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INTRODUCTION: Esophageal motility disorders (EMDs) are common in clinical practice, with a high symptomatic burden
and significant impact on the patients’ quality of life. High-resolution esophageal manometry (HREM) 
is the gold standard for the evaluation of functional esophageal disorders. The Chicago Classification 
offers a standardized approach to HREM. However, HREM remains a complex procedure, both in data 
analysis and in accessibility. This study aimed to develop and validate machine learning (ML) models to 
detect EMDs according to the Chicago Classification.
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METHODS: We retrospectively analyzed 618 HREM examinations from 3 centers (Spain and the United States) 
using 2 recording systems. Labels were assigned by expert consensus as either disorder present or 
absent for 2 categories: esophagogastric junction outflow disorders and peristalsis disorders. Several 
ML models were trained and evaluated. ML classifiers were developed using an 80/20 patient-level 
stratified split for training/validation and testing. Model selection was guided by internal evaluation 
through repeated 10-fold cross-validation. Model performance was assessed by accuracy and area 
under the receiver-operating characteristic curve (AUC-ROC).

RESULTS: The GradientBoostingClassifier model outperformed the remaining ML models with an accuracy of 
0.942 6 0.015 and an AUC-ROC of 0.921 6 0.041 for identifying disorders of esophagogastric 
junction outflow. The xGBClassifier model detected disorders of peristalsis with an accuracy of 0.809 6 
0.029 and an AUC-ROC of 0.871 6 0.027. Performance was consistent across repeated validations, 
demonstrating model robustness and generalization.

DISCUSSION: This multicenter, multidevice study demonstrates that ML models can accurately detect EMDs in 
HREM. Artificial intelligence-driven HREM may improve diagnosis by standardizing interpretation and 
reducing interobserver variability.
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INTRODUCTION
The esophagus is a muscular tube with 2 sphincters that primarily 
transports food and liquids into the stomach through coordinated 
contractions and relaxation of both sphincters, enabling digestion 
(1). Esophageal motility disorders (EMDs) are frequently en-
countered in clinical practice and are associated with a high 
symptomatic burden and significant impairment in quality of life. 
Because the diagnosis of these pathologies can be challenging, it is 
often delayed or even missed in the early stages, relative to the 
onset of symptoms. Therefore, early and accurate diagnosis is 
essential for improving patient outcomes and enabling effective 
treatment and follow-up (2).

High-resolution esophageal manometry (HREM) is currently 
the gold standard for evaluating patients with functional 
esophageal disorders. The most widely used classification sys-
tem for diagnosis is the Chicago Classification (version 4.0), 
which provides a standardized framework based on algorithmic 
assignment of motility patterns (3,4). Despite significant tech-
nological advancements, HREM remains a complex procedure, 
with several limitations: notably, high intraobserver and in-
terobserver variability, which hinders its availability 
and reproducibility, and the intrinsic difficulty of data analysis/ 
interpretation, which can result in suboptimal diagnostic 
accuracy (5).

The application of artificial intelligence (AI) in gastroenter-
ology procedures is rapidly increasing. AI models have shown 
potential in overcoming examination limitations, as previously 
demonstrated in other gastroenterology fields (6)—real-time 
automatic detection of colorectal polyps in colonoscopy. How-
ever, applying AI to HREM presents unique challenges.

Unlike image-based data in endoscopy or colonoscopy, 
HREM generates complex, high-dimensional spatiotemporal 
pressure signals. This requires tailored approaches for data pre-
processing, feature extraction, and model design. In addition, the

presence of noise and artifacts such as patient movement or 
sensor misalignment can affect the quality of the Data sets. The 
analysis process itself is time-consuming and depends on spe-
cialized clinical expertise, which limits the availability of large, 
high-quality Data sets for robust training and validation.

This study aimed to develop and validate an AI-based model 
for identifying motility disorders in HREM according to the 
Chicago Classification. The models were designed to detect 2 
main diagnostic categories: disorders of peristalsis and esoph-
agogastric junction (EGJ) outflow disorders, according to Chi-
cago Classification, leveraging expert-labeled examinations from 
multiple international centers and devices.

METHODS
A total of 618 HREM procedures were retrospectively reviewed 
from 3 reference centers for functional disorders: Hospital Uni-
versitario La Princesa (Spain), Hospital Universitario Puerta del 
Hierro Majadahonda (Spain), and the University Hospital of 
South Alabama (United States).

Patients were eligible if they were over 18 years of age and 
underwent HREM for a clinical indication. Pediatric and preg-
nant patients, as well as those deemed ineligible according to each 
center’s clinical evaluation, were excluded. Patients with active 
opioid use or a history of previous esophageal surgery were not 
excluded, to better reflect real-world practice.

These centers used 2 different high-resolution manometry sys-
tems: the Medtronic ManoScan ESO High-Resolution Manometry 
system and the Laborie Solar GI High-Resolution Manometry, 
performed by highly experienced HREM gastroenterologists from 
those centers, ensuring variability in device source and patient 
demographics.

All procedures were independently reviewed and labeled by 2 
independent expert gastroenterologists according to the Chicago
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Classification version 4.0. Anatomic landmarks used to define 
swallow patterns were manually assessed and confirmed by the 
expert reviewers before inclusion in the Data set. Discrepancies 
were resolved through joint consensus, and only studies with 
complete agreement on landmark identification and swallow 
pattern classification were used for model training and testing. 
Examinations for which consensus could not be obtained were 
excluded. Final labels reflected 2 diagnostic categories (Figure 1 
illustrates the data used in the model):

1. Disorders of EGJ outflow, including achalasia (types I, II, and
III) and EGJ outflow obstruction.

2. Disorders of peristalsis, such as absent contractility, distal
esophageal spasm, hypercontractile esophagus, and ineffective 
esophageal motility.
Patient confidentiality and anonymization were guaranteed 

during the analyses of the data. This study was approved by the 
ethics committees of the respective institutions.

HREM procedure
All procedures followed a standard HREM protocol per Chicago 
Classification version 4.0. Patients fasted for at least 4 hours be-
fore the procedure. Most of the examinations were initially 
performed in the supine position. After catheter placement, 
a stabilization period of at least 60 seconds took place to allow 
for adaptation. Subsequently, the patient was asked to do at 
least 3 deep inspirations to confirm catheter position. Next, 
a baseline period of at least 30 seconds was recorded to identify 
anatomic landmarks, including the upper esophageal sphinc-
ter, lower esophageal sphincter, respiratory inversion point, 
and basal EGJ pressure. After this, ten 5 mL wet swallows of 
ambient temperature water or saline were performed, ensuring 
a minimum interval of 30 seconds between each. A multiple 
rapid swallow sequence was then performed, consisting of five 
2 mL wet swallows administered 2–3 seconds apart using 
a 10 mL syringe. After that, the patient position was changed to 
an upright position. A minimum of 60 seconds for adaptation 
was given, and catheter position was reassessed with at least 3 
deep inspirations, followed by another baseline period of at 
least 30 seconds to identify anatomic landmarks. Sub-
sequently, at least 5 mL wet swallows were performed with the 
same interval of 30 seconds between each. Finally, a rapid 
drink challenge was conducted, with ingestion of 200 mL of 
water as quickly as possible through a straw. If no major mo-
tility disorder was identified, or findings were inconsistent

with clinical presentation, additional supportive maneuvers 
were performed (7). Each HREM procedure included at least 
15 swallows (10 supine, 5 upright), generating high-resolution 
spatiotemporal pressure signals across 36 channels. These raw 
pressure signals were standardized and converted into struc-
tured feature vectors, forming the input to the machine 
learning (ML) models.

Model selection and tuning and model performance

When identifying procedural disorders, it is common to en-
counter a significant imbalance between the number of proce-
dures without disorders and those where disorders are verified. 
To maximize labeling effectiveness, a human-in-the-loop/active 
learning strategy was adopted, prioritizing procedures that pro-
vided the most informative data for ML training.

To achieve this goal, we developed 2 independent machine-
learning models—one for each disorder. Each model was trained 
and validated on 80% of the available procedures, with the 
remaining 20% held out for testing. The split was patient-level 
and stratified so that all sets shared similar characteristics while 
ensuring that any given patient appeared in only one set. We 
applied cross-validation within the training phase.

The models ingest a comprehensive set of features extracted from 
the manometry time-series recordings, covering both the resting 
phase and every swallowing maneuver. These features range from 
basic statistics such as mean and SD to more advanced descriptors 
like rolling-windowmeasures andwavelet-basedmetrics, resulting in 
more than 1.600 input variables and a binary output (yes or no). 
Inclusive examinations were excluded in the models’ training.

In the initial stage, a base model was developed using the 
DecisionTreeClassifier algorithm to establish baseline discrimi-
nation capabilities. The ability to distinguish between procedures 
with and without disorders was then significantly enhanced 
through an automated ML architecture optimization process. 
This optimization evaluated various algorithms, including 
XGBoost (XGBClassifier), LightGBM (LGBMClassifier), Ada-
BoostClassifier, Gaussian Naive Bayes (GaussianNB), Gradient 
Boosting Classifier, and CatBoostClassifier.

After this optimization, the final model architecture was 
trained and evaluated over 10 repeated runs using different ran-
dom seeds to assess performance stability. Mean accuracy and 
area under the receiver-operating characteristic curve (AUC-
ROC) values, along with SDs, were calculated.

All analyses were conducted on a system equipped with a 2.1 
GHz Intel Xeon Gold 6130 processor (Intel, Santa Clara, CA) and

Figure 1. Examples of the data of high-resolution esophageal manometry used to train the model.
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dual NVIDIA Quadro RTX 8000 GPUs (NVIDIA, Santa Clara, 
CA), ensuring efficient processing and model training.

A graphical representation of the study design is shown in 
Figure 2.

Statistical analysis
The performance of the ML models was evaluated through their 
accuracy and AUC-ROC in differentiating disorders of peristalsis 
and disorders of EGJ outflow. Performance metrics were com-
pared against the expert consensus labels.

RESULTS
A total of 618 HREM examinations were used for the Data set. 
The mean age was 58 6 14 years, and 56% of patients were 
women. Among these, 54 were classified as EGJ outflow disorders, 
and 187 as peristalsis disorders, based on the final consensus. In 
total, the Data set comprised 420 examinations from Hospital 
Universitario La Princesa, 50 from Hospital Puerta del Hierro 
Majadahonda, and 148 from Health University Hospital of South 
Alabama, ensuring diversity in patient origin and device usage.

Table 1 summarizes the agreement between the ML model 
predictions and expert-labeled final diagnosis. The Gra-
dientBoostingClassifier achieved an accuracy of 0.942 6 0.015 
and an AUC-ROC of 0.921 6 0.041 for the identification of EGJ 
outflow disorders. The xGBClassifier model detected peristalsis

disorders with an accuracy of 0.809 6 0.029 and an AUC-ROC of 
0.871 6 0.027. Additional cross-validation runs confirmed con-
sistent model performance, and further validation per center is 
planned to assess generalizability. Table 2 displays the SD 
obtained across 10 independent training iterations for the 
LGBMClassifier and CatBoostClassifier models.

DISCUSSION
This study was conducted in a multicenter, multidevice setting, 
demonstrating the feasibility of creating AI models that can be 
applied globally, with the potential to improve diagnostic accu-
racy and reduce variability in the identification of EMDs in 
HREM according to the Chicago Classification.

HREM is the current gold standard for diagnosing EMDs. Its 
current classification system, used worldwide, is the Chicago 
classification (version 4.0), which provides a widely accepted al-
gorithmic scheme using metrics from HREM to achieve the di-
agnosis (7). However, its application remains expert and manual-
dependent, which introduces substantial intraobserver and in-
terobserver variability that limits reproducibility and accessibility 
(4). This reliance on manual interpretation may also reduce ac-
curacy and hinder the widespread implementation of HREM in 
clinical practice.

Figure 2. Graphical flowchart of the study. HREM, high-resolution esophageal manometry.

Table 1. The agreement between the machine learning model 

predictions and the expert-labeled final diagnosis

Model classification

Final diagnosis

Yes No Inconclusive

Disorders of EGJ 54 500 64

Disorders of peristalsis 187 373 58

EGJ, esophagogastric junction.

Table 2. The SD values from the 10 model training iterations for 

LGBMClassifier and CatBoostClassifier models

Model Disorder type

Accuracy 

Mean 6 SD

AUC-ROC

Mean 6 SD

LGBMClassifier EGJ outflow disorder 0.940 6 0.014 0.931 6 0.038

CatBoostClassifier Peristalsis 0.797 6 0.033 0.839 6 0.033

AUC-ROC, area under the receiver-operating characteristic curve; EGJ disorder, 
esophagogastric junction outflow disorders.
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AI use in medical fields has grown exponentially in recent 
years, with gastroenterology being no exception. Several com-
mercially available AI systems are now routinely used, such as 
those used for real-time detection of polyps during endoscopy. In 
the motility field, AI holds great promise but also faces specific 
challenges. Currently, only a few studies have investigated this 
area, revealing a significant gap in the existing literature. In-
deed, some pilot studies have demonstrated the utility of ML 
models in identifying normal motility patterns and swallowing 
types (8–10). More recently, models have been developed to 
differentiate EMDs according to the Chicago Classification (9). 
However, these studies were mostly limited to single centers, 
relied on a single device manufacturer, and were based on the 
outdated Chicago Classification (version 3.0). Our study 
addresses these limitations by developing and validating a ML 
model using a multicenter, multidevice Data set aligned with 
the most recent Chicago Classification. This approach 
enhances the model’s potential for interoperability and ex-
ternal validity. To our knowledge, this is the first study to 
evaluate the performance of ML models in differentiating 
disorders of peristalsis and disorders of EGJ outflow in HREM 
data across multiple institutions and devices.

This study has several strengths that deserve acknowledgment, 
notably the inclusion of 618 HREM examinations (performed 
based on the Chicago Classification 4.0) and had a Data set that 
included a diverse population from 2 different continents, 3 dif-
ferent medical institutions, and 2 different medical devices. The 
diversity of this Data set enhances reproducibility and supports 
potential global application. We used 80% of the procedures for 
model training, whereas the remaining 20% were used for 
testing, ensuring class stratification to maintain similar dis-
tributions between sets. The optimized model was trained and 
evaluated 10 times to ensure robustness and achieved excellent 
results.

Despite these contributions, several limitations must be
acknowledged. 

First, the absence of a fully independent external validation 
cohort remains a major limitation. Although the Data set in-
cluded examinations from various institutions across different 
countries and device platforms, all participating centers con-
tributed data to both the training and testing phases. This may 
introduce bias by potentially overestimate the model’s general-
izability. Future research should focus in obtaining an in-
dependent Data set from centers not involved in model 
development to more accurately assess real-world performance 
before broader clinical implementation.

Second, the class imbalance, particularly in EGJ outflow dis-
orders, which represented a smaller proportion of the Data set, 
may limit sensitivity and generalizability. To mitigate this po-
tential bias, we applied patient-level splitting and repeated 
cross-validation. Nevertheless, the absence of a formal sample 
size calculation further reinforces the need for larger, balanced, 
and external cohorts to confirm the reproducibility of our
findings. 

Third, the Data set is inherently affected by variability in patient 
cooperation and anatomical characteristics, which can influence 
test quality and, in such cases, may necessitate substantial re-
liance on expert interpretation. Moreover, only examinations 
with full expert consensus were included in training, which may 
reduce generalizability in ambiguous or borderline real-world 
scenarios. Another limitation is the exclusive reliance on

pressure-based metrics. EGJ distensibility (measured by FLIP) 
and impedance, were not incorporated, despite their recognized 
importance for certain diagnoses. Future studies should explore 
the integration of multimodal data to enhance diagnostic ac-
curacy and clinical applicability.

From a technical standpoint, the lack of transparency of ML 
models often lead them to be perceived as black-box systems, 
which poses challenges in critical areas such as medicine. The 
lack of interpretability makes it difficult for humans to fully trust 
the results (11). Although explainable AI offers potential sol-
utions, its application in motility disorders is hindered by the 
inherent subjectivity of certain examination findings. Improv-
ing model interpretability will be essential for future clinical 
deployment. In subsequent iterations, we plan to incorporate 
established explainability techniques such as SHapley Additive 
exPlanations, to quantify the contribution of individual features 
to the ML prediction, together with visual representation 
methods (e.g., heatmaps and temporal importance plots) to 
highlight the most relevant segments of the manometry 
signal (12).

Our proof-of-concept was designed to evaluate the feasibility 
and generalizability of our models across centers and devices. 
The aim is to provide clinicians with transparent, re-
producible, and actionable insights that complement their 
expertise, and ultimately promote the broader adoption of AI 
in esophageal motility diagnostics. The potential integration of 
these models into clinical workflows also warrants consider-
ation. One feasible application would be as a second-reader 
tool within existing HREM analysis platforms, designed to flag 
cases with uncertain or borderline findings for additional ex-
pert review. In resource-limited settings, such models could 
serve as an accessible decision-support tool to enhance the 
diagnostic capabilities of less experienced practitioners. Nev-
ertheless, effective clinical deployment will require rigorous 
prospective validation, the development of intuitive user 
interfaces, and seamless interoperability with existing report-
ing systems.

In conclusion, this is, to our knowledge, the first international 
proof-of-concept study to develop and validate a ML model for 
the identification and classification of peristalsis and EGJ outflow 
disorders in HREM, based on the Chicago classification (version 
4.0). AI-assisted interpretation of HREM has the potential to 
significantly enhance diagnostic standardization, reduce in-
terobserver variability, and ultimately facilitate broader imple-
mentation and access to high-quality motility assessment across 
different healthcare settings.
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Study Highlights

WHAT IS KNOWN

3 High-resolution esophageal manometry (HREM) is the gold 
standard for evaluating esophageal motility disorders.

3 HREM interpretation is complex and depends on expert 
manual review.

3 Existing artificial intelligence models are suboptimal.

WHAT IS NEW HERE

3 Our group developed a multicenter and multidevice machine 
learning model based on the Chicago Classification 
version 4.0.

3 The model’s diagnostic yield may contribute to standardized, 
reproducible, and automated HREM analysis.
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