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A B S T R A C T

The integration of Artificial Intelligence (AI) in general—and its subfield Generative AI (GenAI) in partic
ular—into urban design and planning is revolutionizing traditional methodologies, providing innovative solu
tions to complex challenges in city development. Despite their transformative potential, existing research 
underscores a critical need to better understand the multifaceted advantages and challenges associated with 
these technologies. This study addresses this gap by investigating the causal relationships between the advan
tages and challenges of AI and GenAI integration in urban design and planning. Leveraging a novel combination 
of cognitive mapping and neutrosophic DEcision-MAking Trial and Evaluation Laboratory (DEMATEL), the 
research identifies and evaluates key factors shaping this integration. The findings reveal that dynamic digital 
city simulations and scenario modeling emerge as the most significant advantages, underscoring their capacity to 
drive data-informed innovation in urban development. Conversely, ethical concerns surface as the most critical 
challenge, exhibiting strong interdependencies with other issues, including the “black box” nature of AI systems 
and the biases embedded in training data. This study provides a comprehensive framework for understanding the 
interplay between these factors, offering actionable insights to guide both academic research and practical 
implementation. By addressing a pressing need in the field, the research paves the way for more responsible and 
effective applications of AI and GenAI in creating smarter, more sustainable urban environments.

1. Introduction

The integration of Artificial Intelligence (AI) in general—and its 
subfield Generative AI (GenAI) in particular—in urban design and 
planning marks a transformative shift in how cities are conceptualized, 
developed and managed (Sanchez et al., 2024; Ulucan et al., 2025). As 
urbanization accelerates and societies face mounting challenges, 
including climate change, congestion and resource management, the 
potential for AI-driven tools to provide innovative solutions has become 
a focal point for both researchers and practitioners (Caboz et al., 2025; 
Son et al., 2023). While these technologies present promising avenues 
for rapid prototyping, dynamic simulations and stakeholder 

engagement, their adoption remains in its nascent stages, particularly in 
practical, real-world contexts (Du et al., 2024; Kashi et al., 2025; Peng 
et al., 2023).

Integrated urban design and planning has traditionally been a com
plex, multi-faceted process involving numerous stakeholders and 
diverse considerations (e.g., Huang et al., 2023; Kempinska and Murcio, 
2019; Othengrafen et al., 2025). The advent of AI technologies offers 
unprecedented opportunities to enhance decision-making, optimize 
resource allocation and create more responsive urban environments (Du 
et al., 2024). GenAI models, such as Generative Adversarial Networks 
(GANs) and some decision-support systems, are already contributing to 
smart city initiatives by analyzing big data and generating urban design 
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scenarios (e.g., Crumbly et al., 2025; Huang et al., 2024; Phillips and 
Jiao, 2023). Despite these advancements, existing research predomi
nantly highlights the advantages of these technologies while often 
overlooking the structured processes needed to manage their challenges 
effectively (e.g., Furtado et al., 2024; Hajrasouliha, 2024; Huang et al., 
2024; Luger, 2024). Moreover, there is limited exploration into the 
interplay between the advantages and challenges presented by AI inte
gration in urban design and planning (e.g., Jiang et al., 2024; Quan et al., 
2019).

Several key gaps have been identified through a comprehensive 
literature review. First, there is a lack of structured approaches that 
ensure effective collaboration among stakeholders during problem 
definition and solution formulation in urban design and planning (cf. 
Asaad et al., 2020; Cozzolino et al., 2020; Rodrigues et al., 2025). Sec
ond, research often fails to prioritize the challenges of AI integration (e. 
g., ethical concerns, data privacy or the “black box” nature) (cf. Furtado 
et al., 2024; Hajrasouliha, 2024; Luger, 2024). Third, there is a need to 
develop frameworks that not only synthesize existing knowledge but 
also map causal relationships among advantages and among challenges 
to create adaptive and inclusive urban planning practices (cf. Ali-Tou
dert et al., 2020; Du et al., 2024). Finally, one of the most critical gaps 
identified is the lack of studies that address the uncertainties inherent in 
urban development when applying AI and GenAI (e.g., Quan et al., 2019; 
Zhou et al., 2023). The complexity of urban systems, with their in
terdependencies and dynamic interactions, highlights the need for 
including uncertainty within the causal relationships between the ad
vantages and challenges of AI integration in the planning process (Quan 
et al., 2019; Zhou et al., 2023). In response to these research gaps, the 
present study aims to address the following research questions (RQs). 

RQ1: What key advantages and challenges are associated with the 
integration of AI in general—and GenAI in particular—in urban 
design and planning?
RQ2: What are the causal relationships among the identified ad
vantages and among the challenges related to AI and GenAI inte
gration in urban design and planning?
RQ3: How can stakeholder collaboration and decision-making under 
uncertainty support the application of AI and GenAI to urban design 
and planning?

To address these research questions, the present study is under
pinned by the Multiple Criteria Decision Analysis (MCDA) approach and 
employs a combination of Problem Structuring Methods (PSMs). Spe
cifically, cognitive mapping, DEcision MAking Trial and Evaluation 
Laboratory (DEMATEL) and neutrosophic logic are combined to explore 
the causal relationships among advantages and among challenges of AI 
in urban design and planning. This integrated approach facilitates the 
identification of core issues, driving factors and critical dependencies 
that influence the effective adoption of AI technologies.

This research contributes to the growing body of knowledge by 
providing a structured framework for analyzing and addressing the 
advantages and challenges of AI integration in urban design and plan
ning. By leveraging advanced decision-support methods, it offers 
actionable insights for both researchers and practitioners aiming to 
harness the full potential of AI technologies while navigating their 
associated challenges. The findings serve as a foundation for future 
studies focused on optimizing AI-driven urban planning practices and 
fostering human-machine collaboration for smarter, more sustainable 
cities.

The remainder of this paper is divided into six sections. Section 2
presents a literature review of previous studies on AI and GenAI in urban 
design and planning, identifying research gaps and opportunities. Sec
tion 3 describes the methodology followed to identify and analyze the 
causal relationships among advantages and among challenges of AI in 
urban design and planning. Section 4 presents the results obtained. 
Section 5 provides a discussion integrating theoretical and practical 

reflections. Finally, Section 6 presents the conclusions, limitations and 
suggestions for future research.

2. Literature review and research gaps

Urban development refers to the process of planning, expanding and 
improving cities and urban areas to accommodate population growth 
and meet residents’ socioeconomic needs (Caboz et al., 2025; Cordeiro 
et al., 2024; Jiang et al., 2024). This process entails the creation of 
essential infrastructure, including transportation networks, housing, 
sanitation, energy systems, green spaces and public services. The over
arching goal is to design and organize urban areas with a long-term 
perspective, promoting the rational use of natural resources, inte
grating technological solutions and ensuring community participation in 
the planning process (Afzalan et al., 2017; Du et al., 2024). Achieving 
this goal requires balancing economic and industrial growth with 
environmental preservation and social cohesion (i.e., principles central 
to sustainable urban development) (Bafail, 2025; Caboz et al., 2025; 
Wang et al., 2021).

The concept of urban planning generally refers to the broader stra
tegic process of organizing land use, infrastructure and services to guide 
the growth and functioning of urban areas (cf. Cordeiro et al., 2024). 
Urban design, in turn, focuses more specifically on the physical form, 
aesthetic quality and functionality of urban spaces. Its scope spans from 
individual buildings to neighborhoods, districts, entire cities and re
gions, addressing how spaces are shaped to better serve people’s needs. 
As Cozzolino et al. (2020, p. 42) note, urban design can be defined as “a 
creative and purposeful activity with collective and public concerns that deals 
with the production and adaptation of the built environment at scales larger 
than a single plot or building”. In recent years, urban design has been 
increasingly linked to sustainability objectives, particularly in mini
mizing negative environmental impacts (Jiang et al., 2024). In this 
study, we use urban design and planning as a single term to reflect the 
intersection of these two perspectives, encompassing both the strategic, 
policy-oriented dimensions of planning and the physical, place-making 
dimensions of design. This combined view aligns with the interdisci
plinary nature of the challenges addressed.

Because it is complex, multi-dimensional and perceived differently 
by diverse stakeholders, urban design and planning—as an integrated 
process—has long been described as a “wicked problem” (Cordeiro 
et al., 2024; Rittel and Webber, 1973). According to Quan et al. (2019), 
two main decision-support approaches are commonly employed in this 
process: (1) planning support systems; and (2) generative design sys
tems. These systems leverage scientific methods, computational tools 
and optimization algorithms to assist the design and planning processes, 
especially in sustainable urban contexts. The typical process is iterative 
and multidisciplinary, involving stakeholders such as local govern
ments, developers, engineers and residents (Jiang et al., 2024). Asaad 
et al. (2020) identify four main phases in this process: problem formu
lation, design synthesis, solution evaluation and decision-making. This 
process relies heavily on specialized expertise, collaborative engage
ment and effective communication (Jiang et al., 2023; Koenig et al., 
2020). In practice, challenges often emerge early in the process, when 
stakeholders must agree on priorities and specific design elements 
(Caboz et al., 2025; Afzalan et al., 2017; Cordeiro et al., 2024). Koenig 
et al. (2020) highlight the value of urban design systems that integrate 
computational optimization with cognitive heuristics, fostering pro
ductive collaboration between human designers and technology. Urban 
design and planning, therefore, requires reconciling long-term visions 
with immediate needs, and managing trade-offs among economic, 
environmental and social objectives. Historically, these processes have 
relied on expert judgment, iterative negotiation and conventional 
computational methods.

The recent integration of AI in general—and its subfield GenAI in 
particular—represents a paradigm shift, offering transformative possi
bilities for how cities are conceived, evaluated and adapted (Du et al., 
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2024; Sanchez et al., 2024). In this study, we adopt a definition of AI that 
acknowledges both its historical origins and its contemporary scope. The 
term AI was first coined by McCarthy et al. (1955), referring to the 
science and engineering of making machines capable of performing 
tasks that would require intelligence if done by humans. Over time, as 
noted by modern AI pioneers such as LeCun et al. (2015), the field has 
evolved to encompass a wide spectrum of computational methods 
capable of perception, reasoning, learning and decision-making. In this 
context, AI includes machine learning, simulation, optimization and 
decision-support systems. GenAI is considered a subfield of AI, encom
passing systems that produce novel outputs (e.g., images, designs or 
scenarios) through deep generative models, including Generative 
Adversarial Networks (GANs), Variational Autoencoders (VAEs), diffu
sion models and transformer-based large language models (LLMs) such 
as ChatGPT (Huang et al., 2024; Rana et al., 2024; Senem et al., 2024). 
While simulation, optimization and testing are not inherently generative 
tasks, they increasingly rely on AI-enabled methods in urban planning 
(e.g., reinforcement learning for traffic management, deep learning for 
predictive modeling and generative models for scenario creation), 
making them relevant to the current investigation.

The advantages of AI and GenAI in urban design and planning 
include rapid prototyping of design alternatives, dynamic city- and 
neighborhood-scale simulations, enhanced stakeholder engagement 
through interactive visualization tools and more efficient resource 
allocation in both the design and implementation phases (Hajrasouliha, 
2024; Huang et al., 2024; Phillips and Jiao, 2023; Schlickman and 
Magana-Leon, 2024; Shen et al., 2020). Nonetheless, real-world appli
cations remain limited (cf. Du et al., 2024; Peng et al., 2023; Son et al., 
2023). Much of the literature emphasizes technical capabilities, while 
challenges (e.g., data quality, algorithmic bias, ethical and privacy is
sues, regulatory gaps or technological dependence) are less explored 
(Furtado et al., 2024; Hajrasouliha, 2024). Moreover, many studies fail 
to clearly define the scope of technologies under examination, leading to 
ambiguity over whether they address generative models, traditional AI 
optimization or other computational methods (Luger, 2024).

Following this, AI and GenAI in urban design and planning remain 
emergent in practice, with a need for further research on their integra
tion with participatory approaches (Du et al., 2024; Peng et al., 2023; 
Son et al., 2023). Although their advantages are widely recognized, 
significant gaps exist in identifying and prioritizing integration advan
tages and challenges (Furtado et al., 2024; Hajrasouliha, 2024; Luger, 
2024). The absence of causal analyses hampers the development of 
resilient strategies, risking the transformative potential of AI and GenAI 
due to unresolved technical, organizational and societal barriers. This 
study aims to fill these gaps by mapping causal linkages among AI and 
GenAI advantages and among their challenges to guide responsible 
implementation. To address this, it combines PSMs (Rosenhead and 
Mingers, 2001) and MCDA (Belton and Stewart, 2002) to structure 
stakeholder knowledge, quantify causal relationships and account for 
uncertainty and indeterminacy. The following section outlines the 
methodological framework used to capture and analyze stakeholder 
perspectives.

3. Methods

3.1. MCDA and PSMs

According to Belton and Stewart (2002), the MCDA approach 
effectively addresses complex decision-making problems involving 
multiple stakeholders, while accounting for diverse and sometimes 
conflicting perspectives, values and preferences. Within the field of 
operational research (OR), problem-structuring methods (PSMs)—also 
known as “soft OR” (Rosenhead and Mingers, 2001)—emerged to 
overcome limitations of traditional optimization-based approaches 
(Marttunen et al., 2017). Unlike classical OR methods focused primarily 
on solution generation, PSMs emphasize defining and structuring the 

problem itself (Ackermann, 2012; Marttunen et al., 2017). This 
problem-structuring phase is continuous, flexible and iterative, inte
grating both objective and subjective elements, incorporating deci
sion-makers’ values and fostering a deeper understanding of the 
decision problem aligned with constructivist principles (Piaget, 1964).

The integration of PSMs and MCDA has gained significant mo
mentum through Keeney’s (1992) value-focused thinking (VFT), which 
provides a practical framework for exploring problem structuring in 
real-world contexts (Marttunen et al., 2017). Building on this foundation 
and supported by the Strategic Options Development and Analysis 
(SODA) approach (Eden and Ackermann, 2001), the combined meth
odology adopted in this study follows a structured three-phase process 
that integrates PSMs and MCDA to comprehensively address the 
research problem.

Specifically, during the structuring phase, cognitive mapping (Eden, 
1988) is employed to capture and integrate individual stakeholder 
perspectives, fostering a shared, collective understanding of the decision 
problem. This phase structures the decision problem by visualizing key 
elements and their interrelations, enabling a rich, stakeholder-driven 
problem representation. Next, during the evaluation phase, the struc
tured problem representation informs the application of DEMATEL 
enhanced with neutrosophic logic, which quantifies and analyzes causal 
relationships among factors under uncertainty and indeterminacy. This 
combined approach provides a rigorous evaluation of in
terdependencies, allowing for nuanced insights that support 
decision-making. Finally, in the phase of recommendations (or consoli
dation), insights gained from the evaluation phase are consolidated and 
refined through an independent process, ensuring practical relevance 
and actionable guidance. This integrated methodology combines the 
qualitative strengths of PSMs with the quantitative rigor of MCDA tools 
under uncertainty, providing a coherent and systematic framework to 
address complex decision problems involving multiple stakeholders and 
ambiguous information (cf. Belton and Stewart, 2002).

3.2. Cognitive mapping

Cognitive mapping, originally developed by Tolman (1948) and later 
adapted for strategic development by Eden (1988), is a qualitative 
method. Eden (1988) explains that this approach provides a holistic 
representation of complex decision problems by incorporating the in
dividual perspectives of various decision-makers. Fig. 1 illustrates the 
iterative process of cognitive mapping, flowing from left to right.

According to Fig. 1, the process of cognitive mapping includes a 
feedback loop from analysis and refinement back to concept identifi
cation, showing that cognitive mapping is an iterative process that can 
be refined as understanding develops. This process of joint reflection 
enables participants to reach a consensus by fostering an understanding 
of the challenges, dilemmas and obstacles inherent in each individual 
perspective (Eden and Ackermann, 2001). Importantly, cognitive map
ping was used in the present study both to identify and cluster concepts 
into coherent groups and hierarchies and to capture perceived causal 
linkages between them. This ensured that the subsequent neutrosophic 
DEMATEL analysis was grounded in a robust conceptual foundation, 
avoiding premature quantification and ensuring that all participants 
shared an understanding of the most relevant factors. The final outcome 
is a cognitive map. The central goal is typically positioned at the top, 
with related concepts or criteria logically arranged beneath it by arrows 
that indicate cause-and-effect relationships. The causal relationships 
between the criteria reflect the understanding of the decision problem 
based on the perceptions and judgments of a group of decision-makers.

3.3. DEMATEL and neutrosophic logic

Developed by Fontela and Gabus (1972), DEMATEL maps 
cause-and-effect relationships among criteria and organizes key criteria 
based on their level of prominence within a complex system (Bastos 
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et al., 2023; Kumar and Dixit, 2018). This method more efficiently un
covers causal relationships compared to traditional methods, offers 
broad applicability and serves as a valuable tool for decision-making 
support (cf. Fontela and Gabus, 1972). According to Sivakumar et al. 
(2018), DEMATEL applications usually involve five consecutive steps. 

Step 1: Experts conduct pairwise comparisons of criteria to evaluate 
their mutual influence. These comparisons generate a direct- 
influence matrix, where the strength of influence is rated using the 
following scale: 0 = no influence; 1 = low influence; 2 = moderate 
influence; 3 = strong influence; and 4 = very strong influence. This 
process results in the formation of a non-negative n x n matrix, 
denoted as initial direct-influence matrix Z = [aij] n × n, as illustrated 
in Equation (1):

Z=

C1

C2

⋱

Cn

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 a12

a21 0
⋯

a1n

a2n

⋮ ⋮ ⋱ ⋮

an1 an2 ⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (1) 

in which aij represents the level of intensity assigned by the experts to 
the relationship between criteria Ci and Cj. 

Step 2: Normalization of the initial direct-influence matrix Z, by 
applying the coefficient 1/λ, as illustrated by Equations (2) and (3):

X=Z*1/λ, (2) 

λ=max

(

max
1≤i≤n

∑n

j=1
zij, max

1≤j≤n

∑n

i=1
zij

)

, (3) 

in which λ is a normalization constant that measures the maximum effect 
that each criterion exerts on the others (i.e., the sum of row i in matrix Z). 
Additionally, this constant calculates the maximum effect that each 
criterion receives from the others (i.e., the sum of column j in matrix Z). 
This results in normalized initial-direct relation matrix X, whose values 
range from 0 to 1. 

Step 3: Calculation of total relationships, resulting in the total- 
relation matrix (T). Equation (4) is used to construct matrix T:

T= logh→∞
(
X1 +X2 +⋯+Xh)=X(1 − X)− 1

, (4) 

where Xh represents the influence exerted by the hth criterion, while I 
denotes the identity matrix. The sum of X, X2, …, Xh represents the 
overall ratio of the variables. Matrix T, therefore, offers insight into the 
impact each criterion has on another. It combines both direct and in
direct effects, quantifying the total degree of influence in the relation
ship between each pair of criteria. 

Step 4: Determining the prominence (R + C) and relation (R – C) 
values, by applying Equations (5) and (6):

R=

[
∑n

j=1
tij

]

n×1

= [ri]n×1, (5) 

C=

[
∑n

i=1
tij

]ʹ

1×n

=
[
cj
]́

1×n. (6) 

Set [ri] represents the driving force of each criterion, while set [cj] 
reflects the total effects accumulated by each criterion. When i = j and i, 
j ∈ {1, 2, …n}, the combined value of (R + C) represents the overall 
impact of a criterion, indicating its significance within the analysis 
model. The difference between R and C reveals the degree of interrela
tion of the criterion within the model, showing its role in the decision- 
support system. Based on this difference, the criteria can be classified 
into two groups: (1) a positive (R – C) value indicates that criterion i 
serves as a cause; and (2) a negative (R – C) value suggests that criterion i 
functions as an effect. 

Step 5: A threshold value (α) is applied to identify which relationships 
should be incorporated into the impact-relation map (IRM). The IRM 
helps decision-makers by simplifying the analysis, categorizing the 
criteria into four quadrants (Q): core (QI), driving (QII), independent 
(QIII) and impact (QIV). According to Chen et al. (2018), the 
DEMATEL process produces a visual representation, effectively 
creating a personalized mind map (i.e., IRM). This map allows 
decision-makers to structure their actions in alignment with their 
internal coherence, implicit priorities and goals. As a result, this 
technique offers researchers a straightforward tool to analyze and 
understand the structure of complex problems across a range of 
real-world issues.

Neutrosophic logic is a philosophical approach introduced by 
Smarandache (1998) that questions the notion of absolute or perfect 
ideas. It asserts that because the world is inherently indeterminate, a 
more nuanced form of imprecision is necessary (Smarandache, 2007). 
This logic can incorporate other ways of thinking included in classi
cal/boolean logic (i.e., true (T) and false (F)) and fuzzy logic (i.e., 
something can be partially true and partially false), while also adding 
the concept of indeterminacy (I) for cases where the answer is not known 
(Smarandache, 1998). This extension allows decision-makers to explic
itly acknowledge that the values assigned to T and F often carry an 
element of uncertainty (i.e., I) (Ashbacher, 2020; Gil et al., 2026).

Specifically, Smarandache (1998) proposes that any variable x can 
be broken down into three components: T, I and F. These components 
are represented as real-valued subsets within the range [–0, +1]. In 
practical terms, experts involved in a multicriteria decision-making 
process can specify the likelihood of a statement being true (e.g., T =

Fig. 1. Iterative process of cognitive mapping.
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0.6), its degree of uncertainty (e.g., I = 0.2) and its falseness (e.g., F =
0.3). It is important to note that the sum of T, I and F does not necessarily 
add up to 100%. To complete the process, decision makers must crispify 
these values, transforming them into a single value. This can be done 
using the crispification equation outlined by Pramanik et al. (2016) in 
Equation (7) or Smarandache (2020) in Equation (8): 

wc
k =

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
(1 − Tk)

2
+ (Ik)

2
+ (Fk)

2))/3
√

∑r

k=1

{

1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
(1 − Tk)

2
+ (Ik)

2
+ (Fk)

2))/3
√ } , (7) 

in which wc
k ≥ 0. 

s(T, I, F)=
T + (1 − I) + (1 − F)

3

)

=
2 + T − I − F

3
. (8) 

DEMATEL is an effective method for analyzing and mapping in
terdependencies within decision-support systems (Mehregan et al., 
2014). When combined with neutrosophic logic, it effectively addresses 
uncertainty by quantifying indeterminacy and integrating diverse 
stakeholder perspectives (Cordeiro et al., 2024; Ferreira and 
Meidutė-Kavaliauskienė, 2025; Vaz-Patto et al., 2024). This combina
tion enhances analysis of complex causal relationships, producing 
realistic insights and supporting informed decision-making.

In urban design and planning, where AI and participatory ap
proaches are still emerging (Du et al., 2024; Son et al., 2023), neu
trosophic DEMATEL can address critical gaps related to collaborative 
problem definition and prioritization (e.g., Quan et al., 2019; Zhou et al., 
2023). The present study embeds these methods within PSMs and MCDA 
to analyze variable dependencies and uncertainties, advancing AI inte
gration in urban design and planning.

4. Application and results

4.1. Structuring phase

The first phase involved selecting a panel of urban planning and AI 
experts. Following the guidelines of Eden and Ackermann (2001) and 
Vaz-Patto et al. (2024), decision-maker panels should ideally include 
3–10 members to ensure rich discussion while remaining manageable. In 
this study, the panel comprised eight decision-makers with extensive 
expertise in AI and urban development. Although based in Portugal, all 
participants held strategic decision-making roles and had prior 
involvement in European initiatives, contributing valuable 
cross-national perspectives. Selection was based on criteria designed to 
enrich discussion and ensure complementary viewpoints: (1) expertise 
in the field, defined as at least 10 years of experience in urban planning 
and AI technologies—i.e., a broad set of AI-related competencies rele
vant to urban design and planning, including simulation, optimization 
and generative approaches; (2) diversity in age and gender; (3) diversity 
in specialization and location; and (4) availability to participate in group 
meetings. Importantly, representativeness was not a concern—nor did it 
need to be—since the goal of the chosen methodologies is not to produce 
generalizations but to maintain a clear emphasis on the process (cf. Bell 
and Morse, 2013; Ormerod, 2020). The first group work session took 
place in October 2024 and lasted approximately 3 h. Conducted online 
using Teams and Miro platforms, the session was divided into three main 
parts. 

1. Identification of the advantages and challenges of AI and GenAI in 
urban planning: Using the “post-its technique” (Eden and Acker
mann, 2001), experts identified advantages and challenges, marking 
them with positive (+) and negative (− ) signs, respectively. Positive 
signs are frequently omitted to reduce visual complexity.

2. Allocation of criteria by clusters: Similar criteria were grouped by 
areas of interest, and all repeated criteria were removed until a 

consensus was reached that the results adequately captured a broad 
and relevant range of criteria. Five clusters emerged from the col
lective discussion and were categorized as follows: (1) Technical and 
Operational Performance; (2) Simulations and Solutions; (3) Environ
mental and Social Impact; (4) Engagement and Interactivity; and (5) 
Integration and Adaptability.

3. Hierarchization of criteria: Within each cluster, the criteria were 
ranked according to their level of importance—high, medium or low.

After the session, a group cognitive map was created using the De
cision Explorer software (http://www.banxia.com), which included the 
organization of all clusters, their respective criteria and cause-and-effect 
relationships based on the inputs provided by the experts. Finally, the 
cognitive map was presented and reviewed by the panel members for 
any necessary adjustments/final changes and final validation. Fig. 2
presents the validated cognitive map created by the group, containing a 
total of 130 criteria (size restrictions prevent a better visualization, but 
an editable version of the entire group cognitive map can be obtained 
from the corresponding author upon request).

Fig. 2 incorporates numerous advantages and challenges already 
discussed in the literature, while also adding certain elements that have 
been less thoroughly explored. For instance, some criteria include both 
recurring (e.g., high-quality data and training requirements (25), biases 
embedded in training data and algorithms, leading to biased decisions (57) 
and ethical concerns (e.g., transparency, data privacy) (88)) and emerging 
challenges (e.g., lack of specific regulations for technologies applied to urban 
planning (62), power of AI companies in urban planning (89) and resistance 
or rejection of proposed solutions by communities (90)) in the context of 
urban planning. The latter, although not as frequently mentioned in the 
specialized literature, have, according to experts, a substantial impact 
on the urban planning process and present significant difficulty in being 
resolved. As such, their analysis not only expands the literature but also 
helps identify critical points where efforts need to be concentrated to 
overcome challenges to the adoption of these technologies.

4.2. Evaluation phase

The second work session took place in November 2024, lasting 
approximately 3 h, and was held on the Teams platform. The initial part 
of the session consisted of selecting the final advantages and challenges 
to be analyzed for quantifying causal relationships (cf. Table 1).

In Table 1, A and C stand for “advantages” and “challenges”, 
respectively, with Ai and Ci referring to individual advantages and 
challenges numbered according to the cognitive mapping process 
involving stakeholder input. The reduction of the initial set of 130 
concepts to 10 advantages and 10 challenges was agreed upon with the 
panel members due to the process-oriented nature of our study. It was a 
deliberate methodological choice designed to enhance both focus and 
analytical feasibility. Applying DEMATEL to the entire list would have 
been impractical and risked introducing cognitive overload for the ex
perts, potentially diminishing the quality of their judgments (cf. Vaz-
Patto et al., 2024). Therefore, the panel collectively prioritized the 
factors they deemed most critical to the research objectives.

To make this selection, the Nominal Group Technique (NGT) 
(Delbecq et al., 1975) and multi-voting were applied. These structured 
group decision-making methods ensured that all panel members had an 
equal opportunity to contribute their perspectives, regardless of 
seniority or communication style, thereby reducing the risk of domi
nance by more outspoken participants. The NGT facilitated the gener
ation and clarification of ideas in a systematic manner, enabling 
participants to articulate and discuss the relevance of each proposed 
advantage or challenge. Following this, multi-voting was used to pri
oritize the most critical factors in a transparent and democratic way. 
Notably, all decisions were taken collectively by the panel members, 
which allowed for the integration of diverse expertise, fostered mutual 
understanding and strengthened commitment to the final set of selected 
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elements. This collaborative approach not only enhanced the legitimacy 
of the results but also ensured that the analysis was grounded in factors 
considered most relevant and actionable by consensus among experts. 
As a result, the 10 advantages and 10 challenges retained for further 
analysis reflected a balanced synthesis of multidisciplinary insights, 
while keeping the scope manageable for the subsequent causal rela
tionship assessment.

After selecting the criteria, the neutrosophic DEMATEL method was 
used to quantify the intensity of the cause-and-effect relationships 
among the criteria within each group (i.e., advantages and challenges). 
This step complemented the cognitive mapping process, which had 
previously enabled the systematic capture and structuring of expert 
knowledge—including the identification of perceived causal 
relationships—by providing a way to quantify and visualize the strength 
of those relationships among the most critical factors. Together, these 
methods offer a complementary and rigorous approach that delivers 
both a rich qualitative understanding and a robust quantitative assess
ment, supporting more informed decision-making in the integration of 
AI and GenAI into urban design and planning. Table 2 displays the 
initial direct-influence matrix Z, developed for the advantages analysis. 
This matrix includes neutrosophic values (i.e., T, I, F) that were later 
refined through the process of crispification (cf. Table 3) and normali
zation (cf. Table 4).

The next step was to construct matrix T. First, the identity matrix I 
(cf. Table 5) was created. Then, the elements of the normalized matrix X 
were subtracted from the corresponding elements of the identity matrix, 
resulting in the matrix I− X. The final intermediate step was to compute 
(I− X)− 1, the inverse of the matrix obtained from the subtraction.

Following the intermediate calculations, the total relation matrix T 
was obtained (cf. Table 6), which presents the overall relationships be
tween the advantages, including both direct and indirect effects.

Table 6 presents two key metrics. R shows the total impact of each 
advantage on the others, while C indicates how much each advantage is 
influenced by the others. The values highlight that A43 is the most 
influential advantage, while A84 has the least impact. Similarly, A100 is 
the most influenced by other advantages, and A84 is the least influ
enced. Table 7 further provides the totals and differences of the vectors 
R and C.

As shown in Table 7, the R + C values reflect the overall importance 

Table 1 
Selected advantages and challenges.

Code Advantages Code Challenges

A09 Provide real-time or 
interactive feedback

C25 High-quality data and training 
requirements

A29 Enhanced data analysis C57 Biases embedded in training 
data and algorithms, leading to 
biased decisions

A40 Testing alternative building 
arrangements

C61 Integration of different levels of 
technological knowledge

A41 Exploring various ideas in a 
short period of time

C62 Lack of specific regulations for 
technologies applied to urban 
planning

A43 Dynamic digital simulations of 
cities

C64 Creation of false but realistic 
images

A47 Optimization of traffic lights 
for real-time traffic 
management

C88 Ethical concerns (e.g., 
transparency, data privacy)

A66 Optimization of resource 
usage (water, energy, etc.)

C89 Power of AI companies in urban 
planning

A67 Scenario simulation (e.g., 
traffic flow with narrower/ 
wider streets)

C90 Resistance or rejection of 
proposed solutions by 
communities

A84 Reduction of human bias (e.g., 
subjective human judgment)

C112 Dependence on companies for 
technology maintenance

A100 Creation and display of urban 
scenarios as they are designed 
or modified

C119 “Black box” nature

Note: A = advantage, C = challenge.
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Table 3 
Neutrosophic crispification—selected advantages.

Pairwise Comparison DEMATEL Scale (x) Neutrosophic Values Neutrosophic Crispification

T I F Crispification Equation Numerator Crisp Weight W Final Value in Matrix Z

A9-A29 4.0 0.60 0.30 0.10 0.7056 0.0103 2.9333
A9-A40 4.0 0.70 0.20 0.10 0.7840 0.0114 3.2000
A9-A41 3.0 0.60 0.30 0.10 0.7056 0.0103 2.2000
A9-A43 3.0 0.80 0.10 0.10 0.8586 0.0125 2.6000
A9-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A9-A66 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A9-A67 3.0 0.60 0.20 0.20 0.7172 0.0104 2.2000
A9-A84 2.0 0.40 0.40 0.20 0.5680 0.0083 1.2000
A9-A100 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A29-A9 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A29-A40 3.0 0.60 0.30 0.10 0.7056 0.0103 2.2000
A29-A41 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A29-A43 2.0 0.70 0.20 0.10 0.7840 0.0114 1.6000
A29-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A29-A66 3.0 0.80 0.10 0.10 0.8586 0.0125 2.6000
A29-A67 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A29-A84 2.0 0.40 0.40 0.20 0.5680 0.0083 1.2000
A29-A100 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A40-A9 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A40-A29 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A40-A41 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A40-A43 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A40-A47 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A40-A66 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A40-A67 3.0 0.60 0.20 0.20 0.7172 0.0104 2.2000
A40-A84 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A40-A100 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A41-A9 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A41-A29 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A41-A40 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A41-A43 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A41-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A41-A66 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A41-A67 3.0 0.60 0.20 0.20 0.7172 0.0104 2.2000
A41-A84 2.0 0.40 0.40 0.20 0.5680 0.0083 1.2000
A41-A100 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A43-A9 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A43-A29 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A43-A40 3.0 0.80 0.10 0.10 0.8586 0.0125 2.6000
A43-A41 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A43-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A43-A66 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A43-A67 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A43-A84 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A43-A100 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A47-A9 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A47-A29 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A47-A40 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A47-A41 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A47-A43 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A47-A66 3.0 0.80 0.10 0.10 0.8586 0.0125 2.6000
A47-A67 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A47-A84 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A47-A100 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A66-A9 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A66-A29 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A66-A40 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A66-A41 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A66-A43 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A66-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A66-A67 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A66-A84 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A66-A100 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A9 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A29 2.0 0.60 0.30 0.10 0.7056 0.0103 1.4667
A67-A40 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A41 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A43 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A67-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A66 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A84 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A67-A100 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A84-A9 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333

(continued on next page)
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of each advantage, while R− C distinguishes the advantages as either 
causes (i.e., positive values) or effects (i.e., negative values) within the 
context of AI in urban design and planning. According to the results 
obtained, A43 (i.e., dynamic digital simulations of cities), with a value of 
9.0380, is the most significant advantage. The ten advantages are ranked 
by importance as follows: dynamic digital simulations of cities (A43) >
creation and display of urban scenarios as they are designed or modified 
(A100) > scenario simulation (e.g., traffic flow with narrower/wider 
streets) (A67) > testing alternative building arrangements (A40) >
provide real-time or interactive feedback (A09) > exploring various 
ideas in a short period of time (A41) > optimization of resource usage 
(water, energy, etc.) (A66) > optimization of traffic lights for real-time 
traffic management (A47) > enhanced data analysis (A29) > reduction 
of human bias (e.g., subjective human judgment (A84).

In the next step, an α threshold of 0.3720—i.e., average of the values 
in matrix T—was applied to identify the most critical effects in the 
decision-support system and to filter out less significant interactions. 
Interactions above the threshold represent elements with greater rele
vance in the model, while values below the threshold are considered less 
significant and are therefore excluded from the IRM (cf. Fig. 3). The IRM 
was generated based on matrix T, illustrating the cause-and-effect re
lationships among the ten advantages and providing a visual represen
tation of their interdependencies.

In Fig. 3, A43 (i.e., dynamic digital simulations of cities) emerges as 
the most prominent advantage, positioned at the far right of the hori
zontal axis, while A84 (i.e., reduction of human bias (e.g., subjective 
human judgment)) is the least significant, located at the opposite end. 
Advantages A43, A47 (i.e., optimization of traffic lights for real-time 
traffic management), A66 (i.e., optimization of resource usage (water, 
energy, etc.)), A67 (i.e., scenario simulation (e.g., traffic flow with nar
rower/wider streets)) and A100 (i.e., creation and display of urban 

scenarios as they are designed or modified) are categorized as part of the 
cause group, whereas A09 (i.e., provide real-time or interactive feed
back), A29 (i.e., enhanced data analysis), A40 (i.e., testing alternative 
building arrangements) and A84 belong to the effect group. Based on 
their coordinates, A43, A67 and A100 are identified as core advantages 
(i.e., QI), A47 and A66 as driving advantages (i.e., QII) and A09, A40 and 
A41 as impact advantages (i.e., QIV). Notably, A29 and A84 are posi
tioned as independent (i.e., QIII), indicating that they have minimal 
influence on other advantages and are also less affected by them.

Subsequently, the same analysis steps were applied to the challenges 
of AI in urban design and planning presented in Table 1. The causal 
relationships among them were examined, resulting in the creation of 
the initial direct-influence matrix Z (cf. Table 8) and the total relation 
matrix T with the corresponding R and C values (cf. Table 9).

The positive R− C values presented in Table 8 indicate that the cause 
challenges are: high-quality data and training requirements (C25), 
integration of different levels of technological knowledge (C61), lack of 
specific regulations for technologies applied to urban planning (C62), 
ethical concerns (e.g., transparency, data privacy) (C88), resistance or 
rejection of proposed solutions by communities (C90), dependence on 
companies for technology maintenance (C112) and “black box” nature 
(C119), while the effect challenges are: biases embedded in training data 
and algorithms, leading to biased decisions (C57), creation of false but 
realistic images (C64) and power of AI companies in urban planning 
(C89). Fig. 4 illustrates the IRM diagram for the challenges, highlighting 
the positioning of each one.

According to Fig. 4, the R + C values indicate that the most pivotal 
challenge is C88 (i.e., 5.9489), positioned at the far right. The least 
prominent challenge, C62, appears at the extreme left due to its lowest R 
+ C value (i.e., 2.9355). The ten challenges are ranked by importance as 
follows: C88 > C57 > C89 > C119 > C25 > C112 > C64 > C90 > C61 >

Table 3 (continued )

Pairwise Comparison DEMATEL Scale (x) Neutrosophic Values Neutrosophic Crispification

T I F Crispification Equation Numerator Crisp Weight W Final Value in Matrix Z

A84-A29 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A84-A40 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A84-A41 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A84-A43 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A84-A47 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A84-A66 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A84-A67 2.0 0.50 0.30 0.20 0.6441 0.0094 1.3333
A84-A100 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A100-A9 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A100-A29 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A100-A40 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A100-A41 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A100-A43 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A100-A47 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A100-A66 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000
A100-A67 4.0 0.80 0.10 0.10 0.8586 0.0125 3.4667
A100-A84 3.0 0.70 0.20 0.10 0.7840 0.0114 2.4000

Table 4 
Normalized matrix X—selected advantages.

A09 A29 A40 A41 A43 A47 A66 A67 A84 A100

A09 0.0000 0.1081 0.1179 0.0811 0.0958 0.0885 0.0491 0.0811 0.0442 0.0885
A29 0.1278 0.0000 0.0811 0.0541 0.0590 0.0885 0.0958 0.0491 0.0442 0.0885
A40 0.1278 0.0885 0.0000 0.0885 0.0885 0.0541 0.0885 0.0811 0.0491 0.1278
A41 0.0885 0.0541 0.0885 0.0000 0.1278 0.0885 0.0491 0.0811 0.0442 0.1278
A43 0.1278 0.0885 0.0958 0.1278 0.0000 0.0885 0.1278 0.1278 0.0885 0.1278
A47 0.0885 0.0885 0.0541 0.0885 0.0885 0.0000 0.0958 0.0885 0.0491 0.0885
A66 0.0541 0.0885 0.0885 0.0541 0.1278 0.0885 0.0000 0.0885 0.0491 0.0885
A67 0.0885 0.0541 0.0885 0.0885 0.1278 0.0885 0.0885 0.0000 0.0885 0.1278
A84 0.0491 0.0491 0.0491 0.0491 0.0885 0.0491 0.0491 0.0491 0.0000 0.0885
A100 0.0885 0.0885 0.1278 0.1278 0.1278 0.0885 0.0885 0.1278 0.0885 0.0000

Note: A = advantage.
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C62.
The challenges’ coordinates identify C88 and C119 as core chal

lenges (i.e., QI), being highly influential and significantly influenced by 
others, making them central to the system. QII is composed by C25, C61, 
C62, C90 and C112 as key drivers of the system, indicating that they 
strongly influence others. Furthermore, C64 is positioned in the inde
pendent quadrant (i.e., QIII), suggesting a minimal interaction with the 
rest of the system. In contrast, C57 and C89 fall within the impact 
quadrant (i.e., QIV), indicating they are significantly influenced by other 
challenges but have a limited ability to influence others.

4.3. Consolidation phase

The analysis of the results was further enriched by integrating 

Table 5 
Intermediate steps for matrix T—Selected Advantages.

Matrix I

​ A09 A29 A40 A41 A43 A47 A66 A67 A84 A100
A09 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A29 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A40 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A41 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A43 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000
A47 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000
A66 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
A67 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000
A84 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000
A100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

I-X

​ A09 A29 A40 A41 A43 A47 A66 A67 A84 A100
A09 1.0000 − 0.1081 − 0.1179 − 0.0811 − 0.0958 − 0.0885 − 0.0491 − 0.0811 − 0.0442 − 0.0885
A29 − 0.1278 1.0000 − 0.0811 − 0.0541 − 0.0590 − 0.0885 − 0.0958 − 0.0491 − 0.0442 − 0.0885
A40 − 0.1278 − 0.0885 1.0000 − 0.0885 − 0.0885 − 0.0541 − 0.0885 − 0.0811 − 0.0491 − 0.1278
A41 − 0.0885 − 0.0541 − 0.0885 1.0000 − 0.1278 − 0.0885 − 0.0491 − 0.0811 − 0.0442 − 0.1278
A43 − 0.1278 − 0.0885 − 0.0958 − 0.1278 1.0000 − 0.0885 − 0.1278 − 0.1278 − 0.0885 − 0.1278
A47 − 0.0885 − 0.0885 − 0.0541 − 0.0885 − 0.0885 1.0000 − 0.0958 − 0.0885 − 0.0491 − 0.0885
A66 − 0.0541 − 0.0885 − 0.0885 − 0.0541 − 0.1278 − 0.0885 1.0000 − 0.0885 − 0.0491 − 0.0885
A67 − 0.0885 − 0.0541 − 0.0885 − 0.0885 − 0.1278 − 0.0885 − 0.0885 1.0000 − 0.0885 − 0.1278
A84 − 0.0491 − 0.0491 − 0.0491 − 0.0491 − 0.0885 − 0.0491 − 0.0491 − 0.0491 1.0000 − 0.0885
A100 − 0.0885 − 0.0885 − 0.1278 − 0.1278 − 0.1278 − 0.0885 − 0.0885 − 0.1278 − 0.0885 1.0000

(I-X) − 1

​ A09 A29 A40 A41 A43 A47 A66 A67 A84 A100
A09 1.3187 0.3673 0.4074 0.3671 0.4290 0.3539 0.3263 0.3705 0.2532 0.4328
A29 0.4006 1.2464 0.3492 0.3152 0.3671 0.3293 0.3384 0.3158 0.2323 0.3974
A40 0.4466 0.3650 1.3196 0.3886 0.4433 0.3398 0.3721 0.3872 0.2691 0.4829
A41 0.4029 0.3251 0.3884 1.2999 0.4637 0.3586 0.3307 0.3787 0.2589 0.4716
A43 0.5176 0.4260 0.4754 0.4885 1.4441 0.4327 0.4694 0.4949 0.3526 0.5653
A47 0.3854 0.3408 0.3431 0.3624 0.4138 1.2648 0.3558 0.3674 0.2509 0.4197
A66 0.3613 0.3436 0.3743 0.3374 0.4487 0.3476 1.2738 0.3713 0.2542 0.4239
A67 0.4299 0.3495 0.4154 0.4065 0.4965 0.3835 0.3893 1.3304 0.3170 0.5038
A84 0.27156 0.23811 0.26177 0.25609 0.32590 0.24122 0.24545 0.25927 1.15167 0.33092
A100 0.47173 0.41159 0.48555 0.47499 0.53934 0.41791 0.42416 0.48003 0.34248 1.43587

Table 6 
Matrix T—selected advantages.

A09 A29 A40 A41 A43 A47 A66 A67 A84 A100 R

A09 0.3187 0.3673 0.4074 0.3671 0.4290 0.3539 0.3263 0.3705 0.2532 0.4328 3.6260
A29 0.4006 0.2464 0.3492 0.3152 0.3671 0.3293 0.3384 0.3158 0.2323 0.3974 3.2917
A40 0.4466 0.3650 0.3196 0.3886 0.4433 0.3398 0.3721 0.3872 0.2691 0.4829 3.8142
A41 0.4029 0.3251 0.3884 0.2999 0.4637 0.3586 0.3307 0.3787 0.2589 0.4716 3.6785
A43 0.5176 0.4260 0.4754 0.4885 0.4441 0.4327 0.4694 0.4949 0.3526 0.5653 4.6667
A47 0.3854 0.3408 0.3431 0.3624 0.4138 0.2648 0.3558 0.3674 0.2509 0.4197 3.5040
A66 0.3613 0.3436 0.3743 0.3374 0.4487 0.3476 0.2738 0.3713 0.2542 0.4239 3.5360
A67 0.4299 0.3495 0.4154 0.4065 0.4965 0.3835 0.3893 0.3304 0.3170 0.5038 4.0219
A84 0.2716 0.2381 0.2618 0.2561 0.3259 0.2412 0.2454 0.2593 0.1517 0.3309 2.5820
A100 0.4717 0.4116 0.4856 0.4750 0.5393 0.4179 0.4242 0.4800 0.3425 0.4359 4.4837
C 4.0062 3.4135 3.8200 3.6967 4.3713 3.4694 3.5255 3.7554 2.6822 4.4642 ​

Note: A = advantage; C = cumulative value of columns; R = cumulative value of rows.

Table 7 
Advantages’ total influences.

R C R + C R–C

A09 3.6260 4.0062 7.6322 − 0.3803
A29 3.2917 3.4135 6.7052 − 0.1218
A40 3.8142 3.8200 7.6342 − 0.0058
A41 3.6785 3.6967 7.3752 − 0.0182
A43 4.6667 4.3713 9.0380 0.2954
A47 3.5040 3.4694 6.9734 0.0345
A66 3.5360 3.5255 7.0615 0.0105
A67 4.0219 3.7554 7.7772 0.2665
A84 2.5820 2.6822 5.2642 − 0.1003
A100 4.4837 4.4642 8.9479 0.0194

Note: A = advantage; C = cumulative value of columns; R = cumulative value of 
rows.

A. Çipi et al.                                                                                                                                                                                                                                     Technovation 151 (2026) 103465 

10 



insights from the existing literature and complementing them with the 
consolidation phase (i.e., the last phase in the MCDA process), offering 
deeper insights into the dynamic interactions among AI’s advantages 
and among its challenges in urban design and planning. To gain an in
dependent perspective, an interview was conducted with the Informa
tion Systems Coordinator at Portugal’s Agência Nacional de Inovação 
(ANI) (i.e., National Innovation Agency) who had not participated in 
previous sessions. The interview was structured in three parts: (1) an 
introduction to the research topic and methodological framework; (2) a 
presentation and discussion of the findings; and (3) an evaluation of 
their practical applicability by the expert.

The expert agreed with the results, highlighting their role in identi
fying strategic factors related to dynamic digital simulations of cities and 
addressing ethical considerations, both of which are essential for the 
success of urban projects. The analysis conducted thus supports 
informed decision-making, enabling urban planners and policymakers 
to implement strategic, impactful initiatives that can augment AI’s ad
vantages while addressing its challenges. These results are also critical 
for constructing a “correct and assertive decision tree” (according to the 
expert) and for “understanding the social trends and logics underlying the 
evaluation of specific criteria” (in his words). However, the expert 
emphasized that such evaluations will inevitably rely “on the judgments 
of the participants involved and their expertise as professionals in this 
context” (also in his words). In this regard, it is worth noting that 
“subjectivity is an integral part of managerial decision-making and cannot be 
ignored or assumed to be eliminated by the pursuit of an intersubjective ideal” 
(Ormerod, 2013, p. 486). Thus, underpinned by Keeney’s (1992) VFT, 
the methodological approach followed in this study incorporates both 
objective and subjective elements, including the decision-makers’ value 
judgements (Bana e Costa et al., 1997; Ferreira and Ferreira, 2025).

The results reveal important insights into the role of each AI 
advantage in urban planning. In the QI, advantages A43 (i.e., dynamic 
digital simulations of cities), A100 (i.e., creation and display of urban 
scenarios as they are designed or modified) and A67 (i.e., scenario 
simulation (e.g., traffic flow with narrower/wider streets)) stand out as 
the most prominent advantages, highlighting their central and influen
tial role in the system. This reflects their importance in structuring AI- 
based urban planning models, particularly in the context of complex 

urban simulations and interactive visualizations. These results reinforce 
the significance of these mentioned advantages in previous studies (e.g., 
Batty and Yang, 2022; Sanchez et al., 2024; Shen et al., 2020) and the 
concept of complementary tools that facilitate the urban planning pro
cess (Furtado et al., 2024). However, this study not only confirms pre
vious ideas but also advances the literature in urban planning by 
revealing the degree of dependence and mutual influence among these 
advantages, illustrating their relationships with other advantages 
through a causality matrix.

As causal advantages, both core (i.e., those present in the QI) and 
driving advantages (i.e., those present in the QII) should establish syn
ergies between them to enable concrete actions in urban planning. For 
instance, the integration of real-time optimized traffic data (A47) is 
essential for dynamic simulations (A43) and for creating more realistic 
urban scenarios (A100). These synergies can help create more accurate 
models to predict city behavior and the impact of interventions on 
traffic. However, according to the members of the panel, these synergies 
are still limited, suggesting that urban planning is not currently 
leveraging the full potential of these driving advantages to “feed” dy
namic urban scenario simulation models effectively. The advantages 
positioned in the QIV, such as providing real-time or interactive feed
back (A09), testing alternative building arrangements (A40) and 
exploring various ideas in a short period of time (A41), are classified as 
effects. This means that they heavily depend on the core and driving 
advantages. In the expert’s words, for urban design and planning to be 
truly iterative and responsive, “a smooth flow of data and integration 
between different technologies is essential”. In QIII, the advantages A29 (i. 
e., enhanced data analysis) and A84 (i.e., reduction of human bias) are 
independent, occurring with minimal interaction. For instance, 
enhanced data analysis primarily impacts real-time feedback (A09), 
dynamic simulations (A43) and the creation of realistic urban scenarios 
(A100), indicating that it is not being widely leveraged in other areas 
within urban planning. According to the expert, A29 proves particularly 
beneficial in the context of decision-making frameworks, especially 
within the “logic of structures and decision trees” (in his own words). This 
is because it minimizes errors and enhances the robustness of urban 
planning strategies, ultimately supporting a more data-driven and effi
cient decision-making process. In the case of reducing human bias 

Fig. 3. IRM for AI advantages in urban design and planning.
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(A84), despite its theoretical relevance for more impartial decision- 
making in urban planning (cf. Schlickman and Magana-Leon, 2024) 
and in interdisciplinary collaboration among stakeholders (Furtado 
et al., 2024), AI may be used to reduce human bias in isolation, without 
coordination with other tools and technological solutions, suggesting an 
underutilized potential. The analysis reinforces the idea that the effec
tiveness of AI in urban design and planning depends on the integration 
and balance between advantages, enabling synergies that maximize the 
impact of these technologies.

Regarding the challenges analyzed, the results show that ethical 
concerns (e.g., transparency, data privacy) (C88) is the most prominent 
and relevant challenge within the system. Positioned in QI, it is a central 
and interactive challenge, meaning it is both highly influential and 
significantly influenced by others. For instance, it is strongly interde
pendent on the “black box” nature of AI (C119). This latter challenge is 
recognized as important, but most attention has focused on its limita
tions from technical and user-system interaction perspectives (e.g., 
Hughes et al., 2021; Kempinska and Murcio, 2019; Wang et al., 2021). 
Therefore, resolving this issue should be given high priority, as it 
directly impacts trust and the adoption of AI solutions, which are crucial 
for the development and acceptance of AI in urban planning. As Batty 
and Yang (2022) suggest, adopting open-source software and languages 
could reduce opacity, enabling developers, urban planners and com
munities to audit and understand the systems.

Ethical concerns are identified in the literature (e.g., Hajrasouliha, 
2024; Sanchez et al., 2024; Son et al., 2023) as essential for promoting 
transparency, equity and accountability. The results obtained in this 
study provide a quantitative and systemic approach, revealing in
terdependencies that have not been thoroughly explored. For example, 
ethical issues affect the biases embedded in training data and algorithms 
(C57). In other words, as ethical concerns are addressed, AI developers 
must implement more careful, transparent and fair data training prac
tices to prevent bias from negatively influencing the automated de
cisions made by AI tools that support urban planners’ decision-making. 
Addressing these challenges will help increase the reliability of AI-based 
decisions. Ye et al. (2023, p. 7) state that “every community has its own 
unique set of needs, values, and characteristics”. According to the results, 
ethical concerns (C88) impact the resistance or rejection of AI-based 
solutions by communities (C90). There is a risk that local commu
nities may distrust AI solutions, fearing they could alter their routines or 
shape the urban space in ways that do not align with their needs. This 
distrust, amplified by the perception of insufficient involvement in 
decision-making processes, can significantly influence urban planners’ 
choices, who must balance technological innovation and social 
consensus. This finding is related to the fear and lack of trust in ma
chines, issues addressed in Du et al. (2024), Sanchez et al. (2024) and 
Ulucan et al. (2025), but in the present study, it is directly linked to the 
resistance from communities.

Technological dependency is an aspect mentioned in some studies 
and is directly associated, on the one hand, with the lack of trans
parency, as pointed out by Sanchez et al. (2024). This lack of trans
parency largely stems from the fact that AI algorithms are proprietary, 
meaning that the tools and methodologies used are treated as trade 
secrets by the companies that develop them. On the other hand, de
pendency is associated with excessive and blind trust (Du et al., 2024). 
Our results provide a new perspective on technological dependency: 
urban planners may become overly reliant on companies for techno
logical maintenance (C112), which, in turn, amplifies the power of AI 
companies in urban planning (C89). This type of dependency has 
received little attention and is especially critical because it can under
mine the autonomy of urban planning, restricting the capacity for 
democratic decision-making and increasing corporate influence in 
urban choices (Du et al., 2024).

From the perspective of implementing these technologies, “it is likely 
to be dominated by a small number of large companies. The development, 
maintenance and operation of these technologies rely on the efforts of those Ta
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working behind the scenes. Additionally, the resources required to sustain 
these systems—whether water for cooling, electricity for powering machines 
or processing capacity—play a critical role in their ongoing operation” (in 
the expert’s words). Additionally, the expert argued that, “on the one 
hand, assuming that urban planning can be improved by AI companies, it 
could be beneficial to have entities that are less biased in their evaluations and 
decisions. These entities could act as more transparent stakeholders, aligned 
with best practices and capable of identifying and suggesting improvements in 
urban planning. On the other hand, excessive power concentrated in AI 
companies and an over-reliance on AI-driven planning could stifle creativity 
and undermine the logic of urban development and planning” (in his words).

The integration of different levels of technological knowledge (C61) 
is a major challenge in urban planning literature (e.g., Asaad et al., 2020; 
Cozzolino et al., 2020; Quan et al., 2019; Wang et al., 2021). This 
challenge is linked to the technical barriers of cross-disciplinary 
collaboration, highlighting that urban planners and AI professionals 
often struggle to communicate effectively due to differences in knowl
edge, language and priorities. According to the expert, “the integration of 
distinct and diverse datasets from various cities at the highest level, aimed at 
extracting their full value through the logic of knowledge absorption, provides 
access to a significantly broader pool of knowledge. This includes a wide 
range of information, such as geographic and geological data, water net
works, traffic systems, and more” (again in his words).

While ethical considerations in AI typically call for greater trans
parency, accountability and fairness in algorithms, they do not neces
sarily explore how interdisciplinary collaboration can prevent or reduce 
these issues. Thus, the current study extends this understanding by 
proposing that addressing C61 is not just about overcoming communi
cation and knowledge barriers for better collaboration, but also about 
ensuring that ethical concerns (e.g., transparency and data privacy) 
(C88) are integrated into the design of AI tools and solutions from the 
outset. Building on the expert’s observations regarding the integration 
of technological knowledge, ethical considerations and the balance of 
AI’s advantages and challenges, the following section discusses the 
broader implications of these findings for theory, practice and policy in 
urban planning.

5. Discussion

5.1. Contributions to theory, practice and society

Although the methodological components employed—cognitive 
mapping, neutrosophic logic and DEMATEL—are well-established in the 
literature, the novelty of our work lies in the innovative integration and 
application of these methods to a contemporary and underexplored 
decision problem (i.e., the causal interplay among advantages and 

Table 9 
Matrix T and total influences—selected challenges.

C25 C57 C61 C62 C64 C88 C89 C90 C112 C119 R C R + C R–C

C25 0.1529 0.3399 0.2043 0.1020 0.2474 0.3056 0.2281 0.1316 0.1545 0.1680 2.0342 1.8987 3.9329 0.1356
C57 0.3195 0.2367 0.1976 0.1489 0.2654 0.3960 0.3000 0.1592 0.2163 0.2354 2.4749 2.5703 5.0452 − 0.0953
C61 0.2106 0.2491 0.0882 0.1346 0.1338 0.2277 0.1918 0.1056 0.1247 0.1357 1.6017 1.4769 3.0786 0.1249
C62 0.0972 0.1546 0.1299 0.0807 0.1162 0.2456 0.1803 0.1402 0.1577 0.1697 1.4721 1.4633 2.9355 0.0088
C64 0.1615 0.2342 0.1035 0.0981 0.0994 0.2100 0.1822 0.1350 0.1210 0.1312 1.4760 1.8629 3.3389 − 0.3869
C88 0.2950 0.4060 0.2143 0.2455 0.2537 0.3121 0.3426 0.2580 0.2957 0.3601 2.9829 2.9660 5.9489 0.0168
C89 0.2168 0.3055 0.1776 0.1789 0.2079 0.3400 0.1910 0.1827 0.2533 0.2698 2.3236 2.3399 4.6635 − 0.0163
C90 0.1244 0.1633 0.1028 0.1399 0.1546 0.2572 0.1837 0.0876 0.1618 0.1744 1.5496 1.5472 3.0967 0.0024
C112 0.1491 0.2227 0.1207 0.1581 0.1479 0.2966 0.2556 0.1628 0.1310 0.2443 1.8887 1.8685 3.7572 0.0202
C119 0.1718 0.2582 0.1380 0.1768 0.2366 0.3752 0.2847 0.1846 0.2525 0.1720 2.2503 2.0604 4.3107 0.1899

Note: C = challenge; C = cumulative value of columns; R = cumulative value of rows.

Fig. 4. Irm for AI challenges in urban design and planning.
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among challenges of integrating AI and GenAI into urban design and 
planning). To our knowledge, this is the first study to systematically 
capture and quantify expert knowledge in this domain using a structured 
combination of problem structuring and causal analysis techniques, 
thereby revealing interdependencies not previously mapped.

Theoretically, the present study makes three significant contribu
tions to the integration of AI and GenAI in urban design and planning, 
addressing key gaps identified in the existing literature (cf. Du et al., 
2024; Peng et al., 2023; Son et al., 2023). First, it presents a compre
hensive framework that enables the understanding of complex causal 
interactions among advantages and among challenges of these tech
nologies, thus responding to the call for more in-depth analyses of the 
causal relationships among AI’s advantages and among its challenges 
(cf. Furtado et al., 2024; Hajrasouliha, 2024; Tekouabou et al., 2023), 
thereby answering RQ1 and RQ2. Second, by emphasizing the impor
tance of approaches that consider uncertainties and causal de
pendencies, the study directly contributes to bridging the gap in 
literature concerning the need for studies focused on urban design and 
planning problems with multiple, interacting components (e.g., Ali-
Toudert et al., 2020; Batty and Yang, 2022). Finally, the study addresses 
the lack of a structured approach in previous research by combining 
cognitive mapping, DEMATEL and neutrosophic logic—methods not 
previously integrated in the context of AI and urban design and plan
ning. This methodological integration allowed to answer RQ3, provide a 
more precise evaluation of AI’s role in urban design and planning and 
offer a pathway for future research and practices that can optimize the 
use of these technologies in developing smarter, more inclusive and 
sustainable cities.

From a practical perspective, our study highlights the importance of 
structured decision-making processes grounded in a constructivist 
approach, enhancing the understanding of causal relationships and 
uncertainties in urban design and planning. By integrating cognitive 
mapping and neutrosophic DEMATEL, the study proposes a dynamic 
and collaborative process that engages diverse stakeholders—including 
urban planners, engineers and local communities—in identifying causal 
links among AI’s advantages and among its challenges. This inclusive 
approach ensures that varied perspectives shape the structuring of urban 
problems and the formulation of solutions. The approach explicitly ad
dresses uncertainties associated with AI integration, acknowledging that 
decision-making often occurs under incomplete or uncertain data. The 
methods’ ability to model complexity and unpredictability supports a 
flexible and precise option analysis, which is essential in the rapidly 
evolving technological environment. Aligned with principles of the soft 
OR community (Ackermann, 2012; Midgley et al., 2018), the 
process-based framework organizes decision-making and enables 
stakeholders to identify critical dependencies among technical, ethical, 
social and environmental factors. This facilitates the creation of 
balanced public policies and urban projects that reflect the multifaceted 
challenges cities face. Finally, the combined use of PSMs—as suggested 
by Mingers and Rosenhead (2004)—not only improves the planning 
process but also offers a customizable and transferable approach 
adaptable to the specific socioeconomic, cultural and environmental 
contexts of diverse cities or regions. This adaptability ensures the 
practical relevance of our framework for real-world urban planning 
challenges.

An additional strength of this study is its process-oriented nature. 
The methodological pathway—beginning with the structured elicitation 
of expert knowledge, followed by consensus-building, prioritization and 
causal analysis—is designed to be fully transferable to other contexts (cf. 
Bell and Morse, 2013; Ormerod, 2013). Because it is based on facilitated 
expert participation, the process can be adapted to reflect the specific 
realities, constraints and priorities of different application domains, 
thereby producing results that are both realistic and tailored to the 
decision-making environment in question. This adaptability makes the 
framework particularly valuable for addressing emerging challenges in 
diverse policy and planning contexts, where ready-made, 

one-size-fits-all solutions are unlikely to be effective.

5.2. Recommendations

Given the inherently process-oriented nature of this study, caution is 
advised when considering the generalizability of its findings. The 
research is deeply embedded in a context-specific framework that re
flects the perspectives, judgments and interactions of particular experts 
and stakeholders involved in the cognitive mapping and decision 
structuring processes. Unlike purely quantitative studies that aim to 
produce universally generalizable results, this study prioritizes rich, 
contextualized insights and structured knowledge elicitation that cap
ture the complexity and nuance of real-world decision-making in urban 
design and planning (cf. Bell and Morse, 2013; Ormerod, 2020). 
Consequently, the findings should not be interpreted as definitive or 
broadly applicable conclusions but rather as a detailed exploration of 
the dynamics at play within the studied context.

Instead, this work is best understood as a learning mechanism that 
complements and enriches the broader field of AI and GenAI integration 
in urban design and planning. By systematically structuring expert 
knowledge and revealing causal interdependencies among advantages 
and among challenges, the study offers valuable heuristics and con
ceptual frameworks that can inform subsequent empirical research, 
policy development and practical applications. This approach encour
ages iterative learning and adaptation, fostering a deeper understanding 
of complex, multi-stakeholder problems where uncertainty and subjec
tivity are unavoidable. In this way, the research contributes to cumu
lative knowledge-building rather than attempting to prescribe one-size- 
fits-all solutions.

One of the key advantages of adopting a process-oriented and 
constructivist methodology lies in its flexibility and adaptability. The 
participatory and transparent nature of the methods employed enables 
diverse stakeholders to engage meaningfully, ensuring that multiple 
perspectives and value systems are incorporated into the decision- 
making process (cf. Vaz-Patto et al., 2024). This inclusiveness en
hances the relevance and legitimacy of the findings within the specific 
context and supports tailored decision support rather than rigid pre
scriptions. Moreover, by explicitly acknowledging and modeling un
certainty and interdependencies, the approach facilitates a nuanced 
understanding of urban planning challenges that traditional determin
istic methods often overlook (cf. Correia et al., 2024). As such, the study 
provides a robust foundation for ongoing dialogue, reflection and 
refinement of AI applications in urban design and planning, ultimately 
contributing to more resilient, inclusive and context-sensitive planning 
practices.

6. Conclusion

The integration of AI into urban design and planning represents a 
significant transformation in how cities are conceived, developed and 
managed. Both the reviewed literature and the empirical results 
demonstrate the vast potential of these technologies to optimize 
decision-making processes, enhance collaboration among stakeholders 
and foster innovative solutions to complex urban challenges. However, 
the study also identified critical gaps, particularly in managing un
certainties and understanding the intricate causal relationships among 
advantages and among challenges of AI integration. Addressing these 
gaps requires structured, participatory approaches capable of analyzing 
causal dependencies and handling uncertainty.

This research addressed three guiding questions. Regarding RQ1 
(“What key advantages and challenges are associated with the integra
tion of AI in general—and GenAI in particular—in urban design and 
planning?”), the study identified core advantages such as dynamic dig
ital simulations, real-time scenario modeling and adaptive traffic flow 
analysis. Ethical concerns and technological dependency emerged as the 
most significant challenges, underscoring areas requiring focused 
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attention. In response to RQ2 (“What are the causal relationships among 
the identified advantages and among the challenges related to AI and 
GenAI integration in urban design and planning?”), the neutrosophic 
DEMATEL analysis revealed complex interdependencies among these 
factors, illustrating how driving advantages reinforce each other and 
how challenges interact with technological dependencies. For RQ3 
(“How can stakeholder collaboration and decision-making under un
certainty support the application of AI and GenAI to urban design and 
planning?”), the use of PSMs enabled collaborative engagement and 
systematic exploration of uncertainties inherent to urban contexts.

The novelty of this study lies not in proposing new methods but in the 
innovative integration of established techniques within an MCDA 
framework applied to a contemporary and underexplored problem (i.e., 
the causal interplay among advantages and among challenges of AI and 
GenAI in urban design and planning). To the best of our knowledge, this 
is the first study to systematically capture, quantify and model expert 
knowledge in this field, revealing the causal structures underpinning 
these complex dynamics. The results move beyond descriptive listings of 
pros and cons, offering actionable insights to inform strategic planning 
and policymaking.

In terms of contributions, the study offers empirical insights into the 
dynamic relationships among AI’s advantages and among its challenges, 
highlights critical synergies and bottlenecks and proposes a replicable, 
process-oriented methodological framework that supports collaborative 
decision-making under uncertainty. This framework is adaptable to 
diverse urban contexts, providing a valuable tool for both researchers 
and practitioners aiming to optimize the integration of AI technologies 
in urban design and planning.

Despite these advances, some limitations should be noted. The 
study’s findings are grounded in expert input and future applications 
across cities with different socio-economic and technological conditions 
are needed to generalize and refine the framework. Additionally, while 
digital tools facilitated collaboration, the process remained resource 
intensive. Integrating such approaches with AI-enhanced platforms 
capable of real-time feedback and dynamic simulation could streamline 
participation, improve inclusivity and accelerate decision-making. 
These advancements would further promote the responsible and sus
tainable integration of AI and GenAI into urban development.
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