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Abstract

In this paper, using daily data for six major international stock market indexes and a modi�ed

EGARCH speci�cation, the links between stock market returns, volatility and trading volume

are investigated in a new nonlinear conditional variance framework with multiple regimes and

volume e�ects.

Volatility forecast comparisons, using the Harvey-Newbold test for multiple forecasts encom-

passing, seem to demonstrate that the MSV-EGARCH complex threshold structure is able to

correctly �t GARCH-type dynamics of the series under study and dominates competing stan-

dard asymmetric models in several of the considered stock indexes.

KEYWORDS: GJR, multiple regimes, trading volume, estimation, forecasting.
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1 Introduction
A frequently documented feature of stock market data is that returns appear to be drawn

from a time-dependent heteroskedastic distribution. As early noted in the pioneering studies

of Mandelbort (1963) and Fama (1965), �nancial time series vary systematically with time and

tend to display periods of unusually large volatility, followed by periods of low volatility.

Despite these early studies, e�orts to model volatility dynamics have only been developed

in the last decades. In fact, until recently, the variance of the disturbance term was assumed

to be constant in conventional econometric models, i.e., �nancial time series modelling centered

on the conditional �rst moment, with any temporal dependencies in the higher order moments

treated as a nuisance.

However, the increased importance played by risk and uncertainty considerations has recently

spurred a vast literature on modelling and forecasting return's volatility. The trade-o� between

risk and return, where risk is associated with the variability of the random (unforeseen) compo-

nent of a time series (volatility), constitutes one of the cornerstones of modern �nance. In e�ect,

�nance is nowadays a �eld where the explicit modelling of uncertainty takes on a particularly

signi�cant role, since valuation models for the majority of assets are essentially based on the

�rst two moments of the return series: mean, variance and covariances. Moreover, due to the

compelling theoretical and empirical results supporting the e�cient market theory, academicians

and practitioners have to some extent ignored the question of return's forecastibility in recent

decades; concentrating, instead, on exploring the question of risk. Understanding the statistical

properties of volatility is currently considered an important area of interest, given the impact

of volatility changes, namely, in risk analysis, portfolio selection, market timing, and derivative

pricing.

Recent studies on stock return's volatility have been dominated by ARCH models (Engle,

1982; Bollerslev, 1986), which stand for autoregressive conditional heteroskedasticity. The con-

ditional heteroskedasticity framework is a stationary, parametric, conditional approach which

postulates that the main time-varying feature of returns is the conditional volatility, while it

assumes that the unconditional volatility remains unchanged through time.

The popular autoregressive conditional heteroskedasticity models have been extremely suc-

cessful in accounting for the main characteristics of �nancial data time series. Nevertheless, in

some applications it has been found that ARCH models with conditional normal distributions
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fail to fully capture the leptokurtosis present in high frequency data. The empirical evidence

against the normality assumption, pointed �rstly by Mandelbort (1963) and Fama (1965), has

led to the use of non-normal distributions capable of modelling the excess of kurtosis, such as

the Student's t distribution in Bollerslev (1987), the Generalised Error Distribution in Nelson

(1991), the Laplace Distribution in Granger and Ding (1995) and the Stable Paretian Distribu-

tion in Liu and Brorsen (1995), Panorska et al. (1995), Mittnik et al. (1998), Curto et al. (1998)

and Tavares et al. (2007).

The Student's t distribution, in particular, has a long tradition in the econometrics literature

as a popular choice of a fat-tailed distribution, since it has �nite second moment (in contrast

to stable non-Gaussian distributions), its mathematical properties are well known, it is unde-

manding to estimate, and is often found capable of capturing the excess of kurtosis observed in

�nancial time-series.

In some aspects ARCH relative success has made it less interesting to continue research on

volatility models. Nonetheless, there are key aspects that warrant further investigation. Using

daily data for six major international stock market indexes from January 1995, through April

2008, this paper analyses the links between stock market returns, volatility and unexpected

trading volume in a new nonlinear conditional variance framework. First, a new multiple regime

model is proposed, in opposition to the standard single zero threshold adopted by nonlinear

GARCH models. This provides increased �exibility to the proposed MSV-EGARCH speci�ca-

tion, allowing it to capture individual irregular bursts in the volatility time series that, otherwise,

could be treated as mere outliers. Second, as part of the literature on volatility clustering sug-

gests that ARCH e�ects in stock returns can be explained by temporal dependence in trading

volume, unexpected volume, de�ned as above-average trading activity, is used as a variance

regressor variable, helping to bridge the gap between theory and practice in volatility modelling.

This paper is organized as follows. Next section presents the MSV-EGARCH model speci-

�cation and section 3 describes the data sets. Section 4 discusses estimation results, compares

goodness-of-�t and presents out-of-sample evaluation results for the MSV-EGARCH, GJR and

EGARCH models. Finally, section 5 presents some concluding remarks.
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2 The Multiple Sign-Volume sensitive regime EGARCH
model (MSV-EGARCH)
In GARCH models the autoregressive structure in the variance speci�cation allows for the persis-

tence of volatility shocks, enabling to capture the frequently observed clustering of similar-sized

price changes, the so-called ARCH e�ects. In this paper, using an EGARCH speci�cation,

the relationship between volatility, bad news and trading volume is re-examined through the

modelling of multiple sign-volume-sensitive regimes in the conditional variance behaviour. This

yields a distinctive EGARCH model speci�cation that extends previous research by combining

multiple news and volume asymmetric dynamics in a new conditional variance formulation.

In the original EGARCH(p, q) model, introduced by Nelson (1991), the conditional variance

σ2
t is an asymmetric function of past unpredictable returns εt's:

log σ2
t = w +

p∑

i=1

βi log σ2
t−i+

p∑

i=1

αi
| εt−i|
σt−i

+
p∑

i=1

γi
εt−i

σt−i
. (1)

Unlike the symmetric GARCH(p, q) model in the EGARCH(p, q) speci�cation no parameters

restrictions are needed to ensure the non-negativity of the conditional variance and �bad news�

(unexpected decreases in returns) are allowed to have a greater impact on future volatility when

compared to �good news� (unexpected increases in returns) if the asymmetry parameters γi are

negative. As most of the empirical papers in the �nancial econometrics literature deal only with

(1,1)�type and due to its noteworthy success in �nancial volatility modelling, in this paper the

simplest asymmetric EGARCH(1, 1) speci�cation is adopted.

The proposed multiple sign-volume sensitive EGARCH model, MSV-EGARCH(1,1), is de-

scribed by the following equations:

rt = E (rt|Φt−1) + εt, εt = ztσt, zt ∼ iid(0, 1), (2)

log σ2
t = w + β1 log σ2

t−1 + α1
| εt−1|
σt−1

+
3∑

i=1

γiNit
εt−1

σt−1
+ λVt−1 (3)

where rt is the continuously compounded daily rate of return at period t, εt is the conditional
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error term and Vt−1 is a high/low volume indicator variable:

Nit =





1 if





(−i− 1.25)σ < εt−1 < −iσ i = 0, 1.25

εt−1 < −iσ i = 2.5

0 otherwise

(4)

Vt−1 =





1 if Volumet−1 >
∑51

i=2Volumet−i

50

0 otherwise

, (5)

where σ is the unconditional standard deviation of εt. Thus, the indicator variable Vt−1 is �one�

if the lagged volume is above its �fty days1 lagged moving average, and is �zero� otherwise.

Equation (3) mimics many of the well known time series properties of traditional GARCH

models and takes into account additional dynamic asymmetries. The conditional variance is

assumed to be predicted by the previous conditional variance, the lagged shock terms and the

above-average trading volume. The previous negative shocks are di�erentiated using indicator

variables, which depend on the sign and intensity of the shocks.

2.1 Multiple Regimes
A fundamental idea in the proposed model speci�cation is the existence of multiple thresholds

in the conditional variance equation. Threshold parameters determine abrupt changes in the

dynamics of the process as it moves through regions of the state space.

Financial time series present a non-negligible probability of occurrence of violent market

movements. These signi�cant market movements, far from being discardable as mere outliers,

focus the attention of market participants since their magnitude may be such that they may

account for an important fraction of the return accumulated over a large period of time. However,

ARCH type models often fail to fully capture the nonlinearity in stock returns. A natural

approach to address such nonlinearity is to de�ne di�erent regimes and to allow the dynamic

behaviour of volatility to depend on the regime that occurs at any given point in time.

A pioneering e�ort to allow the data to estimate the shape of the conditional volatility

equation was proposed in Engle and Ng (1993) Partially Non-Parametric (PNP) model:
1We follow Wagner and Marsh (2005) to determine the length of the moving average.
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σ2
t = w + βσ2

t−1 +
m+∑

i=0

θiPi(εt−1 − iσ) +
m−∑

i=0

δiNi(εt−1 + iσ), (6)

where the range of {εt} was divided into m intervals with break points at iσ (m+ positive

intervals and m− negative intervals) and Pi = 1 if (εt−1 > iσ) and Ni = 1 if (εt−1 < iσ).

This model, which regarded the long memory component as being parametric while the

relationship between news and volatility was considered nonparametric, used equally spaced

bins with knots at εt−1 equal to 0, ±σ, ±2σ, ±3σ and ±4σ (where σ is the unconditional

standard deviation) to estimate the news impact curve.

In the empirical analysis of the PNP model, conducted for the Topix Index for the pe-

riod ranging from 1980 to 1988, Engle and Ng found that the non-parametric approach was

able to capture both the leverage and size e�ects and to outperform all the other estimated

models: GARCH(1,1), EGARCH(1,1), Asymmetric-GARCH(1,1), VGARCH(1,1), Nonlinear-

Asymmetric-GARCH(1,1) and GJR-GARCH(1,1). Nevertheless, several of the estimated pa-

rameters presented unexpected signs and magnitudes, and were found statistically insigni�cant,

regarding the robust standard errors.

Hence, in contrast to Engle and Ng, in this paper the indicator intervals are chosen as less

extreme multiples of the unconditional standard deviation of the unpredictable index returns

series εt−1.

The conditional variance speci�cation now proposed, accommodates both the sign and mag-

nitude of return innovations. Levels of lagged εt−1 are employed to capture the perception that

volatility is related in an asymmetric way to lagged return innovations, with sharp drops in stock

prices causing more future volatility than upturns cause. Furthermore, by allowing the existence

of more than two regimes, the model speci�cation extends the asymmetry of the EGARCH

speci�cation where the threshold is predetermined and equal to zero.

A fundamental idea in the proposed model speci�cation is also the principle of parsimony.

The aim of the model is to approximate the true data-generating process without incorporating

an excessive number of coe�cients. It would be possible to present multiple regimes with in�nite

threshold values. However, it would prove to be statistically unfeasible. The sample space of εt

is therefore partitioned into m− �news� intervals below zero. The model is estimated for m− = 3

with kinks equal to 0, −1.25σ and −2.5σ.

Despite the groundwork of Engle and Ng, time series models that incorporate multiple thresh-

olds in the conditional variance equation are rare. In fact, GARCH models tend to assume a
5



rather stable environment, failing to capture irregular phenomena. One of the few exceptions is

Medeiros and Veiga (2008) that found strong evidence of the existence of more than two regimes

for most of the worldwide stock indexes analysed.

2.2 Volume
Trading volume can be considered as an important source of information in the context of the

future volatility process, providing information which is not available from historical prices. In

fact, whereas returns re�ect average changes in market expectations as a whole, trading occurs

when market participants value an asset di�erently. Thus, trading volume re�ects the sum of

the distinct investors' reactions, preserving the di�erences among individual investors that are

averaged out in return data.

The inclusion of unexpected trading volume in equation (3) allows low and high volatilities

to be triggered by positive and negative shocks and by the associated trading activity that �ows

into the market � a behaviour which standard GARCH models fail to accommodate. In fact,

although the literature on the GARCH models is quite extensive, asymmetric GARCH models

rely primarily on news shocks but tend to be silent on the role trading volume plays in market

volatility.

We propose the use of �surprise volume� (Wagner and Marsh, 2005) as a volume variable

which is de�ned as unexpected above-average trading activity. In contrast to those authors,

the conditional volatility structure we propose does not consider a contemporaneous relation

between volume and volatility, focusing, instead, in a lagged relation that is more suitable

for forecasting. The reasoning is that portfolio reallocations for the market as a whole tend

to be somewhat sticky, i.e., due to market uncertainty, non-trivial trading costs, short-sale

restrictions, liquidity and time constraints; investors tend to take time to update their beliefs

about the private information �ows, to reassess their daily investment performance and then to

restructure their portfolios, often adopting trend-following trading strategies.

Since high trading volume is usually associated with an in�ux of informed traders, prices

tend to become more informative in these periods. In the MSV-EGARCH model speci�cation,

if period t − 1 unexpected trading volume is positive, period t variance equation will include

lagged unexpected trading volume as a regressor (Vt−1=1). When this occurs, the market values

the sign (εt−1 > 0 or εt−1 < 0) and the size of the information re�ected in the market in the

preceding period, leading to an upward revision of period t conditional volatility. The model
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speci�cation adopted assumes that more information arrives to investors when return moves are

large and therefore allows �bad news� followed by signi�cant volume to have much more impact

on volatility than the traditional EGARCH model, whose asymmetry is based only on the sign

of the lagged return innovations.

The adopted volume-volatility relation provides a market information aggregate-based ex-

planation for both the volatility clustering and volatility persistence phenomena. Given that

di�erences in the price reactions of investors to both good and bad news are partially lost by

the averaging of prices, but are preserved in trading volume, the proposed conditional volatility

model takes into account the sign of the shock, the size of the shock and the associated trading

volume.

In addition, since information arrives at an uneven rate, periods of high and low volatility will

tend to cluster. Lastly, given that �nancial asset trades must, at some future date, be reversed,

volatility persistence will arise.

3 Statistical properties of returns
The empirical analysis is based on daily closing prices and trading volume for six major inter-

national stock market indexes from January 1, 1995 through April 30, 2008. The investigated

indexes are the CAC 40 (France), DAX 30 (Germany), FTSE 100 (UK), NASDAQ 100 (United

States), NIKKEI 225 (Japan) and S&P 500 (United States). All data series are drawn from

Bloomberg and represent a local currency perspective. Dividends are not included in the calcu-

lation of the indexes.

The dataset contains several episodes of regional as well as global �market stress�, involving

high volatility. Noteworthy examples are the October 1997 Asian mini-crash, the 1998 Russian

�nancial crisis, the March 2000 dot-com bubble crash, the September 2001 post-9/11 crash and

the still prevailing subprime crisis.

Following the conventional approach, daily stock returns (rt) are obtained by taking the

logarithmic di�erence of daily stock index price data:

rt = 100× log
(

Pt

Pt−1

)
(7)

Table 1 provides a general overview of the data used and presents preliminary descriptive

statistics and diagnostics for the return series of each of the six stock indexes.
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The sample moments for all return series indicate empirical distributions with heavy tails

relative to the normal. Not surprisingly, the Jarque-Bera statistic (Jarque and Bera, 1987)

rejects the normality assumption for each of the series.

Table 1: Summary statistics of returns
CAC DAX FTSE NASDAQ NIKKEI S&P500

Observations 3376 3370 3368 3356 3281 3355
Mean 0.0289 0.0358 0.0204 0.0469 -0.0107 0.0329
Median 0.0563 0.1099 0.0526 0.1396 0.0026 0.0623
Maximum 7.0023 7.5527 5.9038 17.2030 7.6605 5.5732
Minimum -7.6781 -8.8747 -5.8853 -10.3777 -7.2340 -7.1127
Std. Dev. 1.3620 1.4880 1.0956 2.0465 1.4357 1.0846
Skewness -0.1291 -0.2747 -0.1974 0.1287 -0.0811 -0.1156
Kurtosis 5.8233 6.3484 5.9275 7.1768 4.8760 6.3014
JBa 1616.66* 1224.56* 1474.95* 2448.74* 484.71* 1531.13*
LB Q(10)b 24.44* 22.26** 46.56* 31.46* 18.28** 18.68**
LB Q2(10)c 1595.2* 2028.8* 2078.2* 1411.0* 406.4* 788.9*
ARCH-LMd 555.9* 644.68* 668.35* 560.76* 209.24* 353.39*
*, ** Denote signi�cant at the 1% and 5% level, respectively
aJB is the Jarque Bera test for normality
bLB Q(10) is the Ljung-Box test for returns
cLB Q2(10) is the Ljung-Box test for squared returns
dLM is the Engle's Lagrange Multiplier test for conditional heteroskedasticity

The �rst striking feature is that the mean of daily returns is higher in NASDAQ and DAX

and higher returns go hand in hand with higher standard deviations. The unfavourable outcome

of Japanese stock returns is attributable to the fact that the Japanese market has been a bear

market since 1989.

The excess of kurtosis ranges from 1.876 for the NIKKEI to 4.1768 for the NASDAQ, sug-

gesting that big shocks, of either sign, are likely to be present.

According to the Ljung-Box statistics on returns, computed at a tenth-order lag, there is

relevant autocorrelation in all of the stock indexes. The Ljung-Box statistic on the squared

returns and the LM test for a tenth-order linear ARCH e�ect strongly suggest the presence of
8



time-varying volatility. Since variations in ε2
t are not purely random, the variance is predictable,

by conditioning the volatility of the process on past information.

4 Estimation results
4.1 In-sample and out-of-sample analysis
The proposed model is estimated through maximum likelihood (MLE)2 under the assumption

that the standardized innovations are independently and identically distributed (i.i.d.) with

Student's t distribution.

The structure of the MSV-EGARCH model is such that it can adapt �exibly to capture

di�erent features of the conditional distribution of returns. However, altering the EGARCH

speci�cation through the introduction of additional parameters involves the risk of in-sample

over-�tting. Therefore, it is essential to determine whether or not the improved in-sample �t is

useful for forecasting out-of-sample.

The sample is partitioned in two distinct periods: the �rst 3/4 of the sample is retained

for the estimation of parameters while the remaining 1/4 is considered as the forecast period.

Parameters for the variance equation are therefore estimated for the 1995-2004 period (cor-

responding roughly to 2500 observations). These parameters are used to estimate the daily

conditional volatility and together with the diagnostics constitute the in-sample set of results.

To estimate the ex-ante out-of sample predictive power of the model, the estimated parameters

are used to compute the conditional volatility in the following period (01/2005-04/2008).

The statistically signi�cant returns autocorrelations are removed by �tting AR model spec-

i�cations to the series (the mean equation parameters are represented by φj). In all cases the

residuals become white noise.

To compare the conditional in-sample �tted MSV-EGARCH with the standard GJR (Glosten

et al., 1993) and EGARCH asymmetric models, three likelihood based goodness-of-�t criteria

are used. The �rst is the maximum log-likelihood value obtained from ML estimation. The

second is the AIC: Akaike information criteria (Akaike, 1978) and the third is the SBC: Schwarz

Bayesian criteria (Schwarz, 1978).

Out-of-sample volatility forecast evaluation is conducted by applying the modi�ed Diebold-

Mariano (Diebold and Mariano, 1995) test proposed by Harvey and Newbold (2000) to gauge
2Estimates are obtained using EVIEWS 5.0-based custom software.
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whether the MSV-EGARCH encompasses the standard GJR and EGARCH models. According

to Hansen (2005), when the comparison involves nested models (the MSV-EGARCH model

nests EGARCH) it is more appropriate to apply a test for equal predictive accuracy (EPA),

such as that of Harvey and Newbold (2000). In the null we state that each particular model

(MSV-EGARCH, EGARCH and GJR) encompasses its competitors, in the sense that they do

not contain useful information not present in the forecasts resulting from the model considered

in the null.

Since volatility itself is not directly observable, establishing the e�ectiveness of the volatility

forecast involves the use of a �volatility proxy� that may constitute an imperfect estimate of the

true volatility, as mentioned by Andersen and Bollerslev (1998), Hansen and Lunde (2003) and

Hansen and Lunde (2005). Following the conventional approach, squared returns are used as a

proxy for the latent volatility process. However, as those authors argue, this volatility proxy can

constitute a noisy estimator of the actual variance dynamics that can compromise the inference

regarding the forecast accuracy. Yet, more recently, Patton (2006) showed that the squared daily

returns constitutes in fact a valid volatility proxy.

4.2 Results
Tables 2 to 7 report in-sample results for the six stock indexes. The in-sample estimation results

con�rm that markets become more volatile in response to �bad news� (negative return surprises)

as the sign of the parameters estimates proxying for asymmetry in the three regimes is always

negative (the exception is NIKKEI's second regime). According to the Wald test, the di�erences

among the three regimes estimates are statistically signi�cant in the case of CAC, FTSE and

NIKKEI, pointing to multiple regimes in �nancial volatility.

The results also con�rm that above-average trading volume is an important factor to consider

in explaining volatility, with volume playing the role of a switching variable between states. The

estimates for the unexpected volume indicator variable are always positive and statistically

signi�cant in the case of DAX, NASDAQ, NIKKEI and S&P500. Thus, �nancial volatility

increases with lagged above-average trading volume.

The largest log-likelihood values indicate that the MSV-EGARCH is the model more prone

to have generated the data.

Regarding the information criteria, the proposed MSV model presents lower AIC values in the

case of CAC, FTSE and NIKKEI. When the SBC is used instead, the standard EGARCH domi-
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nates the other two models: GJR and MSV-EGARCH. This is due to the fact that although both

the Akaike and Schwarz criterion are based on parsimony, the Schwarz criterion imposes a larger

penalty for additional coe�cients, which penalizes in particular the additional complexity of the

MSV speci�cation. Thus, AIC and SBC provide inconclusive results in the French, English and

Japanese stock indexes whereas both information criteria favour the standard EGARCH model

in the case of DAX, NASDAQ and S&P500. The MSV-EGARCH outperforms the standard

GJR in most of the six stock indexes whatever the information criteria considered.

INCLUDE TABLES 2 TO 7 HERE
In the out-of-sample analysis, based on Harvey-Newbold (HN) test (table 8), we fail to reject

the null that the MSV-EGARCH forecasts encompass, or cannot be improved by combination

with, the corresponding EGARCH and GJR volatility predictions at the 10% signi�cance level

in the case of CAC, DAX, FTSE and NASDAQ. The null is rejected at this signi�cance level

in the case of the NIKKEI and S&P, implying that combination of the EGARCH and/or GJR

predictions with those of MSV-EGARCH would lead to an improvement in the NIKKEI and

S&P forecast performance. Excluding the case of the FTSE index, the HN test results point to

the same conclusions when one tests if EGARCH forecasts encompass those of the competing

MSV-EGARCH and GJR. In contrast, the hypothesis that the GJR forecasts encompass its

rivals is rejected in four of the six stock indexes.

Thus, even if the failure to reject the null hypothesis of forecast encompassing among multiple

forecasts does not necessarily imply that the forecast under the null is superior and dominant

with respect to its competitors, this constitutes one legitimate possibility (Harvey and Newbold,

2000). Based on this, along with the fact that the number of non null hypothesis rejections in

the HN test is higher when compared to the standard EGARCH and GJR models, we can admit

the superior predictability of the MSV-EGARCH model.

INCLUDE TABLE 8 HERE

5 Conclusions
Using daily data for six major international stock market indexes from January 1995, through

April 2008, in this paper, the links between stock market returns, volatility and trading vol-

ume are analysed in a new nonlinear conditional variance framework. An innovative multiple

regime EGARCH model is proposed, in opposition to the single zero threshold adopted by the

conventional model. In this modi�ed model, the asymmetry of the EGARCH is decomposed
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into multiple regimes, with the transition across regimes being controlled by threshold variables,

related to the level of the unconditional standard deviation of the return series. In addition, the

model smoothes the gap between theory and practice in volatility modelling by incorporating an

on-o� volume e�ect, with above-average trading volume playing the role of a switching variable

between states.

An empirical example shows that multiple regimes are statistically signi�cant for three of

the return series analysed and also that above-average trading volume is an important factor to

consider when explaining volatility.

A comparison between the increased �exibility of the proposed model and the parsimony of

the conventional GJR and EGARCH speci�cations leads to goodness-of-�t statistics that are

not unanimous regarding the in-sample superiority of the MSV-EGARCH model. Yet, when

the predictive performance is compared, based on Harvey-Newbold encompassing test, there is

evidence that MSV-EGARCH dominates the competing standard asymmetric models in several

of the considered stock indexes.
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Table 2: MLE estimation results - CAC 40
Statistics GJR EGARCH MSV
c 0.0436 -0.3716 -0.2632
φ1 0.0056 -0.5639* -0.5277*
φ2 -0.0058 -0.5223** -0.4834*
φ3 -0.0514* 0.1048 0.1249
ω 0.0204* -0.0611* -0.0684*
β 0.932* 0.9835* 0.9868*
α 0.0174*** 0.0299** 0.0266***
γ1 0.0771* -0.1063* -0.1357**
γ2 -0.0628*
γ3 -0.1170*
λ 0.0176
TDFa 16.5112* 18.8506* 19.3995*
Log-lik -4115.93 -4104.7 -4098.89
AIC 3.3441 3.3350 3.3327
SBC 3.3653 3.3562 3.3609
Waldb 5.694***
*, **, *** denote signi�cant at the 1%, 5% and 10%

level, respectively
a�TDF� denotes the degrees of freedom for the Student's

t distribution
bWald tests the restriction that γ1 = γ2 = γ3
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Table 3: MLE estimation results - DAX 30
Statistics GJR EGARCH MSV
c 0.0688* 0.1495 0.239
φ1 -0.0225 -0.2968* -0.3342*
ω 0.0232* -0.124* -0.1145*
β 0.9040* 0.9863* 0.985*
α 0.0409* 0.1075* 0.0926**
γ1 0.0881* -0.1007* -0.046
γ2 -0.0904**
γ3 -0.0904**
λ 0.0257***
TDFa 14.5299* 14.6808* 13.2338*
Log-lik -4252.63 -4242.14 -4240.018
AIC 3.4561 3.4476 3.448
SBC 3.4726 3.4641 3.472
Waldb 1.5186
*, **, *** denote signi�cant at the 1%, 5% and 10%

level, respectively
a�TDF� denotes the degrees of freedom for the Student's

t distribution
bWald testS the restriction that γ1 = γ2 = γ3

16



Table 4: MLE estimation results - FTSE 100
Statistics GJR EGARCH MSV
c 0.0222 -0.1021 0.3294
φ1 0.0003 -0.7602* -0.7082
ω 0.0092* -0.064* -0.0628*
β 0.9363* 0.9862* 0.9841*
α 0.0019 0.0110 0.0048
γ1 0.1047* -0.1203* -0.0468
γ2 -0.0904**
γ3 -0.1287*
λ 0.0132
TDFa 17.1293* 18.5901* 18.5318*
Log-lik -3423.2 -3409.5 -3405.4
AIC 2.7752 2.7642 2.7633
SBC 2.7917 2.7806 2.7868
Waldb 3.8844**
*, **, *** denote signi�cant at the 1%, 5% and 10%

level, respectively
a�TDF� denotes the degrees of freedom for the Student's

t distribution
bWald tests the restriction that γ1 = γ2 = γ3
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Table 5: MLE estimation results - NASDAQ 100
Statistics GJR EGARCH MSV
c 0.0875* -0.5620** -0.5488
φ1 -0.0344 -0.7160* -0.7046*
ω 0.0394* -0.0699* -0.059*
β 0.9308** 0.9814* 0.9814*
α 0.0214* 0.0496* 0.0362*
γ1 0.0769* -0.1327* -0.1017**
γ2 -0.1414*
γ3 -0.1050*
λ 0.0163***
TDFa 25.6564 47.1643 35.9078**
Log-lik -5156.5 -5143.4 -5141.8
AIC 4.1851 4.1839 4.1851
SBC 4.2087 4.2004 4.2087
Waldb 1.5169
*, **, *** denote signi�cant at the 1%, 5% and 10%

level, respectively
a�TDF� denotes the degrees of freedom for the Student's

t distribution
bWald tests the restriction that γ1 = γ2 = γ3
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Table 6: MLE estimation results - NIKKEI 225
Statistics GJR EGARCH MSV
c -0.0166 -0.6152** 1.0633
ω 0.0488* -0.0274 -0.0655
β 0.919* 0.965* 0.9899*
α 0.0157*** 0.0067 -0.0595**
γ1 0.0875* -0.2118* -0.0957**
γ2 0.0595***
γ3 -0.0754
λ 0.0492*
TDFa 10.0875* 9.7254* 10.2751*
Log-lik -4223.0560 -4222.7 -4212.5
AIC 3.5140 3.5136 3.5077
SBC 3.5284 3.5281 3.5293
Waldb 16.6815*
*, **, *** denote signi�cant at the 1%, 5% and 10%

level, respectively
a�TDF� denotes the degrees of freedom for the Student's

t distribution
bWald tests the restriction that γ1 = γ2 = γ3

Table 7: MLE estimation results - S&P 500
Statistics GJR EGARCH MSV
c 0.0504* 0.2373** 0.1212***
φ1 0.0058 0.5181* 0.5353*
ω 0.013* -0.1081* -0.073*
β -0.0167*** 1.0093* 0.9897*
α 0.9359* -0.1885* -0.1922*
γ1 0.1386* -0.4629* -0.3838*
γ2 -0.4098*
γ3 -0.4283
λ 0.0508*
TDFa 10.8539* 10.9328* 11.3527*
Log-lik -3505.089 -3494.8 -3490.9
AIC 2.8542 2.8458 2.8458
SBC 2.8707 2.8623 2.8658
Waldb 1.5216
*, **, *** denote signi�cant at the 1%, 5% and 10%

level, respectively
a�TDF� denotes the degrees of freedom for the Student's

t distribution
bWald tests the restriction that γ1 = γ2 = γ3
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Table 8: Harvey-Newbold forecast encompassing test
(probability values are given in brackets)
Index MSV EGARCH GJR
CAC 40 0.377 [0.539] 2.464 [0.117] 1.967 [0.161]
DAX 30 1.500 [0.221] 1.717 [0.190] 4.425 [0.036]
FTSE 100 1.314 [0.252] 3.288 [0.070] 5.739 [0.017]
NASDAQ 100 1.235 [0.267] 0.109 [0.742] 3.913 [0.048]
NIKKEI 225 4.447 [0.035] 3.204 [0.074] 5.157 [0.023]
S&P 500 4.509 [0.034] 4.978 [0.034] 0.267 [0.606]
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