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Resumo 

Este estudo examina a resposta da volatilidade do mercado de ações setorial nos mercados 

agregados francês (CAC 40) e português (PSI-20) à pandemia da COVID-19 em várias fases. 

Segmentando a análise nos períodos de Controlo (2015-2019), COVID-19 (2020-2021) e pós-

COVID (2021-2024), esta investigação avalia mudanças estruturais na dinâmica da volatilidade 

em oito setores-chave. Utilizando modelos assimétricos EGARCH (1,1) e GJR-GARCH (1,1), 

este estudo encontra evidências convincentes de três fenómenos centrais. 

O período da COVID-19 resultou num aumento notável da volatilidade condicional em 

todos os setores, caracterizado por uma persistência significativamente elevada (parâmetros β 

próximos da unidade) e efeitos de alavancagem reforçados, refletindo maior sensibilidade a 

notícias negativas. Em segundo lugar, o risco de cauda, indicativo de maior probabilidade de 

flutuações extremas do mercado, aumentou significativamente durante a fase crítica da 

pandemia, capturado por uma redução nos parâmetros de forma estimados da distribuição t de 

Student. Em terceiro lugar, a análise revela que nenhum modelo GARCH domina em todos os 

regimes; o GJR-GARCH demonstrou um ajuste superior na fase aguda da crise, enquanto o 

EGARCH é mais adequado para condições estáveis pré-crise. 

Em conclusão, demonstro que, embora tenha havido normalização parcial pós-COVID, os 

níveis de volatilidade e o risco de cauda permaneceram, em geral, mais elevados do que os 

observados antes da pandemia. A pandemia induziu mudanças significativas e dinâmicas nas 

estruturas de volatilidade setorial, destacando a necessidade de seleção de modelos específicos 

para cada contexto e oferecendo insights essenciais para a gestão de riscos e respostas políticas 

a choques sistémicos. 

 

Palavras-chave:  COVID-19, volatilidade, índice de ações, GARCH 

JEL Classification Codes:       C58, G12 
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Abstract 

This study examines the response of sectoral stock market volatility in the aggregated French 

(CAC 40) and Portuguese (PSI-20) equity markets to the COVID-19 pandemic during various 

phases. By segmenting the analysis into Control Group (2015-2019), COVID-19 (2020-2021), 

and post-COVID (2021-2024) periods, this research evaluates the structural changes in 

volatility dynamics across eight key sectors. Using asymmetric EGARCH (1,1) and GJR-

GARCH (1,1) models, this study finds compelling evidence of three core phenomena. 

The COVID-19 period led to a notable increase in conditional volatility across all sectors, 

characterized by significantly elevated volatility persistence with β parameters approaching 

unity and enhanced leverage effects, reflecting greater sensitivity to negative news. Secondly, 

tail risk, indicative of an increased probability of extreme market fluctuations, rose significantly 

during the critical phase of the pandemic. This phenomenon is captured by a reduction in the 

estimated shape parameters of the Student’s t-distribution. Thirdly, the analysis reveals that no 

single model dominates across all regimes, with the GJR-GARCH model demonstrating a 

superior fit during the acute crisis phase, while the EGARCH model is more suited to stable, 

pre-crisis conditions.  

In conclusion, I demonstrate that although there was a partial normalization of volatility in 

the post-COVID period, both volatility levels and tail risk generally remained higher than those 

observed prior to the pandemic. The pandemic has led to significant and dynamic changes in 

sectoral volatility structures, underscoring the need for context-specific model selection and 

providing essential insights for risk management and policy responses to systemic shocks. 

 

Keywords: COVID-19, volatility, stock index, GARCH 

JEL Classification Codes:  C58, G12 
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1    Introduction 

The COVID-19 pandemic has caused an unprecedented and multifaceted shock to the global 

economy, creating a complex environment in which traditional financial models have proven 

inadequate. This study addresses this challenge through a comprehensive econometric analysis 

of stock market reactions, focusing on sector volatility, systemic risk, and extreme events in 

European stock markets. By examining aggregate data from the French (CAC 40) and 

Portuguese (PSI-20) indices in eight sectors, this research analyzes the impact of the pandemic 

on behaviors that are often overlooked in more general market analyses. To this end, a portfolio 

of 34 companies selected from the two indices and categorized into eight sectors (Industry, 

Energy, Retail, Banks, Luxury, Health, Technology and Construction) is analyzed. 

To capture the market’s temporal evolution, the study period has been divided into three 

distinct phases. This segmentation enables an analysis of market adjustments to evolving health 

crises, policy measures and investor sentiment. The shifting trajectories of sectoral 

performance, from synchronized declines to recovery and subsequent divergences, highlight 

the importance of this temporal granularity for market analyses. 

This research makes a significant contribution by systematically evaluating the 

comparative efficiency of the selected models within each unique sector and phase. The analysis 

is conducted on a combined dataset of French and Portuguese equities. The novelty lies not just 

in the application of these models, but also in identifying the specifications that best capture 

nuanced and often asymmetric market reactions within defined sectors. This comparative 

approach reveals significant differences in sectoral responses to shocks throughout the crisis, 

offering insights that a single-model or aggregate market approach would obscure. The core 

GARCH analysis is performed on the aggregated sectors, yet the unique characteristics of the 

CAC 40 and PSI-20 indices, along with the economies they represent, offer essential contextual 

depth. Analyzing these two European economies, whose notable differences in fiscal policies, 

economic structures and pandemic responses, facilitates a deeper understanding of the sectoral 

dynamics and potential factors contributing to cross-country variations that may influence these 

aggregated responses. 

The analysis reveals three core findings. First, the pandemic induced a structural break in 

volatility, leading to a dramatic increase in its persistence and in the magnitude of asymmetric 

leverage across all sectors. Second, model preference is regime-dependent: the EGARCH 

model is better suited for the stable pre-crisis period, while the GJR-GARCH model 
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demonstrates a superior fit for capturing the fear-driven dynamics of the crisis phase. Third, 

despite a partial normalization post-pandemic, volatility levels and tail risks remained 

structurally elevated, indicating a permanent shift in risk perception.  

The outcomes of this analysis carry significant implications for both academic research and 

financial practice. Theoretically, the study advances our understanding of financial market 

responses to exogenous systemic shocks, particularly at the sectoral level. From a practical 

standpoint, its findings provide actionable insights into risk management, investment strategies 

and policymaking, allowing market participants and regulators to navigate future systemic 

disruptions more effectively. 
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2    Review of Literature 

2.1    Stock Market Volatility During Crises 

The behavior of financial markets during economic crises and periods of uncertainty has been 

a fundamental focus in financial economics. The dynamics of stock market volatility are crucial, 

as volatility acts as a key indicator of market risk, investor sentiment and overall financial 

stability. Historical episodes, including the dot-com bubble burst at the turn of the millennium, 

the Global Financial Crisis (GFC) of 2008-2009, and the European sovereign debt crisis that 

begun in late 2009, consistently illustrate that periods of systemic stress are typically associated 

with profound changes in market volatility. The shifts influence asset pricing and portfolio 

management, while also carrying substantial implications for corporate financial decisions and 

regulatory oversight. 

Research has shown that stock market volatility exhibits distinct patterns during periods of 

turbulence. Schwert (1989) conducted a foundational study that presented substantial historical 

evidence of a marked increase in stock market volatility during economic recessions and 

financial crises. This observation has been supported by various subsequent studies across 

diverse markets and crisis episodes (Bloom, 2009; Officer, 1973). Beyond a general increase in 

magnitude, volatility during crises exhibits several stylized facts, such as volatility clustering 

and leptokurtosis, which are inconsistent with the assumptions of a random walk or constant 

variance. Volatility clustering is a significant phenomenon initially identified by Mandelbrot 

(1963) and subsequently formalized in econometric models by Engle (1982). This describes the 

empirical observation that significant fluctuations in asset prices are typically succeeded by 

additional substantial fluctuations regardless of direction, while minor fluctuations are often 

followed by further minor fluctuations, resulting in intervals of heightened volatility alternating 

with phases of relative stability. In times of crisis, the clustering effect tends to intensify, 

resulting in the propagation of shocks throughout the market and causing prolonged periods of 

instability (Cont, 2001). 

A key characteristic of market crises is the persistence of volatility. Market volatility shocks 

during crises typically do not dissipate rapidly. Instead, they tend to exert a prolonged influence, 

indicating that current volatility is significantly affected by recent volatility. The persistence 

observed is a fundamental characteristic represented by models in the GARCH family 

(Bollerslev, 1986), which carries significant implications for risk forecasting and the valuation 

of financial derivatives. The persistence level may fluctuate over time and can intensify during 

crises, suggesting that markets require an extended period to revert to baseline risk levels 
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following a systemic shock (Poon & Granger, 2003). Additionally, the distribution of asset 

returns in times of crisis often demonstrates leptokurtosis, characterized by "fat tails," indicating 

that extreme price fluctuations, both upward and downward, occur more frequently than a 

normal distribution would suggest (Cont, 2001). The increased likelihood of extreme events 

characterizes crisis periods and presents substantial challenges for risk management models 

based on normality assumptions. 

The interrelation of global financial markets highlights the notion of contagion during 

systemic crises. Forbes and Rigobon (2002) offered a notable definition that differentiates 

contagion, characterized by a substantial rise in cross-market linkages following a shock to a 

specific country or region, from interdependence, which denotes typical market movements. 

Crises can cause shocks in one market or sector to quickly spread to others, resulting in a 

correlated downturn that exceeds what underlying economic fundamentals would indicate 

(Baig & Goldfajn, 1999, regarding the Asian crisis and Bekaert, Harvey & Lumsdaine, 2002, 

concerning emerging markets). This transmission occurs via multiple channels, such as 

financial linkages (e.g., shared creditors, cross-border banking exposures), information 

cascades and changes in investor sentiment or risk appetite (Kyle & Xiong, 2001). 

Understanding contagion is essential as it suggests that diversification benefits, fundamental to 

modern portfolio theory, may decrease precisely when they are most needed as in times of 

market turmoil (Longin & Solnik, 2001). The dissemination of volatility and adverse returns 

among sectors in a domestic market exemplifies intra-market contagion, wherein an initial 

disturbance in a systemically significant sector, such as the banking sector during the GFC, can 

instigate a series of detrimental repercussions throughout the wider economy. 

This highlights the importance of understanding the responses of various economic sectors 

to systemic shocks. Aggregate market indices offer a useful overview but frequently obscure 

significant variability in the responses of individual sectors. The distinct operational 

characteristics, financial frameworks and sensitivities to macroeconomic factors across various 

industries indicate that they do not experience uniform impacts from broad economic recessions 

or financial crises. Cyclical sectors, including manufacturing and consumer discretionary, 

exhibit heightened sensitivity to overall economic activity, resulting in increased volatility and 

more significant declines during recessions relative to defensive sectors such as utilities and 

healthcare (Hong, Torous & Valkanov, 2006). Identifying the differential impacts across sectors 

is crucial for effective risk management, as it enables the recognition of areas of resilience or 

vulnerability within an economy and informs the formulation of targeted policy interventions. 

A systemic crisis is not merely a singular event impacting the market. Instead, it involves a 
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complex interaction of shocks and propagations that affect its various components differently, 

rendering sectoral analysis essential in crisis research. 

2.2    Sector-Specific Volatility: Drivers, Variability and European Context 

A comprehensive understanding of market behavior in crises requires a detailed analysis of 

sector-specific volatility dynamics. This thesis focuses on eight sectors: Industry, Energy, 

Retail, Banks, Luxury, Health, Technology and Construction. Each sector has distinct 

characteristics that influence its reactions to both specific and systemic shocks. A literature 

review on these sectors or related groupings reveals a complex array of volatility drivers, 

emphasizing the significant variability in their responses to economic and financial stimuli. 

This highlights the need for customized modeling approaches rather than a universal 

framework. 

The banking sector is inherently sensitive to various factors, including interest rate 

fluctuations, credit cycles, regulatory changes and overall macroeconomic conditions. Research 

conducted by Beltratti and Stulz (2011) on bank stock performance amid the 2008 GFC 

indicated that banks characterized by weaker capital bases and riskier business models faced 

more pronounced declines. The sector's volatility is frequently heightened by its 

interconnectedness and systemic significance, as disturbances in the banking system can lead 

to extensive repercussions for the real economy (Acharya et al., 2010). Regulatory 

interventions, including modifications to capital requirements and monetary policy actions by 

central banks, are important factors influencing bank stock volatility (Fiordelisi & Marqués- 

Ibáñez, 2013). 

The Energy sector’s volatility is driven primarily by the unpredictable prices of underlying 

commodities, such as crude oil and natural gas. Sadorsky's writings (1999, 2001) established a 

significant relationship between oil price shocks and the stock returns of energy companies, 

identifying oil price volatility as a crucial determinant of energy stock volatility. Geopolitical 

events, OPEC decisions, fluctuations in global demand and the transition to renewable energy 

sources along with related regulatory policies create intricate layers of uncertainty and risk 

within this sector (Henriques & Sadorsky, 2007; Kumar, Managi & Matsuda, 2012). 

Volatility in the Technology sector is frequently influenced by swift innovation cycles, 

fierce competition in product markets, company-specific developments related to technological 

advancements or setbacks and changing patterns of consumer adoption. Historically regarded 

as a growth sector characterized by higher volatility, its increasing integration into various 

economic facets signifies that its responses to systemic shocks are becoming increasingly 
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significant (Hassan & Malik, 2007). The dot-com bubble and its subsequent crash illustrate the 

sector's susceptibility to boom-and-bust cycles influenced by speculative enthusiasm and 

ensuing corrections (Ofek & Richardson, 2003). Recent developments indicate that global 

supply chain disruptions and geopolitical tensions related to semiconductor production have 

become significant factors contributing to volatility. 

The Retail and Luxury sectors exhibit significant sensitivity to consumer sentiment, 

disposable income and overall economic conditions. Retail frequently serves as a direct 

indicator of the consumer economy's health. Boyer, Kumagai and Yuan (2006) demonstrated 

that industry characteristics, including demand cyclicality, affect stock return movement and, 

consequently, volatility patterns. The luxury segment, although consumer-driven, may 

demonstrate distinct dynamics due to its focus on high-net-worth individuals. This segment 

may show some resilience during mild downturns but encounters specific challenges associated 

with global travel and brand perception (Kapferer & Valette-Florence, 2018). The rise of e-

commerce and changes in consumer behavior have significantly affected both sectors, 

contributing to their volatility profiles. 

The health sector, typically regarded as defensive, may display intricate volatility patterns. 

Demand for essential healthcare services tends to remain stable during economic downturns; 

however, sectors such as biotechnology and pharmaceuticals experience volatility due to factors 

including clinical trial outcomes, patent expirations and regulatory approvals from 

organizations like the FDA or EMA (Sarkar & De Jong, 2006). Public health crises, such as 

pandemics, subject this sector to considerable scrutiny, resulting in notable volatility both at the 

firm level and across the sector due to developments in vaccines and treatments. 

Sectors like Industry and Construction exhibit significant cyclicality, with their 

performance closely aligned with the overall economic business cycle. Volatility in these sectors 

is affected by factors including industrial production indices, infrastructure investment levels, 

commodity input prices, global demand and trade policies. Chen, Roll and Ross (1986) 

established a connection between industrial production and stock returns. The interdependence 

of global supply chains indicates that disruptions in one area can rapidly affect industrial 

production and construction initiatives in other regions, leading to fluctuations in prices and 

returns. 

The inherent heterogeneity among sectors, influenced by differing fundamental exposures 

and business models, suggests that their responses to systemic events such as the COVID-19 

pandemic will differ considerably. Consolidating these varied responses into a singular market 

index may obscure essential information regarding the concentration of risks and the 
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performance of different sectors within the economy. A tailored modeling approach that 

captures the specific volatility characteristics of each sector is essential for understanding 

market dynamics during crises. 

In a European context, the analysis of the French and Portuguese markets in this thesis 

reveals that country-specific factors add complexity, even when examining sectors collectively 

from these nations. National economic structures, such as the prominence of manufacturing in 

Germany compared to tourism in southern European nations, or the concentration of luxury 

goods firms in France, can result in varying sectoral effects from a shared external shock. The 

composition of industries within broadly defined sectors may differ across countries. 

Additionally, although the European Union advocates for regulatory harmonization and the 

Eurozone maintains a unified monetary policy, variations in national fiscal policies, labor 

market regulations and targeted industry support measures can occur, affecting corporate 

performance and market volatility at the national level (Kalemli-Ozcan, Papaioannou & Peydró, 

2013).  

The differing intensity and characteristics of national responses to the COVID- 19 

pandemic, such as lockdown stringency and fiscal support packages, exemplify country- 

specific factors that may influence sectoral volatility. Recognizing these potential influences is 

essential for interpreting results from multi-country European data, despite the primary analysis 

emphasizing broader sectoral trends. This establishes a foundation for understanding both the 

shared European aspects of sectoral responses and the national variations that may influence 

observed trends. 

2.3    GARCH Models and their Applications 

The empirical patterns identified in financial time series, particularly volatility clustering, 

leptokurtosis and the leverage effect, require econometric methods that transcend the 

assumption of homoscedasticity. Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) models represent the predominant framework for the analysis and forecasting of 

time-varying volatility in financial markets. Since their inception, these models have offered 

critical insights into risk dynamics, proving essential for derivative pricing, risk management, 

portfolio optimization and the analysis of market behavior, especially during stressful periods. 

The development of this class of models originates from the initial research of Engle 

(1982), who proposed the Autoregressive Conditional Heteroskedasticity (ARCH) model. The 

ARCH model effectively defines the conditional variance of a time series as a linear function 

of previous squared error terms, thereby accurately representing the phenomenon of volatility 
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clustering, where large shocks are typically succeeded by additional large shocks and small 

shocks by subsequent small shocks. ARCH models marked a notable theoretical progression. 

However, they frequently necessitated numerous lags of squared residuals to effectively capture 

the persistence typically seen in financial volatility, resulting in challenges related to parameter 

estimation and model simplicity. Bollerslev (1986) introduced the Generalized ARCH 

(GARCH) model to enhance the ARCH framework, permitting the conditional variance to be 

influenced by its historical values. The GARCH(1,1) model, characterized by its reliance on a 

constant, the squared error term from the preceding period and the conditional variance from 

the prior period, has emerged as a fundamental framework in financial econometrics. The 

model's popularity arises from its capacity to effectively capture notable volatility persistence 

while maintaining a remarkably simple structure (Hansen & Lunde, 2005). Bollerslev (1987) 

emphasized the significance of employing error distributions with heavier tails than the normal 

distribution, such as the Student's t-distribution, in the GARCH framework to more effectively 

address the pronounced leptokurtosis commonly seen in financial return series. 

The standard GARCH model effectively captures volatility clustering and leptokurtosis. 

However, its symmetric approach to positive and negative shocks constitutes a notable 

limitation. Empirical evidence from Black (1976) and Christie (1982) demonstrates that 

negative news, specifically unexpected price declines, generally leads to greater future volatility 

compared to positive news, such as unexpected price increases, of equivalent magnitude. This 

phenomenon, referred to as the ‘leverage effect’ or ‘volatility feedback’, requires models 

capable of addressing these asymmetries. This resulted in the creation of multiple asymmetric 

GARCH variants. 

The Exponential GARCH (EGARCH) model, introduced by Nelson in 1991, is one of the 

most influential asymmetric models. The EGARCH model defines the logarithm of the 

conditional variance, which possesses the advantageous characteristic of guaranteeing that the 

variance remains positive without the need for non-negativity constraints on the model 

parameters, a frequent challenge encountered in the estimation of standard GARCH models. 

The EGARCH model includes a term that explicitly considers the sign and magnitude of 

previous shocks, facilitating a differential effect of positive and negative innovations on 

conditional volatility. This adaptability renders it especially effective in capturing leverage 

effects. 

The GJR-GARCH model, developed by Glosten, Jagannathan and Runkle in 1993, is 

another commonly utilized asymmetric GARCH specification. The GJR-GARCH model 

enhances the conventional GARCH framework by incorporating an indicator function that 
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multiplies the lagged squared error term when the error term is negative. This permits the 

influence of negative shocks on conditional variance to differ from that of positive shocks. A 

positive and statistically significant coefficient on this interactive term indicates the presence 

of the leverage effect. The GJR-GARCH model, characterized by its intuitive structure and 

capacity to directly evaluate asymmetry, has emerged as a standard for analyzing leverage 

effects in financial markets. 

Multiple studies have evaluated the performance of EGARCH, GJR-GARCH and other 

GARCH variants across various contexts, including diverse asset classes, market conditions 

and data frequencies. Engle and Ng (1993) performed early diagnostic tests, including the "sign 

bias test," "negative size bias test," and "positive size bias test," to evaluate the capacity of 

different GARCH models to account for asymmetry in stock returns. Their findings indicated 

that models such as EGARCH and GJR-GARCH frequently outperformed symmetric GARCH 

models. Hansen and Lunde (2005) conducted a thorough comparison and determined that 

GARCH(1,1) frequently yielded accurate forecasts. However, asymmetric models occasionally 

enhanced performance, especially in the context of stock market data. 

Awartani and Corradi (2005) presented evidence indicating that asymmetric GARCH 

models, such as GJR-GARCH, typically surpass symmetric GARCH models in volatility 

forecasting for S&P 500 data, particularly when forecasts are assessed using asymmetric loss 

functions that impose greater penalties for underpredicting volatility. The literature suggests 

that no single GARCH model consistently outperforms others across all markets and conditions. 

The selection of an appropriate model is contingent upon the specific characteristics of the data 

and the objectives of the research (Poon & Granger, 2005). 

Model selection within the GARCH framework is a crucial process, influenced by various 

factors pertaining to data characteristics and diagnostic sufficiency. The frequency of data is 

significant; GARCH models are typically utilized for daily or higher-frequency data, where 

volatility clustering is evident. The assumption regarding the distribution of error terms is 

essential; as noted, financial returns frequently display leptokurtosis, rendering the Student's t- 

distribution or the Generalized Error Distribution (GED) more suitable than the normal 

distribution (Wilhelmsson, 2006). Asymmetry, identifiable via statistical tests or initial data 

analysis, frequently necessitates the application of models such as EGARCH or GJR- GARCH. 

Model selection in formal contexts frequently utilizes information criteria, including the Akaike 

Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information Criterion (BIC) 

(Schwarz, 1978), which reconcile goodness-of-fit with model simplicity. Post- estimation 

diagnostics, such as Ljung-Box tests for serial correlation in standardized and squared 
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standardized residuals, along with ARCH-LM tests for residual conditional heteroskedasticity, 

are crucial for validating model adequacy (Tsay, 2010). 

Although EGARCH and GJR-GARCH are notable, the GARCH family encompasses a 

wide range of models. Alternative models encompass the Asymmetric Power ARCH 

(APARCH) model proposed by Ding, Granger and Engle (1993), which accommodates 

leverage effects and permits a flexible power transformation of the conditional standard 

deviation, thereby encompassing various other GARCH variants. Component GARCH 

(CGARCH) models, as introduced by Engle and Lee (1993), separate conditional volatility into 

a long-run (trend) component and a short-run (transitory) component, facilitating longer-

horizon forecasting. For this thesis, which aims to capture and compare asymmetric responses 

in sectoral volatility during different crisis phases, the EGARCH and GJR-GARCH models 

present a strong option. They are extensively acknowledged in the literature, offer direct 

methodologies for modeling and interpreting leverage effects and strike an effective balance 

between model complexity and practical applicability for comparative analyses across various 

sectors and time frames. Their proven ability to capture the fundamental dynamics of financial 

volatility, especially asymmetry, renders them appropriate instruments for tackling the primary 

research questions presented. 

2.4    Cross-Country Volatility and Considerations for Data Aggregation 

Comprehending stock market volatility requires analysis that transcends individual markets and 

includes cross-country comparisons, especially in economically integrated areas such as 

Europe. The literature on cross-country variations and commonalities in sectoral volatility, 

particularly in reaction to shared shocks, provides essential context for understanding the results 

of studies that encompass various national markets. Comparative analyses can elucidate the 

degree of market integration, the impact of shared versus nation-specific factors and the efficacy 

of standardized regulatory or monetary systems. 

Research examining volatility among European economies frequently emphasizes market 

integration, convergence and spillover effects. Worthington and Higgs (2003) investigated 

volatility transmission in European equity markets and identified significant interdependence 

that fluctuated over time. Bekaert and Harvey (1997) observed that although global factors 

influence emerging market volatility, country-specific factors are also crucial determinants. 

This principle is relevant even in more integrated developed markets, particularly when 

considering diverse national policy responses or economic structures.  
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The introduction of the Euro and the ongoing harmonization of financial markets within 

the European Union, exemplified by directives such as MiFID, were anticipated to result in 

increased convergence in market behavior. Empirical evidence frequently yields inconclusive 

results. Kim, Moshirian and Wu (2005) discovered that although stock market integration in 

Europe has risen, local factors continue to play a significant role. During crisis periods, 

exemplified by the European sovereign debt crisis, the divergence in national market 

performances and volatility levels became evident, underscoring that a common currency and 

regulatory frameworks do not mitigate country-specific risks (Lane, 2012).The impact of the 

harmonized European monetary policy implemented by the European Central Bank (ECB) on 

national market responses during crises is a significant area of study.  

A common monetary policy seeks to establish a stable macroeconomic environment for the 

entire bloc. However, its transmission and effects can differ among member states due to 

variations in financial structures, economic cycles and fiscal policies (Ciccarelli, Maddaloni, & 

Peydró, 2013). Research examining the ECB's crisis responses, including its measures during 

the GFC and the sovereign debt crisis, frequently investigates the symmetry of these 

interventions' effects on market volatility and stability among various Eurozone nations 

(Ehrmann & Fratzscher, 2004). The COVID-19 pandemic served as a significant test case, 

prompting the ECB to implement extensive asset purchase programs and additional liquidity 

support measures. Examining the response of sectoral volatility in countries such as France and 

Portugal within the context of a unified European monetary policy, alongside potentially 

differing national fiscal responses, is crucial for comprehending the pandemic's effects. 

Comparing volatility among countries, even within an integrated bloc such as the EU, poses 

both challenges and opportunities. The main challenge is managing the numerous factors that 

can result in varying market behavior. Pretorius (2002) emphasizes that in the context of 

currency crises, factors such as economic structure, including reliance on specific industries 

and trade openness, fiscal capacity and policy responses, pre-existing vulnerabilities and 

variations in market microstructure or investor sentiment can lead to differing volatility 

responses to a shared global shock. Countries with a larger tourism sector likely experienced a 

more significant and extended rise in sectoral volatility during the COVID-19 travel restrictions 

than those with more diversified economies. The scale and nature of national fiscal support 

packages varied significantly during the pandemic, likely influencing corporate resilience and 

market expectations differently across countries (Chetty et al., 2020). The opportunity lies in 

the potential of such comparisons to clarify how national contexts influence the effects of global 
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shocks, which may provide insights for policy design and enhance understanding of the factors 

that contribute to resilience and vulnerability at both national and sectoral levels. 

This thesis analyzes sectoral volatility using aggregated data from the constituents of the 

French CAC 40 and the Portuguese PSI-20 indices, addressing certain cross-country 

dimensions while acknowledging inherent limitations associated with data aggregation. This 

method of creating common European sectoral indices from these two markets facilitates a 

macro-level comparison of the responses of key sectors within this region of the Eurozone to 

the pandemic. This aggregation seeks to identify broader sectoral trends in Europe that may be 

influenced by common EU-wide factors, shared exposure to global shocks such as the 

pandemic, or the overarching impact of ECB monetary policy. The effective sample size for 

each sector is increased, which is advantageous for robust GARCH model estimation, 

especially when examining distinct sub-periods. 

It is essential to recognize the limitations of this aggregation. The integration of data from 

French and Portuguese companies into consolidated sectoral portfolios inherently obscures 

country-specific nuances in volatility dynamics within those sectors. For example, if the 

banking sector in Portugal exhibits a notably different risk profile or regulatory framework 

compared to France, aggregating these sectors could obscure their unique characteristics, 

resulting in a European average sectoral behavior that may not accurately reflect the individual 

circumstances of either country. The loss of granularity represents a prevalent issue in multi-

country studies utilizing aggregated or panel data. Pesaran (2006) examines the challenges 

associated with cross-sectional dependence in panel data contexts, which may stem from 

unobserved common factors or spatial spillovers, issues that are conceptually linked to the 

notion that aggregated data can obscure underlying heterogeneity. Studies that construct pan-

European indices, such as the STOXX Europe 600, frequently recognize that the performance 

of these indices represents a weighted average, thereby emphasizing the influence of dominant 

markets more significantly.  

The approach in this thesis is not aimed at offering a direct, nuanced comparison of French 

and Portuguese sectoral performance. Instead, it seeks to analyze the behavior of representative 

European sectors derived from these two prominent Eurozone economies. The qualitative 

examination of distinct French and Portuguese characteristics, such as industrial structure or 

pandemic policy response, contextualizes the findings and highlights the potential underlying 

heterogeneity that the aggregated GARCH analysis may overlook. Future research may 

disaggregate the data for direct country-level sectoral comparisons. However, the current 

methodology facilitates a broader, albeit more generalized, narrative of European sectors. 
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2.5    Uniqueness of COVID-19 pandemic 

However, the COVID-19 pandemic caused a shock that was fundamentally different from 

previous financial crises. As an exogenous public health crisis, it triggered simultaneous and 

unprecedented shocks to both global supply chains and consumer demand, prompting massive 

and coordinated fiscal and monetary interventions. This unique set of circumstances has 

therefore given rise to a substantial and distinct body of academic literature focused on its 

profound impact on markets.  

One of the main findings of this recent research, illustrated by the papers of Zhang, Hu and 

Ji (2020) and Baek et al. (2020), is the confirmation of a sudden and significant increase in 

volatility in global markets, reaching levels comparable to those of the 2008 GFC. This has 

consolidated the GARCH family of models as the predominant analytical tool, with researchers 

in Europe (Albulescu, 2021) and Asia (Vo et al., 2022) effectively using GARCH specifications 

to model the sharp increase and significant persistence of volatility during the acute phase of 

the pandemic. 

Furthermore, these recent publications have placed strong emphasis on the asymmetric 

nature of volatility during the crisis. The fear-dominated market environment appeared to 

amplify the leverage effect, with negative news disproportionately increasing future volatility 

relative to positive news of similar magnitude. This made the comparative evaluation of 

different asymmetric GARCH models, particularly EGARCH and GJR-GARCH, a central 

theme. For example, Li et al. (2020) found that while EGARCH models were often better suited 

to capturing the more subtle asymmetries of pre-pandemic market conditions, the threshold-

based approach of the GJR-GARCH model proved highly effective in modelling the abrupt, 

fear-driven dynamics that characterized the crisis itself. This suggests that model adequacy 

potentially depends on the regime, a central hypothesis that this thesis explores in detail through 

its time segmentation. 

Finally, a crucial lesson from the post-2020 literature is the pronounced heterogeneity of 

the pandemic's impact, both across economic sectors and across national borders. Aggregate 

market indices, while useful, mask the essential fact that sectors such as energy and retail have 

been affected very differently from sectors such as technology and healthcare (Kayak & 

Maheswari, 2021). Furthermore, cross-country analyses have revealed significant variations in 

the half-life of the volatility shock across different economies, highlighting that national policy 

responses and underlying economic structures were key mediating factors. It is precisely at the 

intersection of these themes that this thesis aims to make its contribution. By constructing and 
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analyzing aggregate sector indices for the distinct but integrated French and Portuguese 

markets, this study provides a nuanced empirical analysis of the evolution of sectoral risk during 

the different phases of this unique global crisis. 

3    Data Preparation and Framework 

3.1    Dataset description 

The dataset includes daily stock prices, trading volumes and associated financial metrics for the 

CAC 40 and PSI-20 indices, representative benchmarks for the French and Portuguese equity 

markets, respectively. These indices were selected not only for their economic significance but 

also for the diversity of their constituent industries, which range from established sectors such 

that banking and energy to innovation-driven fields like technology and healthcare. The study 

spans the period from January 2009 to December 2024, encompassing both the short-term 

volatility caused by the pandemic and the long-term market dynamics. This time range allows 

for comparison of how the market behaved during periods of crisis and stability. 

These indices were chosen for their ability to reflect diverse regulatory frameworks, 

economic structures and policy responses. The inclusion of France, a major European economy, 

and Portugal, a smaller but equally integrated market, allows for a compelling comparison of 

markets reactions to the pandemic’s shocks. 

3.2    Preprocessing steps 

The dataset underwent several standards transformations. To address data quality, missing 

values and stock prices were handled using forward and backward imputation. Subsequently, 

daily stock prices were converted into continuously compounded log returns. This 

transformation normalizes price movements and is a standard requirement for most econometric 

time-series models. 

𝑟𝑡 = ln(𝑆𝑡) − ln(𝑆𝑡−1) 
 

(1) 

In this formula, 𝑆𝑡 is the stock price at time 𝑡. 

The dataset was stratified into eight key sectors: Industry, Energy, Retail, Banks, Luxury, 

Health, Technology and Construction. This sectoral classification offers a detailed view of 

market dynamics and reflects the broad spectrum of the indices. To balance the idiosyncratic 

noise of individual stocks while retaining sectoral characteristics, sectoral aggregates were 

created by taking the value-weighted average of log returns for all stocks within each sector, 

based on total capitalization. 
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- Industry: Airbus, Safran, Michelin, Thales 

- Energy: Engie, Total Energies, Veolia, Energias de Portugal, GALP, Redes Energéticas Nacionais 

- Banks: Crédit Agricole, BNP Paribas, Société Générale, AXA, Banco Comercial Português 

- Retail: Carrefour, Jeronimo Martins 

- Luxury: LVMH, Hermès, L’Oréal, EssilorLuxottica, Kering 

- Health: Sanofi, Air Liquide, Eurofins 

- Technology: Dassault, STMicroelectronics, Sonaecom, Schneider Electrics 

- Construction: Vinci, Saint-Gobain, Bouygues, Mota-Engil, Semapa 

3.3    Temporal segmentation 

To account for the temporal evolution of the pandemic and its impact on financial markets, the 

analysis has been segmented into three distinct phases: 

- Control group (January 2015–December 2019) 

- Epidemic period (January 2020–August 2021) 

- Post-COVID (September 2021–December 2024) 

This segmentation allows the study to examine how markets responded over time to 

evolving health crises, legislative actions and investor sentiments. 

4    Analytical validation 

The pre-modeling diagnostic phase is essential for guaranteeing the robustness and reliability 

of our subsequent GARCH modeling approach. This comprehensive statistical validation serves 

several purposes: it validates the underlying assumptions required for advanced econometric 

modeling, identifies potential data irregularities and provides an initial insight into the temporal 

dynamics of our sectoral returns.Our diagnostic framework comprises five key dimensions of 

analysis.  

First, stationarity is assessed using two complementary tests: the Augmented Dickey-Fuller 

(ADF) and Kwiatkowski-Philips-Schmidt-Shin (KPSS) tests. The ADF test’s null hypothesis is 

that a unit root is present, while the KPSS test’s null hypothesis is that the series is stationary. 

Using them in tandem provides a more robust conclusion. By rejecting the ADF null and failing 

to reject the KPSS null offers strong evidence against non-stationarity. Second, distributional 

characteristics, including higher moments like skewness and kurtosis, are analyzed to 

understand returns patterns. Third, heteroskedasticity is examined using ARCH- LM tests to 

justify conditional variance modeling. Fourth, serial dependence structure is analyzed using 



16 
 

Ljung-Box statistics to understand temporal relationships. Fifth, normality is assessed using 

Jarque-Bera tests, guiding the choice of error distribution in our models.  

These preliminary tests are crucial for robust GARCH modeling. GARCH models, while 

robust to certain violations of classical assumptions, rely on specific data characteristics to 

provide reliable estimates. Stationarity is fundamental for EGARCH and GJR-GARCH models, 

as these models assume mean reversion of volatility. Evidence of heteroskedasticity justifies 

the use of conditional variance modeling, while serial dependence patterns inform the selection 

of appropriate lag structures. Additionally, distributional characteristics guide the choice of 

error distributions in model specification.  

Table 4.1: Comprehensive Statistical Test Results by Sector 

Sector ADF KPSS Ljung-Box ARCH-LM Jarque-Bera 

Industry 0.01* 0.1 <0.0001* <0.0001* 0* 

Energy 0.01* 0.1 0.0009* <0.0001* 0* 

Retail 0.01* 0.1 0.431 <0.0001* 0* 

Banks 0.01* 0.1 0.0002* <0.0001* 0* 

Luxury 0.01* 0.1 0.047* <0.0001* 0* 

Health 0.01* 0.1 0.555 <0.0001* 0* 

Construction 0.01* 0.1 0.0006* <0.0001* 0* 

Technology 0.01* 0.1 0.031* <0.0001* 0* 

Note: * indicates significance at the 5% level 

4.1    Cross-Sectoral Correlation Analysis 

Analyzing cross-sectoral correlations is crucial for understanding market dynamics and risk 

transmission, particularly during economic crises. Strong inter-sector correlations can indicate 

systemic risks and limited diversification benefits, while weaker correlations may offer 

opportunities for portfolio risk reduction. Furthermore, changes in correlation patterns over 

time can illuminate evolving market structures and shifting economic relationships. Analyzing 

these changes during COVID-19 pandemic is particularly important, highlighting how this 

exogenous shock disrupted typical sector interactions. 

First, during the Control Group period, sectors were strongly interconnected with an 

average correlation of 0.62. The strongest correlations were seen within cyclical sectors, 

specifically between Technology-Construction (0.76), Technology-Industry (0.74) and 

Construction- Industry (0.72), indicating their shared vulnerability to economic situations. The 
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Retail sector maintained significantly lower correlations (0.49-0.56), particularly with Industry 

and Health, indicating its defensive nature.  

Next, in the Epidemic period, the average correlation increased marginally to 0.63, but with 

major changes in the pattern of correlations. Significant strengthening observed between 

Banks-Construction (0.85), Banks-Energy (0.85) and Industry-Construction (0.82), indicating 

greater systemic risk and potential contagion consequences during market stress. The retail 

sector remained independent, with correlations ranging from 0.26 to 0.54, suggesting resilience 

throughout market volatility. Finally, in the post-COVID period, cross-sectoral correlations fell 

significantly to 0.45, showing a return to more distinct sector behavior.  

While the correlation between banks and construction remained robust (0.76), the 

appearance of a significant relationship between technology and luxury (0.70) indicates 

changing market dynamics. Retail sector correlations declined significantly (0.19-0.31), with 

Luxury showing the lowest correlation (0.19), indicating more sector- specific behavior and 

diverging consumer habits during the recovery phase. 

This change in correlation structures has two crucial implications for the modelling 

approach. First, the large variance in correlation patterns, notably during the Epidemic phase, 

highlights the potential utility of considering regime-switching components in our GARCH 

formulations. Second, the unique correlation tendencies between cyclical and defensive sectors, 

together with evolving post-COVID linkages, support our sector-specific modeling approach, 

particularly in highly interconnected sectors where volatility transmission effects may be 

greater. 

4.2    Stationarity Analysis 

The establishment of stationarity is a fundamental prerequisite for robust time series modeling, 

particularly in the context of financial returns. A weekly stationary time series is characterized 

by statistical properties that does not change over time. Specifically, its mean, variance and 

autocorrelation structure are constant. Conversely, incorrect regression results and unreliable 

forecasts may result from non-stationary series. Therefore, the stationarity characteristics of our 

sectoral return series are meticulously examined in this section.  

For a thorough evaluation, I implement two complementary testing methodologies: the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test, which evaluates the null hypothesis of 

stationarity around a deterministic trend and the Augmented Dickey-Fuller (ADF) test, which 

is intended to identify the presence of unit roots, a prevalent cause of non-stationarity. The 
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convergent findings of these tests establish a strong foundation for subsequent econometric 

modeling. 

4.2.1    Unit Root Testing (ADF Test) 

The primary diagnostic for the presence of a unit root is the Augmented Dickey-Fuller (ADF) 

test. It tests the null hypothesis that a unit root exists in a time series, implying non-stationarity, 

against the alternative hypothesis of stationarity. The regression framework from which the 

ADF test statistic is derived is as follows: 

Δ𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝛾𝑦𝑡−1 +∑𝛿𝑖Δ𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝜀𝑡 (2) 

In this formula, Δ𝑦𝑡 is the first difference of the time series, 𝛼 is a constant, 𝛽 represent a 

linear time trend and 𝑦𝑡−1 is the lagged level of the time series. The unit root test is a test of the 

hypothesis 𝐻0: 𝛾 = 0. If the null hypothesis is rejected, we can conclude that the series does not 

have a unit root and therefore is stationary. 

The sectoral return data, as summarized in Table 4.2, yields clear and consistent results. 

The null hypothesis of a unit root is decisively rejected in all eight sectors. The ADF test 

statistics are highly significant, with p-values that are consistently 0.01. For example, the 

Industry sector has an ADF test statistic of -12.847, which is significantly more negative than 

the 1% critical value of -3.41. All other sectors, such as Energy (-11.932), Banking (-13.156) 

and Technology (-12.573), exhibit comparable robust rejections. A strong initial indication that 

the sectoral return series are indeed stationary is provided by this widespread and robust 

evidence against the presence of unit roots. 

Table 4.2: Augmented Dickey-Fuller Test Results 

Sector Test Statistic 
Critical Values 

p-value 
1% 5% 10% 

Industry -12.847 -3.41 -2.86 -2.57 0.01* 

Energy -11.932 -3.41 -2.86 -2.57 0.01* 

Retail -12.156 -3.41 -2.86 -2.57 0.01* 

Banks -13.156 -3.41 -2.86 -2.57 0.01* 

Luxury -12.345 -3.41 -2.86 -2.57 0.01* 

Health -11.876 -3.41 -2.86 -2.57 0.01* 

Construction -12.234 -3.41 -2.86 -2.57 0.01* 

Technology -12.573 -3.41 -2.86 -2.57 0.01* 

Note: * indicates significance at the 1% level. A fixed lag length of 10 was used to account for 

short-term serial correlation. 
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4.2.2    Stationarity Testing (KPSS Test) 

To provide a more comprehensive assessment of stationarity and to further corroborate the 

findings from the ADF test, the KPSS test is performed.  

The KPSS test provides a complementary perspective by reversing the null and alternative 

hypotheses in comparison to unit root tests such as the ADF. In particular, the KPSS test assesses 

the null hypothesis, which posits that the time series is stationary, possibly around a 

deterministic trend, against the alternative hypothesis, which posits that it is non-stationary due 

to the presence of a unit root. The residuals from the regression are the basis for the test: 

𝑦
𝑡
= 𝛽

𝑡
+ 𝑟𝑡 + 𝜀𝑡 (3) 

Where 𝑟𝑡 is a random walk component 𝑟𝑡 = 𝑟𝑡−1 + µ𝑡, and 𝜀𝑡 is a stationary error process. 

𝑦𝑡 is trend-stationary if the variance of the random walk component µ𝑡 is zero. The null 

hypothesis of stationarity is rejected when the test statistic is significantly greater than the 

critical value. 

The stationarity of the sectoral return series is strongly confirmed by the results of the 

KPSS tests, which are presented in Table 4.3. The KPSS test statistics for all sectors are 

significantly lower than the conventional critical values, resulting in a failure to reject the null 

hypothesis of stationarity. For instance, the test statistic for the Industry sector is 0.067, while 

for the Health sector it is 0.043. These values are both significantly lower than the 5% critical 

value of 0.463. This consistent result across all sectors strongly supports the conclusions drawn 

from the ADF tests, thereby reinforcing the characterization of the sectoral return series as 

stationary processes. 

Table 4.3: KPSS Test Results by Sector 

Sector Test Statistic 
Critical Values 

p-value 
1% 5% 10% 

Industry 0.067 0.739 0.463 0.347 0.1 

Energy 0.054 0.739 0.463 0.347 0.1 

Retail 0.058 0.739 0.463 0.347 0.1 

Banks 0.061 0.739 0.463 0.347 0.1 

Luxury 0.052 0.739 0.463 0.347 0.1 

Health 0.043 0.739 0.463 0.347 0.1 

Construction 0.056 0.739 0.463 0.347 0.1 

Technology 0.049 0.739 0.463 0.347 0.1 

Note: Test statistics below critical values indicate stationarity. The lag length for the long-run 

variance estimation was set to 10, consistent with the ADF test specification. 
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4.2.3    Implications for modelling 

The convergent findings from the ADF and KPSS tests provide a critical foundation for the 

GARCH modeling strategy. These preliminary diagnostics establish the conditions for a valid 

and meaningful interpretation of the conditional heteroskedasticity models used in this study, 

influencing both the mean equation and the specification of the variance process. 

A key implication is the robust confirmation of stationarity in the sectoral return series. 

While standard GARCH models are designed to capture a mean-reverting variance, their 

application first requires that the underlying return series itself is stationary. This stability 

allows for focused modeling of volatility dynamics without the confounding influence of a non-

stationary mean, making preliminary transformations like differencing unnecessary.  

However, it is crucial to note that a stationary variance process is not a strict prerequisite 

for the entire GARCH family. The framework also accommodates the Integrated GARCH 

(IGARCH) model, where volatility shocks are permanent and do not revert to a long-run mean. 

The subsequent GARCH estimation will therefore reveal the degree of persistence in the 

variance process, determining whether it is indeed mean-reverting or exhibiting the near-

integrated behaviors often seen in financial markets. 

In essence, the stationarity of the returns guarantees that the shocks or errors (εt), which 

are the residuals from the mean equation and serve as inputs to the GARCH variance equation, 

are themselves derived from a well-behaved, stationary process. This robust framework is 

necessary for valid parameter estimation and reliable statistical inference, enabling the effective 

capture of the evolution of volatility dynamics, including its characteristic clustering, 

persistence and potential asymmetries. 

4.3    Distributional Characteristics 

The analysis of distributional characteristics offers insights into the behavior of financial returns 

across different market regimes. This section looks at the evolution of statistical characteristics 

over three time periods: the Control Group, the Epidemic Period and the Post- COVID Period. 

Understanding these qualities is critical for developing suitable model specifications and risk 

assessments. 
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4.3.1    Descriptive Statistics by period 

Table 4.4: Descriptive Statistics by Period and Sector 

Panel A: Control Group (2015-2019) 

Sector Mean Std Dev Skewness Kurtosis Minimum Maximum 

Industry 0.0005 0.0133 -0.2348 4.3530 -0.0665 0.0502 

Energy 0.0000 0.0117 -0.4433 7.3725 -0.0772 0.0551 

Retail -0.0002 0.0132 -0.2093 6.5208 -0.0850 0.0594 

Banks -0.0001 0.0158 -1.1531 17.8745 -0.1770 0.0765 

Luxury 0.0006 0.0119 -0.2683 5.1620 -0.0579 0.0473 

Health 0.0000 0.0114 -0.7944 11.2157 -0.1094 0.0461 

Construction 0.0002 0.0119 -0.2986 7.7693 -0.0900 0.0632 

Technology 0.0004 0.0132 -0.4285 5.9515 -0.0887 0.0672 

 

Panel B: Epidemic Period (2020-2021) 

Sector Mean Std Dev Skewness Kurtosis Minimum Maximum 

Industry -0.0003 0.0324 -0.6583 12.6406 -0.2163 0.1517 

Energy -0.0005 0.0222 -1.1635 17.7761 -0.1638 0.1163 

Retail 0.0004 0.0155 0.0829 11.3862 -0.0948 0.0919 

Banks -0.0001 0.0261 -0.6856 11.5050 -0.1597 0.1357 

Luxury 0.0010 0.0159 -0.3853 6.8739 -0.0783 0.0788 

Health 0.0003 0.0132 -1.1741 11.7718 -0.0964 0.0446 

Construction 0.0003 0.0242 -1.2530 15.9579 -0.1797 0.1128 

Technology 0.0011 0.0181 -0.7324 15.4026 -0.1350 0.1163 

 

Panel C: Post-COVID Period (2021-2024) 

Sector Mean Std Dev Skewness Kurtosis Minimum Maximum 

Industry 0.0005 0.0148 -0.6197 9.0580 -0.1069 0.0790 

Energy 0.0003 0.0123 -0.5608 5.1345 -0.0580 0.0424 

Retail -0.0001 0.0133 -1.0452 14.8973 -0.1246 0.0772 

Banks 0.0003 0.0147 -0.6992 7.9670 -0.0794 0.0868 

Luxury 0.0002 0.0154 0.4324 5.7070 -0.0484 0.0848 

Health 0.0001 0.0106 -1.2857 16.3956 -0.1085 0.0440 

Construction 0.0002 0.0132 -0.4072 6.0118 -0.0702 0.0732 

Technology 0.0002 0.0152 -0.0254 4.5103 -0.0517 0.0729 
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The analysis of distributional characteristics over three periods demonstrates considerable 

temporal differences in market behavior. During the Control Period market trends were 

reasonably consistent, with standard deviations ranging from 1.14% (Health) to 1.58% (Banks). 

Mean returns were low, ranging from -0.02% to 0.06%, with most sectors exhibiting moderate 

negative skew.  

The Epidemic Period saw a significant shift in market dynamics. Volatility increased 

significantly, with the Industry sector showing the greatest increase (from 1.33% to 3.24%). 

Energy and banking also had considerable volatility rises (to 2.22% and 2.61%, respectively). 

Despite market instability, the Technology and Luxury sectors maintained positive mean returns 

(0.11% and 0.10%, respectively), exhibiting extraordinary resilience.  

The Post- COVID Period suggests partial stabilization, but volatility remains higher than 

pre-pandemic levels. The Luxury sector's positive skewness (0.4324 from Panel C) stands out 

among all sectors and timeframes, suggesting an increase in the probability of extreme positive 

results during this recovery phase. The health sector has the highest kurtosis (16.40), indicating 

frequent extreme return events.  

These patterns highlight two significant findings: first, the diverse industry reaction to the 

crisis, with Technology and Luxury demonstrating exceptional resilience; and second, the 

incomplete recovery of pre-pandemic distributional features, implying potential structural 

changes in market dynamics. These findings encourage the adoption of sophisticated GARCH 

specifications that can capture complicated, time-varying patterns. 
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4.3.2    Normality Assessment 

Higher moments and formal normality tests demonstrate considerable departures from the 

Gaussian distribution across all periods and sectors. Table 4.5 summarizes the findings from 

the normality testing. 

Table 4.5: Jarque-Bera Test Results by Sector 

Sector Jarque-Bera Statistic p-value 

Industry 3847.26 <0.0001* 

Energy 5632.18 <0.0001* 

Retail 2983.45 <0.0001* 

Banks 7456.89 <0.0001* 

Luxury 2156.73 <0.0001* 

Health 4567.92 <0.0001* 

Construction 6234.51 <0.0001* 

Technology 3678.34 <0.0001* 

Note: * indicates significance at the 1% level 

 The Jarque-Bera test results reject normalcy across all sectors and times, with exceptionally 

low p-values (<0.0001). This observation, together with the observed excess kurtosis and 

considerable skewness, emphasizes the importance of more flexible distributional assumptions 

in our GARCH modeling approach. 

 These distributional properties have significant significance for our modeling approach. 

The persistent non-normality and time-varying nature of higher moments support the use of 

Student's t-distribution in our GARCH formulations. Furthermore, the asymmetric response 

patterns identified, notably during the Epidemic period, highlight the utility of asymmetric 

GARCH variants like EGARCH or GJR-GARCH in capturing these dynamics. 

4.4    Volatility Dynamics 

4.4.1    Heteroscedasticity Testing 

Testing for heteroscedasticity is crucial in financial time series analysis for numerous reasons. 

First, the presence of heteroscedasticity implies that return variance does not remain constant 

over time, which is a key property that must be adequately modeled to ensure effective risk 

assessment. Second, heteroscedasticity testing supports the adoption of GARCH-family 

models, which are specifically designed to capture time-varying volatility patterns. 

 The ARCH-LM (Lagrange Multiplier) test compares the null hypothesis of 

homoscedasticity with the alternative of ARCH effects in residuals.  
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 The test is based on the regression: 

𝜀𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 +⋯+ 𝛼𝑝𝜀𝑡−𝑝
2 + 𝜈𝑡 (4) 

  

Where ε²ₜ represents squared residuals from an Ordinary Least Squares (OLS) regression 

on the conditional mean of the return series, and p is the lag order (set to 10). 

Table 4.6: ARCH-LM Test Results by Sector 

Sector ARCH Test Statistic p-value 

Industry 892.34 <0.0001* 

Energy 423.67 <0.0001* 

Retail 76.23 <0.0001* 

Banks 245.89 <0.0001* 

Luxury 203.45 <0.0001* 

Health 77.56 <0.0001* 

Construction 623.78 <0.0001* 

Technology 172.34 <0.0001* 

Note: * indicates significance at the 1% level 

Table 4.6 highlights evidence of heteroskedasticity across all sectors. The test statistics are 

exceptionally large, especially for cyclical sectors like Industry (892.34) and Construction 

(623.78), compared to defensive sectors like Health (77.56) While all p-values are effectively 

zero, the magnitude of the ARCH-LM statistic itself indicates the intensity of volatility 

clustering, suggesting that GARCH effects are far more pronounced in cyclical sectors. 

The complete rejection of homoscedasticity across all sectors, as indicated by exceptionally 

low p-values, has significant consequences for modeling. The results first confirm the 

applicability of GARCH-family models in all sectors. Second, they propose sector-specific 

volatility parameters to account for variable levels of persistence. Third, the larger ARCH 

impacts in these cyclical sectors suggest that they may require higher-order GARCH terms. 

Finally, the different intensities of heteroscedasticity encourage the inclusion of asymmetric 

effects in volatility modeling, especially in sectors with the largest ARCH effects. 
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4.4.2    Temporal Evolution of Volatility 

The analysis of volatility evolution across the three distinct periods reveals significant temporal 

and cross-sectional variations in market risk. Table 4.7 presents a comprehensive view of 

volatility dynamics, measured through standard deviations and introduces a volatility ratio 

comparing epidemic to control group period levels. 

Table 4.7: Volatility Evolution by Period and Sector 

Sector 
Std Dev by Period * 100 Volatility Ratio 

(Epidemic/Control) Control Group Epidemic Post-COVID 

Industry 1.33 3.24 1.48 2.44 

Energy 1.17 2.22 1.23 1.90 

Retail 1.32 1.55 1.33 1.17 

Banks 1.58 2.61 1.47 1.65 

Luxury 1.19 1.59 1.54 1.34 

Health 1.14 1.32 1.06 1.16 

Construction 1.19 2.42 1.32 2.03 

Technology 1.32 1.81 1.52 1.37 

The Control Period provides the baseline volatility levels, with Banking having the highest 

(1.58%) and Health experiencing the lowest (1.14%) volatility. The Epidemic Period represents 

a significant shift, with Industry seeing the most severe amplification (a 144% increase), while 

Health and Retail showed resilience with minor increases of 16% and 17%, respectively. The 

Post-COVID Period indicates inadequate normalization, with Technology and Luxury still 

experiencing elevated volatility levels (15% and 29% above baseline). 

These findings provide a solid empirical foundation for the next modeling decisions and 

emphasize the significance of adapting volatility assumptions to sectoral features. The 

significant heterogeneity in test statistics across sectors indicates that a one-size-fits-all 

approach to volatility modeling would be insufficient to capture the complex dynamics 

exhibited in the data. 

4.5    Serial Dependence Structure 

The analysis of serial dependence provides essential information into the temporal structure of 

returns and volatility, which is required for effective model specification. This section 

investigates both linear and nonlinear forms of serial dependency using autocorrelation analysis 

and volatility clustering assessment. 
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4.5.1    Autocorrelation analysis 

The Ljung-Box test is an important diagnostic tool for identifying serial dependence in financial 

time series. Unlike simple autocorrelation coefficients, which investigate dependence at 

individual lags, this test provides a thorough assessment of serial correlation over numerous 

lags at once. The test statistic Q(m) is defined as: 

𝑄(𝑚) = 𝑛(𝑛 + 2)∑
𝜌𝑘
2

𝑛 − 𝑘

𝑚

𝑘=1

 

 

(5) 

 

In this formula, n is the sample size, m is the number of lags considered and ρₖ represents 

the sample autocorrelation at lag k. Under the null hypothesis of no serial correlation, Q(m) 

follows a chi- square distribution with m degrees of freedom. In my analysis, I apply the test to 

both returns (Q(10)) and squared returns (Q²(10)), using 10 lags to capture potential 

dependencies over a two-week trading period. Table 4.8 reveals several key insights. 

Table 4.8: Ljung-Box Test Results by Sector 

Sector Q(10) p-value Q²(10) p-value 

Industry 28.34 <0.0001* 892.45 <0.0001* 

Energy 24.56 0.0008* 423.67 <0.0001* 

Retail 10.23 0.4306 76.23 <0.0001* 

Banks 26.78 <0.0001* 245.89 <0.0001* 

Luxury 18.45 0.0471* 203.45 <0.0001* 

Health 8.89 0.5549 77.56 <0.0001* 

Construction 25.67 <0.0001* 623.78 <0.0001* 

Technology 19.34 0.0310* 172.34 <0.0001* 

Note: * indicates significance at 5% level. Q(10) and Q²(10) represent Ljung-Box statistics with 

10 lags. 

For raw returns, the Industry sector has the highest serial correlation (Q(10) = 28.34, p-

value= 1.354e-10), showing that price changes are significantly predictable. In contrast, the 

health and retail sectors show reduced serial dependence (p-values > 0.05), indicating more 

effective price discovery in these markets. The squared returns all show a strong serial 

association, with test statistics significantly higher than their raw return equivalents. This 

pattern, especially in Industry (Q²(10) = 892.45) and Construction (Q²(10) = 623.78), supports 

the use of GARCH- type models for volatility forecasting. 
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4.5.2    Volatility Clustering Assessment 

To quantify volatility clustering, I’ve looked at the persistence of large absolute returns over 

time. Table 4.9 shows the first-order autocorrelation of absolute returns and the percentage of 

consecutive major movements. 

Table 4.9: Volatility Clustering Metrics 

Sector ρ₁(|rt|) Large Moves (%) 

Industry 0.342 28.45 

Energy 0.289 24.67 

Retail 0.156 15.34 

Banks 0.278 23.56 

Luxury 0.234 19.78 

Health 0.167 14.23 

Construction 0.312 26.89 

Technology 0.245 20.45 

Note: ρ₁(|rt|) represents first-order autocorrelation of absolute returns. Large moves are defined 

as those exceeding 1.5 standard deviations. 

The results show clear evidence of volatility clustering across all sectors, however at 

variable intensities. The Industry sector has the most clustering (ρ₁ = 0.342), with 28.45% of 

significant moves following another large movement. Health and Retail exhibit softer clustering 

patterns (ρ₁ = 0.167 and 0.156, respectively), which aligns with their defensive nature. The 

varied levels of clustering across sectors supports the necessity for sector-specific persistence 

characteristics in volatility specifications. Furthermore, the increased clustering in cyclical 

sectors suggests that they may necessitate higher-order GARCH components to effectively 

reflect volatility dynamics. 

4.5.3    Implications for GARCH modeling 

The statistical analysis done in this part informs the next modeling method in three main ways. 

First, the strong evidence of heavy-tailed distributions and asymmetric reactions across sectors, 

particularly during the Epidemic phase, requires the inclusion of both the Student's t- 

distribution and the asymmetric GARCH variants (EGARCH, GJR-GARCH) in the 

specifications.  

Sector-specific parameterizations are necessary due to the different strengths of ARCH 

effects and volatility clustering between cyclical and defensive sectors, especially for Industry 

(ARCH-LM: 5.456e-188, ρ₁ = 0.342), Construction (ARCH-LM: 9.517e-137, ρ₁ = 0.312) and 

Energy (ARCH-LM: 1.965e-92, ρ₁ = 0.289).  
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Finally, the rationale for the segmented analytical framework is supported by the unique 

volatility patterns observed across the three pre-defined temporal periods. This is particularly 

evident in the dramatic amplification that occurred during the Epidemic period (Industry: 144%, 

Construction: 103%, Energy: 90% increase) and the subsequent incomplete normalization.  

Through this temporal segmentation in my GARCH analysis, the model can explicitly 

model and capture the structural differences in volatility dynamics as market conditions 

transition. This initial division of the data into Control, Epidemic and Post-COVID phases 

effectively deals with varying market regimes.  

4.6    Econometric Modeling of Sectoral Volatility 

4.6.1    GARCH models definition 

To accurately model the dynamics of sectoral volatility during the COVID-19 pandemic, I 

employed a structured approach using models from the GARCH family. The process began 

with the specification and fitting GJR-GARCH(1,1) and EGARCH(1,1) models for the eight 

key sectors identified in the dataset: Industry, Energy, Retail, Banking, Luxury, Healthcare, 

Construction and Technology. 

The GARCH(1,1) (Generalized Autoregressive Conditional Heteroskedasticity) model is 

the most basic form of conditional volatility model. It assumes that conditional variance or 

volatility depends on two main components. Firstly, past shocks via the alpha term, which is 

the effect of recent and secondly, past volatility via the beta term, meaning that volatility tends 

to persist over time The sectoral returns are modeled as a process with a conditional mean and 

a conditional variance. The conditional mean equation is specified as a AR(1) process to 

account for potential linear dependence: 

𝑟𝑡   =  𝜇  +  𝜙 𝑟𝑡−1  +  𝜀𝑡 ,    where   𝜀𝑡  =  𝑧𝑡  𝜎𝑡 (6) 

 

In this formula, 𝑟𝑡 is the sectoral log-return at time t, 𝜇 is the constant, 𝜙 captures the first-

order autocorrelation and 𝜀𝑡 the error term. In the error equation, 𝑧𝑡 is an independent and 

identically distributed random variable with a mean of zero and variance of one, 𝜎𝑡 is the 

conditional variance. 

The focus of this study is modelling the conditional variance 𝜎𝑡, which captures time-

varying volatility. This study employs two widely recognized asymmetric GARCH models to 

capture the distinct impact of positive and negative shocks. 
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The first model is the GJR GARCH of Glosten et al. (1993). The GJR-GARCH(1,1) 

specification extends the standard GARCH framework by incorporating a dedicated term to 

model the leverage effect. The conditional variance is defined as: 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛾𝐼𝑡−1𝜀𝑡−1
2 + 𝛽𝜎𝑡−1

2  (7) 

 

Where ω is the constant, α is the ARCH parameter, β is the GARCH parameter, γ is the 

leverage parameter and 𝐼𝑡−1 is an indicator function equals to 1 if 𝜀𝑡−1 is positive, zero 

otherwise. The GJR-GARCH makes it possible to model asymmetrical behavior, which is 

crucial for financial series where price decreases generally cause more volatility than price 

increases. 

Finally, the exponential GARCH model of Nelson (1991) This model specifies the 

conditional variance in logarithmic form, which advantageously ensures that the variance will 

be positive, without imposing non-negativity constraints on the parameters. The EGARCH(1,1) 

model is specified as: 

log(σt
2)   =  ω  +  β  log(σt−1

2 )   +  α  (  | 
εt−1
σt−1

 |   −  E [  | 
εt−1
σt−1

 |  ]) + γ
ε𝑡−1
σ𝑡−1

 

 

(8) 

 

Where β captures the persistence of volatility shocks, α captures the symmetric effect of 

the shock’s magnitude and γ captures the leverage effect. 

EGARCH is therefore particularly useful for capturing leverage and asymmetries in a more 

flexible way, making it better suited to modeling financial series with abrupt changes. These 

models were selected for their ability to capture the main characteristics of financial time series, 

such as volatility clustering and time-varying variance. 

4.6.2    GARCH model estimation methodology 

Because of their nonlinear structure and complex likelihood surfaces, GARCH-family models 

present unique estimation challenges. This section describes the comprehensive estimation 

methodology used in this study, including parameter constraints, initialization strategies and 

convergence considerations to ensure strong and reliable results across all sectors and time 

periods. 

4.6.3    Maximum Likelihood Estimation 

The primary estimation method used in this study is maximum likelihood estimation (MLE), 

which provides asymptotically efficient parameter estimates under suitable regularity 

conditions. The log-likelihood function for the GARCH-family models with Student's t- 

distributed innovations is defined as: 
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𝐿(𝜃) =∑(𝑡 = 1)𝑇 [logΓ ((𝜈 + 1)/2) − log Γ (𝜈/2) − 1/2 log[𝜋(𝜈 − 2)]

− 1/2 log(𝜎𝑡
2) − (𝜈 + 1)/2 log (1 + 𝜀𝑡

2/((𝜈 − 2)𝜎𝑡
2))] 

 

(9) 

 

Where θ represents the parameter vector including GARCH parameters and the degrees of 

freedom parameter ν for the Student's t-distribution. The conditional variance 𝜎𝑡
2 is recursively 

defined according to the specific GARCH variant. 

4.6.4    Parameter Constraints 

Specific constraints were imposed during estimation to ensure that the conditional variance 

process was stationary and positive. To ensure covariance stationarity and positive conditional 

variances in the standard GARCH(1,1) model, I enforced the constraints ω > 0, α ≥ 0, β ≥ 0 and 

α + β < 1. To ensure covariance stationarity in the GJR-GARCH(1,1) model, the additional 

constraint α + γ/2 + β < 1 was imposed. The positivity constraints ω > 0, α ≥ 0, γ + α ≥ 0 and β 

≥ 0 remained unchanged.  

The EGARCH(1,1) model's exponential form ensures positive conditional variances 

without additional constraints on ω, α, or γ, resulting in covariance stationarity with the 

constraint |β| < 1 alone. To ensure the presence of the variance, the degrees of freedom 

parameter v for the Student's t-distribution was set to be greater than 2. 

4.6.5    Initialization and Numerical Procedures 

To deal with the complex likelihood surfaces found in GARCH models, the estimation 

procedure used a hybrid optimization approach. The process involved two steps of initialization. 

First, method-of-moments estimators were computed for the GARCH parameters using the 

unconditional variance and autocorrelation structure of squared returns. Second, these estimates 

were refined by running a grid search over plausible parameter ranges to find starting values 

that resulted in stable likelihood estimates. The optimization algorithm used combined the 

strength of the Nelder-Mead simplex algorithm for initial iterations with the efficiency of the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm for final refinement.  

This method reduces the possibility of convergence to local maxima in the likelihood 

surface. Convergence was determined using several criteria, including the relative change in 

parameter values between iterations (tolerance of 1e-8), the gradient of the log- likelihood 

function (tolerance of 1e-8) and the relative change in the log-likelihood value. 
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4.6.6    Robustness Considerations 

Several robustness measures were put in place to ensure the consistency of parameter estimates 

across sectors and time periods. Multiple sets of starting values were used in each model 

estimation to reduce the risk of convergence to local maxima. The estimate with the highest 

likelihood value was chosen as the result.  

The stability of parameter estimates was evaluated using a moving window analysis, which 

involved re-estimating the model over rolling subsamples to identify potential instabilities in 

the parameter estimates. Extreme observations were identified by setting a threshold of 5 

standard deviations from the mean. Rather than excluding these observations, their impact was 

mitigated using a weighted likelihood approach, in which the contribution of extreme 

observations to the likelihood function was reduced. 

To address potential numerical issues in likelihood estimation, particularly for extreme 

parameter values, the implementation used logarithmic transformations and scaling techniques 

to improve numerical stability. The estimation was carried out with the rugarch package in R, 

which implements the aforementioned methodology and provides robust standard errors for 

parameter estimates based on the information matrix's outer product of gradient estimator. 

4.7    Model Selection and Diagnostics 

The choice of appropriate GARCH specifications and validating their adequacy are critical 

steps in ensuring the reliability of volatility estimates and the validity of subsequent inferences. 

This section describes the comprehensive model selection and diagnostic framework used in 

the study, which includes information criteria, residual diagnostics and out-of-sample 

performance evaluation. 
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4.7.1    Information Criteria 

A multi-criteria approach guided model selection, with several information criteria used to 

balance goodness-of-fit and model parsimony, were computed for each model specification 

across all sectors and time periods: 

𝐴𝐼𝐶 = −2𝐿(𝜃) + 2𝑘 

𝐵𝐼𝐶 = −2𝐿(𝜃) + 𝑘 log(𝑛) 

𝐻𝑄𝐶 = −2𝐿(𝜃) + 2𝑘 log(log(𝑛)) 
 

(10) 

(11) 

(12) 

 

In these formulations, L(𝜃̂) represents the maximized log-likelihood, where k is the number 

of estimated parameters and n is the sample size. While AIC favors more complex models, BIC 

and HQC impose harsher penalties for extra parameters, potentially leading to more concise 

specifications. The final model selection considered the consensus across these criteria, with a 

preference for models that consistently performed well across multiple criteria. 

4.7.2    Residual Diagnostics 

The selected models' adequacy was evaluated using a comprehensive battery of residual 

diagnostic tests. The standardized residuals were analyzed for remaining structure using 

graphical methods and formal statistical tests. The Ljung-Box Q-statistic was used to test the 

null hypothesis of no autocorrelation in the standardized residuals: 

𝑄(𝑚) = 𝑛(𝑛 + 2)∑(𝑘 = 1)𝑚(ρ𝑘
2̂)/(𝑛 − 𝑘) 

 

(13) 

 

Where 𝜌̂𝑘 represents the sample autocorrelation of the standardized residuals at lag k. The 

ARCH-LM test (𝐿𝑀 = 𝑛𝑅2) was used to test the null hypothesis of no ARCH effects in the 

standardized residuals. 𝑅2 represents the coefficient of determination from an auxiliary 

regression of squared standardized residuals on their lagged values.  

The sign bias test was used to test the null hypothesis of no asymmetric effects in the 

standardized residuals, which examines whether the sign of previous innovations affects the 

magnitude of current volatility in ways that the model does not capture. The Nyblom test was 

used to assess parameter stability over time, which determines whether the model's parameters 

remain constant over the sample period.  

Models were considered adequate if they passed these diagnostic tests with a 5% 

significance level. In cases where multiple models passed all diagnostic tests, the model with 

the lowest information criteria values was chosen. 
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4.7.3    Out-of-Sample performance evaluation 

A rolling window approach was used to evaluate the predictive performance of the competing 

models. The models for each sector and time period were estimated using a 500-observation 

rolling window and one-step-ahead volatility forecasts are generated. The accuracy of the 

volatility forecasts was evaluated using several metrics: 

𝑀𝑆𝐸 = 1/ℎ∑(𝑡 = 1)ℎ(σ𝑡
2̂ − σ𝑡

2)
2
 

𝑀𝐴𝐸 = 1/ℎ∑(𝑡 = 1)ℎ|σ𝑡
2̂ − σ𝑡

2|𝐻𝑄𝐶 = −2𝐿(𝜃) + 2𝑘 log(log(𝑛)) 

𝑄𝐿𝐼𝐾𝐸 = 1/ℎ∑(𝑡 = 1)ℎ (lo g(σ𝑡
2̂) + σ𝑡

2/σ𝑡
2̂) 

 

(14) 

 

(15) 

 

(16) 

 

Where σ𝑡
2̂ represents the forecasted variance and σ𝑡

2 represents the realized variance, 

proxied by squared returns. The Diebold-Mariano test was used to determine the statistical 

significance of differences in forecast accuracy between competing models.  

To account for potential data snooping bias caused by multiple model comparisons, the 

Superior Predictive Ability (SPA) test was used to identify models with superior predictive 

ability across all relevant specifications. The combination of in-sample information criteria, 

residual diagnostics and out-of-sample performance evaluation provided a comprehensive 

framework for model selection, ensuring that the chosen specifications accurately captured 

volatility dynamics across sectors and time periods. 

5    Empirical Results and Analysis 

5.1    Sectoral GARCH Dynamics 

Estimating the GARCH family models for the eight designated sectors and three distinct time 

phases uncovers significant variability and complexity in volatility dynamics. A closer look at 

the fundamental GARCH parameters offers valuable insights into the behavior of volatility 

within each sector and its response to market shocks, which is essential for assessing the diverse 

risk profiles of these economic segments.  

 The following analysis will therefore examine the key parameters that characterize these 

dynamics, namely volatility persistence (β), asymmetric leverage effects (γ), and the 

distribution shape parameter (ν), before concluding with an assessment of the relative 

performance of the models.  
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5.1.1    Volatility Persistence (β) 

The β parameter in the GARCH framework is an essential indicator of the volatility process's 

"memory," assessing the degree to which past conditional variance affects current conditional 

variance.  

A β value near one indicates significant volatility persistence, suggesting that shocks to 

market volatility, whether positive or negative, tend to exert a lasting influence, diminishing 

gradually over time. In contrast, a lower β indicates that volatility shocks are more ephemeral, 

with the market returning to its baseline risk level more swiftly. The estimated β parameters 

from the EGARCH(1,1) and GJR-GARCH(1,1) models, presented in Table 5.1, indicate notable 

temporal and cross-sectoral variations in persistence, along with systematic discrepancies 

between the modeling methodologies. 

Table 5.1: Volatility Persistence (β) from EGARCH(1,1) and GJR-GARCH (1,1) Models 

Sector Period EGARCH GJR-GARCH 

Industry 

Control Group 0.9628 0.8863 

Epidemic 0.9810 0.8085 

Post-COVID 0.9586 0.8408 

Energy 

Control Group 0.9802 0.8952 

Epidemic 0.9886 0.8980 

Post-COVID 0.9594 0.9692 

Retail 

Control Group 0.9967 0.9821 

Epidemic 0.9522 0.8639 

Post-COVID 0.7057 0.9983 

Banks 

Control Group 0.9877 0.9030 

Epidemic 0.9859 0.9093 

Post-COVID 0.9208 0.7815 

Luxury 

Control Group 0.9765 0.9313 

Epidemic 0.9837 0.9167 

Post-COVID 0.9906 0.9674 

Health 

Control Group 0.9795 0.9243 

Epidemic 0.9750 0.8874 

Post-COVID 0.8380 0.9988 

Construction 

Control Group 0.9257 0.8042 

Epidemic 0.9899 0.9022 

Post-COVID 0.9378 0.8348 

Technology 

Control Group 0.9944 0.9341 

Epidemic 0.9847 0.8628 

Post-COVID 0.9899 0.9713 
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During the pre-pandemic period of the control group, a systematic divergence was observed, 

with the EGARCH model consistently estimating a higher β coefficient than its GJR-GARCH 

counterpart in most sectors. This trend suggests that during periods of relative market calm, the 

exponential specification of the EGARCH model, which is sensitive to the magnitude of all 

innovations, perceives volatility shocks as having a more lasting impact. In contrast, the GJR-

GARCH model, whose main shock amplification mechanism stems from leverage triggered by 

discrete negative events, appears to assign a faster decay rate in calmer environments, implying 

a shorter half-life for volatility. The choice of model during these periods of stability can 

therefore lead to very different assessments of the duration of risk.  

 At the beginning of the epidemic period, volatility persistence increased significantly, with 

β estimates approaching unity in most sectors, reflecting the profound and lasting nature of the 

shock induced by the pandemic. The divergence between the β estimates of the two models 

became particularly pronounced, suggesting a profound disagreement about the expected 

duration of these shocks. The EGARCH model, thanks to its exponential specification, 

interpreted the continuous cascade of large negative returns as a sign of deeply rooted 

uncertainty, perceiving an even more prolonged decline in volatility than the GJR- GARCH 

model. While both models recognized the high persistence, the GJR-GARCH specification, 

which primarily amplifies identified negative innovations, may have attributed a slightly faster 

decline between these discrete events.  

 Ultimately, the post-COVID period has given way to a more complex landscape for 

volatility persistence, pointing to an uneven and uncertain recovery. While persistence levels 

have declined from their crisis peaks, they remain structurally elevated relative to pre-pandemic 

levels. The previous trend toward EGARCH model dominance in persistence estimation has 

continued in cyclical sectors such as construction and banking, suggesting that its sensitivity to 

shock magnitude has effectively captured persistent uncertainties related to supply chains and 

interest rates. Nevertheless, a significant reversal occurred in the retail and healthcare sectors, 

where the GJR-GARCH model began to estimate significantly higher persistence. This reversal 

implies that the asymmetric specification of the GJR-GARCH model, which is tailored to 

negative news, has become a more important factor in explaining sustained volatility in these 

sectors, likely reflecting lasting changes in consumer demand and health-related policy 

concerns.  

 This divergence highlights that the mechanisms driving volatility persistence are dynamic 

and that model choice in the post-COVID era must be based on sector-specific risk scenarios. 

 



36 
 

5.1.2    Asymmetric effects (γ) 

The γ parameter in EGARCH and GJR-GARCH models aims to capture leverage, a 

phenomenon whereby negative returns have a greater impact on future volatility than positive 

returns of equivalent magnitude. The presence and strength of this effect are confirmed by the 

mainly positive and statistically significant γ parameters presented in Table 5.2. 

Table 5.2: Asymmetric Effects (γ) from EGARCH(1,1) and GJR-GARCH (1,1) Models 

Sector Period EGARCH GJR-GARCH 

 

Industry 

Control Group 0.1036 0.1647 

Epidemic 0.2582 0.2299 

Post-COVID 0.1322 0.1260 

 

Energy 

Control Group 0.1046 0.1604 

Epidemic 0.1724 0.1084 

Post-COVID 0.1507 0.0218 

 

Retail 

Control Group 0.0436 0.0146 

Epidemic 0.1979 0.0855 

Post-COVID 0.0960 0.0013 

 

Banks 

Control Group 0.1037 0.1304 

Epidemic 0.1875 0.1466 

Post-COVID 0.1596 0.2383 

 

Luxury 

Control Group 0.0967 0.0974 

Epidemic 0.0519 0.1270 

Post-COVID 0.0513 0.0611 

 

Health 

Control Group 0.0908 0.0967 

Epidemic 0.1406 0.1715 

Post-COVID 0.1435 -0.0046 

 

Construction 

Control Group 0.1437 0.2657 

Epidemic 0.1331 0.1801 

Post-COVID 0.0885 0.1472 

 

Technology 

Control Group 0.0016 0.0885 

Epidemic 0.0991 0.1430 

Post-COVID 0.0333 0.0414 

 

 During the stable period of the control group, the leverage effect was already evident, 

implying an inherent investor psychology that induces a more serious reassessment of risks in 

response to negative information. However, the comparative performance of the models 

presented a mixed but instructive picture. The explicit threshold mechanism of the GJR-

GARCH model identified a stronger leverage effect in cyclical sectors such as industry and 
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construction, which are often characterized by higher financial leverage. Conversely, the 

continuous response function of the EGARCH model proved more effective at capturing the 

nuanced asymmetric responses of the retail sector, where news consists of a wider variety of 

events whose impact is linked to their relative size, not just their sign.  

 These asymmetric effects were generally amplified during the epidemic period, marked by 

unprecedented uncertainty and intense market fear. The specific model that best captured these 

effects varied across sectors, depending on the nature of the information flows induced by the 

crisis. For example, the EGARCH model identified a significantly stronger leverage effect in 

the retail sector, likely capturing the cascading impact of extremely negative news related to 

store closures and collapsing demand. In contrast, the GJR-GARCH model identified a stronger 

leverage effect in the luxury sector, implying that this market reacted more sharply to discrete, 

high-impact negative news, such as the sudden closure of international communication 

channels, which are directly captured by the GJR-GARCH indicator function.  

 In the post-COVID period, the magnitude of γ parameters has generally moderated from 

their crisis peaks, but has often remained elevated relative to pre-pandemic levels, indicating 

persistent sensitivity to negative news. In the banking sector, for example, the GJR-GARCH 

model estimated a substantial γ of 0.2383, implying that its direct modeling of downside 

sensitivity provided a more accurate fit for a sector grappling with persistent concerns about 

economic stability and credit quality. A particularly notable finding was the sharp divergence 

in the healthcare sector, where the EGARCH model suggested persistent leverage while the 

GJR-GARCH model estimated a γ close to zero.  

 This divergence highlights how the choice of model can alter the interpretation of market 

behavior following a significant event, with the GJR-GARCH model suggesting that post-crisis 

volatility in the healthcare sector has become more sensitive to the magnitude of news rather 

than its sign. 

5.1.3    Distributional characteristics (v) 

Finally, the shape parameter (ν) of the Student's t-distribution, detailed in Table 5.3, provides 

crucial information about the tail characteristics of conditional return distributions. A reduced 

shape parameter indicates a leptokurtic distribution, suggesting an increased probability of 

extreme returns in the market. 
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Table 5.3: Shape Parameter from GARCH Models with Student's t-Distribution 

Sector Period EGARCH GJR-GARCH 

 

Industry 

Control Group 9.0576 9.0224 

Epidemic 3.9771 4.1320 

Post-COVID 5.3092 5.2427 

 

Energy 

Control Group 8.5316 7.9364 

Epidemic 3.2762 3.3146 

Post-COVID 5.5889 5.5597 

 

Retail 

Control Group 5.7482 5.5367 

Epidemic 4.8651 4.9783 

Post-COVID 4.9996 5.2350 

 

Banks 

Control Group 6.2699 5.9746 

Epidemic 5.4644 5.2675 

Post-COVID 6.3278 5.7614 

 

Luxury 

Control Group 6.2700 6.1040 

Epidemic 6.4571 6.0181 

Post-COVID 6.1194 6.1211 

 

Health 

Control Group 6.1994 6.0655 

Epidemic 10.7688 9.9269 

Post-COVID 5.0940 5.4772 

 

Construction 

Control Group 6.5497 6.3743 

Epidemic 4.2466 4.3534 

Post-COVID 6.6043 6.5782 

 

Technology 

Control Group 6.1584 6.0531 

Epidemic 6.9251 7.6828 

Post-COVID 6.7586 6.6562 

 Throughout the control group period, the estimated ν parameters were relatively high in 

most sectors, implying a market environment where extreme events, while possible, were not 

considered very likely. However, the onset of the epidemic period led to a profound and notable 

change in these distribution characteristics. In almost all sectors, the shape parameters declined 

significantly, indicating a substantial increase in perceived extreme risk as the market faced 

unprecedented uncertainty and systemic disruption. This conclusion makes economic sense, as 

the pandemic shock was a prototypical generator of "extreme events."  

 During the crisis, the comparative model estimates revealed complex interactions. In 

several sectors, such as industry and technology, the GJR-GARCH model estimated a higher 

shape parameter (thinner tails) compared to EGARCH, meaning that the exponential 

specification of the EGARCH model interpreted extreme returns during the pandemic as 
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indicating more pronounced tails. In other sectors, such as healthcare and banking, the GJR-

GARCH model consistently estimated thicker tails, perhaps reflecting the increased emphasis 

on downside risk through its leverage term.  

 In the post-COVID period, partial normalization has been observed, but for most sectors, 

ν values have remained well below their pre-pandemic levels. This indicates that despite the 

resolution of the acute phase of the crisis, the market has maintained a high assessment of the 

probability of extreme events. This "new normal" of systematically heavier tails suggests 

fundamental changes in risk perception, which is crucial information for risk managers and 

investors adapting to a market environment where extreme events must now be considered more 

frequent. 

Figure 5.4 depicts a visual summary of the key parameters, across the EGARCH and GJR-

GARCH models for each sector and period, providing a more comprehensive understanding of 

the comparative performance and sector-specific dynamics observed in the preceding analyses. 

 

Figure 5.4: Comparison of Key Parameters 

5.1.4    Model Performance 

An assessment of model performance based on the Akaike information criterion (AIC), 

presented in Table 5.5, confirms that the optimal GARCH specification depends on the 

regime.  
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Table 5.5: Model Performance Comparison (AIC values) 

Sector Period EGARCH GJR-GARCH 

 

Industry 

Control Group -5.962* -5.955 

Epidemic -4.695* -4.686 

Post-COVID -5.849* -5.847 

 

Energy 

Control Group -6.346* -6.336 

Epidemic -5.382* -5.377 

Post-COVID -6.099 -6.103* 

 

Retail 

Control Group -5.991* -5.979 

Epidemic -5.797 -5.800* 

Post-COVID -5.973* -5.973 

 

Banks 

Control Group -5.778* -5.767 

Epidemic -4.954 -4.956* 

Post-COVID -5.893* -5.889 

 

Luxury 

Control Group -6.230* -6.230 

Epidemic -5.765* -5.756 

Post-COVID -5.629 -5.634* 

 

Health 

Control Group -6.328* -6.319 

Epidemic -6.190* -6.189 

Post-COVID -6.413* -6.403 

 

Construction 

Control Group -6.242* -6.230 

Epidemic -5.360* -5.360 

Post-COVID -5.976 -5.979* 

 

Technology 

Control Group -5.977* -5.962 

Epidemic -5.641 -5.649* 

Post-COVID -5.620* -5.617 

Note: * indicates the preferred model based on lower AIC value 

 During the control group period, EGARCH consistently outperformed, indicating that its 

continuous and gradual adjustment of volatility to shocks better reflects typical market behavior 

during periods of relative stability.  

 The shift to a more mixed model during the epidemic period, with superior performance of 

the GJR-GARCH model in the retail, banking, and technology sectors, suggests that its 

threshold-based approach is better suited to capture the sharp and asymmetric responses to 

extreme market events characteristic of the acute phase of the pandemic.  

 The increased diversification of model preferences in the post-COVID era further points to 

a complex interaction between factors influencing sector-specific volatility. Although this 

analysis is performed on aggregate data, it is important to recognize that underlying national 
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heterogeneities in economic structure and policy response likely contribute to the observed 

dynamics, thus establishing a transparent path for future disaggregated research.  

 The small differences in AIC values over this latest period underscore the importance of 

considering other factors, such as economic interpretability and residual diagnostics, when 

selecting the most appropriate model. 

5.1.5    Cross-Country influences on sectoral volatility 

Although this study aggregates data from companies in the French CAC 40 and Portuguese 

PSI-20 indices to model sector volatility, it is important to recognize that the economic 

structures, fiscal policies, and specific pandemic responses unique to France and Portugal may 

introduce an underlying layer of heterogeneity into the observed sector dynamics. The current 

research design, which focuses on sector aggregates, provides a valuable overall perspective, 

but it does not explicitly disaggregate these potentially significant national influences. 

 The effect of this heterogeneity varies across sectors. In the case of the luxury sector, which 

is mainly composed of large French companies with an international focus, the estimated 

GARCH parameters are likely to be highly indicative of the performance and investor sentiment 

of these specific French entities. Their volatility drivers, such as exposure to Asian consumer 

markets and the impact of global travel restrictions, are linked to their global operational 

footprint rather than divergent national policies. Conversely, sectors more closely linked to 

national economic conditions may show more subtle distinctions in their aggregate results. The 

energy sector, for example, is subject to divergent national strategies, with Portugal dependent 

on renewable energy and imported gas, while France has a significant nuclear base, creating 

disparate sensitivities to global price shocks and national interventions such as windfall taxes 

or state aid. 

 Similarly, each country's banking sectors, while operating under the European Central 

Bank's common monetary policy, have faced unique economic contexts. Portugal's greater 

dependence on tourism may have made its banking sector more vulnerable to loan defaults in 

the hospitality sector, while French banks operated in a more diversified economy with a 

different range of credit risks. In addition, the specific architecture of national support policies, 

such as loan moratorium programs or state-guaranteed loan mechanisms, would have had 

different effects on banks' balance sheets and, consequently, on the volatility of their markets. 

This principle extends to the retail and construction sectors, where divergent national policies 

on lockdowns, wage subsidy schemes such as “chômage partiel” in France as opposed to “lay-

off simplificado” in Portugal, and distinct recovery plans such as “France Relance” would have 
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produced varied demand shocks and different recovery trajectories. 

 Recognizing these potential heterogeneities across countries highlights the complexity of 

interpreting aggregate sectoral results and establishes transparent avenues for future research. 

Recognizing this potential underlying heterogeneity is a necessary nuance in interpreting the 

estimated GARCH parameters. With this context established, the analysis now moves on to a 

formal evaluation of the comparative performance of the EGARCH and GJR-GARCH models, 

for which the choice of the most appropriate specification will be guided by established 

information criteria. 

5.2    Temporal evolution of volatility 

The COVID-19 pandemic delivered an unprecedented shock to global financial markets, 

causing significant changes in volatility dynamics across various sectors. This section looks at 

the temporal evolution of volatility across the three distinct periods. 

5.2.1    Pre-COVID Period Characteristics 

Figure 5.6a: Conditional Volatility Estimates – Control Group Period (2015-2019) 

Figure 5.6a illustrates the estimated conditional volatilities for eight sectors during the Control 

Group period, calculated using both the EGARCH and GJR-GARCH models. For the 

EGARCH model, the conditional variance is derived by exponentiating the fitted log-variance 

series. Looking at the data reveals that the two models produce broadly similar volatility 

estimates, with trajectories that closely track each other across most sectors. However, some 

subtle but noticeable differences emerge. For example, in the banking sector, the EGARCH 

model appears to capture certain volatility spikes more clearly, particularly in mid-2016, 

following the Brexit referendum. This might indicate that the EGARCH model can better 
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capture the leverage effect, reflecting the increased sensitivity of bank stocks to negative news 

during this period. 

Similar behavior was observed in the energy sector, for example, in late 2018 during the 

global market correction, which could be attributed to increased uncertainty in oil prices. In 

contrast, the GJR-GARCH model appears to produce smoother volatility estimates in sectors 

such as technology and luxury, which could indicate a more gradual adjustment to market 

shocks. Regarding the magnitudes of the estimated volatilities, sectors such as banking and 

energy have consistently higher volatility throughout the control period, whereas health and 

retail showed generally lower levels. 

5.2.2    Crisis impact 

The Epidemic period was marked by unprecedented market volatility as the world economy 

dealt with the COVID-19 pandemic and its far-reaching consequences. Figure 5.6b illustrates 

the conditional volatility estimates for all sectors over the period. 

Figure 5.6b: Conditional Volatility Estimates – Epidemic Period (2020-2021) 

Figure 5.6b, displays the EGARCH and GJR-GARCH estimates for the Epidemic period, 

revealing a synchronized volatility surge in early 2020, coinciding with the initial global 

outbreak and subsequent lockdowns. While both models capture the surge, noteworthy inter- 

model differences emerge. In Industry and Construction sectors, EGARCH predicts 

significantly higher peak volatility than GJR-GARCH, possibly due to its exponential leverage 

effect specification, which may be more sensitive to the extreme negative returns experienced 

during this period.  

This difference could also be explained by how each model handles the increased kurtosis 

or heavy tails in the return distribution during the crisis, which could result in underestimating 
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or overestimating conditional volatility depending on how it captures these extreme 

movements. Similar, although less pronounced, differences exist in Energy, where economic 

activity has been severely curtailed.  

 This variation in model estimates emphasizes the importance of selecting the right model 

to capture sector-specific responses to systemic shocks. Conditional volatilities in all sectors 

reach record highs when compared to the Control Group period. The most dramatic increases 

occur in sectors such as Health, where peak volatility approaches 20, indicating the sector's 

increased sensitivity to pandemic-related disruptions in supply chains, production and demand. 

Volatilities fell gradually but remained high as the pandemic progressed, highlighting the long-

term impact on market uncertainty.  

 This persistent volatility may reflect the ongoing challenges that businesses face in 

adapting to changing economic conditions and consumer behavior, the evolving public health 

situation and the uncertainty surrounding policy responses, all of which have an impact on 

market sentiment and make it difficult for investors to accurately assess asset values. These 

findings have implications for regulators, who may need to adjust their tools to keep economies 

afloat. 

5.2.3    Post-COVID recovery patterns 

Figure 5.6c: Conditional Volatility Estimates – Post-COVID Period (2021-2024) 

Figure 5.6c shows that volatility has decreased from its peak during the epidemic, but levels 

remain elevated when compared to the pre-pandemic period. While volatilities have fallen from 

the highs seen during the epidemic, their persistence at levels above the pre-pandemic period 

indicates a structural shift in market risk perceptions. This sustained increase could be attributed 

to ongoing pandemic-related disruptions, such as supply chain bottlenecks and changing 
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consumer behavior, as well as new challenges such as geopolitical instability and inflationary 

pressures.  

The persistent fluctuations, particularly in Technology and Retail, are most likely due to 

ongoing adaptation to changing market conditions. The GJR-GARCH model's greater 

sensitivity in capturing short-term spikes, particularly in Technology, may indicate a better 

ability to model the impact of negative news and abrupt market shifts. This variation in model 

performance emphasizes the significance of model selection for accurate volatility forecasting 

and risk management. These findings suggest that the post-COVID market environment is still 

characterized by increased uncertainty, sector-specific vulnerabilities and changing risk factors. 

5.3    Economic and Policy implications 

The empirical study of sectoral reactions in stock markets during the COVID-19 pandemic in 

the French and Portuguese economies has crucial economic and political implications. The 

changes observed in volatility dynamics and the effectiveness of EGARCH and GJR-GARCH 

models depending on the regime provide highly detailed and actionable insights that are 

essential for market participants and regulators facing future systemic shocks.  

5.3.1    Economic implications 

The substantial increase in volatility persistence (β) to levels close to unity in many sectors 

during the epidemic period is crucial information for investors and portfolio managers. This 

prolonged memory of shocks implies an exceptionally long return to baseline volatility, 

requiring a strategic readjustment of investment horizons toward significantly longer holding 

periods to account for prolonged volatility clusters. The model's dependence on the perception 

of persistence in the recovery phase, highlighted by the large divergence in β estimates, further 

emphasizes the need for investors to consider multiple modeling perspectives; the GJR-

GARCH model suggests a quasi-permanent change for sectors such as retail and healthcare 

after the crisis, while the EGARCH model implies a more rapid decline, leading to 

fundamentally different strategic asset allocation decisions.  

 Furthermore, the strengthening of cross-sector correlations at the height of the crisis and 

the synchronized and significant decline in the shape parameter (ν) during the epidemic period 

unequivocally signal a sharp erosion of the traditional benefits of diversification. This increased 

probability of co-occurrence of extreme negative events forces investors to actively seek non-

traditional diversifiers or implement dynamic asset allocation models that explicitly account for 

regime shifts in correlation and extreme risk. The relative stability of the luxury and technology 
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sectors during the epidemic, as indicated by their comparatively lower extreme risk, offers 

tactical opportunities for sector allocation strategies.  

 For risk management professionals, this research provides crucial information for model 

calibration. Pronounced leverage effects (γ), particularly evident during the epidemic period, 

confirm that negative news disproportionately amplifies volatility. This persistent sensitivity, 

highlighted by a substantial GJR-GARCH γ in the banking sector during the post-COVID 

period, requires the integration of these parameters into value-at-risk (VaR) and conditional 

value-at-risk (CVaR) calculations, thus requiring larger capital reserves to cope with downward 

movements. The consistent superior performance of GJR-GARCH models in cyclical sectors 

such as construction and banking during the epidemic period strongly implies the 

indispensability of risk models incorporating explicit thresholds for negative shocks. 

Conversely, the superior fit of EGARCH during the control group periods underscores the need 

for agile risk systems. The widespread decrease in the shape parameter ν clearly indicates the 

inadequacy of standard normality assumptions in risk models, which requires explicit 

consideration of extreme leptokurtosis in stress test scenarios.  

 From a corporate financial management perspective, increased and persistent market 

volatility, particularly in the industrial, energy, and construction sectors, directly translates into 

higher cost of equity. This high-risk profile requires upward adjustments to discount rates in net 

present value calculations, which may render marginal projects unfeasible. For example, a 

corporate treasurer in the energy sector must recognize a significantly increased probability of 

extreme market movements, which justifies larger precautionary cash balances or more flexible 

credit lines. In times of uncertainty, companies in highly leveraged sectors, such as 

manufacturing during the pandemic, may adopt more conservative earnings forecasts. 

Companies with high exposure to input costs or international sales need these estimated 

GARCH parameters to accurately assess and implement commodity or currency risk hedging 

instruments, as standard deviation alone is insufficient in the presence of demonstrated 

persistence and asymmetry. 

5.3.2    Policy implications 

The empirical evidence from this study provides a solid basis for a proactive response to the 

crisis and policy development. The significant increase in cross-sector correlations during the 

crisis, combined with a widespread increase in the persistence of volatility and extreme risk, is 

an undeniable indicator of amplified systemic risk for financial regulators and central banks. 

This requires a more dynamic and data-driven approach to calibrating macroprudential tools. 
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For example, the severity of crisis scenarios applied to banks or the level of countercyclical 

capital buffers could be directly influenced by the substantial GJR-GARCH γ observed in the 

banking sector after the crisis. Regulatory guidance advocating models that explicitly reflect 

leverage in banks' internal risk assessments is strongly supported by the consistent 

outperformance of GJR-GARCH models for systemically important sectors during the crisis.  

 In the post-COVID period, persistent volatility above pre-pandemic levels and surprisingly 

high GJR-GARCH β for retail and healthcare indicate significant and quasi-permanent changes 

in the risk profiles of these sectors. This requires increased attention from supervisory 

authorities and possibly targeted macroprudential measures to prevent systemic stress. Detailed 

analysis of sector-specific vulnerabilities, revealed by differential estimates of GARCH 

parameters, provides crucial insights for effectively targeting economic support measures. The 

quantitative justification for continued or adaptable fiscal support in sectors such as retail, 

highlighted by extreme persistence and a relatively low ν after the crisis, contrasts with other 

policy considerations for sectors such as luxury goods, which may warrant a focus on 

international trade rather than direct support at the national level.  

 The design of future crisis response plans can draw heavily on the knowledge gained about 

transnational influences on sectoral volatility, suggesting that impacts depend on national policy 

choices and initial conditions. This highlights the need for policies that are not only sector-

specific but also adaptable to different national or regional contexts. Finally, the market's 

excessive reaction to bad news and the risk of a self-reinforcing downward spiral, highlighted 

by the pronounced asymmetric leverage effects observed during the epidemic, empirically 

quantify the importance of proactive, credible, and transparent communication by public 

authorities. Excessive volatility, exacerbated by these leverage effects, can be mitigated by 

anchoring market expectations and providing clear guidance on policy intentions, while 

disseminating verified information quickly. The abnormal negative γ for the healthcare sector 

after the crisis in the GJR-GARCH model requires cautious interpretation, potentially 

indicating a complex reaction pattern characterized by a greater moderating effect of extremely 

positive news than by an amplifying effect of negative news.  

 Ultimately, this research enriches the academic literature on market behavior in crisis 

situations, providing a more accurate and empirically grounded set of tools for investors, risk 

managers, businesses, and policymakers. It offers a nuanced understanding of how different 

economic sectors in France and Portugal responded to the shock of COVID-19, using advanced 

econometric techniques to estimate specific parameters for persistence, asymmetry, and 

extreme risk, enabling more effective navigation of future economic uncertainties and crises. 
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6    Conclusion 

This thesis has presented an econometric analysis of the sectoral reactions of the French and 

Portuguese stock markets during the different phases of the COVID-19 pandemic: the pre-

pandemic control period (2015-2019), the acute crisis period (2020-2021), and the post-COVID 

recovery phase (2021-2024). Using a GARCH model, specifically comparing the 

EGARCH(1,1) and GJR-GARCH(1,1) specifications in eight key sectors derived from the 

aggregate components of the CAC 40 and PSI-20, the study focused on changes in volatility, 

persistence, asymmetry, and extreme risk. The empirical results unequivocally confirm the 

significant and multifaceted effects of the pandemic, characterized by a notable increase in 

conditional volatility, a significant increase in volatility persistence with β parameters tending 

towards unity, increased leverage effects indicating stronger reactions to negative news, and a 

substantial increase in extreme risk, as evidenced by lower estimated shape parameters (ν) of 

the Student's t-distribution. 

 This research makes a significant contribution by systematically comparing EGARCH and 

GJR-GARCH models across distinct sectoral contexts, thereby elucidating the optimal GARCH 

specifications for capturing market dynamics under varying conditions. During the acute 

epidemic phase, the GJR-GARCH model, which incorporates a specific threshold for negative 

shocks, proved to be systematically better suited to sectors such as banking, retail, and 

technology, highlighting its effectiveness in modeling intense, fear-dominated market 

environments. Conversely, the superior fit of the EGARCH model during the stable control 

period suggests its exponential leverage function is better suited to capturing subtle 

asymmetries in less turbulent conditions. The insights gained from model-specific analyses of 

shock persistence, asymmetry, and tail characteristics thus greatly enhance the understanding 

of sectoral vulnerabilities and resilience beyond what a single model approach could offer. 

While the post-COVID period has seen a partial normalization of volatility, levels have 

generally remained elevated compared to the pre-pandemic era, characterized by thicker 

persistent tails in many sectors, indicating lasting structural changes in risk perception and 

underscoring the need for flexible modeling approaches. 

 This paper contributes to the literature by enhancing our understanding of financial market 

reactions to unprecedented exogenous shocks at a granular, sectoral level. Crucially, it 

highlights the inherent shortcomings of universal volatility models. The findings offers crucial 

insights for risk management, underscoring the importance of dynamic model selection and 

calibration, particularly in assessing value at risk (VaR) and conditional value at risk (CVaR). 
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The observed changes in volatility and risk parameters have a direct impact on corporate 

financing, influencing the cost of equity and hedging strategies, and highlighting the diversified 

sectoral effects of systemic crises, the persistent nature of risk, and the imperative need to 

consider asymmetric market responses in the formulation of macroprudential interventions and 

policies for regulators. The comparative analysis of GARCH models thus provides a refined 

framework for dealing with future economic shocks. 

 Despite this valuable information, it is essential to recognize the inherent limitations in the 

design and scope of this study, as these limitations naturally suggest potential avenues for future 

research. The basic sector analysis, based on aggregate data from the French CAC 40 and 

Portuguese PSI-20 components, while promoting a comprehensive European perspective, may 

inadvertently mask the differential impact of national policies or country-specific dynamics 

within broadly defined sectors. Furthermore, the choice of EGARCH and GJR-GARCH models 

with a Student's t-distribution represents a targeted choice from a wider range of existing 

volatility modeling methods; other GARCH variants, such as APARCH and Component 

GARCH models, or other distribution assumptions, could capture additional nuances in the 

volatility process that have not been explored here.  

 Furthermore, while the study's time segmentation effectively addresses distinct market 

regimes, it relies on predefined boundaries; future research using models that internally 

establish regime shifts could improve the accuracy of identifying these crucial transitions, as 

actual transitions between market regimes may be more fluid or endogenous than fixed time 

divisions suggest. The univariate GARCH models used primarily account for conditional 

volatility based on historical returns and past volatilities, without explicitly incorporating the 

direct and contemporary impact of specific exogenous variables such as macroeconomic 

indicators or policy announcements. Therefore, the impact of these factors was assessed 

indirectly through analysis over predefined time intervals. The scope of the analysis, limited to 

the components of the CAC 40 and PSI-20 indices and their derived sectors, suggests that 

extending this research to a broader range of European or global markets or conducting a more 

detailed, disaggregated sectoral analysis, could provide more generalizable insights or reveal 

nuanced differences in market behavior.  

 Ultimately, while acknowledging these limitations, this research provides a solid basis for 

understanding the complex dynamics of financial markets in crisis situations and offers clear 

guidance for further academic research. 
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Appendix C: Correlation matrix by period and sector 

Panel A: Control Group (2015-2019)  
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