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Resumo   

 

As dinâmicas tradicionalmente assumidas para o preço do ativo subjacente e para a sua 

volatilidade instantânea revelam-se pouco realistas, sobretudo em opções de longo prazo, 

que exigem projeções incertas para ambos os processos. Em particular, os pressupostos de 

estacionariedade da volatilidade instantânea resultam numa menor variabilidade nos preços 

e maior suavidade das curvas de volatilidade implícita observadas em contratos de longo 

prazo (“Smiles”), em desfasamento face à evidência empírica (Carr e Wu, 2020). 

Carr e Wu (2020) propõem um enquadramento de avaliação centrado na atribuição de 

lucros e perdas (P&L) dos investimentos em opções. Partindo da formulação da avaliação de 

opções de Black e Scholes (1973) e Merton (1973), o retorno instantâneo de uma opção, com 

maturidade fixa, é decomposto em três componentes: as alterações no preço do ativo 

subjacente, as variações na volatilidade implícita da opção em estudo, e, por fim, os efeitos 

de ordem superior associados. Em vez de vincular os contratos a uma dinâmica especificada, 

a abordagem liga o valor justo atual da volatilidade implícita às variações logarítmicas do preço 

do ativo subjacente, em determinados intervalos temporais. 

Conclui-se com uma perspetiva top-down que desvia o foco dos payoffs terminais para as 

flutuações de curto prazo do P&L. Esta implementação exige uma estrutura de risco 

específica, capaz de determinar com rigor as exposições ao risco e as suas magnitudes, 

associadas a cada investimento. Esta formalização assegura a coerência entre avaliação e 

controlo de risco, estabelecendo uma base robusta para integrar a análise média-variância no 

universo de derivados. 

 

 

 

Palavras-Chave: Avaliação Transversal, Séries Temporais, Comunalidade Local. 
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Abstract   

 

Traditional assumptions about the underlying asset’s price dynamics and its instantaneous 

volatility often prove unrealistic, particularly for long-dated options, which require uncertain 

projections for both processes. In particular, imposing stationarity on instantaneous volatility 

tends to produce lower price variability and overly smooth implied volatility smiles at long 

maturities, in disagreement with the empirical evidence (Carr and Wu, 2020). 

Car rand Wu (2020) propose a valuation framework centered on profit and loss (P&L) 

attribution for option investments. Building on the option pricing formulation of Black and 

Scholes (1973) and Merton (1973), the instantaneous return on fixed maturity option position 

is decomposed into three componentes: changes in the underlying price, changes in the 

option’s implied volatility, and higher order effects. Rather than tying all contracts to a single 

specified dynamics, the approach links the current fair level of implied volatility to the 

logarithmic changes in the underlying’s price over relevant time intervals. 

The framework adopts a top-down perspective that shifts the focus from terminal payoffs 

to short horizon P&L fluctuations. Implementing it requires a dedicated risk architecture 

capable of rigorously determine each investment’s risk exposures and their magnitudes. This 

formalization ensures consistency between valuation and risk control and provides a robust 

foundation for integrating mean-variance analysis into the derivatives domain. 

 

 

 

 

Keywords:  Cross Sectional, Time Series, Local Communality. 
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Capítulo 1 

 

Introdução 

 

A suposição de dinâmicas sobre o preço do ativo subjacente e da sua volatilidade 

instantânea é usualmente distorcida da realidade. Nesta dissertação pretendemos quantificar 

o preço de opções de longo prazo e, para tal, é necessário realizar projeções sobre o preço 

dos ativos subjacentes (e, consequentemente da sua volatilidade) ao longo de um período de 

tempo futuro. É importante referir que as projeções de longo prazo são caracterizadas pela 

sua baixa precisão e também a estacionaridade (não perigosa) sobre a dinâmica da 

volatilidade instantânea, que são fatores que causam uma menor variação sobre o preço dos 

ativos e tornam a volatilidade implícita smile mais apelativa a contratos de longo prazo, 

comparativamente aos valores reais observados (Car e Wu (2020)).  

 

Em contraste com a abordagem tradicional de avaliação de opções, que vincula os valores 

de todos os contratos de opções a uma única especificação de dinâmicas de referência, a 

metodologia de Carr e Wu (2020) interliga o valor justo atual da volatilidade implícita de um 

contrato de opção com os momentos condicionais atuais das variações logarítmicas do preço 

do ativo subjacente e da volatilidade implícita desse contrato. Esta mudança subtil, mas 

fundamental, resulta da utilização da própria volatilidade implícita da opção como variável de 

estado, em vez da taxa de variância instantânea do ativo subjacente.   

 

Nesta dissertação pretendemos mostrar as diferenças entre a abordagem tradicional de 

classificação de preços de opções, isto é, uma abordagem relativa à avaliação centralizada 

bottom-up onde o foco principal encontra-se sobre a consistência cross-sectional utilizada 

para um conjunto de dinâmicas (relativas ao contrato), e um novo framework descentralizado 

com abordagem top-down. A grande diferença entre os frameworks identificados está no risco 

de retorno do trade-off de um contrato específico em que, relativamente ao framework 

tradicional, esta nova abordagem determina o preço da opção com base na exposição do 

risco do contrato e as suas magnitudes e não face ao preço de contratos com características 

semelhantes (volatilidade implícita, data de vencimento, montante da opção). Reconhecer 

esta diferença entre as abordagens permite verificar que o novo enquadramento possibilita a 

criação de previsões especializadas sobre os riscos e prémios de risco subjacentes a um 
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investimento específico, considerando-os como condições atuais do risco neutro da opção 

para posteriormente formalizar suposições de preços.  

 

Estas abordagens apresentam diferentes formas de determinar o preço das opções de 

contratos, no entanto estes frameworks também se podem complementar, as dinâmicas da 

abordagem tradicional fornecem bases rigorosas para a computação de hipóteses 

relativamente às condições correntes esperadas e, simultaneamente, os padrões de co-

movimento, empiricamente identificados nessas condições podem servir de referência para a 

definição da dinâmica padrão. 

 

Utilizando o índice S&P500 para formalizar a analise empírica, pretendemos demonstrar 

que determinar o desvio do risco neutro da estrutura da volatilidade implícita da opção at-the-

money será fundamental para previsões futuras do movimento da volatilidade implícita. Do 

mesmo modo, determinar a variância e covariância através da volatilidade implícita smile pode 

gerar melhores previsões de variâncias e covariâncias futuras se combinadas com estimativas 

passadas destas duas componentes. Estas previsões mais próximas da realidade permitem 

estabelecer oportunidades de investimentos de trade-offs com risco-retorno superiores. 

 

Esta dissertação encontra-se organizada da seguinte forma: 

➢ No capítulo 2 fazemos uma breve revisão da Literatura; 

➢ No capítulo 3 serão introduzidas algumas definições e conceitos fundamentais; 

➢ No capítulo 4 será introduzida e estabelecida a atribuição de Lucros e Perdas para 

um contrato de opção sob a fórmula de precificação de Black-Scholes-Merton; 

➢ No capítulo 5 abordaremos o risco neutro expectável extraído do retorno atribuído e 

também derivaremos as implicações de preço de não-arbitragem; 

➢ No capítulo 6 iremos analisar as implicações da precificação através da metodologia 

Cross-Sectional sob diferentes suposições de comunalidade local e global; 

➢ No capítulo 7 serão executados estudos empíricos em opções de indície S&P500 e 

também iremos explorar diferentes aplicações da nova abordagem; 

➢ No capítulo 8 discutiremos as principais suposições, limitações e exposições ao 

risco da teoria em estudo; 

➢ No capítulo 9 serão apresentados e elucidados os resultados obtidos. 
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Capítulo 2 

 

Revisão da Literatura 

 

Uma interpretação alternativa do enquadramento tradicional de avaliação de opções pode 

ser obtida a partir da perspetiva de “abrangência”, conforme articulada por Bakshi e Madan 

(2000). Estes autores concebem a função característica do retorno do ativo subjacente como 

uma base que abrange a maioria dos instrumentos derivados. A especificação das dinâmicas 

subjacentes determina a avaliação dos títulos de Arrow-Debreu (1954), os quais servem para 

replicar os pagamentos da maioria dos contratos contingentes. Esta perspetiva de 

abrangência demonstra um ênfase significativo na análise transversal. Por conseguinte, as 

discrepâncias de preços nos modelos tradicionais de avaliação de opções são 

frequentemente vistas como um ponto de partida para a implementação de estratégias de 

arbitragem estatística (e.g., Duarte, Longstaff e Yu (2007); Bali, Heidari e Wu (2009)). 

Em contrapartida, o nosso enquadramento proposto para avaliação de opções dá 

prioridade à relação risco-retorno para contratos individuais, alinhando desta forma a 

avaliação de um contrato específico com as perspetivas subjetivas dos investidores sobre as 

exposições ao risco e as respetivas magnitudes, em vez de alinhar com a avaliação de outros 

contratos. Esta abordagem distinta permite a integração de previsões especializadas sobre 

os riscos e os prémios de risco associados, convertendo essas previsões em condições de 

momento, neutras ao risco. Inversamente, a abordagem desenvolvida nesta dissertação, 

possibilita a extração de condições de momento a partir dos preços observados no mercado, 

facilitando a análise do conteúdo informacional incorporado nessas condições. 

Uma análise empírica de opções sobre o índice S&P 500 demonstra que a derivada neutra 

ao risco, extraída da estrutura a termo da volatilidade implícita at-the-money, pode ser 

utilizada como preditor de movimentos futuros na volatilidade implícita. Adicionalmente, a 

variância e covariância derivadas do efeito sorriso da volatilidade implícita, quando 

combinadas com estimativas históricas de momentos, produzem previsões mais precisas de 

variância e covariância realizadas. Estas previsões melhoradas podem ser 

subsequentemente utilizadas para tomadas de decisões de investimento em contratos 

derivados, com o intuito de obter melhores resultados. Ao contrário das abordagens 

convencionais de arbitragem estatística, que se baseiam na suposição de reversão dos erros 

de avaliação, a nossa abordagem utiliza previsões temporais de variância e covariância para 

identificar oportunidades de investimento com perfis risco-retorno mais vantajosos 



4 
 

Outra metodologia de avaliação relevante é o modelo Vanna-Volga (Castagna e Mercurio, 

2007; Wystup, 2010), que incorpora métricas derivadas do modelo BSM, como Vega, Vanna 

e Volga. Este modelo define um nível de volatilidade e calcula o valor correspondente para 

uma opção de contrato utilizando o modelo BSM. A diferença de preço entre o contrato-alvo 

e o valor de referência, é estruturada como uma função linear das diferenças de preço de três 

"opções pilar" relativamente aos seus respetivos valores de referência. O modelo garante que 

o Vega, o Vanna e o Volga do contrato-alvo estejam alinhados com os de uma carteira 

composta pelas três opções pilar, sendo todas as métricas de sensibilidade avaliadas com 

base na volatilidade de referência. Esta abordagem tem sido eficazmente utilizada, baseando-

se no pressuposto de que as exposições ao risco de uma opção podem ser aproximadamente 

replicadas utilizando três contratos cuidadosamente selecionados. 

Embora o modelo vanna-volga partilhe uma dependência comum com o enquadramento 

BSM para definir exposições ao risco, diverge significativamente da nossa abordagem, tanto 

na implementação como na perspetiva conceptual. Especificamente, o método de Carr e Wu 

(2020) calcula as exposições ao risco BSM de um contrato em relação à sua própria 

volatilidade implícita, em vez de uma volatilidade de referência. Além disso, esta metodologia 

de avaliação estabelece uma ligação direta entre o nível de volatilidade implícita de um 

contrato e as respetivas condições de momento neutras ao risco, ao contrário de ligar o valor 

de uma opção aos valores de outros contratos. 

Na literatura académica, um número crescente de estudos tem alterado o foco dos 

pagamentos finais para os retornos de investimento de curto prazo das opções. Por exemplo, 

Israelov e Kelly (2017) destacam as limitações dos modelos tradicionais de avaliação de 

opções e defendem a previsão empírica da distribuição dos retornos de investimento de 

opções. Trabalhos anteriores de Coval e Shumway (2000) e Jones (2006) também analisaram 

os retornos de opções. Estudos mais recentes ligaram esses retornos a características 

específicas das empresas. Por exemplo, An et al. (2014) associam variações futuras da 

volatilidade implícita ao desempenho histórico das ações. Boyer e Vorkink (2013) relacionam 

retornos de opções à volatilidade implícita smile. Byun e Kim (2016) exploram a relação entre 

retornos de opções e características semelhantes a lotarias dos ativos subjacentes. Por fim, 

Hu e Jacobs (2017) ligam os retornos de opções aos níveis de volatilidade do ativo subjacente.  

Esta investigação alinha-se com esta tendência académica mais ampla, oferecendo, por 

isso, uma base teórica para a análise dos retornos de investimento de curto prazo em opções 

e estabelece uma ligação entre o comportamento previsto dos retornos e a sua avaliação. 
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Capítulo 3 

 

Este capítulo destina-se apenas a introduzir alguns conceitos fundamentais. 

 

 

3.1  Modelos de Black e Scholes (1973) e Merton (1973) 

 

Um dos modelos fundamentais e amplamente utilizado na teoria financeira para a 

avaliação de derivados é o modelo de Black-Scholes-Merton (BSM). Este modelo fornece um 

método analítico para calcular o preço de opções europeias, considerando a influência de 

outros ativos financeiros e certos fatores de mercado sob determinadas condições de tempo 

e risco. 

A precificação de uma opção segundo o modelo de Black-Scholes-Merton baseia-se em 

seis variáveis essenciais: o preço atual do ativo subjacente 𝑆𝑡 , o preço de exercício da opção 

(K), a taxa de juro livre de risco (r), o tempo restante até à maturidade da opção (T-t), a 

volatilidade do ativo subjacente (σ) e a taxa de rendimento dos dividendos (q – dividend yield). 

O modelo assume que o preço do ativo subjacente segue um movimento Browniano 

geométrico com volatilidade constante e que os mercados são eficientes, isto é, não há 

oportunidades de arbitragem. Com base nessas premissas, o modelo de Black-Scholes-

Merton permite a determinação do valor justo de uma opção europeia de compra (call) ou de 

venda (put) num dado momento t, através das seguintes expressões matemáticas:   

                     𝑪(𝑺𝒕, 𝒕) = 𝑆𝑡 ∗ 𝑒−𝑞(𝑇−𝑡) ∗ 𝑁(𝑑1) −  𝐾 ∗ 𝑒−𝑟(𝑇−𝑡) ∗ 𝑁(𝑑2),                                   (3.1) 

 

para o caso da call e 

𝑷(𝑺𝒕, 𝒕) =  𝐾 ∗ 𝑒−𝑟(𝑇−𝑡) ∗ 𝑁(−𝑑2) − 𝑆𝑡 ∗ 𝑒−𝑞(𝑇−𝑡) ∗ 𝑁(−𝑑1),                        (3.2)          

              

para o caso da put, onde 

                                 𝒅𝟏 =  
1

𝜎 ∗ √𝑇 − 𝑡
(𝑙𝑛

𝑆𝑡

𝐾
+ (𝑟 − 𝑞 +

𝜎2

2
) (𝑇 − 𝑡)) ,                                 (3.3) 

   

        

                                               𝒅𝟐 =  𝑑1 − 𝜎√𝑇 − 𝑡 ,                                                                           (3.4) 
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com N(.) sendo a função de distribuição normal cumulativa. 

 

3.2   Atribuição de Ganhos e Perdas (Profit and Loss Attribution – 

P&L)  

 

Como iremos analisar no próximo capítulo, os Lucros e Perdas (P&L) de curto prazo, de 

um contrato de opção, podem ser determinados pela fórmula de avaliação de Black-Scholes-

Merton. Esta fórmula permite desconstruir a variação no valor de uma opção em função de 

três fatores principais: o tempo calendário t, o preço do ativo subjacente 𝑆𝑡 e a volatilidade 

implícita da opção 𝐼𝑡 . 

              𝐵(𝑡, 𝑆𝑡, 𝐼𝑡; 𝐾, 𝑇) =  𝑆𝑡𝑁 (−
𝑘 −  

1
2

𝐼𝑡
2𝜏

𝐼𝑡√𝜏
) − 𝐾𝑁 (−

𝑘 +  
1
2

𝐼𝑡
2𝜏

𝐼𝑡√𝜏
)                                  (3.5) 

  

onde 𝜏 ≡ 𝑇 −  𝑡 define o tempo até à maturidade, e 𝑧± ≡ (𝑘 ±  
1

2
𝐼𝑡

2𝜏), com 𝑘 ≡  ln
𝐾

𝑆𝑡
 

representando a moneyness relativo. Neste contexto, os termos 𝑧+ e 𝑧−  denotam a 

moneyness ajustada pela convexidade, sob as medidas neutra ao risco e alternativa, 

respetivamente, no enquadramento do modelo BSM. 

Portanto, 𝐵(𝑡, 𝑆𝑡 , 𝐼𝑡;  𝐾, 𝑇) é a representação de BSM do valor de uma opção como função 

das variáveis t, 𝑆𝑡 e 𝐼𝑡, para uma opção de compra europeia com preço de exercício K e data 

de maturidade T. 

 

3.3  Sensibilidades de Black-Scholes-Merton   
 

Para a realização de cálculos adicionais nesta dissertação, é fundamental destacar os 

principais componentes do modelo padrão de Black-Scholes-Merton. Através do preço BSM 

com dividendos contínuos q, 

 

𝑪(𝑺𝒕, 𝒕) = 𝑆𝑡 ∗ 𝑒−𝑞(𝑇−𝑡) ∗ 𝑁(𝑑1) −  𝐾 ∗ 𝑒−𝑟(𝑇−𝑡) ∗ 𝑁(𝑑2),       
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      𝑑1 =  
ln(

𝑆𝑡
𝐾⁄ )+(𝑟−𝑞+ 

𝐼𝑡
2

2
)∗𝜏

𝐼𝑡√𝜏
,           𝑑2 =  𝑑1 − 𝐼𝑡√𝜏                                    (3.6) 

e derivando o preço em relação ao spot 𝛥𝑡  ≡  
𝜕𝐶𝑡

𝜕𝑆𝑡
, mantendo K, r, q, 𝜕 e 𝜏 fixos usando a 

identidade BSM, os termos da regra da cadeia (via 
𝜕𝑑𝑖

𝜕𝑆𝑡
⁄ ) são cancelados e por isso: 

𝛥𝑡  ≡  𝑒−𝑞𝜏 ∗ 𝑁(𝑑1)  ≡ 𝑁(𝑑1),                                                                (3.7) 

para opções sem dividendos (𝑞 = 0). 

 

Desta forma é possível simplificar  

𝑪𝒕 = 𝑆𝑡 ∗ 𝑒−𝑞𝜏𝑁(𝑑1) −  𝐾 ∗ 𝑒−𝑟𝜏 ∗ 𝑁(𝑑2),                𝑑1 =  
ln (

𝑆𝑡
𝐾⁄ ) + 

𝐼𝑡
2

2
∗ 𝜏

𝐼𝑡√𝜏
, 

onde a derivada em relação ao spot quando 𝑞 = 0 (ou forward) 

      𝛥𝑡  ≡  𝑁(𝑑1)  ≡  𝐵𝑆 .                                                                         (3.8) 

 

BSM Delta para uma call option 

            𝑩𝑺 = 𝑁(𝑑1)           ,          𝒅𝟏 =  
ln (

𝑆𝑡
𝐾⁄ ) +  

𝐼𝑡
2

2
∗ 𝜏

𝐼𝑡√𝜏
=  − 

𝑧−

𝐼𝑡√𝜏
 ,                                         (3.9) 

 
 

onde N(.) representa a função de distribuição cumulativa da normal e 

 

                                                         𝒛− =  ln
𝐾

𝑆𝑡
 −   

1

2
𝐼𝑡

2𝜏 ,                                                          (3.10) 

. 

 

BSM Gamma e Cash Gamma para uma call option 

 

                         𝑩𝑺𝑺 =  
𝑛(𝑑1)

𝑆𝑡𝐼𝑡√𝜏
              ,             𝑩𝑺𝑺𝑺𝒕

𝟐 =  
𝑆𝑡𝑛(𝑑1)

𝐼𝑡√𝜏
 ,                                       (3.11) 
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onde n(.) representa a função de densidade de probabilidade da variável normal. 

 

As seguintes medidas de sensibilidade podem ser obtidas em termos do Cash Gamma: 

 

BSM Theta para uma call option 

 

                                   𝑩𝒕 =  −
1

2
∗

𝑆𝑡 ∗ (𝑛(𝑑1)) ∗ 𝐼𝑡

√𝜏
=  −

1

2
𝐼𝑡

2𝐵𝑆𝑆𝑆𝑡 
2 ,                                      (3.12) 

                                       

BSM Vega e Cash Vega para uma call option 

 

       𝑩𝑰 =  𝑆𝑡√𝜏𝑛(𝑑1)            ,            𝑩𝑰𝑰𝒕 =  𝑆𝑡𝐼𝑡√𝜏𝑛(𝑑1) =  𝐼𝑡
2𝜏𝐵𝑆𝑆𝑆𝑡

2.                              (3.13) 

                                      

BSM Vanna e Dollar Vanna para uma call option 

 

 
                   𝑩𝑰𝑺 =  

𝜕𝐵𝐼

𝜕𝑆𝑡
 =     

𝜕

𝜕𝑆𝑡
(𝑆𝑡√𝜏𝑛(𝑑1))                                             

=     √𝜏𝑛(𝑑1) −  
𝑑1𝑛(𝑑1) 

𝐼𝑡
 ,                             

como pode ser consultado no anexo. 

               (3.14) 

 

 

𝑩𝑰𝑺𝑰𝒕𝑺𝒕 =  𝑆𝑡𝑛(𝑑1)(𝐼𝑡√𝜏 −  𝑑1)  =  𝑆𝑡𝑛(𝑑1) (𝐼𝑡√𝜏 +  
−(ln 𝐾

𝑆𝑡
⁄ ) −

1
2 𝐼𝑡

2𝜏

𝐼𝑡√𝜏
) 

                                        =
𝑆𝑡𝑛(𝑑1)

𝐼𝑡√𝜏
(ln 𝐾

𝑆𝑡
⁄ +  

1

2
𝐼𝑡

2𝜏)  

                      =  𝐵𝑆𝑆𝑆𝑡
2𝑍+ .               

 

 

 

 

 

(3.15) 
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BSM Volga e Dollar Volga para uma call option 

 
𝑩𝑰𝑰 =  

𝜕𝐵𝐼

𝜕𝐼𝑡
 =  𝑆𝑡√𝜏

𝜕

𝜕𝐼𝑡
𝑛(𝑑1) =  

=  𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1) (− 
ln

𝑆𝑡
𝐾⁄

𝐼𝑡
2√𝜏

+  
1

2
√𝜏 ),   

 

 

 

 

(3.16) 

como pode ser consultado no anexo. 

 

 
 𝑩𝑰𝑰𝑰𝒕

𝟐  =   [𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1) (−
ln(

𝑆𝑡
𝐾⁄ )

𝐼𝑡
2√𝜏

+
1

2
√𝜏)] ∗ 𝐼𝑡

2 = 

                   =  𝑆𝑡𝑛(𝑑1)(− 𝑑1) (− ln
𝑆𝑡

𝐾⁄ + 
1

2
𝐼𝑡

2𝜏)  =   

                   =  𝐵𝑆𝑆𝑆𝑡
2𝑍−𝑍+ 

 

 

 

 

(3.17) 

como pode ser consultado no anexo. 
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Capítulo 4 

 

Atribuição de Ganhos e Perdas em Investimentos de Opções 

 

Consideremos um mercado composto por três instrumentos financeiros: um ativo livre de 

risco, um ativo com risco e uma opção vanilla europeia escrita sobre o ativo com risco. Para 

simplificar a análise, assumimos a existência de taxas de juro nulas, bem como a ausência de 

custos ou benefícios associados à posse do ativo com risco. Em aplicações práticas, é 

possível incorporar uma estrutura determinística das taxas de financiamento ao modelar o 

valor a termo do ativo subjacente e ao definir a moneyness da opção em relação ao seu preço 

a termo. Embora o ativo com risco possa corresponder a qualquer título negociável, para 

efeitos de simplificação, referir-nos-emos a ele como uma ação. Nos Estados Unidos, as 

opções sobre ações individuais negociadas em bolsa são, geralmente, de estilo americano. 

Para aplicar a presente abordagem teórica às opções americanas, utiliza-se frequentemente 

uma simplificação prática: extrai-se a volatilidade implícita associada ao modelo de Black-

Scholes-Merton (BSM) a partir do preço da opção americana, utilizando métodos baseados 

em árvores ou grelhas, e, em seguida, calcula-se o valor de uma opção europeia com a 

mesma maturidade e preço de exercício, com base na volatilidade implícita extraída. 

Pressupomos a existência de um ambiente de negócio contínuo e sem fricções, 

envolvendo o ativo livre de risco, a ação, e o contrato de opção sobre a ação. Além disso, 

assumimos a inexistência de oportunidades de arbitragem entre a ação e o ativo livre de risco. 

Como consequência, existe uma medida de probabilidade neutra ao risco (ℚ), equivalente à 

medida de probabilidade física (ℙ), sob a qual o preço da ação (S) segue uma martingale. 

Partindo deste contexto, supomos ainda que o valor da opção sob avaliação não permite 

arbitragem em relação a qualquer combinação de portfolios constituídos pela ação e pelo ativo 

livre de risco. 

Inicialmente, consideramos uma posição longa numa opção de compra europeia. Manter 

esta posição até à sua maturidade gera ganhos ou perdas (P&L) que dependem 

exclusivamente do pagamento terminal da opção. A avaliação clássica de opções começa 

pela definição da função de pagamento terminal, calculando, posteriormente, a expectativa 

deste pagamento com base em hipóteses que governam as dinâmicas do preço do ativo 

subjacente. Por outro lado, a abordagem proposta neste estudo foca-se nos ganhos e perdas 

gerados de forma instantânea ao longo de pequenos intervalos temporais. As flutuações de 

curto prazo nos P&L da posição na opção são determinadas principalmente pelas exposições 

da opção a diferentes fontes de risco e pelas variações dessas mesmas fontes de risco. Deste 
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modo, a análise prioriza a definição das exposições ao risco e a quantificação das suas 

magnitudes, em vez de enfatizar exclusivamente os pagamentos terminais. 

Os P&L de curto prazo de um contrato de opção podem ser atribuídos diretamente através 

da fórmula de avaliação explícita de BSM.  

Para qualquer contrato de opção, a fórmula de BSM estabelece uma relação funcional 

entre o preço da opção no instante t, o preço da ação (𝑆𝑡) e a volatilidade implícita (𝐼𝑡). Desde 

que o preço da opção não permita oportunidades de arbitragem em relação ao ativo 

subjacente e ao ativo livre de risco, é sempre possível determinar um valor positivo de 

volatilidade implícita que, como input da fórmula BSM, reproduz o preço da opção observado 

(Hodges, 1996). A fórmula de BSM constrói assim, uma ligação monótona entre o preço da 

opção e a sua volatilidade implícita, capturando quaisquer choques estocásticos que 

influenciem a opção, com exceção dos que derivam diretamente do preço do ativo subjacente, 

através da volatilidade implícita. 

Com base na equação de avaliação de BSM, é possível decompor os ganhos e perdas 

instantâneos de uma posição na opção, considerando variações no tempo calendário, no 

preço do ativo subjacente e na volatilidade implícita: 

   

𝑑𝐵 = [𝐵𝑡𝑑𝑡 + 𝐵𝑆𝑑𝑆𝑡 + 𝐵𝐼𝑑𝐼𝑡] + [
1

2
𝐵𝑆𝑆(𝑑𝑆𝑡)2 +  

1

2
𝐵𝐼𝐼(𝑑𝐼𝑡)2 + 𝐵𝐼𝑆(𝑑𝑆𝑡𝑑𝐼𝑡)] + 𝐽𝑡 , 

 

 

(4.1) 

onde os argumentos da função 𝐵(𝑡, 𝑆𝑡 , 𝐼𝑡;  𝐾, 𝑇) foram omitidos para simplificação, e os termos 

(𝐵𝑡), (𝐵𝑆), (𝐵𝐼), (𝐵𝑆𝑆), (𝐵𝐼𝐼), (𝐵𝐼𝑆)  representam as derivadas parciais da função em relação ao 

tempo (t), ao preço do ativo (S) e à volatilidade implícita (I). Estas derivadas são designadas, 

respetivamente, como theta (𝐵𝑡), delta (𝐵𝑆), vega (𝐵𝐼), gamma (𝐵𝑆𝑆), volga (𝐵𝐼𝐼) e vanna 

(𝐵𝐼𝑆). O primeiro termo da equação corresponde às derivadas de primeira ordem, o segundo 

engloba as derivadas de segunda ordem, enquanto o termo 𝐽𝑡 captura o efeito de potenciais 

derivadas de ordem superior resultantes de saltos estocásticos no preço da ação ou na 

volatilidade implícita. No caso de dinâmicas puramente contínuas para o preço da ação e a 

volatilidade implícita, as derivadas de primeira e segunda ordem são suficientes para 

descrever todas as variações relevantes no preço da opção, em intervalos temporais curtos. 

Neste contexto, assumimos dinâmicas contínuas e estabelecemos a ligação entre a avaliação 

de opções e as suas exposições de primeira e segunda ordem. 
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Capítulo 5 

 

Expetativa de Risco-Neutro e Avaliação da Volatilidade Implícita 

 

Considerando a hipótese de dinâmicas contínuas, é possível determinar a expetativa do 

retorno de um investimento (Profit and Loss – P&L) sob a medida de risco neutro ℚ. Em 

seguida, esta expetativa é dividida pelo horizonte temporal 𝑑𝑡, permitindo desta forma a 

realização de uma análise detalhada da evolução do investimento ao longo do tempo: 

   

𝔼𝑡[𝑑𝐵]

𝑑𝑡
=  𝐵𝑡 +  𝐵𝐼𝐼𝑡µ𝑡 + 

1

2
𝐵𝑆𝑆𝑆𝑡

2𝜎𝑡
2 +  

1

2
𝐵𝐼𝐼𝐼𝑡

2𝑤𝑡
2 +  𝐵𝐼𝑆𝐼𝑡𝑆𝑡𝛾𝑡 . 

 

 

(5.1) 

 

Neste enquadramento, a operação de expetativa 𝔼[•] é definida sob a medida de risco 

neutro, condicionada à filtragem temporal no instante t. Os parâmetros indispensáveis 

envolvidos são interpretados da seguinte forma: 

• µ𝑡: Representa a taxa de variação anual da volatilidade implícita esperada, sob a 

medida de risco neutro, modelada segundo Black-Scholes-Merton (BSM). 

Formalmente é expressa como µ𝑡  ≡  𝔼𝑡 [
𝑑𝐼𝑡

𝐼𝑡
] 𝑑𝑡⁄ ; 

• 𝜎𝑡
2 : Designa a variância de retorno do ativo subjacente, definida como                          

𝜎𝑡
2 ≡  𝔼𝑡 [(

𝑑𝑆𝑡

𝑆𝑡
)

2
] 𝑑𝑡⁄ ; 

• 𝑤𝑡
2 : Designa a variância da volatilidade implícita, representada como                         

𝑤𝑡
2  ≡  𝔼𝑡 [(

𝑑𝐼𝑡

𝐼𝑡
)

2
] 𝑑𝑡⁄ ; 

• 𝛾𝑡 : Representa a covariância entre o retorno do ativo subjacente e as variações na 

volatilidade implícita, definida como 𝛾𝑡  ≡  𝔼𝑡 [(
𝑑𝑆𝑡

𝑆𝑡
,

𝑑𝐼𝑡

𝐼𝑡
)] 𝑑𝑡⁄ . 

Desta forma, a equação apresentada anteriormente permite capturar a dinâmica do 

retorno do investimento, considerando não apenas os efeitos das variações do preço do ativo 

subjacente, mas também as interações entre o preço do ativo e a sua volatilidade implícita e 

os seus momentos condicionais. 
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O Teorema seguinte demonstra que, na ausência de custos de financiamento e de 

oportunidades de arbitragem, o retorno esperado de uma opção financeira sob a medida de 

risco neutro é nulo. 

 

Teorema 1:  

O retorno esperado de um investimento de opções financeiras, calculado sob a medida 

de risco neutro, é igual a zero desde que se aceite a hipótese de inexistência de custos de 

financiamento e ausência de oportunidades de arbitragem, o que nos leva à formulação de 

uma equação de relação de preço. De forma a sermos mais precisos e visto que o preço da 

opção cumpre a condição de não arbitragem e por isso o retorno esperado de uma opção é 

igualado a zero, devemos concluir que o preço da opção obedece às restrições impostas pela 

seguinte equação: 

  

0 =  𝐵𝑡 +  𝐵𝐼𝐼𝑡µ𝑡  +  
1

2
𝐵𝑆𝑆𝑆𝑡

2𝜎𝑡
2  +  

1

2
𝐵𝐼𝐼𝐼𝑡

2𝑤𝑡
2  +  𝐵𝐼𝑆𝐼𝑡𝑆𝑡𝛾𝑡 . 

 

 

 

(5.2) 

Em vez de nos concentrarmos na identificação pormenorizada nas dinâmicas do preço do 

ativo subjacente, através da equação proposta, focamo-nos nos primeiros e segundos 

momentos condicionais do preço do ativo, sem negligenciar as variações da volatilidade 

implícita da opção, no instante t.  

Esta visão de relação de preços evidencia os benefícios de uma análise de perspetiva de 

trade-offs de curto prazo, isto é, ao manter uma posição de longo prazo sobre uma opção, 

esta perderá valor temporal à medida que o tempo avança, resultando numa diminuição do 

seu valor de mercado. Assim, a dinâmica temporal da opção financeira é fundamental para a 

análise dos retornos de risco, sob a perspetiva da volatilidade implícita e da evolução de 

preços. 

Desta forma, é possível verificar que a equação evidencia algumas interconexões lógicas 

relevantes. Primeiramente, é essencial reconhecer que o Theta da opção (𝐵𝑡) reflete a taxa 

de perda de valor temporal, sendo que, esta perda é compensada pelos ganhos esperados 

que resultam da variação do preço do ativo, medidos pela variância do retorno do mesmo (𝜎𝑡
2) 

, gerada pela exposição positiva (da opção) ao Gamma (𝐵𝑆𝑆). Adicionalmente, as variações 

verificadas na volatilidade implícita da opção (𝑤𝑡
2) e na covariância entre as suas variações e 

o retorno do ativo subjacente (𝛾𝑡), introduzem ganhos e perdas devido às exposições do Volga 

(𝐵𝐼𝐼) e Vanna (𝐵𝐼𝑆) da opção, respetivamente. Dependendo da direção esperada 
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relativamente ao movimento da volatilidade implícita da opção (µ𝑡), a exposição positiva ao 

Vega (𝐵𝐼) também poderá originar valores adicionais de ganhos e perdas esperados. 

A condição de ausência de arbitragem estabelece que a opção deve ser valorizada de 

forma a garantir que, em qualquer momento, as diferentes fontes de ganhos e perdas 

esperados se equilibrem, resultando num retorno excessivo esperado nulo em termos de 

medida de risco neutro. 

Esta relação de preços permite inferir que, caso as exposições da opção estiverem 

alinhadas com as previsões dos momentos condicionais de primeira e segunda ordem, a 

opção será considerada corretamente avaliada naquele momento. Contudo, esta relação não 

esclarece como determinar estas previsões ou mesmo como elas variam, ao longo do tempo. 

Como tal, um ponto importante a destacar é que o risco associado ao processo de previsão 

pode ser computado de forma independente do processo de precificação. 

 

Corolário 1: 

 Para um contrato de opção com custo de financiamento zero e sob a suposição de 

desenvolvimentos contínuos, tanto de preço, quanto de volatilidade implícita, a perda 

associada ao Theta da opção é totalmente compensada pelo ganho gerado pelo Gamma: 

   

−𝐵𝑡 =  
1

2
𝐵𝑆𝑆𝑆𝑡

2𝜎𝑡
2 . 

 

 

(5.3) 

 

Quando a volatilidade implícita da opção permanece constante ao longo do tempo, 

assumimos por isso que a variação no preço do ativo subjacente seja a única fonte de variação 

que equilibra a perda do Theta e os ganhos do Gamma. Uma característica notória da 

equação de precificação de Black-Scholes-Merton (BSM) é que, pelos termos do Cash 

Gamma (𝐵𝑆𝑆𝑆𝑡
2), podemos representar o Cash Theta, Vega, Vanna e Volga: 

  

𝑩𝒕 =  −
1

2
𝐼𝑡

2𝐵𝑆𝑆𝑆𝑡
2 ;      𝑩𝑰𝑰𝒕 =  𝐼𝑡

2𝜏𝐵𝑆𝑆𝑆𝑡
2 ; 

 

 

 

(5.4) 
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              𝑩𝑰𝑺𝑰𝒕𝑺𝒕 =  𝑧+𝐵𝑆𝑆𝑆𝑡
2 ;          𝑩𝑰𝑰𝑰𝒕

𝟐 =  𝑧+𝑧−𝐵𝑆𝑆𝑆𝑡
 2 .                               (5.5)  

 

De maneira a fatorizar a variável Cash Gamma da equação de precificação, para um 

contrato de uma opção com um Cash Gamma positivo rigoroso, é apropriado determinar o 

retorno do investimento da opção como o P&L do investimento, por unidade de Cash Gamma. 

Obtemos por isso a seguinte equação: 

   

                           𝐼𝑡
2 = [2𝜏µ𝑡𝐼𝑡

2 +  𝜎𝑡
2] + [2𝛾𝑡𝑧+ +  𝑤𝑡

2𝑧+𝑧−] .                           (5.6) 

 

 

 

Este corolário evidência a interação entre os termos da equação de precificação e como 

a evolução temporal das variáveis envolvidas pode ser representada, destacando a relação 

entre as componentes de risco e os retornos esperados. 

 

Teorema 2: 

 Considerando a atribuição imediata do P&L e admitindo o pressuposto de movimentos 

contínuos do preço e da volatilidade implícita de uma opção europeia, baseada na equação 

de valorização de Black-Scholes-Merton, é possível explorar uma relação de não arbitragem 

entre o preço justo da volatilidade implícita da opção no instante t, a esperança condicional 

de risco neutro (µ𝑡) e o percentual de variação desta volatilidade implícita (𝑤𝑡
2). 

Adicionalmente, esta relação considera ainda a variância condicional do retorno do ativo 

subjacente (𝜎𝑡
2) e, finalmente, a covariância entre ambas as variáveis (𝛾𝑡). 

Contrastando com os modelos clássicos de valorização de opções, a equação fornece 

uma formulação mais direta do valor justo da opção, concentrando-se na consistência 

temporal da valorização. Neste sentido, a abordagem em estudo visa garantir que a 

valorização no instante 𝘵 mantém-se alinhada com o primeiro e segundo momentos 

condicionais do preço do ativo subjacente bem como da volatilidade implícita da opção. Esta 

consistência é assegurada através da atribuição restrita do P&L ao contrato da opção 

financeira, limitando a análise à sua própria estrutura de risco. Dito isto, o modelo não 

pretende estabelecer uma relação dinâmica global de valorização entre o ativo subjacente e 

o dinheiro, mas sim garantir a ausência de oportunidades de arbitragem, centrando-se nos 

momentos condicionais assumidos para o contrato em análise. 
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Capítulo 6 

 

Comunalidade Local e Avaliação Transversal (Cross-Sectional)  

 

Conforme abordado no capítulo anterior, a equação de avaliação mencionada 

anteriormente é aplicada a um contrato de opção específico, permitindo a comparação da sua 

avaliação com base numa projeção do preço do ativo subjacente e nas condições dos 

primeiros e segundos momentos da volatilidade implícita da opção. Assim, para realizar uma 

análise comparativa entre as avaliações de diferentes contratos de opção utilizando este 

método, revela-se essencial, em primeiro lugar, confrontar os primeiros e segundos momentos 

condicionais das volatilidades implícitas associadas a cada contrato. 

É pertinente destacar algumas observações iniciais, no contexto do modelo de Black-

Scholes-Merton (BSM), para fundamentar a análise sobre as semelhanças e divergências nas 

variações da volatilidade implícita em função dos preços de exercício (strikes) e das 

maturidades dos contratos da opção. Estes aspetos estão por isso intrinsecamente 

relacionados às volatilidades implícitas dos contratos da opção que, aquando partilham o 

mesmo ativo subjacente, são equivalentes. Na realidade, as divergências nestas volatilidades 

implícitas decorrem, sobretudo, das diferenças nos preços de exercício e nas maturidades 

dos contratos em questão. No entanto, essas volatilidades possuem uma tendência a evoluir 

de forma sincronizada. Desta forma, é plausível afirmar que, à medida que a distância entre 

os preços de exercício e as maturidades dos contratos se reduzem, os níveis de volatilidade 

implícita tendem a aproximar-se e a sua correlação torna-se mais robusta, resultando na 

formação de uma volatilidade implícita smile (em função dos preços e das maturidades), com 

uma forma predominantemente plana. 

Este capítulo concentra-se na análise das inferências de precificação transversal 

resultantes de várias suposições de comunalidade, dentro do novo quadro de avaliação 

proposto. O estudo demonstra como, sob esta nova abordagem de precificação, são 

calculadas as inferências transversais, baseando-se em suposições claras de comunalidade 

relativamente às condições momentâneas subjacentes. Neste contexto, é de extrema 

importância introduzir a Estrutura de Termos da Variância Implícita At-The-Money (ATM) e a 

Volatilidade Implícita Smile. 
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6.1  Estrutura Temporal da Variância Implícita At-The-Money  
 

De modo a dissociar os efeitos decorrentes da estrutura temporal dos efeitos relacionados 

com a moneyness, torna-se indispensável determinar a opção at-the-money através da 

imposição 𝑧+ = 𝑘 + 
1

2
𝐼𝑡

2𝜏 = 0. Este ponto é equivalente ao preço de exercício que calcula o 

strike 𝑘 com base no valor esperado, sob a medida neutra ao risco ln (
𝑆𝑇

𝑆𝑡
), conforme descrito 

no modelo de Black-Scholes-Merton. Esta dissociação permite que a análise se concentre 

exclusivamente nos movimentos previstos da volatilidade e na estrutura temporal de forma 

independente e evitando a interferência de efeitos de segunda ordem. 

A opção at-the-money, identificada por 𝑧+ = 0, constitui o único ponto de strike no qual a 

equação de precificação apresenta valores nulos para as variáveis Volga e Vanna, estando 

assim a opção at-the-money, apenas exposta aos riscos das variantes Delta, Vega e Gamma 

(como demonstrado nas equações associadas a cada componente). Este ponto de referência 

é também o único onde o nível da volatilidade implícita depende unicamente da taxa de 

variação prevista para a própria volatilidade implícita, sob a medida de risco neutro. Tal análise 

exclui a dependência da variância e covariância associadas ao retorno do ativo subjacente. 

Desta forma, a equação (5.2) revela que 𝐼𝑡
2 = [2𝜏µ𝑡𝐼𝑡

2 +  𝜎𝑡
2 ], permitindo assim que, 

rearranjando a mesma, a equação de precificação para a volatilidade implícita at-the-money, 

considerando um determinado tempo específico para a maturidade (𝜏), seja expressa como: 

   

𝐴𝑡
2 = 2𝜏µ𝑡𝐴𝑡

2 +  𝜎𝑡
2 

 

(6.1) 

 

Com o objetivo de construir a taxa de variação prevista da estrutura temporal da 

volatilidade implícita at-the-money, propõe-se a seguinte Suposição de Comunalidade Local 

(Local Commonality Assumption). 

 

6.1.1  Pressuposto de Comunalidade Local sobre Taxas de Variação 

Para as volatilidades implícitas at-the-money associadas a maturidades próximas, 

assume-se que as taxas de variação esperadas sejam rigorosamente idênticas, isto é, 

µ𝑡(𝜏1) ≐  µ𝑡(𝜏2), desde que a diferença entre estas maturidades |𝜏1 − 𝜏2| seja 

suficientemente pequena. 
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A equação apresentada enfatiza a suposição de comunalidade relativamente à 

aproximação das maturidades das opções, evidenciando este facto através do uso do símbolo 

de igualdade aproximada “≐”, que reflete a denominada Suposição de Comunalidade Local. 

O propósito fundamental desta suposição é possibilitar a extração da taxa média da variação 

esperada, calculada a partir da inclinação da variância implícita ao longo do intervalo de 

maturidades considerado. 

Para introduzir o conceito de inclinação da variância implícita da opção at-the-money de 

maneira explícita, é pertinente apresentar a seguinte proposição: 

 

 Proposição 1:  

Se as volatilidades implícitas de opções at-the-money apresentarem a mesma taxa de 

variação esperada, sob a medida de risco neutro µ𝑡, em um dado momento temporal t, para 

um determinado intervalo de maturidades [𝜏1, 𝜏2], é então possível determinar a taxa de 

variação real a partir da inclinação da variância implícita do contrato de opção at-the-money, 

ao longo do intervalo de maturidades especificado: 

 

   

µ𝑡 =  
𝐴𝑡

2(𝜏2)  −  𝐴𝑡
2(𝜏1)

2(𝐴𝑡
2(𝜏2)𝜏2  −  𝐴𝑡

2(𝜏1)𝜏1)
  . 

 

(6.2) 

 

Partindo do pressuposto de que o erro de aproximação tende a reduzir, não só com o 

encurtamento do intervalo de maturidades, mas também com a estabilização das alterações 

na taxa de variação extraída - pode ser considerada como uma estimativa aproximada da 

verdadeira taxa de variação subjacente. A equação que descreve a inclinação da variância 

implícita pode ser derivada diretamente através do calculo da volatilidade implícita da opção 

at-the-money em dois pontos distintos de maturidade, 𝜏1 𝑒 𝜏2, com base na taxa média de 

variação esperada µ𝑡 . A precisão e fiabilidade desta taxa de variação extraída depende, 

simultaneamente, da qualidade dos dados observados face às volatilidades implícitas e da 

estabilidade desta mesma taxa de variação, ao longo da estrutura temporal de maturidades. 

Adicionalmente, realiza-se uma análise detalhada de maneira a validar a Suposição de 

Comunalidade Local, acompanhada por uma investigação dos possíveis cenários e condições 

que possam comprometer a sua aplicabilidade ou conduzir à sua eventual decadência. 
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6.2  A Volatilidade Implícita Smile 

 

Outro fator importante de quando se pretende dissociar o efeito da moneyness do impacto 

da estrutura temporal, assume-se que as opções com tempo até à maturidade semelhantes, 

apresentam uma elevada co-movimentação da volatilidade implícita. Para captar o nível da 

volatilidade implícita da opção 𝐴𝑡, recorre-se à cobertura Vega de um contrato de uma opção 

at-the-money com a mesma maturidade. Esta metodologia possibilita revelar os níveis de 

volatilidade implícita de diferentes contratos, ajustando-os face ao valor at-the-money, sob a 

forma de spreads. 

Adicionalmente, parte-se do pressuposto de que a taxa esperada de variação da 

volatilidade implícita evolui proporcionalmente à do contrato da opção at-the-money expressa 

pela relação µ𝑡𝐼𝑡
2 =  µ𝑡

𝐴𝐴𝑡
2 .  Neste enquadramento, a subtração da equação de valorização da 

volatilidade implícita at-the-money à equação (5.2) permite evidenciar o impacto da 

volatilidade implícita smile sobre a moneyness: 

   

𝐼𝑡
2 − 𝐴𝑡

2 = 2𝛾𝑡𝑧+ +  𝑤𝑡
2𝑧+𝑧− .  

 

(6.3) 

 

A variância e a covariância das alterações da volatilidade implícita (𝑤𝑡
2, 𝛾𝑡) determinam a 

magnitude do desvio da variância implícita no strike 𝐼𝑡
2, relativamente à variância implícita da 

opção at-the-money 𝐴𝑡
2, para qualquer nível de strike e moneyness 𝑧+. 

Neste seguimento, é viável recorrer a um processo de engenharia inversa para extrair a 

variância e a covariância antecipadas pelo mercado, uma vez que estas constituem elementos 

fundamentais na configuração do efeito sorriso da volatilidade implícita. A sua obtenção requer 

a computação de processos locais sobre a dinâmica da volatilidade implícita em função da 

moneyness. 

A volatilidade implícita smile depende não apenas da amplitude da variação esperada no 

período subsequente, mas também da forma como esta evolui face ao preço do ativo 

subjacente, num determinado instante. Desta forma, quanto maior for a volatilidade implícita 

esperada, menor será a probabilidade da volatilidade implícita smile ser plana, a curto prazo. 
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6.2.1 Pressuposto de Comunalidade Local sobre Taxas de Variância e Covariância 

Para qualquer intervalo de strikes com a mesma maturidade e para qualquer “𝑘” dentro 

de um determinado intervalo, a variância e a covariância da volatilidade implícita permanecem 

constantes, isto é: 

   

𝑤𝑡
2(𝑘)  ≐  𝑤𝑡

2     ,     𝛾𝑡
2(𝑘) ≐  𝛾𝑡 , 

 

(6.4) 

    

para todos os “𝑘” dentro de um determinado intervalo de strike. 

Dado que as opções near-the-money são as mais negociadas no mercado, torna-se 

particularmente relevante, do ponto de vista prático, extrair a variância e a covariância da 

volatilidade implícita at-the-money. Para tal, assume-se que a variância e a covariância 

permanecem constantes para strikes dentro de um determinado intervalo do forward ou, de 

forma equivalente, que a medida de moneyness ajustada à convexidade 𝑧+, se situa num 

intervalo próximo de zero. 

Em síntese, o pressuposto de comunalidade local implica que, para strikes semelhantes, 

as volatilidades implícitas variam segundo a mesma magnitude proporcional esperada. Assim, 

é esperado que a volatilidade implícita smile apresente um declive suave, o que evidencia a 

forte co-movimentação das volatilidades implícitas em strikes próximos. 

Com base no pressuposto de comunalidade local estabelecidos em (µ𝑡𝐼𝑡
2 =  µ𝑡

𝐴𝐴𝑡
2  e (5.6)), 

é possível estimar a variância e a covariância comuns através de uma regressão linear 

transversal simplificada do spread da variância implícita ( 𝐼𝑡
2 −  𝐴𝑡

2) sobre as duas medidas 

moneyness ajustadas à convexidade, [2𝑧+, 𝑧+, 𝑧−]. 

No capítulo seguinte, realiza-se uma análise da variância e da convariância da volatilidade 

implícita at-the-money por meio de uma regressão transversal, restringindo-se a um intervalo 

específico de moneyness próximo de zero. Adicionalmente, avalia-se o potencial destas 

métricas na previsão de futuras oscilações da volatilidade implícita. 
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Capítulo 7 

 

Análise Empírica sobre Opções do Índice S&P 500 

 

Procedeu-se à realização de uma análise empírica centrada em opções sobre o índice 

S&P 500 (SPX), instrumentos estes amplamente transacionados na Chicago Board Options 

Exchange (CBOE Global Markets). A base de dados utilizada compreende o histórico de 

preços de fecho das opções, as respetivas volatilidades implícitas bem como os valores do 

índice subjacente. 

O período amostral abrange o intervalo entre 3 de janeiro de 2022 e 31 de maio de 2022, 

perfazendo um total de 103 dias úteis. Durante este intervalo temporal, o valor do índice variou 

de aproximadamente 3.886 para cerca de 4.801 pontos. A volatilidade anualizada dos retornos 

diários observada ao longo do período em análise é estimada em 26.4%. 

A abordagem teórica adotada fundamenta-se na avaliação de contratos de opções com 

base nos dois primeiros momentos sob a medida neutra de risco, associados às variações da 

volatilidade implícita. Dado que os dados empíricos são constituídos por cotações de 

contratos de opções transacionados em mercado regulamentado, torna-se viável calcular, de 

forma precisa, as alterações da volatilidade implícita de cada contrato individual, mediante a 

sua evolução entre dias consecutivos. 

Com o intuito de examinar a dependência dos momentos estatísticos das alterações da 

volatilidade implícita face à moneyness e ao tempo até à maturidade, bem como a sua relação 

com a estrutura temporal da volatilidade implícita e com o perfil da volatilidade implícita smile, 

procedeu-se à construção de séries temporais flutuantes destas alterações. Para tal, recorreu-

se a técnicas de interpolação local suavizada, aplicadas sobre grelhas específicas definidas 

em função da moneyness e da maturidade. 

A análise empírica desenvolve-se em três etapas principais. Em primeiro lugar, são 

apresentadas evidências de uma comunalidade local nos co-movimentos entre as séries das 

variações da volatilidade implícita. Em segundo, com base nesta estrutura de comunalidade, 

extrai-se a taxa de variação localmente comum esperada a partir da estrutura a termo da 

volatilidade implícita at-the-money, considerando maturidades adjacentes. Avalia-se, 

subsequentemente, o conteúdo informacional dessa taxa de variação no que diz respeito à 

previsão de alterações futuras na volatilidade implícita. Numa terceira etapa, são estimadas 

as variâncias e covariâncias das séries flutuantes da volatilidade implícita e comparadas com 
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as respetivas estimativas sob a medida neutra ao risco, extraídas a partir da variância implícita 

da smile local em torno do ponto at-the-money. Analisa-se, assim, em que medida as 

variâncias e covariâncias realizadas podem ser previstas com base nas estimativas históricas 

das séries temporais, bem como nas estimativas transversais obtidas sob a neutralidade ao 

risco. Adicionalmente, é desenvolvida uma estratégia de investimento que explora a diferença 

entre as previsões para a variância e covariância futuras e os momentos de risco neutro 

atualmente refletidos na volatilidade implícita smile local.  

 

7.1 Construção de Séries Flutuantes de Variações Percentuais da 

Volatilidade Implícita 

 

A abordagem teórica adotada estabelece uma correspondência entre o valor justo da 

volatilidade implícita de um contrato de opção e os dois primeiros momentos sob a medida 

neutra ao risco das variações dessa mesma volatilidade. Uma vez que os dados empíricos 

consistem em cotações relativas a contratos de opções com características fixas (preço de 

exercício e data de vencimento), torna-se possível calcular diretamente as variações da 

volatilidade implícita através da observação da evolução dos preços de cada contrato ao longo 

de dias úteis consecutivos. 

Contudo, para que se possa analisar a forma como os momentos estatísticos dessas 

variações se comportam em função da moneyness e do tempo até à maturidade, revela-se 

necessário construir séries temporais flutuantes da volatilidade implícita e das suas variações, 

definidas em grelhas fixas nestas duas dimensões. Esta construção permite, 

simultaneamente, examinar com maior profundidade tanto a estrutura fatorial global como as 

comunalidades locais nas alterações da volatilidade implícita ao longo dos domínios de 

moneyness e maturidade. 

A grelha adotada compreende cinco horizontes temporais de maturidade, mais 

concretamente 30, 60, 91, 182, 365 dias e nove níveis distintos de moneyness (-2; -1.5; -1; -

0.5; 0; 0.5; 1; 1.5; 2). A escolha destes pontos segue a prática corrente da indústria financeira, 

conferindo com maior detalhe os prazos mais curtos, onde se observa maior intensidade de 

negociação e uma variação mais acentuada na estrutura temporal da volatilidade. 

Para cada nível de maturidade, os pontos de moneyness são definidos com base na 

medida standardizada 𝑥 ≡
𝑧+

𝐼𝑡√𝜏
, a qual representa o número de desvios padrão que o 

logaritmo do preço de exercício (ln 𝐾) se encontra acima da esperança do logaritmo do preço 
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terminal (ln 𝑆𝑡), no enquadramento do modelo de Black-Scholes-Merton (BSM). A grelha cobre 

o intervalo de duas unidades de desvio padrão, com incrementos uniformes de 0,5 desvios, 

isto é 𝑥 = 0; 0,5; 1−
+ ;  1,5−

+ ;  2−
+

−
+ . Em cada ponto da grelha (𝜏, 𝑥), procede-se à estimação do 

nível da volatilidade implícita 𝐼𝑡, bem como da variação percentual logarítmica 𝑅𝑡+1, através 

de uma média local ponderada segundo dois critérios principais: 

1. Ponderação entre opções de compra e venda: para um dado preço de exercício, é 

comum existirem cotações simultâneas de opções call e put. Atribui-se maior peso 

à opção out-of-the-money, por via da sua maior liquidez e fiabilidade na cotação. A 

ponderação adotada é 1 – |𝛿𝑖|, sendo 𝛿𝑖 a delta teórica do contrato, segundo o 

modelo BSM. Esta ponderação é truncada para zero sempre que |𝛿𝑖| > 0,8, 

excluindo opções profundamente in-the-money, cuja fiabilidade é 

frequentemente comprometida. 

2. Ponderação por proximidade na grelha de maturidade-moneyness: cada 

observação é adicionalmente ponderada em função da sua distância ao ponto-alvo 

(ln 𝜏 , 𝑥), mediante um núcleo Gaussiano bivariado com larguras de banda ℎ𝜏 𝑒 ℎ𝑥. 

A utilização do logaritmo da maturidade confere maior resolução para prazos mais 

curtos, onde a sensibilidade da volatilidade implícita é mais pronunciada. Assim, a 

ponderação total atribuída à observação i é dada por: 

 

𝑤𝑖 = ( 1 −  |𝛿𝑖|)⟦{|𝛿𝑖| < 0,8} ∗ exp (−
(𝑥𝑖 −  𝑥)2

2ℎ𝑥
2

)            

∗ exp (− 
(𝑙𝑛 𝜏𝑖 − 𝑙𝑛 𝜏)2

2ℎ𝜏
2

) .                                                                         (7.1) 

 

onde ‖{. } representa a função indicadora e (ℎ𝑥, ℎ𝜏) correspondem aos                      

parâmetros de suavização (larguras de banda) do núcleo. 

O método de interpolação adotado segue práticas fundamentais no setor financeiro. 

Variáveis usuais adicionam ajustes nas ponderações relativas entre calls e puts para o mesmo 

preço de exercício, bem como o grau de suavização aplicado às cotações. Testes de robustez 

(tais como variações nas larguras de banda de kernel (𝜎𝑥, 𝜎𝜏); janela de suavização temporal 

(0/3/5 dias); método de interpolação (NW vs. Bilinear; winsorização de outliers (0,5-99,5 vs. 

1-99))) demonstram que as variações marginais nesta metodologia não têm impacto material 

nas conclusões da análise. 
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Importa salientar que a literatura implícita tende a centrar-se na análise das séries 

flutuantes da volatilidade implícita com a moneyness e maturidade fixas. No entanto, as 

variações nessas séries podem diferir significativamente das variações associadas a 

contratos fixos, sobretudo em contextos delineados por estruturas temporais inclinadas ou 

perfis acentuados da smile. Mesmo que a superfície da volatilidade implícita se mantenha 

inalterada, como função do tempo até à maturidade e da moneyness, o simples deslize de um 

contrato ao longo da estrutura temporal, ou ao longo da skew, pode induzir variações 

substanciais nas séries flutuantes em estudo. Inversamente, a volatilidade implícita de um 

contrato específico poderá evoluir ao longo do tempo, mesmo que a superfície global 

permaneça estática, em virtude das alterações no seu tempo residual até à maturidade e na 

sua moneyness relativa. 

Em termos operacionais, para cada data t, recolhe-se a volatilidade implícita 𝐼𝑡
𝑖 de cada 

contrato observado e, subsequentemente, a sua cotação na data útil seguinte 𝐼𝑡+1
𝑖 . Calcula-

se então a variação percentual logarítmica 𝑅𝑡+1
𝑖 =  ln(

𝐼𝑡+1
𝑖

𝐼𝑡
𝑖 ). Estes valores são por sua vez 

interpolados de forma suavizada no decorrer da grelha de maturidade e moneyness já pré-

definida, originando as séries flutuantes para os níveis da volatilidade implícita e suas 

respetivas variações. 

 

7.2 Comunalidade Local e Estruturas Fatoriais Globais 

 

A formulação teórica proposta estabelece uma correspondência direta entre o nível de 

volatilidade implícita de um contrato de opção e os seus dois primeiros momentos condicionais 

sob a medida de risco neutro. Com o objetivo de inferir essas condições momentâneas a partir 

da observação empírica da volatilidade implícita, introduz-se o conceito de Comunalidade 

Local, segundo o qual os contratos com datas de vencimento e preços de exercício próximos 

tendem a apresentar comportamentos similares, refletindo assim, condições momentâneas 

semelhantes. 

Importa realçar que este conceito é de natureza qualitativa, não implicando uma definição 

estrita ou determinística. Termos como “local” e “próximo” devem ser interpretados em sentido 

relativo, distinguindo-se claramente da abordagem tradicional que específica de forma precisa 

o número de fatores num modelo de volatilidade estocástica. A comunalidade local visa captar 

uma regularidade empírica robusta da superfície da volatilidade implícita, amplamente 

prevista por diversos modelos estocásticos contemporâneos. 
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É natural que contratos de opção com características contratuais próximas – 

nomeadamente preços de exercício e maturidades semelhantes – apresentam estruturas de 

payoff análogas e, consequentemente, exposições semelhantes a fatores latentes de risco. 

Tal semelhança verifica-se salvo em modelos que impõem comportamentos idiossincráticos 

dependentes de datas específicas ou limiares de preços do ativo subjacente. Por outro lado, 

opções cujas características se distanciem significativamente – por exemplo, uma opção com 

um mês de maturidade face a outra opção com maturidade de um ano – podem apresentar 

movimentos conjuntos ou divergentes, conforme a especificidade da estrutura fatorial que 

governa a dinâmica da volatilidade. No entanto, observa-se empiricamente que contratos 

vizinhos, como duas opções at-the-money com maturidades de 11 e 12 meses, exibem co-

movimentos particularmente fortes, independentemente da modelização precisa da evolução 

da volatilidade subjacente. 

No limite, a arbitragem impõe que dois contratos de opção com o mesmo preço de 

exercício e a mesma data de vencimento devem apresentar volatilidades implícitas idênticas, 

independentemente da especificação dinâmica do modelo. O conceito de Comunalidade Local 

pode ser compreendido como uma extensão prática deste princípio teórico, assentando 

sobretudo na semelhança estrutural dos contratos e não em suposições específicas sobre a 

evolução estocástica dos fatores subjacentes. Para além da sua justificação teórica, o 

conceito de comunalidade local encontra também sustentação prática no comportamento dos 

market makers, que frequentemente procuram cobrir a sua exposição a determinado contrato 

através de posições em contratos com características próximas. Esta prática de cobertura 

com instrumentos adjacentes tem vindo a ser amplamente validada, seja em termos teóricos 

como empíricos, nomeadamente por Wu e Zhu (2016), cuja evidência sustenta a robustez 

deste comportamento. O pressuposto de comunalidade local visa, precisamente, refletir esta 

resiliência observada nos mercados organizados de derivados. 

Contudo, apesar da sua plausibilidade conceptual, importa avaliar em que medida tal 

pressuposto se mantém válido quando se alargam as distâncias contratuais relativamente à 

maturidade e moneyness. Para esse efeito, procede-se à análise empírica da variação 

conjunta da volatilidade implícita entre contratos, em função da distância relativa entre os 

respetivos parâmetros contratuais. 

Como primeiro passo metodológico, calcula-se a correlação cruzada entre as séries de 

variação percentual da volatilidade implícita, com o intuito de aferir a forma como os níveis de 

correlação se alteram à medida que aumenta a distância contratual, quer no eixo da 

maturidade quer no eixo da moneyness. A partir desta posição de referência determinam-se 

os coeficientes de correlação das variações da volatilidade implícita para várias maturidades. 
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A linha contínua apresentada na figura 1 representa os valores de correlação estimados com 

contratos de igual maturidade. Para opções com moneyness dentro de uma unidade de 

desvio-padrão (|𝑥|  ≤ 1), os valores superam os 80%. No entanto, ao restringir esta medida 

para meia unidade (|𝑥|  ≤ 0,5) os valores superam os 90% para maturidades de 2 e 6 meses, 

legitimando desta forma a aplicação do pressuposto de comunalidade local no intervalo (|𝑥|  ≤

1) à mesma maturidade. À medida que a moneyness se afaste do ponto ATM, a correlação 

diminui. As duas medidas de desvio padrão mantêm-se em torno dos 25% evidenciando que 

uma única estrutura de variâncias-covariâncias não é suficiente para reproduzir o efeito 

sorriso da volatilidade implícita em toda a gama de moneyness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

As duas linhas tracejadas correspondem às maturidades adjacentes (dois e seis meses) 

e as duas linhas a traço e ponto a prazos mais distantes (um e doze meses). Ao analisar a 

estrutura a termo ATM observam-se valores de correlação de sensivelmente 93% para ambas 

maturidades de dois meses e seis meses (92,22% a dois meses e 93,40% a 6 meses), 

suportando a comunalidade local definida por maturidades idênticas. Em contrapartida, com 

maturidades mais distantes os coeficientes descem para 80% (80,69% para um mês e 86.48% 

para doze meses).  

Figura 1. Correlação das variações da volatilidade implícita com a opção at-the-money a três meses. O 

gráfico apresenta estimativas de correlação cruzada entre as variações percentuais da volatilidade implícita do 

contrato de referência (isto é, opção at-the-money com maturidade de três meses) e de outros contratos, distinguindo-

os por prazo e por nível de moneyness. Cada curva mostra, para uma determinada maturidade, como a correlação 

evolui ao longo do espectro da moneyness. A linha contínua do gráfico representa a correlação com contratos de 

igual maturidade (três meses) As duas linhas tracejadas dizem respeito às maturidades adjacentes (dois e seis 

meses). As duas linhas a traço-e-ponto correspondem a prazos mais distantes (um e doze meses). 
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A Figura 1 ilustra uma secção da matriz de correlação, tendo como referência o contrato 

ATM a três meses. Considerando a matriz completa (excluindo a diagonal da matriz), a 

correlação média é 58,31%, a mediana 72%, o máximo 97,98%, o mínimo -23,58% e o desvio-

padrão 35,73%, revelando elevada heterogeneidade entre pares. Para testar formalmente a 

hipótese de que a correlação diminui com as distâncias absolutas em maturidade e em 

moneyness, estima-se, nos elementos da parte inferior da matriz, a regressão bivariada: 

𝜌𝑖𝑗 = 𝛼 +  𝛽𝜏 |𝛥𝜏𝑖𝑗| + 𝛽𝑥 |𝛥𝑥𝑖𝑗| +  𝜀𝑖𝑗   ,                          (7.2) 

em que 𝜌𝑖𝑗 é a correlação entre os contratos 𝑖 e 𝑗, |𝛥𝜏𝑖𝑗| mede a distância em maturidade e  

|𝛥𝑥𝑖𝑗| a distância em moneyness. Sob a hipótese em análise, espera-se 𝛽𝜏 < 0 e 𝛽𝑥 < 0. 

Tabela 1 

Dependência de Correlação de Distâncias entre Maturidade e Moneyness 

                                         𝛼                     𝛽𝑥                     𝛽𝜏                         𝑅2 

Estimates 0,863      -0,510       -0,154   0.503                

Std Error 0,001       0.002        0,001   -        

 

Na Tabela 1 estão demonstrados os resultados da regressão. O modelo apresenta um 𝑅2 

de 50,3%. O termo constante está próximo do valor unitário quando a distância entre contratos 

é nula. As curvaturas associadas ao distanciamento de ambas as métricas é negativa. 

No enquadramento proposto, a análise da superfície da volatilidade implícita pode iniciar-

se sem especificar, à partida, a dinâmica completa do preço subjacente e da respetiva 

volatilidade. Em alternativa, procede-se primeiro ao estudo da estrutura de co-movimento das 

variações percentuais da volatilidade implícita entre contratos ao longo das dimensões de 

maturidade e moneyness. A partir deste diagnóstico, impõem-se diretamente estruturas 

fatoriais cross-sectional para variâncias e covariâncias, das quais decorrem implicações de 

avaliação sobre o nível e a forma da superfície da volatilidade implícita (implied volatility smile). 

Para identificar os fatores que determinam tais movimentos, aplicamos a análise de 

componentes principais às séries interpoladas de variações da volatilidade implícita. Estima-

se a matriz de covariância das séries e efetua-se a respetiva decomposição espectral 

(autovalores e autovetores). Após normalização, o vetor de autovalores quantifica a fração de 

variância explicada por cada componente principal, enquanto os autovetores associados se 

interpretam como as “cargas” das respetivas componentes sobre a superfície da volatilidade 

implícita.  
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A Figura 2 representa os resultados da análise das componentes principais da superfície 

da volatilidade implícita.  

 

No Painel A, o gráfico de barras apresenta a proporção de variância explicada pelas 10 

principais componentes. A primeira componente explica 74,52% da variabilidade, relevando 

um elevado grau de co-movimento na superfície. O Painel B mostra as cargas factoriais dessa 

componente, positivas em praticamente todo o domínio de maturidades e níveis de 

moneyness, com maior intensidade nas maturidades curtas e em strikes mais elevados, o que 

é compatível com maior variabilidade nesses segmentos. 

A segunda componente, responsável por 10,78% da variância (ainda que 

substancialmente abaixo da dominante primeira), exibe, no Painel C, um perfil em função da 

Figura 2. Análise das principais componentes aplicada aos movimentos da 
volatilidade implícita. 

No Painel A, um gráfico de barras representa a fração de variância explicada pelas dez 
componentes principais, estimadas com base em 45 séries interpoladas de variações da 
volatilidade implícita. Os Painéis B a D exibem os pesos fatoriais da primeira, segunda e terceira 
componentes, respetivamente, mapeadas ao longo do espectro da moneyness e para diferentes 
maturidades. É possível verificar a codificação linear dos gráficos tal como descrito na Figura 2.  
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moneyness: as cargas são positivas em strikes baixos e negativas em strikes altos, captando 

a dinâmica da inclinação (skew) da volatilidade implícita para cada maturidade. A terceira 

componente explica 6,67%% da variação e, conforme ilustrado no Painel D, captura a 

estrutura de termo: para uma dada moneyness, as cargas são negativas nas maturidades 

curtas e positivas nas longas. 

Analisada coletivamente e, no âmbito deste conjunto de dados, as três primeiras 

componentes explicam mais de 90% da variabilidade da superfície. A primeira traduz o nível 

global da volatilidade implícita, por sua vez, a segunda e terceira componentes representam 

alterações das inclinações ao longo das dimensões de moneyness e de maturidade, 

respetivamente. Em opções transacionadas em bolsa, que tipicamente cobrem um leque 

amplo de moneyness mas restrito de maturidades, a variação na dimensão da moneyness 

tende a ser predominante. Nas cotações over-the-counter, em que o intervalo da moneyness 

é mais estreito e o de maturidades substancialmente mais amplo, a variação na estrutura a 

termo assume maior peso. 

Por fim, importa salientar que a PCA é intrinsecamente dependente dos dados. Para 

explicar a mesma fração de variância, menos componentes são necessárias quando o 

intervalo de strikes ou de maturidades é reduzido. Por outro lado, um número superior de 

componentes é necessário quando o domínio é alargado. Esta característica evidência as 

limitações de uma identificação de fatores “globais” – uma estrutura fatorial aparentemente 

suficiente num determinado enquadramento empírico pode deixar de o ser quando o espaço 

amostral é expandido. 

 

7.3 Estrutura a termo da Variância Implícita At-The-Money e 

respetiva Dinâmica 

 

Na Tabela 2, mais precisamente Painel A, são sintetizadas as estatísticas descritivas dos 

níveis interpolados da volatilidade implícita at-the-money nas cinco maturidades 

consideradas, 𝐴ᵗ(𝜏) ≡  𝐼ᵗ(𝜏, 0) para 𝜏 = 1,2,3,6 𝑒 12 meses. A média amostral da volatilidade 

implícita tem uma ligeira diminuição com a maturidade. Para um mês, a média é de 26,2%, 

valor muito próximo do desvio-padrão da rendibilidade no período completo (26,4%) e atinge 

23,5% à maturidade de um ano. Da mesma forma, o desvio-padrão da série at-the-money 

decresce de 2,4%(1mês) para 0,5%(12 meses). O intervalo entre mínimos e máximos 

históricos também se estreita à medida que a maturidade aumenta, em consonância com a 

redução da dispersão. A última linha do painel apresenta a autocorrelação das séries 
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“flutuantes”. As cinco maturidades exibem mean reversion, mais acentuada para contratos de 

curto prazo. 

O Painel B da Tabela 2 reporta as estatísticas para a variação logarítmica diária da série 

flutuante, ln
𝐴𝑡+1(𝜏)

𝐴𝑡(𝜏)⁄ , nas mesmas maturidades, com todas as métricas anualizadas. 

Ao longo dos períodos, observa-se uma tendência decrescente da média anualizada da 

variação diária de 54,4% (1 mês) a 23,5% (12 meses). Da mesma forma é possível reparar 

no mesmo padrão para as estimativas do desvio-padrão, anualizado, das variações 

percentuais diárias que decrescem de 41,9% para maturidades de um mês a 11,1% para 

maturidades de um ano. As autocorrelações das variações diárias são positivas, refletindo a 

persistência da volatilidade e o ajuste gradual das expetativas de risco.  

O Painel C da Tabela 2 considera, por sua vez, a variação logarítmica diária da volatilidade 

implícita dos contratos at-the-money de maturidade fixa  𝑅𝐴
𝑡+1(𝜏)  ≡  𝑅𝑡+1(𝜏, 0), distinta das 

variações percentuais da série flutuante analisadas no Painel B. Comparativamente, as 

médias amostrais anualizadas são mais reduzidas, variando de 23,4% (1 mês) a -3,7% (12 

meses). À luz da equação de valorização (5.4) e descurando o prémio de risco da variância, 

estas médias positivas apontam para uma estrutura a termo ascendente nas maturidades 

curtas-médias, pois para maturidades mais longas da variância implícita at-the-money gera 

médias negativas. As volatilidades das variações (desvios-padrão anualizados) mantêm-se 

semelhantes às do Painel B, situando-se entre 41,9% (1 mês) e 11,1% (12 meses), e o 

intervalo entre mínimos e máximos é também idêntico. As autocorrelações das variações dos 

contratos de prazo fixo são positivas nas maturidades curtas e nas longas. Desta forma, a 

mean reversion observada nas séries flutuantes não se transfere necessariamente para as 

variações da volatilidade implícita dos contratos de maturidade fixa. 

Em síntese, a deslocação ao longo da estrutura a termo e da moneyness induz diferenças 

substanciais entre o comportamento da volatilidade implícita das séries flutuantes e da 

volatilidade implícita das séries de maturidade fixa, tanto ao nível de momentos (médias e 

dispersões) como ao nível das dependências temporais e das correlações com os retornos 

do ativo subjacente. 
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Tabela 2 

Resumo das Estatísticas para níveis de Volatilidade Ímplicita At-The-Money e Variações 

Diárias 

Maturity (𝜏)  1      2           3   6         12        

Panel A: At-The-Money Implied Volatility Level, 𝐴𝑡(𝜏) 

Mean  0,262   0,257        0,252  0,244        0,235    

SD  0,024   0,031        0,017  0,011        0,005 

Minimo  0,226   0,224        0,223  0,223        0,226 

Máximo  0,307   0,295        0,285  0,269         0,245 

Autocorrelação  0,945   0,947        0,948  0,949         0,939 

Painel B: Daily Log Change in At-The-Money Implied Volatility, 
𝐴𝑡+1(𝜏)

𝐴𝑡(𝜏)⁄  

    Mean  0,544   0,479        0,407  0,271         0,040 

SD  0,419   0,358        0,292  0,184         0,111 

Minimo -16,812  -13,941     -10,279  -6,732        -4,600 

Máximo  21,302   17,681      13,634   7,397         4,683 

Autocorrelação  0,576    0,608        0,637   0,651          0,533 

Correlação -0,397    -0,410      -0,414  -0,403          -0,407 

Painel C: Daily Log Implied Volatility Change for At-The-Money Contracts, 𝑅𝐴
𝑡+1(𝜏) 

Mean  0,234   0,181        0,210   0,166         -0,037 

SD  0,418   0,357        0,291   0,184          0,111 

Minimo  -17,8  -14,782     -10,835   -6,984        -4,818 

Máximo  20,219  16,838      13,094   7,118          4,560 

Autocorrelação  0,574   0,606        0,636   0,651          0,532 

Correlação -0,398  -0,411        -0,417   -0,405        -0,412 

 

7.4 Extração da taxa de variação a partir da estrutura a termo At-

The-Money 

 

Admitindo que os movimentos proporcionais das volatilidades implícitas são praticamente 

idênticos para um par de contratos at-the-money de maturidades adjacentes, a Proposição 1 

permite identificar a derivada condicional neutra ao risco das variações percentuais da 

volatilidade implícita µ𝑡, a partir da inclinação local da estrutura a termo da variância implícita 
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definida por esses mesmos contratos. As correlações reportadas na Figura 1 – extremamente 

elevadas entre maturidades contíguas – sustentam o pressuposto de comunalidade local 

neste intervalo de prazos. Consequentemente, usamos a inclinação ATM entre (𝜏𝑖 , 𝜏𝑖+1) para 

estimar a derivada no ponto médio 𝝉𝒊 = (𝜏𝑖 +  𝜏𝑖+1)/2: 

µ𝑗(𝝉𝒊) =
𝐴𝑡

2(𝜏𝑖+1)− 𝐴𝑡
2(𝜏𝑖)

2[𝐴𝑡
2(𝜏𝑖+1)𝜏𝑖+1− 𝐴𝑡

2(𝜏𝑖)𝜏𝑖]
 ,                                   (7.3) 

 

onde que 𝐴𝑡(𝜏) é o nível ATM da volatilidade implícita e 𝐴2
𝑡(𝜏) a variância implícita 

correspondente. Em termos operacionais, a inclinação entre 1 e 2 meses fornece µ𝑡 aos 1,5 

meses, a inclinação entre 2 e 3 meses fornece µ𝑡 aos 2,5 meses e assim sucessivamente. As 

estimativas pontuais são depois interpoladas linearmente para obter µ𝑡(𝜏) em todas as 

maturidades interpoladas. 

Tabela 3 

Extração da Taxa de Variação da Estrutura a Termo da Variância Implícita At-The-

Money 

Maturity (𝜏)  1      2           3   6         12        

Mean -0,217  -0,268       -0,258 -0,130       -0,047   

SD  0,135   0,195        0,207  0,114        0,129 

Minimo -0,464  -0,706       -0,746 -0,358       -0,369 

Máximo  0,133   0,138        0,125  0,063         0,152 

Autocorrelação  0,887   0,924        0,936  0,950         0,973 

 

A Tabela 3 sumariza as estatísticas de µ𝑡. As médias amostrais neutras ao risco são 

negativas em todas as maturidades e de elevada persistência (autocorrelações de 89% a 

97%) - inferiores às médias estatísticas (Painel C da Tabela 2) em todo o período. Os desvios-

padrão são da ordem de duas a três vezes as médias, refletindo a forte variabilidade temporal. 

Interpretando a diferença média como prémio de risco, o padrão sugere, em termos 

agregados que, no período determinado, o mercado embute um prémio positivo para 

variações ATM, isto é, posições longas teriam em média sido remuneradas. Este padrão difere 

do reportado por Carr e Wu (2020) no entanto, a elevada persistência e a largura da 

distribuição das estimativas são consistentes com a literatura (e.g., Egloff, Leippold e Wu, 

2010, em variance swaps). Temporalmente, µ𝑡 exibe elevada variabilidade, os desvios-padrão 
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são quase o dobro das médias e os extremos mínimos/máximos evidenciam alternância entre 

valores fortemente negativos e positivos. As autocorrelações são elevadas e persistentes. 

Para avaliar o conteúdo informativo de µ𝑡 na previsão de variações futuras da volatilidade 

implícita, estimamos, para cada maturidade 𝜏, a regressão  

𝑅𝑡+1
𝐴 = 𝛼 +  𝛽µ𝑡(𝜏) +  𝑒𝑡+1 ,                                  (7.4) 

em que 𝑅𝑡+1
𝐴 (𝜏) é a variação logarítmica (anualizada) da volatilidade implícita ATM e µ𝑡(𝜏) 

que representa a taxa neutra ao risco esperada inferida na data t. Sob a hipótese das 

expetativas (não enviesada), tem-se 𝛼 = 0 e 𝛽 = 1. Na ausência de informação, espera-se 

𝛽 = 0. 

Tabela 4 

Previsões de Alterações da Volatilidade Implícita com a Inclinação da Estrutura a 

Termo 

Maturity (𝜏)       ᾱ             𝐻: 𝛼 = 0             𝜷             𝐻: 𝛽 = 0             𝐻: 𝛽 = 1         𝑅𝟐, %  

1                   0,932   0,861       2,179    0,590     0,319  0,20% 

2                   0,841   0,756       1,587    0,590     0,218           0.30% 

3                   0,606   0,654       0,938    0,406    -0,027           0.18% 

6                   0,45   0,858        1,513    0,497               0,169           0.35% 

12                -0,030   -0,243       -1,352    -0,955             -1,661           0.99% 

 

 A Tabela 4 apresenta os coeficientes, as estatísticas t de Newey-West (1987) com 21 

defasagens e os 𝑅2. Os interceptos são positivos entre 1 e 6 meses e negativos aos 12 meses, 

mas as estatísticas t são reduzidas, não permitindo rejeitar 𝛼 = 0. Apesar das inclinações (𝛽) 

serem próximas de 1 em maturidades curtas não é possível rejeitar a hipótese não informativa 

(𝛽 = 0) entre 1 e 6 meses uma vez que, as estatísticas t são pequenas. Embora a magnitude 

de 𝛽 esteja próxima do valor unitário, a fraca significância proveniente de uma amostra 

reduzida (103 dias úteis) e de algum ruído microestrutural, culminam na impossibilidade de 

rejeição de 𝛽 = 0. Da mesma forma não é possível rejeitar a hipótese não enviesada (𝛽 =

1). Os 𝑅2 são consistentemente baixos, indicando que prever a direção das variações da 

volatilidade implícita de contratos de maturidade fixa é intrinsecamente complicado. Nestas 

condições, é prudente efetuar cobertura de vega e privilegiar estratégias baseadas na 

geometria da volatilidade implícita smile (forma e inclinação) em detrimento de apostas 

meramente direcionais. 
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7.5 A Volatilidade Implícita Smile e suas Variações 

 

A Tabela 5 documenta a curvatura smile da volatilidade implícita e a sua dinâmica. No 

Painel A, apresentam-se as médias amostrais das volatilidades implícitas em cinco níveis de 

moneyness para cada uma das cinco maturidades interpoladas. Em todas as maturidades, o 

nível médio é superior em strikes baixos e inferior em strikes elevados, configurando o 

enviesamento negativo (skew) típico. Embora a inclinação seja, na sua generalidade, 

monotonicamente descendente, a pendente mais acentuada nos strikes inferiores. Em prazos 

muito curtos, observa-se maior curvatura e o perfil aproxima-se de um smile, dado que a 

volatilidade implícita volta a aumentar em strikes muito elevados. 

 

Tabela 5 

Média da Volatilidade Implícita Smile e Estimativas de Variância/Covariância de 

Séries Temporais 

Maturity (𝜏)            -2               -1               0                 1               2 

Panel A: Média Volatilidade Implícita Smile 

1                           0,854         0,426         0,258          0,208         0,187 

2                           0,786         0,418         0,256          0,203         0,182 

3                           0,716         0,411         0,253          0,198         0,172 

6                           0,532         0,393         0,245          0,182         0,153 

12                         0,387         0,359         0,235          0,157         0,137 

Painel B: Histórico das Estimativas de Covariância, 𝛾𝑇 

1                          -0,015        -0,020        -0,015         -0,019        -0,034 

2                          -0,017        -0,020        -0,014         -0,018        -0,032 

3                          -0,018        -0,019        -0,013         -0,017        -0,031 

6                          -0,022        -0,018        -0,010         -0,013        -0,011 

12                        -0,014        -0,014        -0,010         -0,010        -0,004 

Painel C: Histórico das Estimativas de Variância, 𝜔𝑡 

1                           0,860         0,244         0,060          0,133         1,066 

2                           0,705         0,202         0,051          0,113         0,849 

3                           0,549         0,161         0,042          0,093         0,957 

6                           0,197         0,077         0,021          0,047         0,241 

12                         0,039         0,029         0,007          0,013         0,065 
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A teoria de avaliação proposta estabelece um nexo entre a smile da variância implícita e 

dois componentes: a variância condicional neutra ao risco da variação percentual da 

volatilidade implícita e a respetiva covariância com o retorno do índice. Com base nas 

variações logarítmicas interpoladas 𝑅𝑡(𝜏, 𝑥) e no retorno do índice, constroem-se séries 

temporais para a taxa de variância 𝜔𝑡 e para a taxa de variância 𝛾𝑡, usando uma janela móvel 

de 21 dias úteis. O Painel B reporta as médias amostrais das covariâncias históricas para 

cada ponto (𝜏, 𝑥) da grelha. As estimativas são negativas em todas as maturidades e níveis 

de moneyness e, em particular em torno do ponto at-the-money, diminuem com a maturidade. 

O Painel C apresenta as médias amostrais das variâncias, que apresentam o mesmo 

comportamento, isto é, decrescem à medida que a maturidade aumenta. Para uma 

maturidade fixa, as covariâncias médias são inferiores em strikes elevados do que em strikes 

baixos.  

Uma interpretação plausível destes padrões decorre da composição da procura por 

opções out-of-the-money. A procura por puts de índice é tipicamente institucional e 

sistemática, o que pode acentuar a inclinação da skew em strikes baixos apesar das menores 

magnitudes absolutas das variâncias e covariâncias nesses níveis. Em contraste, a procura 

por calls out-of-the-money é mais retalhista e menos sistemática, induzindo movimentos 

idiossincráticos mais pronunciados e, consequentemente, maiores magnitudes absolutas de 

variância e covariância em strikes elevados. Esta assimetria entre padrões de procura e 

magnitudes históricas de variação pode criar oportunidades de valor relativo para investidores 

capazes de gerir o risco com rigor. 

 

7.6 Extração das taxas de variância e de covariância a partir da 

Volatilidade Implícita Smile 

 

A Figura 1 mostra que, no intervalo de uma unidade de desvio-padrão em torno da at-the-

money (|𝑥| ≤ 1), as variações logarítmicas da volatilidade implícita entre o contrato ATM e os 

restantes contratos são fortemente correlacionadas (superiores a 90%). Esta evidência 

legitima o pressuposto de comunalidade local nesse domínio e motiva a identificação, em 

corte transversal, das taxas neutras ao risco de covariância e variância através da regressão 

𝐼𝑡
2 − 𝐴𝑡

2 =  𝛾𝑡(2𝑧+) +  𝜔𝑡
2(𝑧+𝑧−) + 𝑒𝑡 .                            (7.5) 

Em cada data e maturidade, a diferença para o nível ATM da variância implícita é 

regressada nas estatísticas de moneyness 2𝑧+ e 𝑧+𝑧−, restrita aos cinco níveis 

compreendidos em |𝑥| ≤ 1. A conversão de 𝑥 em 𝑧+ e 𝑧− é direta dado o nível local de 
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volatilidade implícita. Impõe-se o termo constante nulo e a restrição de positividade em 𝜔𝑡
2. 

Nesta parametrização, um skew negativo da volatilidade implícita implica 𝛾𝑡 < 0. 

Tabela 6 

Estimativas de Regressão Cross-Sectional de Taxas de Variância e Covariância 

Maturity (𝜏)  1      2           3   6         12        

Panel A: Estimativas de Covariância 𝛾𝑡 

Mean -0,200  -0,281        -0,342 -0,464       -0,823    

SD  0,054   0,070         0,077  0,069        0,084 

Minimo -0,351  -0,474        -0,549 -0,644       -1,014 

Máximo -0,131  -0,192        -0,239 -0,355        -0,659 

Autocorrelação  0,916   0,920         0,924  0,934         0,939 

Correlação                    0,028         0,041        0,058        0,148         0,131 

Painel B: Estimativas de Variância, 𝜔𝑡
2 

Mean  0,653   0,939        1,158   1,620         3,011 

SD  0,181   0,240        0,269   0,257         0,336 

Minimo  0,423   0,632        0,797   1,214         2,360 

Máximo  1,157   1,601        1,887   2,292         3,783 

Autocorrelação  0,916    0,921        0,925   0,935          0,940 

Correlaçao  0,251    0,252       0,262   0,351          0,040 

Painel C: Regressões, 𝑅2
𝑠 

Mean  0,874   0,883        0,892   0,913          0,962 

SD  0,040   0,034        0,030   0,024          0,017 

Minimo  0,775   0,793        0,808   0,852          0,925 

Máximo  0,938   0,947        0,954   0,966          0,987 

Autocorrelação  0,761   0,759        0,768   0,862          0,949 

 

A Tabela 6 sumariza os coeficientes e os 𝑅2. No Painel A, as estimativas de covariância 

são universalmente negativas em todas as maturidades e datas, indicando smiles 

persistentemente enviesados em baixa no índice S&P 500. As séries exibem elevada 

persistência temporal, com autocorrelações diárias entre 91,61% ( 1 mês) e 93,92% (12 

meses). Dado o foco em moneyness próximo de zero, estas estimativas podem ser 

interpretadas como condições de momento do contrato ATM. A comparação entre as médias 



39 
 

em corte transversal (Cross-Scetional) e as médias históricas de séries temporais (TS) da 

Tabela 5 revela que, em média, as médias cross-sectional são mais negativas do que as 

médias das séries temporais, sugerindo que o skew implícito é mais acentuado do que o 

justificado pela covariação histórica entre a volatilidade implícita e o retorno do índice – 

diferença interpretável como prémio de risco (Driessen, Maenhout e Vilkov, 2009). A 

correlação cruzada entre Cross-sectional e temporal series, reportada na última linha do 

Painel A, é reduzida, aumentando até maturidades de 3 meses e decrescendo depois para 

maturidades até 12 meses. 

O Painel B apresenta as taxas de variância identificadas pela curvatura da smile. Em 

média, as estimativas cross-sectional excedem as estimativas temporal series nas 

maturidades curtas e convergem para valores semelhantes na maturidade de 12 meses, o 

que indica maior curvatura em prazos curtos do que em prazos longos e, por isso, mais 

acentuada do que a suportada pela variação temporal da volatilidade implícita. As dispersões 

são substancialmente maiores do que nas inclinações sinalizando datas em que a smile 

interpolada apresenta uma curvatura positiva residual. As autocorrelações destas estimativas 

são mais baixas do que as das inclinações e as correlações cruzadas com as variâncias das 

séries temporais, negativas em todas as maturidades. Em suma, estes resultados sugerem 

que a identificação da variância via curvatura cross sectional é menos robusta do que a 

identificação da covariância via inclinação da smile. Em períodos de maior volatilidade de 

mercado, quando as variâncias da temporal series aumentam, a smile tende a ficar fortemente 

enviesada negativamente, a curvatura torna-se difícil de estimar e a correlação entre medidas 

das séries temporais e de cross sectional torna-se negativa. 

Por fim, o Painel C reporta os 𝑅2 das regressões em cross sectional, que são elevados. 

As médias excedem desde os 87,36% (1 mês) e 96,18% (12 meses), com desvios-padrão 

entre 1% e 4% o valor mínimo observado na maturidade de 1 mês é ainda 77,5%. Estes 

números indicam que, no intervalo estreito da moneyness |𝑥| < 1, a especificação em (7.1) 

reproduz com precisão a volatilidade implícita smile, proporcionando corroboração empírica 

do pressuposto de comunalidade local nesse domínio. 

 

7.7 Negociação da Volatilidade Implícita Smile 

As estimativas das variâncias e covariâncias obtidas por regressão cross-sectional sobre 

o efeito sorriso da volatilidade implícita podem divergir das estimativas de séries temporais 

calculadas com janelas móveis. Existem três motivos principais para tal: 
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i. As medidas transversais são prospetivas uma vez que refletem informação dos 

preços hoje sobre o futuro, enquanto as medidas das séries temporais são 

retrospetivas, por se basearem no passado recente; 

ii. Ambas incorrem em erros de estimação, embora com fontes distintas; 

iii. Os valores esperados podem diferir devido a prémios de risco quando o preço ou 

a volatilidade implícita apresentam saltos aleatórios, riscos estes premiados pelo 

mercado. 

É neste enquadramento que analisamos as implicações económicas das discrepâncias 

observadas. 

 

7.7.1 Previsão da (Co)Variância Realizada com Estimativas Cross-Sectional e 

Temporais 

De maneira a confirmar se a informação cross-sectional pode complementar a informação 

na previsão da variância e da covariância realizadas, no período seguinte, estimamos, para 

cada maturidade, a seguinte regressão de previsão: 

 

𝑅𝑉𝑡+1 =  𝛼 +  𝛽1𝐶𝑆𝑡 +  𝛽2𝑇𝑆𝑡 + 𝑒𝑡+1 ,                            (7.6) 

em que 𝑅𝑉𝑡+1 denota a variância ou covariância realizada no mês subsequente e, 𝐶𝑆𝑡 e 𝑇𝑆𝑡 

representam, respetivamente, os estimadores transversal e de séries temporais disponíveis à 

data t. A Tabela 7 resume os resultados da regressão – Painel A para a covariância e Painel 

B para a variância – incluindo coeficientes estimados, estatísticas t absolutas de Newey-West 

(1987) com 21 desfasagens e os 𝑅2 das regressões. 

Tabela 7 

Previsão da Variância/Covariância Realizada com Estimadores Cross-Sectional e 

de Séries Temporais 

Maturity (𝜏)                    ᾱ                                   𝛽1                          𝛽2                         𝑅𝟐, %  

Painel A: Covariância, 𝛾𝑡 

1                       -0,019   (3,939)       -1,639   (1,884)      -0,158    (0,882)       10,51 

2                       -0,018   (4,185)       -1,359   (2,511)       -0,142   (0,846)        11,53 

3                       -0,017   (4,332)       -1,257   (3,037)       -0,117   (0,750)        12,02 

6                       -0,012   (3,136)       -0,942   (1,561)        0,060    0,448          6,78 

    12                      -0,012   (6,163)       -0,865   (2,105)        0,166    0,496          8,38 
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Maturity (𝜏)                    ᾱ                                   𝛽1                          𝛽2                         𝑅𝟐, % 

Painel B: variância, 𝜔𝑡 

1                        0,091   (5,771)       -6,033   (5,510)        5,070     0,412         24,26 

2                        0,083  (5,788)       -4,067    (5,395)        4,172     0,317         24,97 

3                        0,074   (6,003)       -3,182   (5,460)        3,936     0,285         26,48 

6                        0,046   (6,246)       -1,742   (4,158)        12,879   0,742         26,21 

    12                       0,021   (6,763)       -0,279   (2,075)       -25,096  (0,850)       12,78 

 

No Painel A, as regressões de previsão da covariância apresentam 𝑅2 reduzidos, 

variando de 10,51% (maturidade de 1 mês) a 8,38% (12 meses). Os coeficientes associados 

a 𝐶𝑆𝑡 e 𝑇𝑆𝑡 são positivos, no entanto os coeficientes das séries temporais são maiores e 

exibem estatísticas t superiores, indicando que as estimativas baseadas na dinâmica recente 

das variações da volatilidade implícita constituem um ponto de partida mais robusto para 

antecipar a interação entre a volatilidade implícita e o retorno do índice no curto prazo. 

O Painel B evidência menos poder preditivo para a variância, sugerindo persistência e 

previsibilidade mais frágeis face à covariância. Os coeficientes associados ao estimador 

histórico 𝑇𝑆𝑡 são positivos e estatisticamente significativos em praticamente todas as 

maturidades (à exceção de 12 meses) ao passo que, a contribuição do estimador transversal 

𝐶𝑆𝑡 é mais reduzida e os respetivos coeficientes tornam-se negativos em todos os casos. Em 

síntese, os resultados apontam para a preponderância da informação histórica na previsão do 

nível da variância, enquanto a informação transversal acrescenta valor marginal e, por vezes, 

em sinal oposto. 

 

7.7.2 Trade-Off do Risco-Retorno com base nas Previsões de Séries Temporais 

Dado um conjunto de previsões futuras para a variância e covariância realizadas e 

assumindo movimentos num intervalo de moneyness, a teoria proposta permite determinar 

um valor de equilíbrio (breakeven) para a volatilidade implícita smile. Este valor corresponde 

à avaliação do smile obtida através de previsões estatísticas dos momentos (variância e 

covariância), admitindo prémio de risco nulo. Sempre que a volatilidade implícita smile 

observada divergir desta avaliação, a diferença pode ser entendida como manifesto do prémio 

de risco e, por conseguinte, como oportunidade de investimento. Para avaliar empiricamente 

esta ideia, conduzimos um exercício fora da amostra: a partir de 30 de março de 2022 e, para 

cada data e maturidade, estimamos (com uma janela móvel de tamanho máximo de 120 dias) 
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a relação de previsão (7.6), e por isso obtêm-se estimativas out-of-sample para a covariância 

𝛾𝑡 e a variância 𝜔𝑡 . Com base nestas estimativas, constrói-se o diferencial de variância 

implícita de equilíbrio nos quatro níveis da moneyness 𝑥 =  ±0,5; ±1; 0, 

𝐼𝑡
2  −  𝐴𝑡

2  =   2𝛾𝑡𝑧+ +  𝜔𝑡
2(𝑧+𝑧−) ,                              (7.7) 

considerando o nível at-the-money 𝐴𝑡 observado e obtendo, assim, o valor justo dos spreads. 

As quantidades 𝑧+𝑧−, que dependem do nível de volatilidade implícita são calculadas com o 

próprio 𝐴𝑡 observado. Para cada ponto de moneyness, forma-se portfolios de spreads de 

vega-neutros entre o contrato at-the-money e o contrato out-of-the-money (OTM) 

correspondente, acompanhando o P&L delta-hedge ao longo do mês seguinte. Tendo em 

conta a maior atividade em OTM face a in-the-money, implementamos put spreads em strikes 

baixos e cal spreads em strikes elevados. Em cada spread, o peso do contrato at-the-money 

é normalizado para um e assume-se posição curta no contrato OTM de forma a anular a veja. 

O peso do investimento em cada spread é proporcional à diferença entre o diferencial 

observado no mercado e o valor de equilíbrio, normalizada pela variância ATM: 

𝜔𝑡  =  
[(𝐼𝑡

2− 𝐴𝑡
2)𝑚𝑘𝑡−(𝐼𝑡

2− 𝐴𝑡
2)𝐵𝐸]

𝐴𝑡
2   .                                    (7.8) 

Quando o spread observado excede o valor justo, tomamos posição longa de 100∗ 𝜔𝑡 

dólares no contrato at-the-money e posição curta no contrato com a moneyness 

correspondente, mantendo a posição por 21 dias úteis e efetuando cobertura diária a delta 

com futuros sobre o índice. Devido ao reduzido dispêndio monetário face ao potencial de risco 

nas opções, as posições são medidas em nocional, isto é, investir 100∗ 𝜔𝑡 equivale a 

normalizar o nível do índice em 100 dólares e deter 𝜔𝑡 “unidades” do contrato normalizado. 

Tabela 8 

Resumo das Estatísticas sobre os Pesos de Investimento da Estratégia de Risco-

Retorno 

{𝜏 | 𝑥}                     −1                              − 0,5                                 0,5                               𝟏  

Painel A: Média da Amostra 

1                       0,009                       0,027                     -0,065                   -0,174 

2                       0,012                       0,040                     -0,093                   -0,253 

3                       0,015                       0,051                     -0,116                   -0,319                      

6                       0,021                       0,078                     -0,170                   -0,477 

12                     0,040                       0,165                     -0,332                   -0,961 
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{𝜏 | 𝑥}                     −1                              − 0,5                                 0,5                               𝟏  

Painel B: Desvio-Padrão 

1                       0,004                       0,004                      0,010                    0,026 

2                       0,006                       0,006                      0,013                    0,034 

3                       0,007                       0,006                      0,014                    0,038                      

6                       0,006                       0,006                      0,012                    0,034 

12                     0,008                       0,006                      0,012                    0,037 

Painel C: Mínimos 

1                      -0,002                       0,017                     -0,079                   -0,216 

2                      -0,002                       0,027                     -0,113                   -0,311 

3                      -0,000                       0,037                     -0,138                   -0,386                      

6                       0,010                       0,064                     -0,190                   -0,539 

12                     0,024                       0,153                     -0,350                   -1,019 

Painel D: Máximos 

1                       0,017                       0,033                     -0,041                   -0,111 

2                       0,024                       0,048                     -0,065                   -0,177 

3                       0,029                       0,060                     -0,088                   -0,239                      

6                       0,036                       0,087                     -0,140                   -0,392 

12                     0,062                       0,175                     -0,305                   -0,877 

Painel E: Autocorrelação Diária 

1                       0,326                       0,868                      0,861                    0,841 

2                       0,353                       0,874                      0,864                    0,843 

3                       0,386                       0,880                      0,867                    0,846                      

6                       0,477                       0,891                      0,867                    0,847 

12                    0,518                      0,854                    0,804                   0,790 

A Tabela 8 apresenta estatísticas descritivas dos pesos. Em cada painel, as colunas 

correspondem aos níveis de moneyness 𝑥 e as linhas às maturidades 𝜏 (em meses). As 

médias são positivas nos put spreads (𝑥 = −0,5 e −1) e negativas nos call spreads (𝑥 = 0,5 

e 1), o que significa que, em média, a estratégia está vendida em puts OTM e comprada em 

calls OTM, explorando o facto de os skews negativos observados serem, em média, mais 

acentuados do que o sugerido pelas covariâncias históricas. As magnitudes médias (em valor 

absoluto) e os desvios-padrão são maiores para spreads mais out-of-money (|𝑥| = 1 face a 

|𝑥| = 0,5 ). Apesar do enviesamento médio, os mínimos são negativos e os máximos 
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positivos em todos os spreads, evidenciando mudanças de sinal ao longo do tempo. As 

autocorrelações diárias são elevadas, o que indica baixo turnover. 

Tabela 9 

Resumo das Estatísticas sobre os Pesos de Investimento da Estratégia de Risco-

Retorno 

{𝜏 | 𝑥}                    −1                     − 0,5                          0,5                       1                 𝐴𝑙𝑙 

Painel A: Média Anualizada 

1                       0,449                 -0,216                  -0,029              0,166         0,370 

2                       0,669                 -0,312                  -0,045              0,238         0,551 

3                       0,858                 -0,378                  -0,060              0,288         0,708              

6                       1,472                 -0,390                  -0,107              0,322         1,298 

12                     2,168                 -0,918                  -0,148              0,562         1,665 

Painel B: Desvio-Padrão Anualizado 

1                       1,719                  0,328                   0,123              0,289         1,617 

2                       2,550                  0,469                   0,183              0,420         2,395 

3                       3,243                  0,564                   0,233              0,517         3,048              

6                       5,388                  0,506                   0,381              0,581         5,222 

12                     7,053                  2,236                   0,516              1,616         5,961 

Painel C: Rácios de Informação Anualizados 

1                       0,261                 -0,658                  -0,234              0,573         0,229 

2                       0,262                 -0,664                  -0,247              0,567         0,230 

3                       0,265                 -0,670                  -0,257              0,557         0,232              

6                       0,273                 -0,770                  -0,279              0,555         0,249 

12                     0,307                 -0,411                  -0,286              0,348         0,279 

 

A Tabela 9 acompanha o P&L delta-hedge de cada portfolio de spreads, reportando média 

anualizada, desvio-padrão anualizado e rácio de informação. Mantém-se a estrutura e 

acrescenta-se, por maturidade, uma coluna “All” que agrega os quatro spreads. As médias 

dos P&L agregados são positivas. O risco (desvio-padrão) é mais elevado em maturidades 

curtas do que em longas e maior em  |𝑥| = 1 do que em     |𝑥| = 0,5. A média do P&L varia 

com maturidade e moneyness, no entanto varia menos do que a volatilidade do P&L e, como 

tal, os rácios de informação aumentam com a maturidade. A menor rentabilidade em prazos 

curtos decorre, entre outros fatores, da maior sensibilidade dessas opções a saltos de preço 
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e de volatilidade (componente ausente na estratégia de relação de avaliação) e do menor 𝑅2 

das regressões de previsão em maturidades curtas (Tabela 7), o que reduz a exatidão dos 

breakeven e penaliza o desempenho. Em contraste, nos prazos longos, a variância e a 

covariância das séries de volatilidade implícita dominam a variação do P&L e a regressão de 

previsão fornece estimativas mais fiáveis destes momentos, permitindo que a estratégia 

apresente rácios de informação elevados. 

Em resumo, a diferença entre a observação de mercado e a valiação de breakeven traduz 

uma fonte potencial de prémio de risco. Ao posicionar-se proporcionalmente a essa diferença, 

conforme (7.8), a estratégia procura capturar o prémio, mitigando simultaneamente os riscos 

em delta e vega. Para enfatizar esta lógica de remuneração pelo risco, designamos a 

abordagem por estratégia de risco-retorno, que contrastamos, na subcapítulo seguinte, com 

estratégias de arbitragem estatística baseadas em ajustamentos em Cross-Sectional de 

modelos sem arbitragem. Desta forma, a teoria proposta oferece um critério operacional para 

identificar essa fonte de prémio: a discrepância sistemática entre as estimativas transversais 

e temporais dos momentos. 

 

7.7.3 Negociação de Arbitragem Estatística baseada em ajuste Cross-Sectional 

Uma estratégia amplamente associada a modelos sem arbitragem consiste em explorar, 

estatisticamente, os erros de avaliação obtidos ao ajustar em cross-sectional um modelo no-

arbitrage. A lógica é tratar tais erros como desvios temporários de preço e construir portfolios 

neutros relativamente aos fatores de risco do modelo, evitando assim a exposição aos 

respetivos prémios de risco e apostando, em exclusivo, na reversão à média desses desvios. 

Para constratar esta abordagem com a estratégia de risco retorno apresentada anteriormente, 

consideramos uma implementação no mesmo enquadramento empírico. Em cada data e 

maturidade, estimamos a seguinte regressão transversal da volatilidade implícita smile no 

intervalo |𝑥| ≤ 1: 

                              𝑆𝑡 =  𝛾𝑡(2𝑧+) +  𝜔𝑡
2(𝑧+𝑧−) + 𝑒𝑡 .                                       (7.9) 

Esta mesma especificação foi outrora utilizada em (7.5) para extrair, sob comunalidade local 

em |𝑥| ≤ 1, as taxas neutras ao risco de covariância e variância. Se a hipótese for válida, os 

resíduos 𝑒𝑡 podem ser interpretados como desalinhamentos transitórios de mercado e, 

portanto, como sinal de arbitragem estatística. O peso aplicado a cada spread é proporcional 

ao erro de avaliação: 

𝜔𝑡 =  10
𝑒𝑡

𝐴𝑡
2 .                                                  (7.10) 



46 
 

Ao contrário da estratégia de risco-retorno, os pesos não dependem de previsões de 

séries temporais, baseiam-se exclusivamente nos erros do ajuste transversal. Embora ambas 

as estratégias operem sobre os mesmos spreads, a origem da informação e as premissas 

subjacentes diferem por completo. Como documentado na Tabela 6, o pressuposto de 

comunalidade local é muito eficaz no intervalo de moneyness considerado, resultando num 

ajuste excecionalmente preciso da smile (logo, em erros de pequena magnitude). Para tornar 

comparáveis as intensidades de investimento com as da estratégia risco-retorno (Tabela 8), 

aplicamos o fator de escala “10” em (7.10). 

Tabela 10 

Resumo das Ponderações de Investimento da Estratégia de Arbitragem Estatística 

{𝜏 | 𝑥}                    −1                            − 0,5                             0,5                            𝟏  

Painel A: Média da Amostra 

1                       0,003                      -0,011                     -0,011                    0,002 

2                       0,007                      -0,023                     -0,022                    0,003 

3                       0,011                      -0,035                     -0,034                    0,004                      

6                       0,020                      -0,070                     -0,068                    0,001 

12                     0,062                      -0,176                     -0,177                   -0,002 

Painel B: Desvio-Padrão 

1                       0,001                       0,002                      0,002                    0,001 

2                       0,002                       0,005                      0,004                    0,001 

3                       0,004                       0,006                      0,005                    0,003                      

6                       0,010                       0,008                      0,006                    0,010 

12                     0,020                       0,013                      0,009                    0,016 

Painel E: Autocorrelação Diária 

1                       0,865                       0,888                      0,887                    0,814 

2                       0,875                       0,891                      0,885                    0,792 

3                       0,863                       0,894                      0,891                    0,807                      

6                       0,875                       0,913                      0,917                    0,874 

12                     0,900                       0,928                      0,933                    0,886 

 

A Tabela 10 apresenta estatísticas descritivas das ponderações desta estratégia. Graças 

à escala aplicada, os desvios-padrão e os intervalos mínimo-máximo tornam-se comparáveis 

aos da Tabela 8, ainda assim, emergem diferenças relevantes: 
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i. Em contraste com o enviesamento médio observado nos pesos da estratégia 

risco-retorno, os pesos da arbitragem estatística não exibem vieses médios 

pronunciados, sugerindo que a relação de avaliação funciona de modo uniforme 

no domínio restrito de |𝑥| ≤ 1; 

ii. Enquanto os pesos da estratégia de risco-retorno tendem a aumentar em valor 

absoluto e em variabilidade para spreads mais out-of-money, os pesos da 

arbitragem estatística são substancialmente mais homogéneos; 

iii. A persistência temporal é consideravelmente inferior – as autocorrelações 

diárias encontram-se entre 0,79 e 0,93, o que, sob uma dinâmica AR(1), 

corresponde a meias-vidas de apenas três a oito dias. Dado que o objetivo é 

capturar mispricing transitório, não é expectável que os pesos persistam na 

mesma direção, implicando maior turnover. 

Tabela 11 

Estatísticas de Lucros e Perdas de Investimentos em Opções Fora da Amostra da 

Estratégia de Arbitragem Estatística 

{𝜏 | 𝑥}                    −1                     − 0,5                          0,5                       1                 𝐴𝑙𝑙 

Painel A: Média Anualizada 

1                      -0,001                  0,003                   0,001             -0,000         0,003 

2                      -0,002                  0,007                   0,001             -0,000         0,006 

3                      -0,003                  0,011                   0,002             -0,001         0,008              

6                      -0,006                  0,020                   0,004             -0,000         0,018 

12                    -0,013                  0,028                   0,005              0,001         0,021 

Painel B: Desvio-Padrão Anualizado 

1                       0,002                  0,008                   0,002              0,000         0,007 

2                       0,005                  0,017                   0,004              0,001         0,015 

3                       0,008                  0,026                   0,005              0,001         0,023              

6                       0,015                  0,052                   0,011              0,001         0,049 

12                     0,046                  0,074                   0,014              0,003         0,045 

Painel C: Rácios de Informação Anualizados 

1                      -0,446                  0,407                   0,367             -0,445         0,384 

2                      -0,441                  0,405                   0,361             -0,463         0,380 

3                      -0,445                  0,401                   0,356             -0,507         0,370              

6                      -0,409                  0,389                   0,357             -0,305         0,367 

12                    -0,190                  0,387                   0,349              0,258         0,464 
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A Tabela 11 reporta o P&L da estratégia de arbitragem estatística. Quando comparada 

com a Tabela 9 (estratégia de risco-retorno), o desempenho ao nível de cada spread é 

modesto: as médias do P&L são pequenas e, muitas vezes, negativas. Contudo, a agregação 

dos quatro spreads por maturidade produz rácios de informação positivos em todas as 

maturidades (embora inferiores aos obtidos com a estratégia de risco-retorno). Esta diferença 

não traduz, por si só, a superioridade intrínseca de uma abordagem sobre a outra. Esta 

diferença reflete antes, o desenho do exercício e o modo de aplicação de cada estratégia. No 

caso da estratégia de risco-retorno, para o qual este protocolo empírico foi detalhado, isto é, 

foca um intervalo estreito de moneyness por maturidade, permitindo aplicar a comunalidade 

local e ligar a smile a um conjunto comum de taxas de variância e covariância. Deste modo, 

o seu desempenho depende, não da precisão na identificação de prémios de risco, mas da 

existência de múltiplas fontes independentes de erros altamente regressivos à média. 

Em coerência com os diferentes focos, observam-se também padrões distintos de 

correlação cruzada entre as séries de P&L dos vários spreads. Na estratégia risco-retorno, 

como todas as posições visam o mesmo prémio de risco, as correlações entre os quatro 

spreads de cada maturidade são positivas, pelo que a agregação acrescenta pouco ao rácio 

de informação. Na arbitragem estatística os erros de ajuste transversal são idiossincráticos e 

as séries de P&L tendem a ser baixa ou negativamente correlacionadas e, por isso, a 

combinação dos spreads eleva substancialmente o rácio de informação. 

Importa ainda notar que as alocações são proporcionais aos desvios de preço sem 

otimização adicional e, não se incorporam custos de transação. Na prática, estes custos são 

menos graves para a estratégia risco-retorno (devido ao baixo turnover), na medida que a 

arbitragem estatística é mais adequada a market makers, que recebem o bid-ask na execução 

e visam manter um inventário bem coberto mais do que capturar prémios sistemáticos. 

Em contrapartida, do ponto de vista aplicacional, é possível identificar diferenças entre os 

modelos tradicionais de avaliação (focados na coerência de preços num grande corte 

transversal de derivados interligados) e o novo enquadramento de avaliação proposto 

(centrado no trade-off do risco-retorno de um contrato específico). A princípio, é possível 

estimar prémios de risco sobre os fatores de um modelo “bottom-up” por métodos que 

combinam séries temporais e cross-sectional. Do mesmo modo, podem ser impostas 

restrições transversais ao nosso cenário, assumindo fatores globais ou comunalidade ao nível 

das condições do momento.  
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Capítulo 8 

 

Considerações Finais 

 

Nesta dissertação apresenta-se um enquadramento de avaliação de opções baseado na 

atribuição de Profit & Loss das posições em derivados. Partindo da equação de Black-Merton-

Scholes, o retorno instantâneo de uma posição é decomposto nos contributos do decaimento 

temporal (Theta), das variações do preço subjacente (Delta), das alterações da volatilidade 

implícita (Vega) e de termos de ordem superior. Considerando a esperança sob a medida 

neutra ao risco e impondo restrições dinâmicas de não arbitragem, obtém-se uma relação de 

preços que liga o nível justo da volatilidade implícita à sua derivada esperada, à sua variância 

e covariância com o retorno do ativo subjacente. 

Esta formulação não necessita de se especificar quanto à origem e à futura dinâmica dos 

momentos de primeira e segunda ordem, permitindo avaliações locais, top-down, focadas na 

informação mais robusta disponível para cada contrato. Sem prejuízo desta perspetiva, é 

possível impor pressupostos de comunalidade: 

i. Local, nos co-movimentos da volatilidade implícita entre contratos vizinhos; 

ii. Global, suportado por análise de componentes principais ou outras estruturas 

fatoriais. 

A introdução de tais pressupostos na relação de avaliação gera implicações em Cross-

Sectional, seja para subconjuntos específicos de contratos como para a superfície completa 

da volatilidade implícita. 

Ao recentrar o foco dos payoffs finais para as flutuações de curto prazo do P&L, a teoria 

proporciona soluções de avaliação simples e flexíveis, estabelece uma articulação estreita 

com as práticas de gestão de risco e oferece uma base para amplificar a análise variância-

média ao universo de derivados. 

No plano prospetivo, abre-se a possibilidade de ampliar estruturas fatoriais de retorno de 

ativos primários a estruturas análogas para as variações da volatilidade implícita dos contratos 

subjacentes. Uma estrutura conjunta de fatores de retorno e de volatilidade implícita tem 

implicações diretas de avaliação para as opções, constituindo um alicerce natural para uma 

análise de investimento integrada num universo que abrange, de forma coerente, títulos 

primários e derivados. 
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Anexo 

 

BSM Vanna e Dollar Vanna para call option (3.14)* 

 

𝑩𝑰𝑺 =  
𝜕𝐵𝐼

𝜕𝑆𝑡
 =     

𝜕

𝜕𝑆𝑡
(𝑆𝑡√𝜏𝑛(𝑑1))   =     √𝜏𝑛(𝑑1) − 

𝑑1𝑛(𝑑1) 

𝐼𝑡
 

 

 
𝜕𝑑1

𝜕𝑆𝑡
 =     

1

𝑆𝑡𝐼𝑡√𝜏
      𝑒        

𝜕𝑛(𝑑1)

𝜕𝑆𝑡
=  𝑛(𝑑1) (−𝑑1

𝜕𝑑1

𝜕𝑆𝑡
)  =  −𝑛(𝑑1)𝑑1

1

𝑆𝑡𝐼𝑡√𝜏
 

Então: 

𝜕𝐵𝐼

𝜕𝑆𝑡
 =    √𝜏𝑛(𝑑1) +  𝑆𝑡√𝜏(−𝑛(𝑑1)𝑑1

1

𝑆𝑡𝐼𝑡√𝜏
) 

E por isso: 

𝜕𝐵𝐼

𝜕𝑆𝑡
 =    √𝜏𝑛(𝑑1) −  

𝑛(𝑑1)𝑑1

𝐼𝑡
 

 

 

BSM Volga e Dollar Volga para call option (3.16)* & (3.17)* 

 

𝑩𝑰𝑰 =  
𝜕𝐵𝐼

𝜕𝐼𝑡
 =  𝑆𝑡√𝜏

𝜕

𝜕𝐼𝑡
𝑛(𝑑1) = 

=  𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1)(− 
ln

𝑆𝑡
𝐾⁄

𝐼𝑡
2√𝜏

+  
1

2
√𝜏 ),   

Dado que: 
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𝜕

𝜕𝑥
𝑛(𝑥) = 𝑛(𝑥)(−𝑥)′      𝑒𝑛𝑡ã𝑜     

𝜕

𝜕𝐼𝑡
𝑛(𝑑1) = 𝑛(𝑑1)(−𝑑1)′  

 

E por isso: 

 

 
𝝏𝑩𝑰

𝝏𝑰𝒕
=  𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1)′ 

 

𝑩𝑰𝑰𝑰𝒕
𝟐  =   [𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1) (−

ln (
𝑆𝑡

𝐾⁄ )

𝐼𝑡
2√𝜏

+
1

2
√𝜏)] ∗ 𝐼𝑡

2

=  𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1) (− 
ln (

𝑆𝑡
𝐾⁄ )

√𝜏
+ 

𝐼𝑡
2√𝜏

2
)

=  𝑆𝑡√𝜏𝑛(𝑑1)(−𝑑1) (− 
ln (

𝑆𝑡
𝐾⁄ )

√𝜏
+ 

𝐼𝑡
2√𝜏√𝜏

2√𝜏
)  

=  𝑆𝑡𝑛(𝑑1)(−𝑑1) (− ln (
𝑆𝑡

𝐾⁄ ) +  
𝐼𝑡

2𝜏

2
)  =  𝐵𝑆𝑆𝑆𝑡

2𝑍−𝑍+ 

 

 

 

Derivada 𝑑1′ 

 

𝝏𝒅𝟏

𝝏𝑰𝒕
 = (𝑑1 =  

ln (
𝑆𝑡

𝐾⁄ ) +  
1
2

𝐼𝑡
2𝜏

𝐼𝑡√𝜏
)

′

=   
(

𝐼𝑡
2𝜏
2 )

′

𝐼𝑡√𝜏 − (ln (
𝑆𝑡

𝐾⁄ ) +  
𝐼𝑡

2𝜏
2 )(𝐼𝑡√𝜏)

(It√τ)2
 

 

Sabendo que: 
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• (
𝐼𝑡

2𝜏
2

⁄ )
′

=  𝐼𝑡 

• (𝐼𝑡√𝜏)
′

=  √𝜏   

 

Então: 

𝝏𝒅𝟏

𝝏𝑰𝒕
 =  

𝐼𝑡𝜏𝐼𝑡√𝜏 − ( ln (
𝑆𝑡

𝐾⁄ ) +  
1
2

𝐼𝑡
2𝜏)√𝜏

𝐼𝑡
2𝜏

 =   
𝐼𝑡

2√𝜏

𝐼𝑡
2𝜏

− 
(ln (

𝑆𝑡
𝐾⁄ ) +  

1
2

𝐼𝑡
2𝜏)

𝐼𝑡
2√𝜏

 

Que por sua vez: 

 =   √𝜏 − 
(ln (

𝑆𝑡
𝐾⁄ )

𝐼𝑡
2√𝜏

−  
1

2
√𝜏 =  − 

ln (
𝑆𝑡

𝐾⁄ )

𝐼𝑡
2√𝜏

+  
1

2
√𝜏 
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