no crédito ao consumo prevêem um aumento do desemprego. Na maior parte das vezes, antes de se declarar o encerramento de empresas, estas tentam tudo o que está ao seu alcance para sobreviver, como por exemplo, não pagar as dívidas aos fornecedores, não pagar impostos atempadamente e manter salários em atraso aos trabalhadores. Consequentemente, como as famílias não obtém qualquer rendimento, quer por parte das empresas, quer por parte de subsídios estatais, não conseguem fazer face às responsabilidades creditícias assumidas. Assim, se


num determinado período houver um aumento do incumprimento, é expectável que o desemprego aumente no período seguinte.

5.4 Função Impulso Resposta

De forma a investigar a dinâmica da taxa de desemprego sobre o crédito de cobrança duvidosa ao consumo, será aplicada uma análise de resposta a impulso, tendo como estímulo a variável **txdsp** e como resposta a variável **lccdc**.

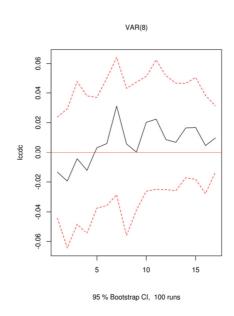


Gráfico 8: FIR - VAR(4)

Gráfico 7: FIR - VAR(8)

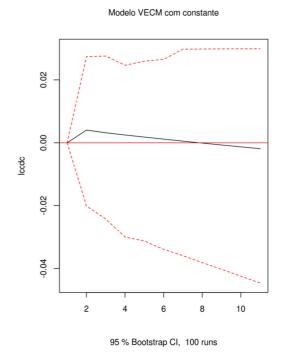
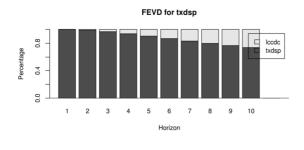
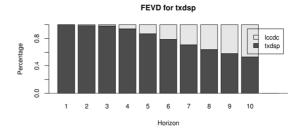
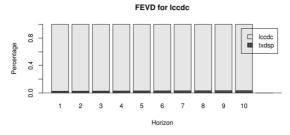


Gráfico 9: FIR - VECM com constante


Os intervalos de confiança desenhados não são suficientemente alargados para que se possam tirar conclusões quanto ao efeito de um impulso na taxa de desemprego sobre o incumprimento no crédito ao consumo. No entanto, os modelos VAR(1) e VAR(2) sugerem que após o choque inicial, o incumprimento no crédito ao consumo tende a estabilizar. Os modelos VAR(4) e VAR(8) sugerem que, após oscilações mais próximas ou afastadas do choque inicial, o valor desta variável também tende a estabilizar.


Relativamente ao modelo VECM com constante, este parece indicar que além de uma subida inicial da variável **lccdc**, esta decrescerá, conforme já tinha sido detetado pelo modelo VECM com tendência no termo de correção de erro.


5.5 Decomposição da Variância do Erro de Previsão

Uma forma de analisar os modelos VAR é através da decomposição da variância do erro de previsão, ou seja, verifica-se o nível percentual que cada variável do modelo contribui para a variância total do erro de previsão de uma variável.

Os Gráficos 10 a 14 mostram essa decomposição para os modelos VAR(1) a VAR(8) e para o modelo VECM.

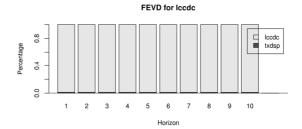
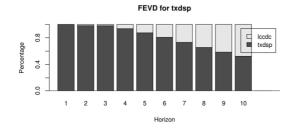



Gráfico 10: Decomposição da Variância VAR(1)

Gráfico 11: Decomposição da Variância VAR(2)

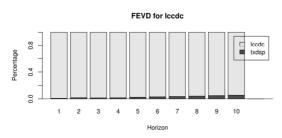
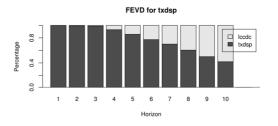



Gráfico 13: Decomposição da Variância VAR(4)

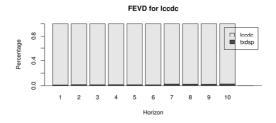
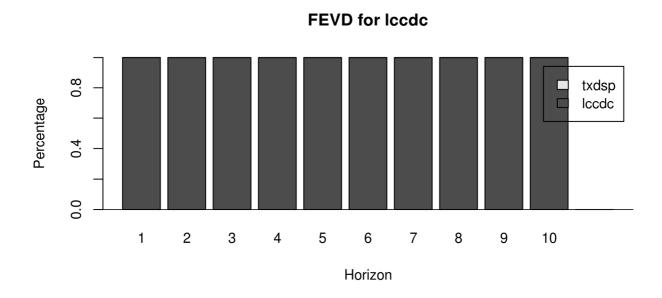



Gráfico 12: Decomposição da Variância VAR(8)

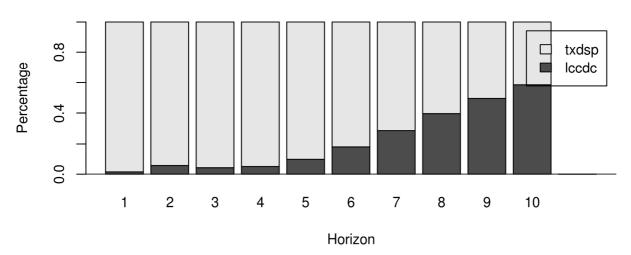


Gráfico 14: VECM com constante

Como se pode observar pelos Gráficos 10 a 14, a decomposição da variância pode considerar-se uniforme, independentemente dos modelos. A variância da variável **lccdc** é explicada, na totalidade, por ela própria. A variância da variável **txdsp** é explicada, numa primeira fase por ela mesma, e gradualmente, até cerca de metade pela variável **lccdc**, nos dez períodos considerados na previsão.

6. Conclusão

Numa época em que se assiste a uma intensificação de casos de incumprimento bancário, especialmente nos segmentos mais vulneráveis, como as famílias cujos elementos transitam para o desemprego, é importante investigar empiricamente a relação entre o incumprimento bancário e o desemprego.

Este estudo mostrou que nos últimos anos, têm surgido situações mais frequentes de incumprimento no segmento de crédito ao consumo, devendo-se em parte ao facto do acesso a este tipo de empréstimos se ter generalizado durante o período entre a adesão ao euro e o eclodir da crise financeira. Não obstante, verifica-se que os spreads aplicados a este segmento de crédito eram mais elevados face aos outros segmentos, o que reflete em grande medida o maior risco associado. Além disso, a evolução do incumprimento no crédito habitação apresenta um comportamento menos volátil, comparativamente com o incumprimento no crédito ao consumo, isto é, o primeiro é mais estável que o segundo. Assim, tipicamente, o crédito habitação apresenta garantias hipotecárias, montantes elevados, prazos longos e taxas de juro mais reduzidas, sendo que a evolução do seu incumprimento é relativamente estável e não é possível estabelecer uma relação entre este e o desemprego. Por outro lado, e de forma geral, o crédito ao consumo é caraterizado por ausência de garantias, montantes reduzidos, prazos curtos e spreads elevados, sendo que a evolução do seu incumprimento permite antecipar a evolução da taxa de desemprego, isto é, os resultados empíricos deste estudo evidenciam uma realidade segundo a qual, na maior parte das vezes, antes de se declarar o encerramento de empresas, estas tentam tudo o que está ao seu alcance para sobreviver, como por exemplo, não pagar as dívidas aos fornecedores, não pagar impostos atempadamente e manter salários em atraso aos trabalhadores. Os resultados também sugerem que em períodos de recessão económica, o desemprego e o incumprimento tendem a aumentar.

O impacto da atual crise económica através de elevadas taxas de desemprego e maiores dificuldades no acesso ao crédito impõe desafios aos economistas, visto que ao longo da História foram poucos os momentos em que se verificaram crises com estes contornos. Desta forma, a questão levantada neste estudo torna-se cada vez mais pertinente, contudo, o modelo econométrico aqui utilizado pode ser redutor, na medida em que se baseia em dados do passado, época em que não existiam as mesmas dificuldades de hoje em dia. Assim, e dado que esta matéria está dependente de muitos fatores, tornando-se complexa, seria interessante complementar esta investigação com outras metodologias, como por exemplo, a aplicação de inquéritos junto das empresas para apurar qualitativamente as dificuldades sentidas e os motivos que levam aos despedimentos dos trabalhadores, de modo a verificar se existem mais variáveis a considerar, além do crescimento económico, diminuição do consumo ou incumprimento bancário.

7. Bibliografia

Agarwal, S., Ambrose, B. e Chomsisengphet, S. (2008), "Determinants of Automobile Loan Default and Prepayment" *Economic Perspectives, Vol. 32, No. 3, 17-28.*

Agarwal, S., Chomsisengphet, S. e Chunlin, L. (2009), "Consumer Bankruptcy and Default: The Role of Individual Social Capital. Disponível em SSRN: http://ssrn.com/abstract=1408757.

Alves, N. e Ribeiro, N. (2011), "Modelação do Incumprimento dos Particulares", *Relatório de Estabilidade Financeira - Novembro, Banco de Portugal.*

Antunes, A. e Martinho, R. (2012), "Um modelo de scoring para empresas portuguesas", *Relatório de Estabilidade Financeira – Novembro, Banco de Portugal*.

Antunes, A., Ribeiro, N. e Antão, P. (2005) "Estimativas de probabilidades de incumprimento em contexto macroeconómico", *Relatório de Estabilidade Financeira* 2005, *Banco de Portugal*.

Bernanke, B., Gertler, M. e Gilchrist, S. (1994) "The Financial accelerator in a quantitative business cycle framework", *Princeton University, New York University, and Boston University*.

Box, G., Jenkins, G. e Reinsel, G. (2008) "Time Series Analysis – Forecasting and Control", *Wiley Series in Probability and Statistics – fourth edition*.

Costa, S. (2012), "Probabilidade de Incumprimento das Famílias: Uma Análise com base nos resultados do ISFF", *Banco de Portugal*.

Dick, A. e Lehnert, A. (2010), "Personal Bankruptcy and Credit Market Competition", *The Journal of Finance, Vol. 65, No 2, 655-686.*

"Estatísticas do Emprego – 4º trimestre de 2012", Informação à Comunicação Social – Destaque, *Instituto Nacional de Estatística*.

Farinha, L. e Lacerda, A. (2010), "Incumprimento no crédito aos particulares: qual é o papel do perfil de crédito dos devedores?", *Relatório de Estabilidade Financeira – Novembro, Banco de Portugal*.

Franses, P. (1998), "Time series models for business and economic forecasting", *Cambridge University Press, Cambridge*.

Gomes, L. (2012), "A Influência do Crédito Bancário no Desemprego em Portugal desde 1990: Uma Análise Utilizando o Modelo Vetorial com Mecanismo de Correção de Erros", *Dissertação de Mestrado em Economia Monetária e Financeira*, *Departamento de Economia Política, ISCTE – IUL, Lisboa*.

Hamilton, J. (1994), "Time Series Analysis", *Princeton University Press*, *Princeton*.

Hendry, D. (1995), "Dynamic Econometrics", Oxford University Press, Oxford.

Johansen, S. (1995), "Likelihood Based Inference in Cointegrated Vector Vector Autoregressive Models", *Oxford University Press, Oxford*.

Lutkepohl, H. (2006), "New Introduction to Multiple Time Series Analysis", *Springer-Verlag, New York*.

Marcucci, J. e Quagliariello, M. (2009), "Asymmetric effects of the business cycle on bank credit risk", *Journal of Banking and Finance, Vol. 33, Issue 9, 1624-1635.*

Marcucci, J. e Quagliariello, M. (2006), "Is bank portfolio riskiness procyclical? Evidence from Italy using a vector autoregression", *Journal of International Financial Markets, Institutions & Money*.

Pederzolli, C. e Torricelli, C. (2005), "Capital requirements and business cycle regimes: Forward-looking modelling of default probabilities", *Journal of Banking & Finance*, Vol. 29.

Pesola, J. (2005), "Financial fragility, macroeconomic shocks and banks loan losses: evidence from Europe", *Bank of Finland Discussion Papers*, 13.

Pesola, J. (2007), "Financial fragility, macroeconomic shocks and banks loan losses: evidence from Europe", *Bank of Finland Discussion Papers*, 15.

Pfaff, B. e Taunus, K. (2008), "VAR, SVAR and SVEC Models: Implementation within R Package vars", *Journal of Statistical Software, Vol. 27, Issue 4.*

"Relatório de Estabilidade Financeira – Novembro 2011" (2011), *Banco de Portugal*.

Silva, J. (1998), "Gestão e Análise de Risco de Crédito", Editora Atlas.

Simons, D. e Rolwes, F. (2009), "Macroeconomic default modelling and stress testing", *International Journal of Central Banking, September*.

Stiglitz, J. e Weiss, A. (1981), "A Credit Rationing in Markets with Imperfect Information", *The American Economic Review, Vol. 71, No. 3, 393-410.*

Weston, F. e Brigham, E. (1972), "Managerial Finance", New York: Holt.

Wooldridge, J. (2002), "Econometric analysis of cross section and panel data", *The MIT Press, Cambridge*.

Software utilizado

R version 3.0.1 (2013-05-16)

8. Anexos

		Somatório Crédito Cobrança Duvidosa Particulares + Sociedades Não Financeiras	15053	15279	14373	13200	11553	11291	10097	9548	8695	9749	9163	8837	8255	8501	7639	6755	5391	5250	4721	4360	3694	3873
		Somatório de Empréstimos a Particulares + Sociedades Não Financeiras	239380	243533	247158	250491	253413	256902	258564	256534	255836	259043	258683	256584	255774	253371	251996	249533	248383	242273	240739	234899	228888	222721
		Créditos de Cobrança Duvidosa - Sociedades Não Financeiras	9950	10288	6236	8301	6289	6730	5780	5385	4706	5630	5174	4947	4594	4855	4136	3460	2514	2365	2071	1878	1487	1688
iodo		Empréstimos Sociedades Não Financeiras	105361	108062	110095	111740	113808	116412	116989	114784	114625	118088	118329	117501	117807	117824	117735	116536	115809	110082	108228	105044	101610	98868
Último valor - Posições em fim de período		Créditos de cobrança duvidosa Particulares - Total	5103	4991	4834	4899	4674	4561	4317	4163	3989	4119	3989	3890	3661	3646	3503	3295	2877	2885	2650	2482	2207	2185
r - Posições e	Banco de Portugal	Crécitos de cobrança duvidosa - Consumo	1580	1583	1520	1551	1477	1381	1356	1302	1237	1258	1149	1098	1032	1005	957	968	759	721	657	290	505	410
Último valo	Banco de	Créditos de cobrança duvidosa - Habitação	2253	2199	2123	2190	2099	2090	1992	1963	1932	1943	1937	1913	1870	1854	1780	1691	1570	1534	1433	1369	1264	1228
	Fonte	Empréstimos de OIFM a particulares - TOTAL	134019	135471	137063	138751	139605	140490	141575	141750	141211	140955	140354	139083	137967	135547	134261	132997	132574	132191	132511	129855	127278	123853
ade superior		Empréstimos de OIFM a particulares - Consumo	13371	13645	13998	14501	14987	14976	15270	15228	15484	15545	15572	15766	15731	15402	15413	15456	15452	15136	14918	14654	13790	12231
para periodicida	Euros 10^6	Empréstimos de OIFM a particulares - Habitação	109673	110749	111780	112817	113025	113755	114285	- 114511	113604	113125	112313	110968	109835	107665	106504	105212	104465	104469	104951	102760	100585	98939
Método de conversão para periodicidade superior	Unidade de Medida Potenciação	Periodicidade	31-12-2012	30-09-2012	30-06-2012	31-03-2012	31-12-2011	30-09-2011	30-06-2011	31-03-2011	31-12-2010	30-09-2010	30-06-2010	31-03-2010	31-12-2009	30-09-2009	30-06-2009	31-03-2009	31-12-2008	30-09-2008	30-06-2008	31-03-2008	31-12-2007	30-09-2007

Anexo A: Volume de empréstimos concedidos e de cobrança duvidosa a empresas e particulares (total e por segmento) entre o terceiro trimestre de 2007 e o quarto trimestre de 2012.

Fonte: BdP

Método de conversão para periodicidade superior	para periodicid	lade superior		Último valo	r - Posições e	Último valor - Posições em fim de período	iodo			
Unidade de Medida Potenciação	Euros 10^6		Fonte	Banco de	Banco de Portugal					
Periodicidade	Empréstimos de OIFM a particulares - Habitação	Empréstimos de OIFM a particulares - Consumo	Empréstimos de OIFM a particulares - TOTAL	Créditos de cobrança duvidosa - Habitação	Créditos de cobrança duvidosa - Consumo	Créditos de cobrança duvidosa Particulares - Total	Empréstimos Sociedades Não Financeiras	Créditos de Cobrança Duvidosa - Sociedades Não Financeiras	Somatório de Empréstimos a Particulares + Sociedades Não Financeiras	Somatório Crédito Cobrança Duvidosa Particulares + Sociedades Não
30-06-2007	96834	12035	121163	1201	405	2162	97021	1632	218184	3794
31-03-2007	94053	11668	117797	1198	410	2164	93538	1630	211335	3794
31-12-2006	91591	11379	114977	1139	369	1998	91856	1415	206833	3413
30-09-2006	90121	11036	113113	1166	427	2181	91578	1660	204691	3841
30-06-2006	88814	10780	111123	1131	415	2103	90413	1559	201536	3662
31-03-2006	85831	10029	107243	1208	396	2167	87853	1622	195096	3789
31-12-2005	79237	9406	99801	1177	292	1986	06998	1510	186491	3496
30-09-2005	78258	8959	98224	1172	288	2006	85471	1622	183695	3628
30-06-2005	76440	9199	96559	1049	416	1986	84698	1534	181257	3520
31-03-2005	73207	9439	93218	1095	454	2047	82610	1528	175828	3575
31-12-2004	70835	9059	90411	1072	454	1982	82890	1414	173301	3396
30-09-2004	72865	9318	92283	1063	454	2011	82090	1616	174373	3627
30-06-2004	70559	9187	89705	1112	444	2060	83249	1601	172954	3661
31-03-2004	68238	8603	86356	1123	447	2073	82900	1807	169256	3880
31-12-2003	89899	8691	84549	1074	464	1995	82142	1764	166691	3759
30-09-2003	68974	8671	86933	1060	483	2056	79234	1921	166167	3977
30-06-2003	67985	8692	86284	066	491	2009	79352	1980	165636	3989
31-03-2003	66220	8247	84271	1021	281	1902	78320	1931	162591	3833
31-12-2002	64838	7872	83244	505	282	1714	77930	1841	161174	3555
30-09-2002	64188	7943	82443	857	356	1754	75011	1857	157454	3611
30-06-2002	61381	7969	79621	791	335	1641	74681	1805	154302	3446
31-03-2002	59359	8204	77920	738	374	1622	72773	1789	150693	3411

Anexo B: Volume de empréstimos concedidos e de cobrança duvidosa a empresas e particulares (total e por segmento) entre o primeiro trimestre de 2002 e o segundo trimestre de 2007.

Fonte: BdP

		Somatório Crédito Cobrança Duvidosa Particulares + Sociedades Não	3188	3219	3103	3039	2780	2791	2746	2819	2761	2911	2943	2991	2981	3159	3220	3250
		Somatório de Empréstimos a Particulares + Sociedades Não Financeiras	147380	144661	140445	135159	130158	123260	117590	112330	104040	100127	95440	88293	83526	77213	72864	68127
		Créditos de Cobrança Duvidosa - Sociedades Não Financeiras	1689	1774	1755	1748	1517	1546	1564	1641	1595	1727	1771	1829	1848	2004	2087	2133
iodo		Empréstimos Sociedades Não Financeiras	71430	70367	68272	65269	61345	58515	55658	53057	49415	46318	43980	41726	39036	36200	34723	32722
Último valor - Posições em fim de período		Créditos de cobrança duvidosa Particulares - Total	1499	1445	1348	1291	1263	1245	1182	1178	1166	1184	1172	1162	1133	1155	1133	1117
r - Posições	Banco de Portugal	Créditos de cobrança duvidosa - Consumo	347	319	300	319	298	271	231	241	248	245	250	257	271	277	291	293
Último valo	Banco de	Créditos de cobrança duvidosa - Habitação	675	650	582	542	544	517	474	430	449	417	394	376	381	380	388	349
	Fonte	Empréstimos de OIFM a particulares - TOTAL	75950	74294	72173	06869	68813	64745	61932	59273	54625	53809	51460	46567	44490	41013	38141	35405
ade superior		Empréstimos de OIFM a particulares - Consumo	8074	7887	7625	7545	8177	7351	9669	6603	6601	6548	6502	5859	6191	5408	5274	5192
ara periodicid	Euros 10^6	Empréstimos de OIFM a particulares - Habitação	57365	56361	54255	52210	50735	48648	46606	44415	40527	39825	38135	34581	32433	30036	27722	25711
Método de conversão para periodicidade superior	Unidade de Medida Potenciação	Periodicidade	31-12-2001	30-09-2001	30-06-2001	31-03-2001	31-12-2000	30-09-2000	30-06-2000	31-03-2000	31-10-1999	30-09-1999	30-06-1999	31-03-1999	31-12-1998	30-09-1998	30-06-1998	31-03-1998

Anexo C: Volume de empréstimos concedidos e de cobrança duvidosa a empresas e particulares (total e por segmento) entre o primeiro trimestre de 1998 e o quarto trimestre de 2001.

Fonte: BdP

Fonte	idade de Medida : INE	
Periodicidade	Taxa de Desemprego	Taxa de crescimento PI em variação homóloga
31-12-2012	16,90%	-3,8
30-09-2012	15,80%	-3,6
30-06-2012	15%	-3,2
31-03-2012	14,90%	-2,3
31-12-2011	14%	-3,1
30-09-2011	12,40%	-1,8
30-06-2011	12,10%	-0,9
31-03-2011	12,40%	-0,4
31-12-2010	11,10%	1,6
30-09-2010	10,90%	1,9
30-06-2010	10,60%	2,2
31-03-2010	10,60%	2,1
31-12-2009	10,10%	-1,4
30-09-2009	9,80%	-2,5
30-06-2009	9,10%	-3,6
31-03-2009	8,90%	-4,1
31-12-2008	7,80%	-1,8
30-09-2008	7,70%	0,3
30-06-2008	7,30%	0,6
31-03-2008	7,60%	0,8
31-12-2007	7,80%	2,3
30-09-2007	7,90%	2,2
30-06-2007	7,90%	2,2
31-03-2007	8,40%	2,7
31-12-2006	8,20%	2,3
30-09-2006	7,40%	1,6
30-06-2006	7,30%	0,5
31-03-2006	7,70%	1,3
31-12-2005	8%	0,9
30-09-2005	7,70%	0,4
30-06-2005	7,20%	1,1
31-03-2005	7,50%	0,7
31-12-2004	7,10%	1,2
30-09-2004	6,80%	1,6
30-06-2004	6,30%	2,3
31-03-2004	6,40%	1,1
31-12-2003	6,50%	0,2

Anexo D: Taxa de Desemprego e Taxa de Crescimento do PIB (os dados encontram-se corrigidos de efeitos sazonais, ano de referência 2006) entre o quarto trimestre de 2003 e o quarto trimestre de 2012.

Fonte: INE

	idade de Medida	idade superior: Média Percentagem
Periodicidade	Taxa de Desemprego	Taxa de crescimento PI em variação homóloga
30-09-2003	6,10%	-0,6
30-06-2003	6,10%	-1,8
31-03-2003	6,30%	-1,4
31-12-2002	6,10%	-1,6
30-09-2002	5%	0,5
30-06-2002	4,50%	1,7
31-03-2002	4,40%	2,5
31-12-2001	4,10%	1,8
30-09-2001	4%	1,2
30-06-2001	3,80%	3,3
31-03-2001	4,10%	1,6
31-12-2000	3,70%	4,4
30-09-2000	3,90%	4,0
30-06-2000	3,70%	2,9
31-03-2000	4,40%	4,3
31-10-1999	4,20%	3,1
30-09-1999	4,20%	3,9
30-06-1999	4,50%	4,2
31-03-1999	4,70%	5,2
31-12-1998	4,80%	5,6
30-09-1998	4,70%	5,1
30-06-1998	4,50%	4,7
31-03-1998	5,80%	5,2

Anexo E: Taxa de Desemprego e Taxa de Crescimento do PIB (os dados encontram-se corrigidos de efeitos sazonais, ano de referência 2006) entre o primeiro trimestre de 1998 e o terceiro trimestre de 2003.

Fonte: INE

Periodicidade	tdpg	tpib	rcdt	rcdh	rcdc
1998 1T	5.8	5.2	4.8	1.4	5.6
1998 2T	4.5	4.7	4.4	1.4	5.5
1998 3T	4.7	5.1	4.1	1.3	5.1
1998 4T	4.8	5.6	3.6	1.2	4.4
1999 1T	4.7	5.2	3.4	1.1	4.4

1999 2T	4.5	4.2	3.1	1	3.8
1999 3T	4.2	3.9	2.9	1	3.7
1999 4T	4.2	3.1	2.7	1.1	3.8
2000 1T	4.4	4.3	2.5	1	3.6
2000 2T	3.7	2.9	2.3	1	3.3
2000 3T	3.9	4	2.3	1.1	3.7
2000 4T	3.7	4.4	2.1	1.1	3.6
2001 1T	4.1	1.6	2.2	1	4.2
2001 2T	3.8	3.3	2.2	1.1	3.9
2001 3T	4	1.2	2.2	1.2	4
2001 4T	4.1	1.8	2.2	1.2	4.3
2002 1T	4.4	2.5	2.3	1.2	4.6
2002 2T	4.5	1.7	2.2	1.3	4.2
2002 3T	5	0.5	2.3	1.3	4.5
2002 4T	6.1	-1.6	2.2	1.4	3.6
2003 1T	6.3	-1.4	2.4	1.5	3.4
2003 2T	6.1	-1.8	2.4	1.5	5.6
2003 3T	6.1	-0.6	2.4	1.5	5.6
2003 4T	6.5	0.2	2.3	1.6	5.3
2004 1T	6.4	1.1	2.3	1.6	5.2
2004 2T	6.3	2.3	2.1	1.6	4.8
2004 3T	6.8	1.6	2.1	1.5	4.9
2004 4T	7.1	1.2	2	1.5	5
2005 1T	7.5	0.7	2	1.5	4.8
2005 2T	7.2	1.1	1.9	1.4	4.5
2005 3T	7.7	0.4	2	1.5	3.2
2005 4T	8	0.9	1.9	1.5	3.1
2006 1T	7.7	1.3	1.9	1.4	3.9
2006 2T	7.3	0.5	1.8	1.3	3.8
2006 3T	7.4	1.6	1.9	1.3	3.9
2006 4T	8.2	2.3	1.7	1.2	3.2
2007 1T	8.4	2.7	1.8	1.3	3.5
2007 2T	7.9	2.2	1.7	1.2	3.4
2007 3T	7.9	2.2	1.7	1.2	3.4
2007 4T	7.8	2.3	1.6	1.3	3.7
2008 1T	7.6	0.8	1.9	1.3	4
2008 2T	7.3	0.6	2	1.4	4.4
2008 3T	7.7	0.3	2.2	1.5	4.8
2008 4T	7.8	-1.8	2.2	1.5	4.9
2009 1T	8.9	-4.1	2.7	1.6	5.8
2009 2T	9.1	-3.6	3	1.7	6.2
2009 3T	9.8	-2.5	3.4	1.7	6.5
2009 4T	10.1	-1.4	3.2	1.7	6.6

2010 1T	10.6	2.1	3.4	1.7	7
2010 2T	10.6	2.2	3.5	1.7	7.4
2010 3T	10.9	1.9	3.8	1.7	8.1
2010 4T	11.1	1.6	3.4	1.7	8
2011 1T	12.4	-0.4	3.7	1.7	8.6
2011 2T	12.1	-0.9	3.9	1.7	8.9
2011 3T	12.4	-1.8	4.4	1.8	9.2
2011 4T	14	-3.1	4.6	1.9	9.9
2012 1T	14.9	-2.3	5.3	1.9	10.7
2012 2T	15	-3.2	5.8	1.9	10.9
2012 3T	15.8	-3.6	6.3	2	11.6
2012 4T	16.9	-3.8	6.3	2.1	11.8

Anexo F: Séries económicas em análise.

Fonte: INE, BdP e cálculos do autor

[1] "I a	ags = "						
[1] 4	ags =						
\$select							
AIC(n)	HQ(n)	SC(n)	FPE(n)				
4	1	1	4				
\$crite	ria						
		1	2	3	4		
AIC(n)	-1.2281	.04e+01	-1.234432e+01	-1.252413e+01	-1.280823e+01		
HQ(n)	-1.1790	28e+01	-1.150301e+01	-1.133227e+01	-1.126583e+01		
SC(n)	-1.1015	20e+01	-1.017430e+01	-9.449938e+00	-8.829865e+00		
FPE(n)	4.6694	43e-06	4.503823e-06	4.015464e-06	3.422758e-06		
[1] "La	ags = "						
[1] 5							
\$select	tion						
AIC(n)	HQ(n)	SC(n)	FPE(n)				
5	1	1	5				
\$crite	ria						
		1	2	3	4	5	
AIC(n)	-1.2212	00e+01	-1.224345e+01	-1.240768e+01	-1.272018e+01	-1.302499e+01	
HQ(n)	-1.1718	302e+01	-1.139663e+01	-1.120802e+01	-1.116767e+01	-1.111964e+01	
SC(n)	-1.0934	61e+01	-1.005363e+01	-9.305437e+00	-8.705510e+00	-8.097895e+00	
FPE(n)				4.537255e-06			
	2.0030		7.222332 00		21.0.0.0	3.20.3000 00	

[1] "La	ags = "						
[1] 6	.90						
\$select	tion						
	HQ(n)	SC(n)	FPE(n)				
6		1	5				
0							
\$crite	ria						
\$61.166	- Tu	1	2	3	4	5	
ATC(n)	-1 2198 ⁻		-1.221423e+01				
HQ(n)			-1.136192e+01				
SC(n)			-1.000424e+01				
			5.149954e-06				
112(11)	3.0700	6	3.1133310 00	1.7200200 00	3.3300000 00	3.3011320 00	
ATC(n)	-1.33128						
HQ(n)							
	-7.41960						
	4.0277						
11 [(11)	7.0277	76-00					
[1] "[ags = "						
[1] 7	ays =						
\$select	tion						
	HQ(n)	SC(n)	EDE(n)				
7		1	7				
,	,		· · · · · · · · · · · · · · · · · · ·				
\$crite	ria						
\$CI ICEI	ι ια	1	2	3	4	5	
ATC(n)	-1 2102		-1.214372e+01		-	-	
HQ(n)			-1.128597e+01				
SC(n)			-9.913200e+00				
FPE(n)	5.58678				4.450350e-06		
11 L(11)	3.3007	6	7.3304000-00	3.070331E-00	4.4303306-00	3.7410336-00	
ATC (n)	_1 2256		-1.428610e+01				
HQ(n)			-1.164137e+01				
SC(n)			-7.408669e+00				
FPE(n)			3.268661e-06				
11 [(11)	7.330	236-00	J.200001e-06				
[1] "1.	ags = "						
[1] 8	ays =						
\$select	tion						
		SC(~)	EDE(n)				
AIC(n)	HQ(n)		FPE(n)				
8	8	1	8				
¢ ~ ~	nia						
\$crite	ria	4	2	2		-	
		1	2 -1.208567e+01	3	4	5	

HQ(n)	-1.152049e+01	-1.122252e+01	-1.099902e+01	-1.098521e+01	-1.127330e+01	
SC(n)	-1.071065e+01	-9.834233e+00	-9.032283e+00	-8.440019e+00	-8.149649e+00	
FPE(n)	6.048084e-06	5.883596e-06	5.574796e-06	4.624784e-06	3.192118e-06	
	6	7	8			
AIC(n)	-1.353861e+01	-1.434783e+01	-1.618386e+01			
HQ(n)	-1.123688e+01	-1.168646e+01	-1.316285e+01			
SC(n)	-7.534779e+00	-7.405909e+00	-8.303840e+00			
FPE(n)	3.663728e-06	3.508620e-06	2.134586e-06			

Anexo G: Valores dos testes AIC, HQ, SC e FPE

Periodicidade	pib	txdsp	ccdc	lccdc
1998 1T	34437,7	5,8	293	5,68
1998 2T	34936	4,5	291	5,673
1998 3T	35447,7	4,7	277	5,624
1998 4T	35870,6	4,8	271	5,602
1999 1T	36213,5	4,7	257	5,549
1999 2T	36402,8	4,5	250	5,521
1999 3T	36830,6	4,2	245	5,501
1999 4T	36975,7	4,2	248	5,513
2000 1T	37786,3	4,4	241	5,485
2000 2T	37464,6	3,7	231	5,442
2000 3T	38300,5	3,9	271	5,602
2000 4T	38604,5	3,7	298	5,697
2001 1T	38386,7	4,1	319	5,765
2001 2T	38704,4	3,8	300	5,704
2001 3T	38756,9	4	319	5,765
2001 4T	39312,6	4,1	347	5,849
2002 1T	39328,6	4,4	374	5,924
2002 2T	39374	4,5	335	5,814
2002 3T	38951,7	5	356	5,875
2002 4T	38692,4	6,1	282	5,642
2003 1T	38771,5	6,3	281	5,638
2003 2T	38652,1	6,1	491	6,196
2003 3T	38725,9	6,1	483	6,18
2003 4T	38772,7	6,5	464	6,14
2004 1T	39213,4	6,4	447	6,103
2004 2T	39544,1	6,3	444	6,096
2004 3T	39350,5	6,8	454	6,118
2004 4T	39231,5	7,1	454	6,118
2005 1T	39497,6	7,5	454	6,118

2005 2T	39967,6	7,2	416	6,031
2005 3T	39513,1	7,7	288	5,663
2005 4T	39580,7	8	292	5,677
2006 1T	40027,4	7,7	396	5,981
2006 2T	40179,2	7,3	415	6,028
2006 3T	40148,5	7,4	427	6,057
2006 4T	40500,3	8,2	369	5,911
2007 1T	41094,6	8,4	410	6,016
2007 2T	41082,6	7,9	405	6,004
2007 3T	41033,7	7,9	410	6,016
2007 4T	41449,3	7,8	505	6,225
2008 1T	41436,3	7,6	590	6,38
2008 2T	41343,6	7,3	657	6,488
2008 3T	41159,2	7,7	721	6,581
2008 4T	40707,1	7,8	759	6,632
2009 1T	39728,2	8,9	896	6,798
2009 2T	39859,5	9,1	957	6,864
2009 3T	40142,2	9,8	1005	6,913
2009 4T	40127,8	10,1	1032	6,939
2010 1T	40554	10,6	1098	7,001
2010 2T	40720,7	10,6	1149	7,047
2010 3T	40902,9	10,9	1258	7,137
2010 4T	40775,6	11,1	1237	7,12
2011 1T	40410,7	12,4	1302	7,172
2011 2T	40357,3	12,1	1356	7,212
2011 3T	40147,1	12,4	1381	7,231
2011 4T	39504,4	14	1477	7,298
2012 1T	39462,7	14,9	1551	7,347
2012 2T	39047,6	15	1520	7,326
2012 3T	38696,4	15,8	1583	7,367
2012 4T	38001	16,9	1580	7,365

Anexo H: Valores considerados para as séries – Estacionaridade

```
> summary(ur.df(tsdata4[,'txdsp'],type='trend',lags=2))
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend
Call:
lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)
Residuals:
    Min
            1Q Median
                          3Q
                                 Max
-0.79794 -0.27846 -0.00286 0.25436 1.06107
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.233825  0.180679 -1.294
                                   0.201
z.lag.1 0.027720 0.054565 0.508
                                   0.614
         0.008594 0.009557 0.899 0.373
z.diff.lag1 -0.030594  0.149076 -0.205  0.838
z.diff.lag2 -0.138428  0.134057 -1.033
                                   0.307
Residual standard error: 0.4328 on 52 degrees of freedom
Multiple R-squared: 0.1889, Adjusted R-squared: 0.1266
F-statistic: 3.028 on 4 and 52 DF, p-value: 0.02553
Value of test-statistic is: 0.508 5.9676 5.2426
Critical values for test statistics:
    1pct 5pct 10pct
tau3 -4.04 -3.45 -3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47
> summary(ur.df(diff(tsdata4[,'txdsp']),type='drift',lags=1))
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression drift
```

```
Call:
lm(formula = z.diff \sim z.lag.1 + 1 + z.diff.lag)
Residuals:
   Min
          1Q Median
                      3Q
                              Max
-0.9081 -0.3002 -0.0585 0.2464 1.3878
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.17703 0.06992 2.532 0.0143 *
         z.lag.1
z.diff.lag -0.03819 0.12974 -0.294 0.7696
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.4655 on 54 degrees of freedom
Multiple R-squared: 0.404, Adjusted R-squared: 0.3819
F-statistic: 18.3 on 2 and 54 DF, p-value: 8.559e-07
Value of test-statistic is: -4.4632 10.0846
Critical values for test statistics:
     1pct 5pct 10pct
tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86
> summary(ur.df(tsdata4[,'lccdc'],type='trend',lags=2))
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression trend
Call:
lm(formula = z.diff \sim z.lag.1 + 1 + tt + z.diff.lag)
Residuals:
    Min
            1Q Median
                         3Q
                                  Max
-0.41038 -0.04003 0.00787 0.05223 0.45491
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.697234 0.363319 1.919 0.0605.
z.lag.1 -0.134099 0.069614 -1.926 0.0595.
tt
           0.005505 0.002453 2.244 0.0291 *
z.diff.lag1 0.126148 0.132365 0.953 0.3450
z.diff.lag2 -0.201194   0.133415   -1.508   0.1376
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.1162 on 52 degrees of freedom
Multiple R-squared: 0.1483, Adjusted R-squared: 0.08278
F-statistic: 2.263 on 4 and 52 DF, p-value: 0.07478
Value of test-statistic is: -1.9263 3.25 2.583
Critical values for test statistics:
     1pct 5pct 10pct
tau3 -4.04 -3.45 -3.15
phi2 6.50 4.88 4.16
phi3 8.73 6.49 5.47
> summary(ur.df(diff(tsdata4[,'lccdc']),type='drift',lags=1))
# Augmented Dickey-Fuller Test Unit Root Test #
Test regression drift
Call:
lm(formula = z.diff \sim z.lag.1 + 1 + z.diff.lag)
Residuals:
    Min
            1Q Median
                            3Q
                                   Max
-0.39419 -0.05360 0.00305 0.04888 0.46766
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03470 0.01667 2.081 0.0422 *
z.lag.1 -1.14640 0.17864 -6.417 3.63e-08 ***
z.diff.lag 0.24062 0.13158 1.829 0.0730 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Residual standard error: 0.1195 on 54 degrees of freedom
Multiple R-squared: 0.4953, Adjusted R-squared: 0.4766
F-statistic: 26.49 on 2 and 54 DF, p-value: 9.611e-09
Value of test-statistic is: -6.4175 20.5944
Critical values for test statistics:
      1pct 5pct 10pct
tau2 -3.51 -2.89 -2.58
phi1 6.70 4.71 3.86
> pp.test(tsdata4[,'txdsp'])
    Phillips-Perron Unit Root Test
data: tsdata4[, "txdsp"]
Dickey-Fuller Z(alpha) = -1.0675, Truncation lag parameter = 3, p-value = 0.984
alternative hypothesis: stationary
> pp.test(diff(tsdata4[,'txdsp']))
    Phillips-Perron Unit Root Test
data: diff(tsdata4[, "txdsp"])
Dickey-Fuller Z(alpha) = -58.5769, Truncation lag parameter = 3,
p-value = 0.01
alternative hypothesis: stationary
Warning message:
In pp.test(diff(tsdata4[, "txdsp"])) : p-value smaller than printed p-value
> pp.test(tsdata4[,'lccdc'])
    Phillips-Perron Unit Root Test
data: tsdata4[, "lccdc"]
Dickey-Fuller Z(alpha) = -7.7783, Truncation lag parameter = 3, p-value
= 0.654
alternative hypothesis: stationary
```

```
> pp.test(diff(tsdata4[,'lccdc']))
    Phillips-Perron Unit Root Test
data: diff(tsdata4[, "lccdc"])
Dickey-Fuller Z(alpha) = -46.9149, Truncation lag parameter = 3,
p-value = 0.01
alternative hypothesis: stationary
Warning message:
In pp.test(diff(tsdata4[, "lccdc"])) : p-value smaller than printed p-value
> summary(ur.kpss(tsdata4[,'txdsp'],type='tau',use.lag=2))
#######################
# KPSS Unit Root Test #
######################
Test is of type: tau with 2 lags.
Value of test-statistic is: 0.3154
Critical value for a significance level of:
                10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216
> summary(ur.kpss(diff(tsdata4[,'txdsp']),type='mu',use.lag=1))
########################
# KPSS Unit Root Test #
#######################
Test is of type: mu with 1 lags.
Value of test-statistic is: 0.9878
Critical value for a significance level of:
               10pct 5pct 2.5pct 1pct
critical values 0.347 0.463 0.574 0.739
> summary(ur.kpss(diff(tsdata4[,'txdsp']),type='tau',use.lag=1))
######################
```

```
# KPSS Unit Root Test #
######################
Test is of type: tau with 1 lags.
Value of test-statistic is: 0.1169
Critical value for a significance level of:
                10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216
> summary(ur.kpss(diff(tsdata4[,'txdsp'],differences=2),type='mu',use.lag=1))
########################
# KPSS Unit Root Test #
#######################
Test is of type: mu with 1 lags.
Value of test-statistic is: 0.04
Critical value for a significance level of:
               10pct 5pct 2.5pct 1pct
critical values 0.347 0.463 0.574 0.739
> summary(ur.kpss(tsdata4[,'lccdc'],type='tau',use.lag=2))
########################
# KPSS Unit Root Test #
############################
Test is of type: tau with 2 lags.
Value of test-statistic is: 0.3446
Critical value for a significance level of:
                10pct 5pct 2.5pct 1pct
critical values 0.119 0.146 0.176 0.216
> summary(ur.kpss(diff(tsdata4[,'lccdc']),type='mu',use.lag=1))
#######################
# KPSS Unit Root Test #
```



```
> VARselect(tsdata4,lag.max=4,type='both')
$selection
AIC(n) HQ(n) SC(n) FPE(n)
  2
       1
          1
               2
$criteria
          1
                 2
                        3
AIC(n) -5.884699522 -5.894254348 -5.859474744 -5.726949285
HQ(n) -5.772524584 -5.725991941 -5.635124868 -5.446511939
SC(n) -5.595363566 -5.460250415 -5.280802832 -5.003609395
FPE(n) 0.002783038 0.002759784 0.002863991 0.003282308
> VARselect(tsdata4,lag.max=8,type='both')
$selection
AIC(n) HQ(n) SC(n) FPE(n)
               2
  2
       1 1
$criteria
          1
                 2
                         3
                                        5
AIC(n) -5.730765476 -5.744209081 -5.712477371 -5.572574970 -5.584890626
HQ(n) -5.615679201 -5.571579668 -5.482304821 -5.284859282 -5.239631800
SC(n) -5.430574135 -5.293922069 -5.112094689 -4.822096617 -4.684316602
FPE(n) 0.003246569 0.003207882 0.003320791 0.003837722 0.003818261
          6
                 7
AIC(n) -5.487449181 -5.475990388 -5.46683587
HQ(n) -5.084647218 -5.015645286 -4.94894763
SC(n) -4.436779487 -4.275225022 -4.11597483
FPE(n) 0.004252556 0.004362186 0.00448426
MODELOS VARS
> summary(mvar1)
```

```
VAR Estimation Results:
Endogenous variables: txdsp, lccdc
Deterministic variables: both
Sample size: 59
Log Likelihood: 13.063
Roots of the characteristic polynomial:
0.8967 0.8967
Call:
VAR(y = tsdata4, p = 1, type = "both")
Estimation results for equation txdsp:
txdsp = txdsp.11 + lccdc.11 + const + trend
     Estimate Std. Error t value Pr(>ltl)
txdsp.l1 0.927145 0.052370 17.704 <2e-16 ***
lccdc.11 0.544081 0.266172 2.044 0.0457 *
const -2.881553 1.341220 -2.148 0.0361 *
      0.007627 0.009500 0.803 0.4256
trend
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.4375 on 55 degrees of freedom
Multiple R-Squared: 0.9836, Adjusted R-squared: 0.9827
F-statistic: 1097 on 3 and 55 DF, p-value: < 2.2e-16
Estimation results for equation lccdc:
lccdc = txdsp.11 + lccdc.11 + const + trend
     Estimate Std. Error t value Pr(>ltl)
0.699330 0.357337 1.957 0.0554.
const
trend
      0.005629 0.002531 2.224 0.0303 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1166 on 55 degrees of freedom
Multiple R-Squared: 0.966, Adjusted R-squared: 0.9641
F-statistic: 520.7 on 3 and 55 DF, p-value: < 2.2e-16
```

```
Covariance matrix of residuals:
     txdsp lccdc
txdsp 0.19138 -0.00815
lccdc -0.00815 0.01358
Correlation matrix of residuals:
    txdsp lccdc
txdsp 1.0000 -0.1598
lccdc -0.1598 1.0000
> summary(mvar2)
VAR Estimation Results:
Endogenous variables: txdsp, lccdc
Deterministic variables: both
Sample size: 58
Log Likelihood: 20.736
Roots of the characteristic polynomial:
0.9402 0.8053 0.1553 0.1041
Call:
VAR(y = tsdata4, p = 2, type = "both")
Estimation results for equation txdsp:
txdsp = txdsp.11 + lccdc.11 + txdsp.12 + lccdc.12 + const + trend
      Estimate Std. Error t value Pr(>ltl)
txdsp.l1 0.829007 0.124202 6.675 1.63e-08 ***
txdsp.12 0.099737 0.121385 0.822 0.41502
lccdc.12 1.355852 0.472982 2.867 0.00598 **
const -4.397618 1.262929 -3.482 0.00102 **
trend -0.001774 0.009133 -0.194 0.84676
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3872 on 52 degrees of freedom
Multiple R-Squared: 0.9876, Adjusted R-squared: 0.9864
F-statistic: 830.1 on 5 and 52 DF, p-value: < 2.2e-16
```

```
Estimation results for equation lccdc:
lccdc = txdsp.11 + lccdc.11 + txdsp.12 + lccdc.12 + const + trend
      Estimate Std. Error t value Pr(>ltl)
txdsp.l1 0.0009648 0.0380737 0.025 0.9799
lccdc.11  0.9677435  0.1391019  6.957  5.79e-09 ***
txdsp.12 -0.0003463 0.0372101 -0.009 0.9926
const
      0.8251540 0.3871475 2.131 0.0378 *
      0.0059884 0.0027998 2.139 0.0372 *
trend
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1187 on 52 degrees of freedom
Multiple R-Squared: 0.9662, Adjusted R-squared: 0.9629
F-statistic: 296.9 on 5 and 52 DF, p-value: < 2.2e-16
Covariance matrix of residuals:
     txdsp
            lccdc
txdsp 0.149909 -0.005052
lccdc -0.005052 0.014087
Correlation matrix of residuals:
    txdsp lccdc
txdsp 1.0000 -0.1099
lccdc -0.1099 1.0000
> summary(mvar4)
VAR Estimation Results:
Endogenous variables: txdsp, lccdc
Deterministic variables: both
Sample size: 56
Log Likelihood: 21.433
Roots of the characteristic polynomial:
0.9479\ 0.9479\ 0.5647\ 0.5647\ 0.4778\ 0.4778\ 0.3353\ 0.208
Call:
VAR(y = tsdata4, p = 4, type = "both")
```

```
Estimation results for equation txdsp:
txdsp = txdsp.11 + lccdc.11 + txdsp.12 + lccdc.12 + txdsp.13 + lccdc.13 + txdsp.14 + lccdc.14 + const + trend
     Estimate Std. Error t value Pr(>ltl)
txdsp.l1 0.805352 0.151310 5.323 2.96e-06 ***
txdsp.12 -0.074446  0.191249 -0.389  0.69888
lccdc.l2 1.364406 0.676172 2.018 0.04946 *
txdsp.13 0.211125 0.179280 1.178 0.24500
lccdc.14 0.304288 0.552892 0.550 0.58474
const -5.064223 1.671389 -3.030 0.00401 **
trend -0.002842 0.011057 -0.257 0.79832
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.4031 on 46 degrees of freedom
Multiple R-Squared: 0.9878, Adjusted R-squared: 0.9854
F-statistic: 413.1 on 9 and 46 DF, p-value: < 2.2e-16
Estimation results for equation lccdc:
lccdc = txdsp.11 + lccdc.11 + txdsp.12 + lccdc.12 + txdsp.13 + lccdc.13 + txdsp.14 + lccdc.14 + const + trend
     Estimate Std. Error t value Pr(>ltl)
txdsp.11 -0.022377 0.045448 -0.492 0.625
lccdc.l1 0.989473 0.147105 6.726 2.35e-08 ***
txdsp.12 0.048078 0.057444 0.837 0.407
txdsp.13 -0.055244 0.053849 -1.026 0.310
lccdc.13 0.218360 0.211002 1.035 0.306
txdsp.14 0.014273 0.039668 0.360 0.721
lccdc.l4 0.013600 0.166067 0.082 0.935
const
      0.571299 0.502019 1.138 0.261
trend
      0.007259 0.003321 2.186 0.034 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1211 on 46 degrees of freedom
```

```
Multiple R-Squared: 0.9676, Adjusted R-squared: 0.9613
F-statistic: 152.6 on 9 and 46 DF, p-value: < 2.2e-16
Covariance matrix of residuals:
      txdsp
            lccdc
txdsp 0.162472 -0.004293
lccdc -0.004293 0.014658
Correlation matrix of residuals:
     txdsp lccdc
txdsp 1.00000 -0.08797
lccdc -0.08797 1.00000
> summary(mvar8)
VAR Estimation Results:
Endogenous variables: txdsp, lccdc
Deterministic variables: both
Sample size: 52
Log Likelihood: 30.568
Roots of the characteristic polynomial:
0.9948\ 0.9264\ 0.9264\ 0.9254\ 0.9254\ 0.9004\ 0.9004\ 0.8713\ 0.8713\ 0.8289\ 0.8289\ 0.8132\ 0.8132\ 0.7491\ 0.6213
0.6213
Call:
VAR(y = tsdata4, p = 8, type = "both")
Estimation results for equation txdsp:
txdsp = txdsp.11 + lccdc.11 + txdsp.12 + lccdc.12 + txdsp.13 + lccdc.13 + txdsp.14 + lccdc.14 +
txdsp.15 + lccdc.15 + txdsp.16 + lccdc.16 + txdsp.17 + lccdc.17 + txdsp.18 + lccdc.18 + const + trend
     Estimate Std. Error t value Pr(>ltl)
txdsp.11 0.73450 0.16703 4.398 0.000102 ***
txdsp.12 0.08526 0.20906 0.408 0.685964
lccdc.12 0.92722 0.72097 1.286 0.207109
txdsp.13 0.12262 0.20346 0.603 0.550710
lccdc.13 0.26396 0.75985 0.347 0.730447
txdsp.14 0.26142 0.20340 1.285 0.207388
```

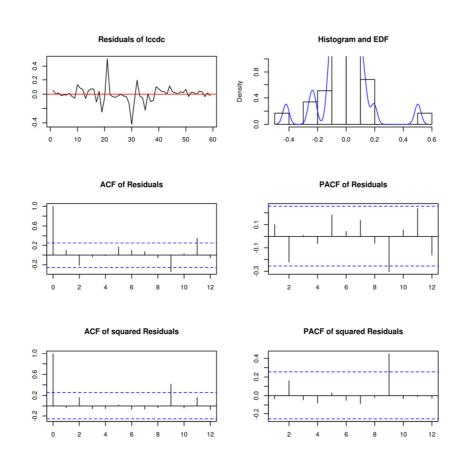
lccdc.14 0.24904 0.76358 0.326 0.746318 txdsp.15 -0.53976 0.21783 -2.478 0.018344 *

```
txdsp.17 0.22626 0.21313 1.062 0.295889
lccdc.17  0.51454  0.74220  0.693  0.492853
txdsp.18 0.14509 0.15603 0.930 0.358979
lccdc.18 0.36605 0.61050 0.600 0.552753
const -6.99339 2.44881 -2.856 0.007268 **
trend -0.00790 0.01631 -0.485 0.631124
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3944 on 34 degrees of freedom
Multiple R-Squared: 0.9906, Adjusted R-squared: 0.9858
F-statistic: 210 on 17 and 34 DF, p-value: < 2.2e-16
Estimation results for equation lccdc:
lccdc = txdsp.11 + lccdc.11 + txdsp.12 + lccdc.12 + txdsp.13 + lccdc.13 + txdsp.14 + lccdc.14 + txdsp.15 + lccdc.14 + txdsp.15 + lccdc.16 + txdsp.16 + lccdc.17 + txdsp.17 + lccdc.18 + txdsp.18 + txdsp.18 + lccdc.18 + t
lccdc.15 + txdsp.16 + lccdc.16 + txdsp.17 + lccdc.17 + txdsp.18 + lccdc.18 + const + trend
           Estimate Std. Error t value Pr(>ltl)
lccdc.11 1.059508 0.162203 6.532 1.77e-07 ***
txdsp.12 0.034000 0.067251 0.506 0.6164
txdsp.13 -0.044604  0.065450 -0.681  0.5002
lccdc.13 0.459913 0.244436 1.882 0.0685.
txdsp.14 0.067075 0.065431 1.025 0.3125
txdsp.15 -0.034564 0.070075 -0.493 0.6250
lccdc.15 0.477855 0.242746 1.969 0.0572.
txdsp.l6 0.077747 0.079729 0.975 0.3364
txdsp.17 -0.130996  0.068560 -1.911  0.0645.
lccdc.17  0.149818  0.238758  0.627  0.5345
txdsp.18 0.059822 0.050194 1.192 0.2416
const
             1.129282 0.787759 1.434 0.1608
trend
             0.004950 0.005245 0.944 0.3519
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

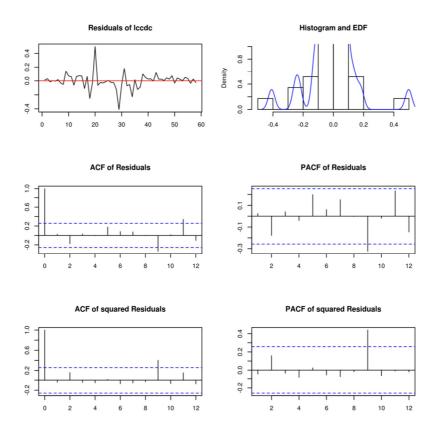
Residual standard error: 0.1269 on 34 degrees of freedom Multiple R-Squared: 0.9702, Adjusted R-squared: 0.9554 F-statistic: 65.2 on 17 and 34 DF, p-value: < 2.2e-16

Covariance matrix of residuals:

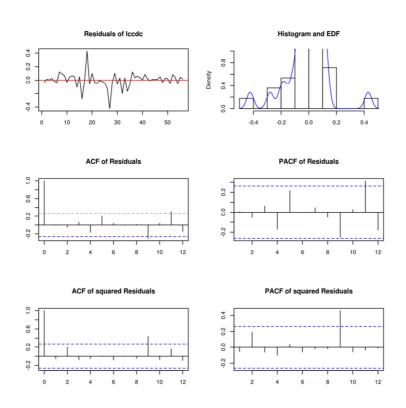
txdsp lccdc txdsp 0.155516 -0.005311

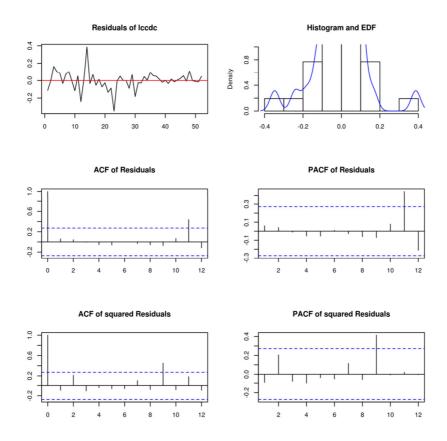

lccdc -0.005311 0.016093

Correlation matrix of residuals:


txdsp lccdc txdsp 1.0000 -0.1062

lccdc -0.1062 1.0000


Anexo J: Testes de selecção do lag óptimo


Anexo K: Teste de Heterocedasticidade dos Resíduos - VAR(1)

Anexo M: Teste de Heterocedasticidade dos Resíduos - VAR(2)

Anexo L: Teste de Heterocedasticidade dos Resíduos – VAR(4)

Anexo N: Teste de Heterocedasticidade dos Resíduos - VAR(8)

VAR(1)

+ serial.test(varModel,lags.pt=16,type='PT.asymptotic')

Portmanteau Test (asymptotic)

data: Residuals of VAR object varModel Chi-squared = 66.5138, df = 60, p-value = 0.2628

+ serial.test(varModel,lags.pt=16,type='PT.adjusted')

Portmanteau Test (adjusted)

data: Residuals of VAR object varModel Chi-squared = 78.4849, df = 60, p-value = 0.05487

+ serial.test(varModel,lags.pt=16,type='BG')

Breusch-Godfrey LM test

data: Residuals of VAR object varModel Chi-squared = 21.0612, df = 20, p-value = 0.3935

+ serial.test(varModel,lags.pt=16,type='ES')

Edgerton-Shukur F test

data: Residuals of VAR object varModel F statistic = 0.9667, df1 = 20, df2 = 88, p-value = 0.5088

> varModel = mvar2

+ serial.test(varModel,lags.pt=16,type='PT.asymptotic')

Portmanteau Test (asymptotic)

data: Residuals of VAR object varModel Chi-squared = 61.2699, df = 56, p-value = 0.2926

+ serial.test(varModel,lags.pt=16,type='PT.adjusted')

Portmanteau Test (adjusted)

data: Residuals of VAR object varModel Chi-squared = 72.7189, df = 56, p-value = 0.06592

+ serial.test(varModel,lags.pt=16,type='BG')

Breusch-Godfrey LM test

data: Residuals of VAR object varModel Chi-squared = 20.0118, df = 20, p-value = 0.4572

+ serial.test(varModel,lags.pt=16,type='ES')

Edgerton-Shukur F test

data: Residuals of VAR object varModel F statistic = 0.8595, df1 = 20, df2 = 82, p-value = 0.6362

> varModel = mvar4

+ serial.test(varModel,lags.pt=16,type='PT.asymptotic')

Portmanteau Test (asymptotic)

data: Residuals of VAR object varModel Chi-squared = 48.2473, df = 48, p-value = 0.4628

+ serial.test(varModel,lags.pt=16,type='PT.adjusted')

Portmanteau Test (adjusted)

data: Residuals of VAR object varModel Chi-squared = 58.166, df = 48, p-value = 0.1494

+ serial.test(varModel,lags.pt=16,type='BG')

Breusch-Godfrey LM test

data: Residuals of VAR object varModel Chi-squared = 27.1259, df = 20, p-value = 0.1318

+ serial.test(varModel,lags.pt=16,type='ES')

Edgerton-Shukur F test

data: Residuals of VAR object varModel F statistic = 1.1282, df1 = 20, df2 = 70, p-value = 0.3429 > varModel = mvar8

+ serial.test(varModel,lags.pt=16,type='PT.asymptotic')

Portmanteau Test (asymptotic)

data: Residuals of VAR object varModel Chi-squared = 36.9977, df = 32, p-value = 0.2491

+ serial.test(varModel,lags.pt=16,type='PT.adjusted')

Portmanteau Test (adjusted)

data: Residuals of VAR object varModel Chi-squared = 47.2107, df = 32, p-value = 0.0406

+ serial.test(varModel,lags.pt=16,type='BG')

Breusch-Godfrey LM test

data: Residuals of VAR object varModel Chi-squared = 20.6145, df = 20, p-value = 0.4201

+ serial.test(varModel,lags.pt=16,type='ES')

Edgerton-Shukur F test

data: Residuals of VAR object varModel F statistic = 0.5741, df1 = 20, df2 = 46, p-value = 0.9108

Anexo O: Teste de Autocorrelação

> varModel = mvar1

+ normality.test(varModel,multivariate.only=T)\$jb.mul \$JB

JB-Test (multivariate)

data: Residuals of VAR object varModel Chi-squared = 143.2488, df = 4, p-value < 2.2e-16

> varModel = mvar2

```
+ normality.test(varModel,multivariate.only=T)$jb.mul $JB

JB-Test (multivariate)

data: Residuals of VAR object varModel
Chi-squared = 137.162, df = 4, p-value < 2.2e-16

> varModel = mvar4
+ normality.test(varModel,multivariate.only=T)$jb.mul $JB

JB-Test (multivariate)

data: Residuals of VAR object varModel
Chi-squared = 89.3856, df = 4, p-value < 2.2e-16

> varModel = mvar8
+ normality.test(varModel,multivariate.only=T)$jb.mul $JB

JB-Test (multivariate)
```

Chi-squared = 49.941, df = 4, p-value = 3.715e-10

Anexo P: Teste de Normalidade dos Resíduos

data: Residuals of VAR object varModel

```
> varModel = mvar1
+ res=arch.test(varModel,lags.multi=8,multivariate.only=FALSE)
+ res$arch.uni
$txdsp
ARCH test (univariate)
data: Residual of txdsp equation
Chi-squared = 7.8572, df = 16, p-value = 0.953
$lccdc
ARCH test (univariate)
```

```
data: Residual of lccdc equation
Chi-squared = 10.6429, df = 16, p-value = 0.831
+ res$arch.mul
  ARCH (multivariate)
data: Residuals of VAR object varModel
Chi-squared = 72.2005, df = 72, p-value = 0.4712
> varModel = mvar2
res=arch.test(varModel,lags.multi=8,multivariate.only=FALSE)
+ res$arch.uni
$txdsp
  ARCH test (univariate)
data: Residual of txdsp equation
Chi-squared = 7.1423, df = 16, p-value = 0.9704
$lccdc
  ARCH test (univariate)
data: Residual of lccdc equation
Chi-squared = 9.8801, df = 16, p-value = 0.8728
+ res$arch.mul
  ARCH (multivariate)
data: Residuals of VAR object varModel
Chi-squared = 63.5989, df = 72, p-value = 0.7496
> varModel = mvar4
res=arch.test(varModel,lags.multi=8,multivariate.only=FALSE)
```

```
+ res$arch.uni
$txdsp

ARCH test (univariate)

data: Residual of txdsp equation
Chi-squared = 11.9317, df = 16, p-value = 0.7487

$lccdc

ARCH test (univariate)

data: Residual of lccdc equation
Chi-squared = 10.9877, df = 16, p-value = 0.8102

+ res$arch.mul

ARCH (multivariate)

data: Residuals of VAR object varModel
Chi-squared = 65.2551, df = 72, p-value = 0.7001

Anexo Q: Teste à Heterocedasticidade
```

```
Eigenvectors, normalised to first column:
(These are the cointegration relations)
       txdsp.l1 lccdc.l1 trend.l1
txdsp.11 1.00000000 1.000000 1.0000000
lccdc.l1 -12.07117574 51.355363 -1.7311703
trend.11 0.03285324 -2.454163 -0.0949129
Weights W:
(This is the loading matrix)
       txdsp.l1
                  lccdc.l1
                              trend.11
txdsp.d -0.071028726 -0.0002280421 -4.739959e-16
lccdc.d 0.003018211 -0.0023996893 -3.058766e-16
+ summary(ca.jo(tsdata4,type='trace',K=order,ecdet='trend',spec='longrun'))
#############################
# Johansen-Procedure #
#####################################
Test type: trace statistic, with linear trend in cointegration
Eigenvalues (lambda):
[1] 3.275142e-01 1.060882e-01 5.551115e-16
Values of teststatistic and critical values of test:
      test 10pct 5pct 1pct
r <= 1 | 6.50 10.49 12.25 16.26
r = 0 + 29.52 22.76 25.32 30.45
Eigenvectors, normalised to first column:
(These are the cointegration relations)
       txdsp.12 lccdc.12 trend.12
txdsp.12 1.00000000 1.000000 1.0000000
lccdc.l2 -12.07117574 51.355363 -1.7311703
trend.12  0.03285324 -2.454163 -0.0949129
Weights W:
(This is the loading matrix)
```

```
txdsp.12
                 lccdc.12
                            trend.12
txdsp.d -0.071028726 -0.0002280421 5.273787e-15
lccdc.d 0.003018211 -0.0023996893 -6.008832e-16
+ summary(ca.jo(tsdata4,type='eigen',K=order,ecdet='trend',spec='transitory'))
# Johansen-Procedure #
Test type: maximal eigenvalue statistic (lambda max), with linear trend in
cointegration
Eigenvalues (lambda):
[1] 3.275142e-01 1.060882e-01 6.106227e-16
Values of teststatistic and critical values of test:
     test 10pct 5pct 1pct
r <= 1 | 6.50 10.49 12.25 16.26
r = 0 \mid 23.01 \mid 16.85 \mid 18.96 \mid 23.65
Eigenvectors, normalised to first column:
(These are the cointegration relations)
       txdsp.l1 lccdc.l1 trend.l1
txdsp.11 1.00000000 1.000000 1.0000000
lccdc.l1 -12.07117574 51.355363 -1.7311703
trend.11 0.03285324 -2.454163 -0.0949129
Weights W:
(This is the loading matrix)
      txdsp.11
                 lccdc.l1
                            trend.11
txdsp.d -0.071028726 -0.0002280421 -4.739959e-16
lccdc.d 0.003018211 -0.0023996893 -3.058766e-16
+ summary(ca.jo(tsdata4,type='eigen',K=order,ecdet='trend',spec='longrun'))
#####################################
# Johansen-Procedure #
Test type: maximal eigenvalue statistic (lambda max), with linear trend in
```

```
cointegration
Eigenvalues (lambda):
[1] 3.275142e-01 1.060882e-01 5.551115e-16
Values of teststatistic and critical values of test:
      test 10pct 5pct 1pct
r <= 1 | 6.50 10.49 12.25 16.26
r = 0 \mid 23.01 \mid 16.85 \mid 18.96 \mid 23.65
Eigenvectors, normalised to first column:
(These are the cointegration relations)
        txdsp.12 lccdc.12 trend.12
txdsp.12 1.00000000 1.000000 1.0000000
lccdc.l2 -12.07117574 51.355363 -1.7311703
trend.12 0.03285324 -2.454163 -0.0949129
Weights W:
(This is the loading matrix)
       txdsp.l2
                   lccdc.12
                              trend.12
txdsp.d -0.071028726 -0.0002280421 5.273787e-15
lccdc.d 0.003018211 -0.0023996893 -6.008832e-16
> # Cointegration Test
+ order=4
+ summary(ca.jo(tsdata4,type='trace',K=order,ecdet='trend',spec='transitory'))
####################################
# Johansen-Procedure #
Test type: trace statistic, with linear trend in cointegration
Eigenvalues (lambda):
[1] 2.495957e-01 1.036977e-01 5.551115e-17
Values of teststatistic and critical values of test:
      test 10pct 5pct 1pct
r <= 1 | 6.13 10.49 12.25 16.26
r = 0 \mid 22.21 \mid 22.76 \mid 25.32 \mid 30.45 \mid
```

```
Eigenvectors, normalised to first column:
(These are the cointegration relations)
        txdsp.l1 lccdc.l1 trend.l1
txdsp.11 1.000000000 1.0000000 1.00000000
lccdc.l1 -11.718663927 7.5752275 -2.68374390
trend.11 0.002420902 -0.4922698 -0.05692981
Weights W:
(This is the loading matrix)
       txdsp.11
                  lccdc.l1
                             trend.11
txdsp.d -0.0793629917 0.005382633 -8.676618e-15
lccdc.d -0.0005211119 -0.014748691 1.867183e-16
+ summary(ca.jo(tsdata4,type='trace',K=order,ecdet='trend',spec='longrun'))
#############################
# Johansen-Procedure #
#####################################
Test type: trace statistic, with linear trend in cointegration
Eigenvalues (lambda):
[1] 2.495957e-01 1.036977e-01 -1.387779e-16
Values of teststatistic and critical values of test:
     test 10pct 5pct 1pct
r <= 1 | 6.13 10.49 12.25 16.26
r = 0 \mid 22.21 \mid 22.76 \mid 25.32 \mid 30.45 \mid
Eigenvectors, normalised to first column:
(These are the cointegration relations)
        txdsp.14 lccdc.14 trend.14
txdsp.l4 1.000000000 1.0000000 1.00000000
lccdc.l4 -11.718663927 7.5752275 -2.68374390
Weights W:
(This is the loading matrix)
```

```
txdsp.l4 lccdc.l4
                           trend.14
txdsp.d -0.0793629917 0.005382633 -8.690529e-15
lccdc.d -0.0005211119 -0.014748691 1.783500e-17
+ summary(ca.jo(tsdata4,type='eigen',K=order,ecdet='trend',spec='transitory'))
# Johansen-Procedure #
Test type: maximal eigenvalue statistic (lambda max), with linear trend in
cointegration
Eigenvalues (lambda):
[1] 2.495957e-01 1.036977e-01 5.551115e-17
Values of teststatistic and critical values of test:
     test 10pct 5pct 1pct
r <= 1 | 6.13 10.49 12.25 16.26
r = 0 \mid 16.08 \mid 16.85 \mid 18.96 \mid 23.65
Eigenvectors, normalised to first column:
(These are the cointegration relations)
       txdsp.l1 lccdc.l1 trend.l1
txdsp.11 1.000000000 1.0000000 1.00000000
lccdc.l1 -11.718663927 7.5752275 -2.68374390
trend.11 0.002420902 -0.4922698 -0.05692981
Weights W:
(This is the loading matrix)
       txdsp.l1
               lccdc.l1
                           trend.11
txdsp.d -0.0793629917 0.005382633 -8.676618e-15
lccdc.d -0.0005211119 -0.014748691 1.867183e-16
+ summary(ca.jo(tsdata4,type='eigen',K=order,ecdet='trend',spec='longrun'))
#####################################
# Johansen-Procedure #
Test type: maximal eigenvalue statistic (lambda max), with linear trend in
```

cointegration Eigenvalues (lambda): [1] 2.495957e-01 1.036977e-01 -1.387779e-16 Values of teststatistic and critical values of test: test 10pct 5pct 1pct r <= 1 | 6.13 10.49 12.25 16.26 $r = 0 \mid 16.08 \mid 16.85 \mid 18.96 \mid 23.65$ Eigenvectors, normalised to first column: (These are the cointegration relations) txdsp.l4 lccdc.l4 trend.l4 txdsp.l4 1.000000000 1.0000000 1.00000000 lccdc.l4 -11.718663927 7.5752275 -2.68374390 trend.l4 0.002420902 -0.4922698 -0.05692981 Weights W: (This is the loading matrix) txdsp.l4 lccdc.l4 trend.14 txdsp.d -0.0793629917 0.005382633 -8.690529e-15 lccdc.d -0.0005211119 -0.014748691 1.783500e-17 Anexo R: Teste à Cointegração

```
r <= 1 | 3.94 7.52 9.24 12.97
r = 0 | 37.17 17.85 19.96 24.60
```

Eigenvectors, normalised to first column: (These are the cointegration relations)

lccdc.l1 txdsp.l1 constant lccdc.l1 1.00000000 1.0000000 1.0000000 txdsp.l1 -0.08468525 -0.1829727 -0.4205218 constant -5.21120255 -5.0013846 -2.7252466

Weights W:

(This is the loading matrix)

lccdc.11 txdsp.11 constant lccdc.d 0.02036635 -0.1118672 3.384007e-17 txdsp.d 0.75714020 0.0683558 2.442281e-15

- + #restricted VECM
- + coModel.rvecm<-cajorls(coModel, r = 1)
- + summary(coModel.rvecm\$rlm)

Response lccdc.d:

Call:

 $lm(formula = lccdc.d \sim ect1 + lccdc.dl1 + txdsp.dl1 - 1, data = data.mat)$

Residuals:

Min 1Q Median 3Q Max -0.35965 -0.03171 0.01593 0.05911 0.55806

Coefficients:

Estimate Std. Error t value Pr(>ltl) ect1 0.02037 0.03913 0.521 0.605 lccdc.dl1 0.09753 0.14825 0.658 0.513 txdsp.dl1 0.01273 0.03725 0.342 0.734

Residual standard error: 0.1245 on 55 degrees of freedom Multiple R-squared: 0.03053, Adjusted R-squared: -0.02235

F-statistic: 0.5773 on 3 and 55 DF, p-value: 0.6324

Response txdsp.d:

Call:

```
lm(formula = txdsp.d \sim ect1 + lccdc.dl1 + txdsp.dl1 - 1, data = data.mat)
Residuals:
  Min
          1Q Median
                        3Q
                              Max
-0.78070 -0.26612 -0.01867 0.18036 1.05299
Coefficients:
     Estimate Std. Error t value Pr(>ltl)
       ect1
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
Residual standard error: 0.3771 on 55 degrees of freedom
Multiple R-squared: 0.4665, Adjusted R-squared: 0.4374
F-statistic: 16.03 on 3 and 55 DF, p-value: 1.312e-07
+ coModel.rvecm$beta
        ect1
lccdc.l1 1.00000000
txdsp.11 -0.08468525
constant -5.21120255
+ # VECM Specification
+ summary(coModel<-
ca.jo(tsdata4.r,type='trace',K=2,ecdet='trend',spec='transitory'))
##############################
# Johansen-Procedure #
Test type: trace statistic, with linear trend in cointegration
Eigenvalues (lambda):
[1] 3.275142e-01 1.060882e-01 7.216450e-16
Values of teststatistic and critical values of test:
     test 10pct 5pct 1pct
r <= 1 | 6.50 10.49 12.25 16.26
r = 0 \mid 29.52 \mid 22.76 \mid 25.32 \mid 30.45 \mid
Eigenvectors, normalised to first column:
```

```
(These are the cointegration relations)
       lccdc.l1 txdsp.l1 trend.l1
lccdc.11 1.000000000 1.00000000 1.00000000
txdsp.11 -0.082841972 0.01947216 -0.57764394
trend.11 -0.002721627 -0.04778786 0.05482586
Weights W:
(This is the loading matrix)
      lccdc.l1 txdsp.l1
                          trend.11
lccdc.d -0.03643336 -0.12323692 3.351656e-16
txdsp.d 0.85740023 -0.01171119 4.092526e-15
+ #restricted VECM
+ coModel.rvecm<-cajorls(coModel, r = 1)
+ summary(coModel.rvecm$rlm)
Response lccdc.d:
Call:
lm(formula = lccdc.d \sim ect1 + constant + lccdc.dl1 + txdsp.dl1 -
  1, data = data.mat)
Residuals:
  Min
          1Q Median
                          30
                                Max
-0.38197 -0.05546 0.00248 0.04462 0.51584
Coefficients:
     Estimate Std. Error t value Pr(>ltl)
       -0.03643 0.05418 -0.673 0.504
ect1
constant 0.22405 0.29518 0.759 0.451
lccdc.dl1 0.11885 0.14713 0.808 0.423
txdsp.dl1 0.01470 0.03657 0.402 0.689
Residual standard error: 0.1231 on 54 degrees of freedom
```

Multiple R-squared: 0.07015, Adjusted R-squared: 0.001271

F-statistic: 1.018 on 4 and 54 DF, p-value: 0.4061

Response txdsp.d:

Call:

lm(formula = txdsp.d ~ ect1 + constant + lccdc.dl1 + txdsp.dl1 - 1, data = data.mat)

```
Residuals:
  Min
        1Q Median
                    3Q Max
-0.7901 -0.2636 -0.0131 0.1852 1.0511
Coefficients:
     Estimate Std. Error t value Pr(>ltl)
      Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.38 on 54 degrees of freedom
Multiple R-squared: 0.4682, Adjusted R-squared: 0.4288
F-statistic: 11.89 on 4 and 54 DF, p-value: 5.368e-07
+ coModel.rvecm$beta
        ect1
lccdc.l1 1.000000000
txdsp.11 -0.082841972
trend.11 -0.002721627
># VECM Specification
+ summary(coModel<-
ca.jo(tsdata4.r,type='trace',K=2,ecdet='const',spec='transitory'))
# Johansen-Procedure #
Test type: trace statistic, without linear trend and constant in cointegration
Eigenvalues (lambda):
[1] 4.361270e-01 6.571100e-02 6.753625e-17
Values of teststatistic and critical values of test:
     test 10pct 5pct 1pct
r \le 1 \mid 3.94 \mid 7.52 \mid 9.24 \mid 12.97
r = 0 \mid 37.17 \mid 17.85 \mid 19.96 \mid 24.60
```

Eigenvectors, normalised to first column: (These are the cointegration relations)

lccdc.l1 txdsp.l1 constant

lccdc.11 1.00000000 1.0000000 1.0000000

txdsp.l1 -0.08468525 -0.1829727 -0.4205218

constant -5.21120255 -5.0013846 -2.7252466

Anexo S: Modelo VECM

> # CAusality Granger

+ model=mvar1

+ causality(model, cause = "txdsp")

\$Granger

Granger causality H0: txdsp do not Granger-cause lccdc

data: VAR object model

F-Test = 0.0192, df1 = 1, df2 = 110, p-value = 0.8902

\$Instant

H0: No instantaneous causality between: txdsp and lccdc

data: VAR object model

Chi-squared = 1.4698, df = 1, p-value = 0.2254

+ causality(model, cause = "lccdc")

\$Granger

Granger causality H0: lccdc do not Granger-cause txdsp

data: VAR object model

F-Test = 4.1783, df1 = 1, df2 = 110, p-value = 0.04333

\$Instant

H0: No instantaneous causality between: lccdc and txdsp

```
data: VAR object model
```

Chi-squared = 1.4698, df = 1, p-value = 0.2254

> # CAusality Granger

+ model=mvar2

+ causality(model, cause = "txdsp")

\$Granger

Granger causality H0: txdsp do not Granger-cause lccdc

data: VAR object model

F-Test = 9e-04, df1 = 2, df2 = 104, p-value = 0.9991

\$Instant

H0: No instantaneous causality between: txdsp and lccdc

data: VAR object model

Chi-squared = 0.6925, df = 1, p-value = 0.4053

+ causality(model, cause = "lccdc")

\$Granger

Granger causality H0: lccdc do not Granger-cause txdsp

data: VAR object model

F-Test = 7.3371, df1 = 2, df2 = 104, p-value = 0.001045

\$Instant

H0: No instantaneous causality between: lccdc and txdsp

data: VAR object model

Chi-squared = 0.6925, df = 1, p-value = 0.4053

> # CAusality Granger

```
+ model=mvar4
```

+ causality(model, cause = "txdsp")

\$Granger

Granger causality H0: txdsp do not Granger-cause

data: VAR object model

F-Test = 0.4576, df1 = 4, df2 = 92, p-value = 0.7666

\$Instant

H0: No instantaneous causality between: txdsp and lccdc

data: VAR object model

Chi-squared = 0.43, df = 1, p-value = 0.512

+ causality(model, cause = "lccdc")

\$Granger

Granger causality H0: lccdc do not Granger-cause txdsp

data: VAR object model

F-Test = 3.4821, df1 = 4, df2 = 92, p-value = 0.01076

\$Instant

H0: No instantaneous causality between: lccdc and txdsp

data: VAR object model

Chi-squared = 0.43, df = 1, p-value = 0.512

- > # CAusality Granger
- + model=mvar4
- + causality(model, cause = "txdsp")

\$Granger

Granger causality H0: txdsp do not Granger-cause lccdc

```
data: VAR object model
F-Test = 0.4576, df1 = 4, df2 = 92, p-value = 0.7666
```

\$Instant

H0: No instantaneous causality between: txdsp and lccdc

data: VAR object model Chi-squared = 0.43, df = 1, p-value = 0.512

+ causality(model, cause = "lccdc") \$Granger

Granger causality H0: lccdc do not Granger-cause txdsp

data: VAR object model F-Test = 3.4821, df1 = 4, df2 = 92, p-value = 0.01076

\$Instant

H0: No instantaneous causality between: lccdc and txdsp

data: VAR object model Chi-squared = 0.43, df = 1, p-value = 0.512

> # CAusality Granger

+ model=mvar8

+ causality(model, cause = "txdsp")

\$Granger

Granger causality H0: txdsp do not Granger-cause lccdc

data: VAR object model F-Test = 0.765, df1 = 8, df2 = 68, p-value = 0.6345

\$Instant

H0: No instantaneous causality between: txdsp and lccdc

data: VAR object model

Chi-squared = 0.5795, df = 1, p-value = 0.4465

+ causality(model, cause = "lccdc")

\$Granger

Granger causality H0: lccdc do not Granger-cause txdsp

data: VAR object model

F-Test = 2.0699, df1 = 8, df2 = 68, p-value = 0.05089

\$Instant

H0: No instantaneous causality between: lccdc and txdsp

data: VAR object model

Chi-squared = 0.5795, df = 1, p-value = 0.4465

Anexo T: Teste de Causalidade à Granger