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Abstract. This paper main subject is the M |G| queue system transient probabilities
study as time functions. We achieve it completely when the time origin is an unoccupied
system instant. But we do not get such a goal when the time origin is a busy period
beginning instant. We shall see that, in this last situation, the service time length
distribution hazard rate function plays a very important role. And so the results got may
be useful in the survival analysis field. As the M |G| queue system can be applied in
the modelation of many social problems: sickness, unemployment, emigration, ...(see, for
instance, Ferreira (1995 and 1996)), in these situations it is very important to study the
busy period length distribution of that system. We show, in this work, that the solution of
the problem may be in the resolution of a Ricatti equation generalizing the work of
Ferreira (1998) as a consequence of the transient behaviour study.
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1 Introduction

We call M| G| a queue system at which the customers arrive according to a Poisson
process at rate A, receive a service whose time length is a positive random variable with

distribution function G(.) and mean « . So a = f [1- G(v)}v. Upon its arrival each customer

finds immediately a server available. Each customer service is independent from the other
customers services and from the arrival process. The traffic intensity is p = A« .
Being N (t)the occupied servers number, that is the same that the being served customers

number, at time ¢ in a M|G|oo system, according to Carrillo (1991) we have, putting
2o, (1)= P[N(1)=n|N(0)=0], n=0,,2,..., that
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oy (t)= sl -Gk o HO-GON 615 (1.1).

n!

So, the transient distribution, being the time origin an empty system instant, is Poisson
with mean /lj(t) [1-G(v)hv .

The stationary distribution is the limit one:

Pl
lim po,(t)=F—e P ,n=012,..
> n!

being Poisson with mean p.

Be p,, (t)=P[N(t): n|N(0)=1’],n =0,1,2,..., meaning N(0)=1'that the time origin is
the one of a customer arrival at the system, making the number of served customers jump
from Otol. That is: a busy period begins.

At t >0, possibly:

The customer that arrived at the time origin abandoned the system, with probability
G(z), or goes on being served, with probability 1—G(t);

The other servers, that were unoccupied at the time origin, are still unoccupied or
occupied with 1,2,... customers, with probabilities given by p,, (t),n =12,...

Both subsystems, the one of the initial customer and the other of the initially
unoccupied servers, are independent and so we have

prro(t) = poo(t)G() (1.2)

p1'n(6)= pon ()G()+ pop—1 (EN1-G () n=12,...

For the M | M | o system (exponential service times) (1.2) is valid even if N (0) =1, that

is: since the time origin in an instant at which there is one only customer in the system,
simply, owing to the exponential distribution lack of memory. So

t
_t —p[l—e J
M(t)= l-e &% e

_ l-e @
¢\l q -y p t
M 1 n-1 o A G
Py, )= p l-e @ e

(n—l)! n

+e @ |[n=1,2,..

It is easy to show that
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pn
lim py, (t) =L ¢ n=012,..
t—® n!

Calling ,u(l',t) and ,u(O,t)the mean values associated to the distributions given by (1.2)
and (1.1), respectively, we have that

OZ:TG(t)poo(l‘)+ S npon1(eN1- Glt)) =

n=1

ui)= Tmp ()=

n=1 1n n

G)u(00+0-G0) T(+1)p0 )= 0.0)+(1-6(). 5o
fu

u(',0)=1=G(e)+ A4 [1 - GO )l (1.3)

We intend to present some results about pg,, (¢),7=0,1.2,..., pyo(¢)and w(I',£)behaviours as
time functions. We will show too that the p; (t) study induces a Ricatti equation important to
the determination of a M | G | oo systems collection with practically exponential busy period.

2 POn (t), n=0,12,... Behaviour as Time Function

This section main result is:

Proposition 2.1
If G(t) <1, t >0, continuous and differentiable

a) D(t), £>0 is a decreasing function,

b) p,, (t) , n=p, t>0 is an increasing function,
) po,lt), 0<n<p, p >

1) increases in ]O,tn [being t,given by
b [1-G(v)lv =2 2.1),
i =G0k == @.1)
i) decreases in ]tn,oo[ and

iiiy  the pgy, (t) maximum is

n

POn (tn)=nn_'€_n (2.2)

Dem: a) is evident since

poo(t)= e~ Ao [1-G(v)lav
e (t)(l_G(t»[ma[l_nG(»]dv‘l]’t>O'

As M(t) -GV <p,if n> p,%pon (t)> 0,z > 0and we conclude b). If
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d ¢ n
n< PaEPOn (t)=0 I [1-G(v)hv = ) and we have c).

Notes:
- Although ¢, , given by (2.1), depends on the arrival rate and on the service time length

distribution, that does not happen with p(, (tn ) given by (2.2),
- For a certain arrival rate and service time length distribution we have, evidently,

In+121n

and, as

= —e =

Pon+1(ty41) (n+1)nJrl —n-1 nl g ( +1)(n+1jn e ! B
pOn(ln) (n+1)! n"

1) _ _
=(1+;)e I<ee 1=1, P0n+1(tn+l)gpon(ln)

Under Proposition (2.1) conditions, but with 1— G(t) =0,t>1¢7, (1.1) becomes

(1t [1- G)lav)! D=6y

n!

n
Pon(t)= <1 and Pon(f)=p—,€_pat>tl,
n.

,n=0,12,..

n
and, so, the Proposition (2.1) conclusions are still valid, but the values p—'e_p ,n=0,12,...
n!

occur after # =¢;. Evidently, ¢, <t;,0<n<p,p>1.
3 pl,o(t) Behaviour as Time Function

For the py7y (t),n =0,1,2,... it is not possible to perform such a complete study as for the
Pon(t),n=0,12,.... But the results for p,,(¢) are very interesting as we will see. Now the
important result is

Preposition 3.1
If G(¢)<1,¢> 0, continuous, differentiable and

h(t)> AG(t),t >0 (3.1),
being A(¢) the hazard rate function associated to G(), p1o() is non-decreasing.

Dem: It is enough to note that, under these conditions,
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& 0()= oo (0-GO[ £ -260)] where ()= ) and 40)= £0

dt

Notes:
Note that

h(t)> A (3.2)
is a sufficient condition for (3.1) and so if the rate at which the services end is greater or equal
than the customers arrival rate pj((¢) is non-decreasing,

- For the M | M | oo system (3.2) is equivalent to
p <1

- Evidently these results may be useful in the survival analysis fields.
Putting

h(t)-AG(t)= B, p e IR

we have a Ricatti equation whose solution is (note that G(t)= 1, >0 is a solution)

[1—e‘/?)(z+/3)
le_p(e(/“_ﬂ)t —1)+ﬂ, (20AshE epﬂ—l

G(t)=1- (3.3),

see Ferreira (1998). Fora M |G oo system with this service time length distribution

(1-5/’]/3 bl
pro()=e* A B ys0a< s
A eP -1

Concretely
-f=-1 we get

rro()=1:=>0.

In fact, in this situation, G(t)= 1,t>0. So G() is degenerated at the origin. That is:
every customer has null service time length. So the system is never occupied,

_B=0
pl'()(t):e_p,tZO

and so py'((f),z > 01is constant,
A

ef —1

pro(t)= e_p(l—e‘(“ﬂ)’ j,t >0

With the service time length distribution given by (3.3), (1.1) becomes
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(—log(e_p +(1—e‘/’ je‘(/“ﬂ)f Dn

pon)= , GEER
n!
20,-A< < A
eP -1
Calling T the random variable associated to G() given by (3.3) we have, see Ferreira (1998
a)
(l—e_p )e_p n! SE[T”]S e -1 n! ,
A () (2+p)!
A
~—A<p< ,n=12,... (3.4)
e —1

Notes:

- The expression (3.4) giving bounds for E[T n }, n=1.2,... proves its existence,

- For n=1 (3.4) is unuseful because we know that £ [T ] = ¢ . Curiously, the upper bound

eP -1

is ,the M |G oo system busy period mean value,
- For p=-4, E[T”} =0,n=1,2,... evidently.

See however that (3.3) may take the form

1+'B(1—epje_(ﬁ“+ﬁ)t
Z 420-A<f<

G(t)= o (1 Y. )e_(m,b’)t R

and, since p <log2,

(3.5)

After (3.5) we can easily compute the 7 Laplace transform for p <log?2. And then get

k

g o (177 A

E[T”}:_(l.p—jn! Y ———— A< f<——,p<log2,n=12,...
A k=1(k(2+ B))" eP -1
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Notes:

~ i oo(1—ePY‘_ A+ p 00(1—6'0)_
) E[T]__(1+7jk§1k(ﬁ,+ﬁ)__/1(/1+ﬂ)'k2=1 ko

k
OZO(—I)k+1 (ep _lj

1 =llogep=£=a
A=l k A A

- For n>2 we must truncate the infinite sum. Taking only M terms, to get an error
lesser or equal than & we must have simultaneously

1 —
A+ p

M > 1

Mtog , \—A
) (i p)

4 AM | G | oo Systems Collection with Exponential Busy Period

Putting now A(t)—AG(1)= B(t) (() is any time function) we get

90)__G24)(50)- )6+ 40

that is a Ricatti equation about G().

Solving it, after noting that G(t) =1, > 0 is a solution again, we get

{ (1 . p)e—/u— 16 Bu)du

G(t)=1-—
A Eoe—lw—jgvﬂ(u)dudw_(l_e_p)ge—lw—jgvﬁ(u)dudw
d

4>0-A< E'B ) < A 4.1).

t e —1

Putting (4.1) in

_ 1 1
B(s)=1+ 4| s~

Eoe—st—ﬁ,j(t) [I_G(V)]dvdt

that is the M | G | o0 busy period length Laplace transform, see Stadje (1985), we get
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1—(s+A)1- G(o))L[e-ﬂt—Ié ﬁ(”)dui|
)= —As = (4.2)
1—z(l-G(o))L{e—ﬂr—féﬁ(u)du} <

where L means Laplace transform and

lEoe_ﬁ’W_Wﬂ(u)dudw+ e P -1
G(0)=

igoe—ﬂw—jgvﬂ(u)dudw

After (4.2) we can compute — B (s) whose inversion gives
s

B(t)=(1—(l—G(O))( o~ M1 Blu)du +2J66_/1W_J6V Plu)du dw)J*

%7 ¢
o San(-gloy[H s | ToPe 4 s
n=0 t eP —1

for the M| G| o0 busy period d.f., where * is the convolution operator.
If A(t)= /B (constant), we get (3.3) and

Yij :_l+,b’
BP(t)=1 ~

(1—e‘/’Je‘e_p(“ﬁ)t,t20,—/1s < A

So, if the service time d.f. is given by (3.3) the M |G| busy period d.f. is the a mixture of a
degenerate distribution at the origin and an exponential distribution.

A t
, B B (t ) =]-¢ €’-1 , t 20 (purely exponential). And

A

e’ —1
B(t), given by (4.3) satisfies

Finally note that, for £ =

o [ Ay

B(t)21-e ¢’-1 120, —a<

5  u(1't) Behaviour as Time Function

In this situation:
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Proposition 5.1
If G(t) <1, >0, continuous, differentiable and

h(t)< A (5.1)

u(1',¢) is non-decreasing.
Dem: After (1.3) we have %,u(l',t)= (1-G(2)NA - Al2)).

Notes:
- If the rate at which the services end is lesser or equal than the customers arrival rate

u(1,¢) is non-decreasing,
- Forthe M |M | w0 (5.1) is equivalent to

p=1

- These results may be useful in the survival analysis field.
Putting
h(t)= 2
obviously we get

G(t)=1-e"HM 120

and, for this M | M | oo system,
u(l,0)=1

6 Concluding Remarks

In queues practical applications often it is used the populational process stationary
distribution. This happens generally because the transient distribution is very complex and
unuseful. And so the stationary distribution is used as a good transient one approximation. But
in various situations this is not true. So it is necessary to know as well as possible the transient
behaviour.

The M | G | o systems transient behaviour, with an unoccupied system instant time
origin, is very well known and not too complex. We deduced the time origin at the beginning
of a busy period transient distribution.

We presented here a transient behaviour study, with some interesting results, for the
M | G | oo systems with a lot of possible applications, namely in survival analysis.

It was done more exhaustively for the p(,(¢) than for the py',(¢).n =0,1,2,..., but in

the former situation everything is easier than in the other. But the py( (t) study leads to very

interesting results even that they are looked only from the mathematical point of view. And,
no less important, it allows through the resolution of a Ricatti equation the determination of a
M | G | oo infinite systems collection with a very simple busy period distribution: a mixture of
a degenerate distribution at the origin and an exponential distribution.
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