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Abstract

In this paper, using daily data for six major international stock market indexes and a modified
EGARCH specification, the links between stock market returns, volatility and trading volume
are investigated in a new nonlinear conditional variance framework with multiple regimes and
volume effects.

Volatility forecast comparisons, using the Harvey-Newbold test for multiple forecasts encom-
passing, seem to demonstrate that the MSV-EGARCH complex threshold structure is able to
correctly fit GARCH-type dynamics of the series under study and dominates competing stan-

dard asymmetric models in several of the considered stock indexes.
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1 Introduction

A frequently documented feature of stock market data is that returns appear to be drawn
from a time-dependent heteroskedastic distribution. As early noted in the pioneering studies
of Mandelbort (1963) and Fama (1965), financial time series vary systematically with time and
tend to display periods of unusually large volatility, followed by periods of low volatility.

Despite these early studies, efforts to model volatility dynamics have only been developed
in the last decades. In fact, until recently, the variance of the disturbance term was assumed
to be constant in conventional econometric models, i.e., financial time series modelling centered
on the conditional first moment, with any temporal dependencies in the higher order moments
treated as a nuisance.

However, the increased importance played by risk and uncertainty considerations has recently
spurred a vast literature on modelling and forecasting return’s volatility. The trade-off between
risk and return, where risk is associated with the variability of the random (unforeseen) compo-
nent of a time series (volatility), constitutes one of the cornerstones of modern finance. In effect,
finance is nowadays a field where the explicit modelling of uncertainty takes on a particularly
significant role, since valuation models for the majority of assets are essentially based on the
first two moments of the return series: mean, variance and covariances. Moreover, due to the
compelling theoretical and empirical results supporting the efficient market theory, academicians
and practitioners have to some extent ignored the question of return’s forecastibility in recent
decades; concentrating, instead, on exploring the question of risk. Understanding the statistical
properties of volatility is currently considered an important area of interest, given the impact
of volatility changes, namely, in risk analysis, portfolio selection, market timing, and derivative
pricing.

Recent studies on stock return’s volatility have been dominated by ARCH models (Engle,
1982; Bollerslev, 1986), which stand for autoregressive conditional heteroskedasticity. The con-
ditional heteroskedasticity framework is a stationary, parametric, conditional approach which
postulates that the main time-varying feature of returns is the conditional volatility, while it
assumes that the unconditional volatility remains unchanged through time.

The popular autoregressive conditional heteroskedasticity models have been extremely suc-
cessful in accounting for the main characteristics of financial data time series. Nevertheless, in

some applications it has been found that ARCH models with conditional normal distributions



fail to fully capture the leptokurtosis present in high frequency data. The empirical evidence
against the normality assumption, pointed firstly by Mandelbort (1963) and Fama (1965), has
led to the use of non-normal distributions capable of modelling the excess of kurtosis, such as
the Student’s ¢ distribution in Bollerslev (1987), the Generalised Error Distribution in Nelson
(1991), the Laplace Distribution in Granger and Ding (1995) and the Stable Paretian Distribu-
tion in Liu and Brorsen (1995), Panorska et al. (1995), Mittnik et al. (1998), Curto et al. (1998)
and Tavares et al. (2007).

The Student’s ¢ distribution, in particular, has a long tradition in the econometrics literature
as a popular choice of a fat-tailed distribution, since it has finite second moment (in contrast
to stable non-Gaussian distributions), its mathematical properties are well known, it is unde-
manding to estimate, and is often found capable of capturing the excess of kurtosis observed in
financial time-series.

In some aspects ARCH relative success has made it less interesting to continue research on
volatility models. Nonetheless, there are key aspects that warrant further investigation. Using
daily data for six major international stock market indexes from January 1995, through April
2008, this paper analyses the links between stock market returns, volatility and unexpected
trading volume in a new nonlinear conditional variance framework. First, a new multiple regime
model is proposed, in opposition to the standard single zero threshold adopted by nonlinear
GARCH models. This provides increased flexibility to the proposed MSV-EGARCH specifica-
tion, allowing it to capture individual irregular bursts in the volatility time series that, otherwise,
could be treated as mere outliers. Second, as part of the literature on volatility clustering sug-
gests that ARCH effects in stock returns can be explained by temporal dependence in trading
volume, unexpected volume, defined as above-average trading activity, is used as a variance
regressor variable, helping to bridge the gap between theory and practice in volatility modelling.

This paper is organized as follows. Next section presents the MSV-EGARCH model speci-
fication and section 3 describes the data sets. Section 4 discusses estimation results, compares
goodness-of-fit and presents out-of-sample evaluation results for the MSV-EGARCH, GJR and

EGARCH models. Finally, section 5 presents some concluding remarks.



2 The Multiple Sign-Volume sensitive regime EGARCH
model (MSV-EGARCH)

In GARCH models the autoregressive structure in the variance specification allows for the persis-
tence of volatility shocks, enabling to capture the frequently observed clustering of similar-sized
price changes, the so-called ARCH effects. In this paper, using an EGARCH specification,
the relationship between volatility, bad news and trading volume is re-examined through the
modelling of multiple sign-volume-sensitive regimes in the conditional variance behaviour. This
yields a distinctive EGARCH model specification that extends previous research by combining
multiple news and volume asymmetric dynamics in a new conditional variance formulation.

In the original EGARCH(p, q) model, introduced by Nelson (1991), the conditional variance

o? is an asymmetric function of past unpredictable returns &;’s:

p p p
= Et—i
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Unlike the symmetric GARCH(p, q) model in the EGARCH(p, q) specification no parameters
restrictions are needed to ensure the non-negativity of the conditional variance and “bad news”
(unexpected decreases in returns) are allowed to have a greater impact on future volatility when
compared to “good news” (unexpected increases in returns) if the asymmetry parameters v; are
negative. As most of the empirical papers in the financial econometrics literature deal only with
(1,1)~type and due to its noteworthy success in financial volatility modelling, in this paper the
simplest asymmetric EGARCH(1, 1) specification is adopted.

The proposed multiple sign-volume sensitive EGARCH model, MSV-EGARCH(1,1), is de-

scribed by the following equations:
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where r; is the continuously compounded daily rate of return at period ¢, &4 is the conditional



error term and V;_; is a high/low volume indicator variable:
(=i —1.25)0 <ei_1 < —ioc i=0,1.25
1if
Niy = gi_1 < —io i=25 (4)

0 otherwise

51 ]
1if Volume; ; > Zizz VolUer-

Vier = ; (5)
0 otherwise

where o is the unconditional standard deviation of ;. Thus, the indicator variable V;_; is “one”

if the lagged volume is above its fifty days' lagged moving average, and is “zero” otherwise.
Equation (3) mimics many of the well known time series properties of traditional GARCH
models and takes into account additional dynamic asymmetries. The conditional variance is
assumed to be predicted by the previous conditional variance, the lagged shock terms and the
above-average trading volume. The previous negative shocks are differentiated using indicator

variables, which depend on the sign and intensity of the shocks.

2.1 Multiple Regimes

A fundamental idea in the proposed model specification is the existence of multiple thresholds
in the conditional variance equation. Threshold parameters determine abrupt changes in the
dynamics of the process as it moves through regions of the state space.

Financial time series present a non-negligible probability of occurrence of violent market
movements. These significant market movements, far from being discardable as mere outliers,
focus the attention of market participants since their magnitude may be such that they may
account for an important fraction of the return accumulated over a large period of time. However,
ARCH type models often fail to fully capture the nonlinearity in stock returns. A natural
approach to address such nonlinearity is to define different regimes and to allow the dynamic
behaviour of volatility to depend on the regime that occurs at any given point in time.

A pioneering effort to allow the data to estimate the shape of the conditional volatility

equation was proposed in Engle and Ng (1993) Partially Non-Parametric (PNP) model:

'We follow Wagner and Marsh (2005) to determine the length of the moving average.
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where the range of {;} was divided into m intervals with break points at ic (m™ positive
intervals and m™ negative intervals) and P; = 1 if (e;—1 > i0) and N; = 1 if (g,—1 < i0).

This model, which regarded the long memory component as being parametric while the
relationship between news and volatility was considered nonparametric, used equally spaced
bins with knots at ;1 equal to 0, 0, £20, £30 and +40 (where o is the unconditional
standard deviation) to estimate the news impact curve.

In the empirical analysis of the PNP model, conducted for the Topix Index for the pe-
riod ranging from 1980 to 1988, Engle and Ng found that the non-parametric approach was
able to capture both the leverage and size effects and to outperform all the other estimated
models: GARCH(1,1), EGARCH(1,1), AsymmetriccGARCH(1,1), VGARCH(1,1), Nonlinear-
Asymmetric-GARCH(1,1) and GJR-GARCH(1,1). Nevertheless, several of the estimated pa-
rameters presented unexpected signs and magnitudes, and were found statistically insignificant,
regarding the robust standard errors.

Hence, in contrast to Engle and Ng, in this paper the indicator intervals are chosen as less
extreme multiples of the unconditional standard deviation of the unpredictable index returns
series £;_1.

The conditional variance specification now proposed, accommodates both the sign and mag-
nitude of return innovations. Levels of lagged €;_1 are employed to capture the perception that
volatility is related in an asymmetric way to lagged return innovations, with sharp drops in stock
prices causing more future volatility than upturns cause. Furthermore, by allowing the existence
of more than two regimes, the model specification extends the asymmetry of the EGARCH
specification where the threshold is predetermined and equal to zero.

A fundamental idea in the proposed model specification is also the principle of parsimony.
The aim of the model is to approximate the true data-generating process without incorporating
an excessive number of coefficients. It would be possible to present multiple regimes with infinite
threshold values. However, it would prove to be statistically unfeasible. The sample space of &,
is therefore partitioned into m™ “news” intervals below zero. The model is estimated for m™ = 3
with kinks equal to 0, —1.250 and —2.50.

Despite the groundwork of Engle and Ng, time series models that incorporate multiple thresh-

olds in the conditional variance equation are rare. In fact, GARCH models tend to assume a
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rather stable environment, failing to capture irregular phenomena. One of the few exceptions is
Medeiros and Veiga (2008) that found strong evidence of the existence of more than two regimes

for most of the worldwide stock indexes analysed.

2.2 Volume

Trading volume can be considered as an important source of information in the context of the
future volatility process, providing information which is not available from historical prices. In
fact, whereas returns reflect average changes in market expectations as a whole, trading occurs
when market participants value an asset differently. Thus, trading volume reflects the sum of
the distinct investors’ reactions, preserving the differences among individual investors that are
averaged out in return data.

The inclusion of unexpected trading volume in equation (3) allows low and high volatilities
to be triggered by positive and negative shocks and by the associated trading activity that flows
into the market — a behaviour which standard GARCH models fail to accommodate. In fact,
although the literature on the GARCH models is quite extensive, asymmetric GARCH models
rely primarily on news shocks but tend to be silent on the role trading volume plays in market
volatility.

We propose the use of “surprise volume” (Wagner and Marsh, 2005) as a volume variable
which is defined as unexpected above-average trading activity. In contrast to those authors,
the conditional volatility structure we propose does not consider a contemporaneous relation
between volume and volatility, focusing, instead, in a lagged relation that is more suitable
for forecasting. The reasoning is that portfolio reallocations for the market as a whole tend
to be somewhat sticky, i.e., due to market uncertainty, non-trivial trading costs, short-sale
restrictions, liquidity and time constraints; investors tend to take time to update their beliefs
about the private information flows, to reassess their daily investment performance and then to
restructure their portfolios, often adopting trend-following trading strategies.

Since high trading volume is usually associated with an influx of informed traders, prices
tend to become more informative in these periods. In the MSV-EGARCH model specification,
if period ¢ — 1 unexpected trading volume is positive, period ¢ variance equation will include
lagged unexpected trading volume as a regressor (V;_1=1). When this occurs, the market values
the sign (g,-1 > 0 or £,-1 < 0) and the size of the information reflected in the market in the
preceding period, leading to an upward revision of period t conditional volatility. The model

6



specification adopted assumes that more information arrives to investors when return moves are
large and therefore allows “bad news” followed by significant volume to have much more impact
on volatility than the traditional EGARCH model, whose asymmetry is based only on the sign
of the lagged return innovations.

The adopted volume-volatility relation provides a market information aggregate-based ex-
planation for both the volatility clustering and volatility persistence phenomena. Given that
differences in the price reactions of investors to both good and bad news are partially lost by
the averaging of prices, but are preserved in trading volume, the proposed conditional volatility
model takes into account the sign of the shock, the size of the shock and the associated trading
volume.

In addition, since information arrives at an uneven rate, periods of high and low volatility will
tend to cluster. Lastly, given that financial asset trades must, at some future date, be reversed,

volatility persistence will arise.

3 Statistical properties of returns

The empirical analysis is based on daily closing prices and trading volume for six major inter-
national stock market indexes from January 1, 1995 through April 30, 2008. The investigated
indexes are the CAC 40 (France), DAX 30 (Germany), FTSE 100 (UK), NASDAQ 100 (United
States), NIKKEI 225 (Japan) and S&P 500 (United States). All data series are drawn from
Bloomberg and represent a local currency perspective. Dividends are not included in the calcu-
lation of the indexes.

The dataset contains several episodes of regional as well as global “market stress”; involving
high volatility. Noteworthy examples are the October 1997 Asian mini-crash, the 1998 Russian
financial crisis, the March 2000 dot-com bubble crash, the September 2001 post-9/11 crash and
the still prevailing subprime crisis.

Following the conventional approach, daily stock returns (r;) are obtained by taking the

logarithmic difference of daily stock index price data:

P,
r = 100 X log (Pt > (7)

t—1
Table 1 provides a general overview of the data used and presents preliminary descriptive

statistics and diagnostics for the return series of each of the six stock indexes.
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The sample moments for all return series indicate empirical distributions with heavy tails
relative to the normal. Not surprisingly, the Jarque-Bera statistic (Jarque and Bera, 1987)

rejects the normality assumption for each of the series.

Table 1: Summary statistics of returns

CAC DAX FTSE NASDAQ NIKKEI S&P500

Observations 3376 3370 3368 3356 3281 3355
Mean 0.0289 0.0358 0.0204 0.0469  -0.0107 0.0329
Median 0.0563 0.1099 0.0526 0.1396 0.0026 0.0623
Maximum 7.0023 7.5527 9.9038 17.2030 7.6605 5.9732
Minimum -7.6781  -8.8747  -5.8853  -10.3777  -7.2340  -7.1127
Std. Dev. 1.3620 1.4880 1.0956 2.0465 1.4357 1.0846
Skewness -0.1291  -0.2747  -0.1974 0.1287  -0.0811  -0.1156
Kurtosis 5.8233 6.3484 5.9275 7.1768 4.8760 6.3014
JB* 1616.66* 1224.56* 1474.95%  2448.74*  484.71* 1531.13*
LB Q(10)° 24.44%  22.26%* 46.56* 31.46*  18.28%F  18.68**

LB Q%*(10)¢ 1595.2*  2028.8*%  2078.2* 1411.0* 406.4* 788.9%*

ARCH-LM* 555.9%  644.68*  668.35* 560.76*  209.24*  353.39*

* ** Denote significant at the 1% and 5% level, respectively

2]JB is the Jarque Bera test for normality

LB Q(10) is the Ljung-Box test for returns

°LB Q?(10) is the Ljung-Box test for squared returns

9LM is the Engle’s Lagrange Multiplier test for conditional heteroskedasticity

The first striking feature is that the mean of daily returns is higher in NASDAQ and DAX
and higher returns go hand in hand with higher standard deviations. The unfavourable outcome
of Japanese stock returns is attributable to the fact that the Japanese market has been a bear
market since 1989.

The excess of kurtosis ranges from 1.876 for the NIKKEI to 4.1768 for the NASDAQ, sug-
gesting that big shocks, of either sign, are likely to be present.

According to the Ljung-Box statistics on returns, computed at a tenth-order lag, there is
relevant autocorrelation in all of the stock indexes. The Ljung-Box statistic on the squared

returns and the LM test for a tenth-order linear ARCH effect strongly suggest the presence of
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time-varying volatility. Since variations in €2 are not purely random, the variance is predictable,

by conditioning the volatility of the process on past information.

4 Estimation results
4.1 In-sample and out-of-sample analysis

The proposed model is estimated through maximum likelihood (MLE)? under the assumption
that the standardized innovations are independently and identically distributed (i.i.d.) with
Student’s ¢ distribution.

The structure of the MSV-EGARCH model is such that it can adapt flexibly to capture
different features of the conditional distribution of returns. However, altering the EGARCH
specification through the introduction of additional parameters involves the risk of in-sample
over-fitting. Therefore, it is essential to determine whether or not the improved in-sample fit is
useful for forecasting out-of-sample.

The sample is partitioned in two distinct periods: the first 3/4 of the sample is retained
for the estimation of parameters while the remaining 1/4 is considered as the forecast period.
Parameters for the variance equation are therefore estimated for the 1995-2004 period (cor-
responding roughly to 2500 observations). These parameters are used to estimate the daily
conditional volatility and together with the diagnostics constitute the in-sample set of results.
To estimate the ex-ante out-of sample predictive power of the model, the estimated parameters
are used to compute the conditional volatility in the following period (01/2005-04,/2008).

The statistically significant returns autocorrelations are removed by fitting AR model spec-
ifications to the series (the mean equation parameters are represented by ¢;). In all cases the
residuals become white noise.

To compare the conditional in-sample fitted MSV-EGARCH with the standard GJR (Glosten
et al., 1993) and EGARCH asymmetric models, three likelihood based goodness-of-fit criteria
are used. The first is the maximum log-likelihood value obtained from ML estimation. The
second is the AIC: Akaike information criteria (Akaike, 1978) and the third is the SBC: Schwarz
Bayesian criteria (Schwarz, 1978).

Out-of-sample volatility forecast evaluation is conducted by applying the modified Diebold-
Mariano (Diebold and Mariano, 1995) test proposed by Harvey and Newbold (2000) to gauge

2Estimates are obtained using EVIEWS 5.0-based custom software.



whether the MSV-EGARCH encompasses the standard GJR and EGARCH models. According
to Hansen (2005), when the comparison involves nested models (the MSV-EGARCH model
nests EGARCH) it is more appropriate to apply a test for equal predictive accuracy (EPA),
such as that of Harvey and Newbold (2000). In the null we state that each particular model
(MSV-EGARCH, EGARCH and GJR) encompasses its competitors, in the sense that they do
not contain useful information not present in the forecasts resulting from the model considered
in the null.

Since volatility itself is not directly observable, establishing the effectiveness of the volatility
forecast involves the use of a “volatility proxy” that may constitute an imperfect estimate of the
true volatility, as mentioned by Andersen and Bollerslev (1998), Hansen and Lunde (2003) and
Hansen and Lunde (2005). Following the conventional approach, squared returns are used as a
proxy for the latent volatility process. However, as those authors argue, this volatility proxy can
constitute a noisy estimator of the actual variance dynamics that can compromise the inference
regarding the forecast accuracy. Yet, more recently, Patton (2006) showed that the squared daily

returns constitutes in fact a valid volatility proxy.

4.2 Results

Tables 2 to 7 report in-sample results for the six stock indexes. The in-sample estimation results
confirm that markets become more volatile in response to “bad news” (negative return surprises)
as the sign of the parameters estimates proxying for asymmetry in the three regimes is always
negative (the exception is NIKKED’s second regime). According to the Wald test, the differences
among the three regimes estimates are statistically significant in the case of CAC, FTSE and
NIKKEI, pointing to multiple regimes in financial volatility.

The results also confirm that above-average trading volume is an important factor to consider
in explaining volatility, with volume playing the role of a switching variable between states. The
estimates for the unexpected volume indicator variable are always positive and statistically
significant in the case of DAX, NASDAQ, NIKKEI and S&P500. Thus, financial volatility
increases with lagged above-average trading volume.

The largest log-likelihood values indicate that the MSV-EGARCH is the model more prone
to have generated the data.

Regarding the information criteria, the proposed MSV model presents lower AIC values in the

case of CAC, FTSE and NIKKEI. When the SBC is used instead, the standard EGARCH domi-
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nates the other two models: GJR and MSV-EGARCH. This is due to the fact that although both
the Akaike and Schwarz criterion are based on parsimony, the Schwarz criterion imposes a larger
penalty for additional coefficients, which penalizes in particular the additional complexity of the
MSV specification. Thus, AIC and SBC provide inconclusive results in the French, English and
Japanese stock indexes whereas both information criteria favour the standard EGARCH model
in the case of DAX, NASDAQ and S&P500. The MSV-EGARCH outperforms the standard
GJR in most of the six stock indexes whatever the information criteria considered.
INCLUDE TABLES 2 TO 7 HERE

In the out-of-sample analysis, based on Harvey-Newbold (HN) test (table 8), we fail to reject
the null that the MSV-EGARCH forecasts encompass, or cannot be improved by combination
with, the corresponding EGARCH and GJR volatility predictions at the 10% significance level
in the case of CAC, DAX, FTSE and NASDAQ. The null is rejected at this significance level
in the case of the NIKKEI and S&P, implying that combination of the EGARCH and/or GJR
predictions with those of MSV-EGARCH would lead to an improvement in the NIKKEI and
S&P forecast performance. Excluding the case of the FTSE index, the HN test results point to
the same conclusions when one tests if EGARCH forecasts encompass those of the competing
MSV-EGARCH and GJR. In contrast, the hypothesis that the GJR forecasts encompass its
rivals is rejected in four of the six stock indexes.

Thus, even if the failure to reject the null hypothesis of forecast encompassing among multiple
forecasts does not necessarily imply that the forecast under the null is superior and dominant
with respect to its competitors, this constitutes one legitimate possibility (Harvey and Newbold,
2000). Based on this, along with the fact that the number of non null hypothesis rejections in
the HN test is higher when compared to the standard EGARCH and GJR models, we can admit
the superior predictability of the MSV-EGARCH model.

INCLUDE TABLE 8 HERE

5 Conclusions

Using daily data for six major international stock market indexes from January 1995, through

April 2008, in this paper, the links between stock market returns, volatility and trading vol-

ume are analysed in a new nonlinear conditional variance framework. An innovative multiple

regime EGARCH model is proposed, in opposition to the single zero threshold adopted by the

conventional model. In this modified model, the asymmetry of the EGARCH is decomposed
11



into multiple regimes, with the transition across regimes being controlled by threshold variables,
related to the level of the unconditional standard deviation of the return series. In addition, the
model smoothes the gap between theory and practice in volatility modelling by incorporating an
on-off volume effect, with above-average trading volume playing the role of a switching variable
between states.

An empirical example shows that multiple regimes are statistically significant for three of
the return series analysed and also that above-average trading volume is an important factor to
consider when explaining volatility.

A comparison between the increased flexibility of the proposed model and the parsimony of
the conventional GJR and EGARCH specifications leads to goodness-of-fit statistics that are
not unanimous regarding the in-sample superiority of the MSV-EGARCH model. Yet, when
the predictive performance is compared, based on Harvey-Newbold encompassing test, there is
evidence that MSV-EGARCH dominates the competing standard asymmetric models in several

of the considered stock indexes.
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Table 2: MLE estimation results - CAC 40

Statistics GJR EGARCH MSV
¢ 0.0436 -0.3716 -0.2632
01 0.0056 -0.5639*  -0.5277*
o)) -0.0058 -0.5223**%  -0.4834*
03 -0.0514* 0.1048 0.1249
w 0.0204* -0.0611*  -0.0684*
16} 0.932%* 0.9835* 0.9868*
o 0.0174*%**  0.0299%* 0.0266***
" 0.0771%* -0.1063*  -0.1357**
Yo -0.0628%*
Y3 —01170*
A 0.0176
TDF® 16.5112* 18.8506*  19.3995*
Log-lik -4115.93 -4104.7  -4098.89
AIC 3.3441 3.3350 3.3327
SBC 3.3653 3.3562 3.3609
Wald® 5.694***

*¥EREE denote significant at the 1%, 5% and 10%
level, respectively

*TDF” denotes the degrees of freedom for the Student’s
t distribution

bWald tests the restriction that v1 = v2 = 73
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Table 3: MLE estimation results - DAX 30

Statistics GJR EGARCH MSV
c 0.0688* 0.1495 0.239
01 -0.0225 -0.2968* -0.3342*
w 0.0232* -0.124* -0.1145*
15} 0.9040* 0.9863* 0.985%*
« 0.0409* 0.1075*  0.0926**
" 0.0881* -0.1007* -0.046
7 20.0904%*
s 20.0904%*
A 0.0257%**

TDF* 14.5299*  14.6808*  13.2338*
Log-lik -4252.63 -4242.14  -4240.018

AIC 3.4561 3.4476 3.448
SBC 3.4726 3.4641 3.472
Wald® 1.5186

*kk o dkekk denote significant at the 1%, 5% and 10%
level, respectively

*“TDF” denotes the degrees of freedom for the Student’s
t distribution

bWald testS the restriction that v; = 7o = 73
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Table 4: MLE estimation results - FTSE 100

Statistics GJR EGARCH MSV
C 0.0222 -0.1021 0.3294
01 0.0003 -0.7602* -0.7082
w 0.0092* -0.064*  -0.0628%*
16} 0.9363* 0.9862* 0.9841*
o 0.0019 0.0110 0.0048
" 0.1047* -0.1203* -0.0468
V2 -0.0904**
3 -0.1287*
A 0.0132
TDFE® 17.1293*  18.5901* 18.5318*
Log-lik -3423.2 -3409.5 -3405.4
AIC 2.7752 2.7642 2.7633
SBC 2.7917 2.7806 2.7868
Wald® 3.8844**

*kk o dkekk denote significant at the 1%, 5% and 10%
level, respectively

*“TDF” denotes the degrees of freedom for the Student’s
t distribution

®Wald tests the restriction that v1 = v2 = 73
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Table 5: MLE estimation results - NASDAQ 100

Statistics GJR EGARCH MSV
c 0.0875%  -0.5620%%  -0.5488
b1 0.0344  -0.7160%  -0.7046*
w 0.0394* -0.0699* -0.059*
15} 0.9308** 0.9814* 0.9814*
« 0.0214* 0.0496* 0.0362*
" 0.0769* -0.1327%  -0.1017**
Y 20.1414%
v 20.1050*
A 0.0163***
TDF* 25.6564 47.1643 35.9078**
Log-lik -5156.5 -5143.4 -5141.8
AIC 4.1851 4.1839 4.1851
SBC 4.2087 4.2004 4.2087
Wald? 1.5169

*okkkkk denote significant at the 1%, 5% and 10%
level, respectively

*TDF” denotes the degrees of freedom for the Student’s
t distribution

®Wald tests the restriction that v1 = v2 = 73
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Table 6: MLE estimation results - NIKKEI 225

Statistics GJR EGARCH MSV
c -0.0166 -0.6152** 1.0633
w 0.0488* -0.0274 -0.0655
I} 0.919* 0.965* 0.9899*
« 0.0157*** 0.0067 -0.0595**
" 0.0875* -0.2118*  -0.0957**
v 0.0595%%*
s 20.0754
A 0.0492*
TDF® 10.0875* 9.7254* 10.2751*
Log-lik -4223.0560 -4222.7 -4212.5
AIC 3.5140 3.5136 3.5077
SBC 3.5284 3.5281 3.5293
Wald® 16.6815*

* ¥ REE denote significant at the 1%, 5% and 10%

level, respectively

*“TDF” denotes the degrees of freedom for the Student’s

t distribution

®Wald tests the restriction that v1 = v2 = 73

Table 7: MLE estimation results - S&P 500

Statistics GJR EGARCH MSV
C 0.0504* 0.2373**%  (.1212***
01 0.0058 0.5181* 0.5353*
w 0.013* -0.1081* -0.073*
15} -0.0167*** 1.0093* 0.9897*
« 0.9359* -0.1885* -0.1922*
" 0.1386* -0.4629* -0.3838*
v 20.4098*
- 20.4283
A 0.0508%*
TDF¢ 10.8539* 10.9328* 11.3527*
Log-lik -3505.089 -3494.8 -3490.9
AIC 2.8542 2.8458 2.8458
SBC 2.8707 2.8623 2.8658
Wald® 1.5216

* R REE denote significant at the 1%, 5% and 10%

level, respectively

*“TDF” denotes the degrees of freedom for the Student’s

t distribution

®Wald tests the restriction that v1 = v2 = 73
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Table 8: Harvey-Newbold forecast encompassing test
(probability values are given in brackets)

Tndex MSV EGARCH GJR

CAC 40 0.377 [0.539] 2.464 [0.117] 1.967 [0.161]
DAX 30 1.500 [0.221] 1.717 [0.190] 4.425 [0.036]
FTSE 100 1.314 [0.252] 3.288 [0.070] 5.739 [0.017]
NASDAQ 100 1.235 [0.267] 0.109 [0.742] 3.913 [0.048]
NIKKEI 225  4.447 [0.035] 3.204 [0.074] 5.157 [0.023]
S&P 500 4509 [0.034] 4.978 [0.034] 0.267 |0.606]
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