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Resumo 

A crescente globalização dos mercados financeiros tem acentuado a necessidade de estruturas 

robustas de gestão de risco nas instituições financeiras. Esta evolução levou à implementação 

de regulamentações mais exigentes e à adoção generalizada de metodologias quantitativas 

avançadas, destacando-se o Value-at-Risk (VaR) como métrica padrão na avaliação e controlo 

do risco de mercado. 

O presente estudo avalia a eficácia do VaR na análise e mitigação do risco num portefólio 

diversificado composto por ações e obrigações provenientes de três mercados distintos. A 

análise inicia-se com a avaliação comparativa de diferentes modelos de VaR, através de 

backtesting, com o objetivo de identificar o modelo mais adequado à estrutura e características 

do portefólio. O modelo selecionado é posteriormente utilizado para quantificar e comparar 

duas abordagens distintas de gestão de risco: (1) o VaR diário de um portefólio não sujeito a 

intervenção, e (2) o VaR diário de um portefólio gerido com base numa estratégia dinâmica de 

cobertura ao longo de um horizonte temporal de um ano. 

A análise de desempenho assenta na métrica Return on Risk-Adjusted Capital (RORAC), 

permitindo aferir a eficiência relativa de ambas as estratégias em termos ajustados ao risco. Os 

resultados demonstram que a aplicação de uma estratégia de cobertura com base em limites de 

VaR permite alcançar um desempenho superior face à ausência de gestão ativa do risco. Estes 

resultados realçam a importância de uma abordagem proativa na contenção do risco para 

potenciar o desempenho financeiro. 

Além de reforçar a aplicabilidade prática do VaR na gestão de portefólios com multi-ativos, 

este estudo oferece contributos relevantes para instituições financeiras que pretendem 

maximizar o retorno ajustado ao risco num contexto de mercados globais cada vez mais 

interligados e voláteis. 
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Abstract 

The increasing global integration of financial markets has heightened the need for robust risk 

management frameworks within financial institutions. This evolution has driven the adoption 

of more stringent regulatory standards and the widespread use of advanced quantitative 

techniques, with Value-at-Risk (VaR) emerging as the standard metric for market risk 

assessment and control. 

The analysis assesses the effectiveness of VaR in risk analysis and mitigation within a 

diversified portfolio comprising equities and fixed-income securities from three distinct 

markets. The study begins with a comparative assessment of multiple VaR models through 

backtesting, aiming to identify the specification that best captures the portfolio’s risk profile. 

The selected model is subsequently applied to estimate and compare two distinct strategies: (1) 

the daily VaR of an unmanaged portfolio, and (2) the daily VaR of a portfolio managed through 

a dynamic hedging strategy over a one-year horizon. 

Portfolio performance is assessed using the Return on Risk-Adjusted Capital (RORAC) as 

the core evaluation metric, enabling a risk-adjusted comparison between approaches. The 

results show that implementing a VaR-based risk management strategy that limits daily risk 

exposure leads to consistently superior performance relative to a passive approach. These 

findings underscore the importance of proactive risk control in enhancing financial outcomes. 

Beyond reaffirming the practical relevance of VaR in multi-asset portfolio management, 

this study provides valuable insights for financial institutions seeking to optimise risk-adjusted 

returns in increasingly interconnected and volatile markets. 
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Chapter 1.  

Introduction 

The increasing interconnectedness of global financial markets has intensified the challenge 

faced by institutions in maintaining a delicate balance between generating adequate returns and 

managing financial risk. Among the primary categories of financial risk, including credit, 

operational, liquidity and market risk, market risk stands out due to its pronounced volatility 

and acute sensitivity to macroeconomic developments, geopolitical events and shifts in 

monetary policy. These factors can lead to significant fluctuations in asset valuations and pose 

substantial threats to financial stability. 

At the core of modern risk management lies the Value-at-Risk (VaR) framework, a widely 

adopted statistical methodology that quantifies the maximum expected loss of a financial 

portfolio over a specified time horizon and confidence level. Popularised by J. P. Morgan’s 

RiskMetrics model in the 1990s, VaR has since become a cornerstone of risk assessment, 

enabling institutions to define Economic Capital (EC) thresholds and optimise capital allocation 

under uncertainty (Jorion, 2007). By integrating VaR with EC requirements, financial 

institutions can strengthen risk oversight and ensure that capital reserves are both sufficient and 

efficiently deployed. 

This dissertation investigates the practical application of VaR in managing the risk of a 

diversified portfolio comprising equities and bonds across multiple developed markets, namely 

the United States, Europe and Asia. The study evaluates the performance of several VaR 

methodologies and proposes a dynamic hedging strategy aimed at reducing risk exposure while 

preserving portfolio performance. Through a systematic empirical assessment of both 

parametric and non-parametric VaR models, this research seeks to identify the most robust and 

effective risk management approach under conditions of heightened market volatility. 

In the past decade, evolving market dynamics have exposed the limitations of conventional 

risk management models. The post-2008 low-interest rate environment, followed by sharp 

inflationary pressures and aggressive monetary tightening between 2021 and 2023, underscored 

the vulnerability of rigid risk modelling frameworks. For instance, the European Central Bank 

maintained a negative interest rate policy from 2014 to 2022, significantly impacting bond 

markets. In parallel, the United States Federal Reserve implemented abrupt rate hikes in 2022, 

prompting a marked contraction in equity valuations. The S&P 500 index alone declined by 
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approximately 25 per cent over the first three quarters of that year. These episodes highlight the 

urgent need for flexible, forward-looking risk assessment models capable of capturing 

asymmetric shocks and systemic disruptions. This dissertation contributes to that objective by 

conducting a detailed comparative analysis of alternative VaR specifications. 

The portfolio under analysis comprises fixed-income instruments from both the United 

States and the Eurozone, as well as equity positions associated with major global indices. These 

include the DAX 40 (GDAXI) for Germany, the CAC 40 (FCHI) for France, the AEX for the 

Netherlands, the S&P 500 (GSPC) and Dow Jones Industrial Average (DJI) for the United 

States, the Nasdaq Composite (IXIC) for US technology exposure, and the Hang Seng Index 

(HSI) for Hong Kong. This selection ensures comprehensive regional and sectoral 

representation. By decomposing total portfolio risk into systematic components, reflecting 

broad market movements, and idiosyncratic components, capturing asset-specific variations, 

the study isolates the primary sources of volatility and designs targeted hedging strategies to 

mitigate exposure effectively. Although extensive literature, including Lee and Su (2011) and 

Hull and White (1998), has compared the merits of various VaR models, no single approach has 

proven universally superior. This highlights the need for portfolio-specific validation. 

To navigate this model selection process, the dissertation assesses four distinct 

methodologies for estimating VaR. The Normal VaR model, which assumes return symmetry 

and Gaussian distribution, offers simplicity but tends to underestimate extreme losses. The 

Skewed Generalised Student-t (SGSt) model, proposed by Theodossiou (1998), introduces 

skewness and heavy tails, enhancing accuracy in capturing tail events. The Historical 

Simulation model, refined by Hull and White (1998), adjusts past returns to reflect prevailing 

market volatility. Finally, the Quantile Regression (QR) approach, introduced by Koenker and 

Bassett (1978), allows for distribution-free estimation of conditional quantiles, making it well 

suited to asymmetric return profiles. Volatility estimates are computed using the Exponentially 

Weighted Moving Average (EWMA) technique to ensure sensitivity to recent market 

conditions. 

To evaluate the predictive performance of these models, the study employs a rigorous 

backtesting framework based on two statistical tests. The Unconditional Coverage (UC) test 

developed by Kupiec (1995) compares the number of observed exceedances against theoretical 

expectations. The Berkowitz, Christoffersen and Pelletier (BCP) test (2011) assesses 

exceedance clustering and serial independence. After identifying the most accurate model 

through these tests, its effectiveness is examined in two practical settings over a one-year 

evaluation period. In the first setting, the portfolio is monitored without risk mitigation, with 
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VaR computed daily. In the second setting, a dynamic hedging strategy is implemented that 

adjusts equity exposure whenever the daily Economic Capital exceeds the predefined threshold 

of €133 000. This limit reflects historically observed risk levels and aligns with institutional 

risk tolerance. 

Finally, the study employs the Return on Risk-Adjusted Capital (RORAC) metric to 

compare the performance of the two strategies, balancing profitability with risk exposure. 

Preliminary findings indicate that the actively hedged portfolio not only reduces the frequency 

and severity of VaR breaches but also delivers superior risk-adjusted returns. These results 

support the use of VaR-based thresholds in conjunction with responsive risk mitigation 

techniques. 

The structure of this dissertation is organised into eight chapters. Chapter 1 introduces the 

research problem, objectives, and relevance of the study. Chapter 2 presents a literature review 

covering key theoretical concepts related to risk management and Value-at-Risk (VaR) 

methodologies. Chapter 3 describes the composition of the portfolio under analysis, including 

asset selection across equities and fixed-income instruments. Chapter 4 outlines the 

methodological framework, detailing the process of risk factor mapping, volatility estimation, 

and portfolio-level modelling. Chapter 5 discusses the implementation of various VaR models, 

including Normal, SGSt, Historical Simulation and Quantile Regression approaches, 

culminating in a summary of all configurations tested. Chapter 6 presents the backtesting 

methodology, including the application of Unconditional Coverage (UC) and Berkowitz, 

Christoffersen and Pelletier Test (BCP) tests, and summarises the empirical validation results. 

Chapter 7 focuses on risk management implementation, detailing the VaR decomposition 

process, the dynamic hedging strategy based on Marginal VaR, and the resulting impact on 

portfolio risk and performance. Finally, Chapter 8 offers the main conclusions, reflecting on the 

empirical findings and their practical implications for portfolio risk control. 

Additional technical content is provided in the appendices, including descriptive statistics 

(Appendix A), portfolio data (Appendix B), model configuration details (Appendix C), and 

comprehensive backtesting results (Appendix D). 
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Chapter 2.  

Literature Review 

Risk management has long been a cornerstone of financial theory and practice, given its 

significant role in promoting financial stability and mitigating unexpected losses. As financial 

systems become increasingly complex and globally interconnected, the ability to accurately 

measure and manage risk remains a critical concern for both regulators and practitioners. 

Among the various quantitative tools developed for this purpose, Value-at-Risk (VaR) has 

emerged as one of the most widely implemented risk metrics. It provides a forward-looking 

estimate of the potential loss in portfolio value over a given time horizon, for a specified 

confidence level. 

The development of VaR methodologies has evolved in response to successive financial 

crises, including the 1987 market crash, the 2008 global financial crisis, and the COVID-19 

pandemic. These episodes exposed the weaknesses of static and overly simplistic models, 

prompting regulators to strengthen prudential frameworks. Notably, the Basel Committee on 

Banking Supervision progressively introduced VaR related capital requirements under Basel II 

and Basel III, and more recently Basel IV, which emphasises stress testing and scenario analysis 

as complementary tools to address systemic risk (Bank for International Settlements, 2021). 

VaR models are typically classified into three main categories: parametric, non-parametric 

and semi-parametric. Parametric approaches, such as the conventional Normal VaR, are based 

on strong distributional assumptions, most commonly the Gaussian distribution. While these 

assumptions simplify the computational process, they often lead to an underestimation of tail 

risk (Jorion, 2007). In contrast, non-parametric methods, particularly Historical Simulation, do 

not impose any distributional assumptions. Instead, they derive empirical quantiles directly 

from historical return data. However, their accuracy is highly dependent on the sample size and 

the representativeness of past observations, which may limit their predictive capacity (Hull and 

White, 1998; Pritsker, 2006). 

Semi-parametric models attempt to address these limitations by incorporating distributional 

flexibility. The Skewed Generalised Student-t (SGSt) distribution, introduced by Theodossiou 

(1998), accounts for asymmetry and fat tails, which are common features in financial return 

distributions. Empirical studies by Lee and Su (2011) and others demonstrate that SGSt-based 

VaR models provide more accurate tail estimates, especially in volatile market regimes. 
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Similarly, Quantile Regression (QR), developed by Koenker and Bassett (1978), enables direct 

estimation of conditional quantiles without imposing a strict functional form. QR models have 

shown superior robustness in capturing asymmetric risk dynamics across a range of asset 

classes (Xiao et al., 2015). 

Another important dimension concerns the volatility forecasting techniques embedded 

within VaR models. The Exponentially Weighted Moving Average (EWMA) method, 

popularised by J. P. Morgan’s RiskMetrics model (1996), assigns greater weight to recent 

observations, enhancing responsiveness to changing market conditions. Although widely used 

for its simplicity, RiskMetrics relies on the assumption of normally distributed returns, which 

often leads to the underestimation of losses during stress periods. 

More recently, researchers have explored machine learning-based approaches to risk 

estimation, including neural networks and reinforcement learning algorithms. These models can 

capture non-linearities and dynamic patterns in large datasets, often outperforming traditional 

VaR specifications in detecting tail risk and regime shifts (Fischer & Krauss, 2018). However, 

their implementation requires substantial data and computational resources, and their 

interpretability remains an ongoing challenge. 

While model specification is critical, so too is model validation. Backtesting is the principal 

technique for assessing the reliability of VaR forecasts, comparing realised losses against 

model-implied thresholds. Kupiec’s (1995) Unconditional Coverage (UC) test evaluates 

whether the observed number of exceedances aligns with the expected frequency, while the 

Berkowitz, Christoffersen and Pelletier (2011) test (BCP) examines whether exceedances occur 

independently over time or exhibit clustering. These tests are widely used to assess whether 

VaR models are both statistically and economically consistent with the observed data. 

Several empirical studies underscore that VaR model performance varies across asset 

classes and market regimes. Barone-Adesi et al. (1998) and Boudoukh et al. (1998) highlight 

the importance of volatility adjustment and weighted observations in enhancing predictive 

accuracy. Furthermore, combining VaR-based limits with scenario analysis and stress testing 

has been shown to improve institutional resilience to rare but extreme events. 

In summary, although no VaR methodology is universally optimal, advances in semi-

parametric modelling, volatility forecasting, and statistical validation have considerably 

improved risk measurement frameworks. This dissertation builds on these developments by 

evaluating multiple VaR models within a diversified portfolio and extending their application 

beyond risk measurement to active risk control. Specifically, the study integrates model 

validation with a Marginal VaR-based hedging strategy, offering a practical contribution to the 
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literature on VaR as both a regulatory tool and a decision-making instrument in dynamic 

portfolio management. 
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Chapter 3.  

Portfolio Composition 

This study constructs a strategically diversified portfolio that integrates both equity and fixed-

income instruments to balance risk and return effectively. The selection of equity indices in this 

study aims to ensure broad geographical and sectoral diversification across major developed 

markets. The portfolio incorporates the CAC 40 (FCHI) for France, the S&P 500 (GSPC) for 

the United States, the Nasdaq Composite (IXIC) to capture US technology exposure, the DAX 

40 (GDAXI) for Germany, the Dow Jones Industrial Average (DJI) as a representative of US 

industrials, and the Hang Seng Index (HSI) to provide targeted exposure to the Asian market 

through Hong Kong. These indices were chosen for their liquidity, market representativeness 

and relevance as hedging instruments, allowing for an effective decomposition of systematic 

risk across regional and sectoral dimensions. Their aggregate performance over the evaluation 

period is summarised in Appendix A. 

Equity selection is based on a top-down approach, targeting approximately 50 individual 

stocks distributed across key economic sectors. The portfolio includes high-growth technology 

companies such as Microsoft, Apple and NVIDIA, providing exposure to innovation-driven 

segments like artificial intelligence, semiconductors and cloud computing. In addition, large-

cap defensive equities in the healthcare and utilities sectors are incorporated, including Johnson 

& Johnson, Pfizer, NextEra Energy and Duke Energy, to mitigate cyclical volatility. 

To optimise risk-adjusted returns, the equity portfolio also includes positions in cyclical 

sectors such as industrials (e.g., Honeywell, Caterpillar) and energy (e.g., Chevron, 

TotalEnergies), which tend to outperform during economic expansions. Furthermore, tactical 

short positions are taken in selected European consumer staples and U.S. financials, serving as 

a hedge against downturns in these specific market segments and enhancing the responsiveness 

of the portfolio to adverse sector-specific developments. 

The fixed-income component consists of high-quality government and corporate bonds 

from the United States and Eurozone. The bond allocation prioritises capital preservation and 

income stability, with a focus on investment-grade instruments. These include AAA-rated 

sovereign bonds such as German Bunds and U.S. Treasuries, along with selectively chosen 

European corporate bonds offering enhanced yield. 
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Bond maturities are staggered between 2028 and 2034 to optimise the portfolio’s duration 

profile. This structure supports a balance between short-term liquidity and long-term interest 

rate stability while minimising reinvestment risk. The bond portfolio excludes emerging market 

debt, in line with the study’s focus on developed markets, although its inclusion is 

acknowledged as a potential avenue for further diversification and inflation hedging. 

The portfolio is primarily denominated in euros (64%) and U.S. dollars (36%), with 

marginal exposure to Hong Kong dollars through selected equity holdings. As a result, foreign 

exchange risk is a relevant consideration to ensure valuation consistency, a uniform currency 

conversion methodology is applied across all assets. The study also assesses the impact of 

currency fluctuations on portfolio volatility and risk-adjusted returns and evaluates potential 

hedging mechanisms to mitigate foreign exchange exposure. 

This asset allocation enables a robust empirical assessment of Value-at-Risk (VaR) models 

across a representative sample of asset classes, sectors and currencies. The inclusion of both 

long and short positions, combined with geographic and sectoral diversification, creates a 

realistic and dynamic testing environment. This structure enhances the relevance of the study’s 

findings, particularly in contexts where cross-asset correlations and risk exposures exhibit 

instability under stressed market conditions. 

Tables 3.1 to 3.3 summarise the full composition and structural details of the portfolio 

examined throughout this dissertation. 

 

Stock Ticker Currency Market Quantity 
Share 

Price 

Value 

(EUR) 

Allocation 

(%) 

Pernod Ricard SA RI.PA EUR FCHI -1 059 179.46 -190 052.80 -2.00 

Carrefour SA CA.PA EUR FCHI -12 685 16.94 -215 004.54 -2.26 

LVMH Moet Hennesy - Louis Vuitton MC.PA EUR FCHI 406 788.53 320 143.95 3.37 

Danone S.A. BN.PA EUR FCHI -3 759 47.88 -180 008.25 -1.89 

3M Company MMM USD GSPC -1 840 108.67 -183 553.15 -1.93 

American International Group, Inc. AIG USD GSPC -3 075 61.79 -174 424.11 -1.84 

Amazon.com, Inc. AMZN USD GSPC 3 228 102.24 302 935.19 3.19 

Advanced Micro Devices Inc. AMD USD IXIC -2 785 75.40 -192 748.90 -2.03 

Microsoft Corporation MSFT USD IXIC 1 387 245.08 312 021.63 3.28 

Apple Inc. AAPL USD IXIC 2 453 144.73 325 892.42 3.43 

NVIDIA Corporation NVDA USD IXIC 1 695 203.55 316 691.52 3.33 

ASML Holding NV ASML EUR IXIC 494 658.31 325 205.68 3.42 

Oracle Corporation ORCL USD GSPC -2 518 87.36 -201 925.35 -2.13 

Salesforce.com Inc. CRM USD GSPC -1 217 164.30 -183 542.95 -1.93 

Adobe Inc. ADBE USD IXIC 836 370.71 284 469.64 2.99 

SAP SE SAP EUR GDAXI -1 955 109.97 -215 008.44 -2.26 

Texas Instruments Incorporated TXN USD IXIC 1 434 167.37 220 306.19 2.32 

Johnson & Johnson JNJ USD DJI 2 177 160.74 321 212.93 3.38 

Pfizer Inc. PFE USD GSPC 5 362 41.02 201 933.10 2.13 

Eli Lilly and Company LLY USD GSPC 903 337.59 279 816.49 2.95 

AstraZeneca PLC AZN USD GSPC -3 165 63.20 -183 605.77 -1.93 
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Novartis AG NVS USD GSPC 2 845 82.60 215 721.57 2.27 

Amgen Inc. AMGN USD IXIC 932 241.53 206 629.83 2.18 

JPMorgan Chase & Co. JPM USD DJI 2 175 135.63 270 781.08 2.85 

Bank of America Corporation BAC USD GSPC -5 565 34.13 -174 386.22 -1.84 

Wells Fargo & Company WFC USD GSPC -5 209 44.15 -211 118.34 -2.22 

Goldman Sachs Group Inc. GS USD GSPC 824 340.42 257 477.95 2.71 

Morgan Stanley MS USD GSPC -2 241 91.50 -188 211.08 -1.98 

American Express Company AXP USD GSPC 1 477 169.31 229 545.45 2.42 

Honeywell International Inc. HON USD GSPC 844 201.45 156 067.83 1.64 

Caterpillar Inc. CAT USD DJI -697 258.32 -165 271.20 -1.74 

General Electric Company GE USD GSPC -3 709 66.05 -224 889.66 -2.37 

Union Pacific Corporation UNP USD GSPC 1 604 196.39 289 158.73 3.04 

FedEx Corporation FDX USD GSPC 1 077 185.69 183 573.92 1.93 

NextEra Energy Inc. NEE USD GSPC 3 707 72.83 247 842.08 2.61 

Duke Energy Corporation DUK USD GSPC -1 680 95.24 -146 879.22 -1.55 

Consolidated Edison Inc. ED USD GSPC 2 111 89.99 174 381.50 1.84 

Xcel Energy Inc. XEL USD IXIC 2 750 65.46 165 241.39 1.74 

PG&E Corporation PCG USD GSPC -10 286 16.04 -151 453.14 -1.59 

Sempra Energy SRE USD GSPC 2 383 77.62 169 776.43 1.79 

The Boeing Company BA USD DJI 1 610 211.17 312 071.04 3.28 

Lockheed Martin Corporation LMT USD GSPC 495 444.21 201 830.75 2.12 

Raytheon Technologies Corporation RTX USD GSPC 2 400 95.84 211 133.53 2.22 

Northrop Grumman Corporation NOC USD GSPC 504 426.93 197 508.62 2.08 

General Dynamics Corporation GD USD GSPC 1 108 221.17 224 938.98 2.37 

Airbus SE AIR EUR FCHI 3 984 50.20 199 996.80 2.11 

TotalEnergies SE TTE EUR FCHI 4 376 59.41 259 981.42 2.74 

ConocoPhillips COP USD GSPC -1 870 117.63 -201 910.59 -2.13 

BP plc BP USD GSPC -6 636 33.90 -206 524.32 -2.17 

Equinor ASA EQNR USD GSPC 9 541 26.21 229 505.06 2.42 

Chevron Corporation CVX USD GSPC 1 804 169.09 280 002.23 2.95 

Crédit Agricole S.A. ACA.PA EUR FCHI -21 517 9.99 -214 995.43 -2.26 

Industrial and Commercial Bank of China Limited 1398.HK HKD HSI -59 410 3.95 -27 549.15 -0.29 

CSPC Pharmaceutical Group Limited 1093.HK HKD HSI -23 241 9.03 -24 618.31 -0.26 

China Resources Land Limited 1109.HK HKD HSI -5 950 37.81 -26 375.17 -0.28 

Total Equity      4 009 738.84 42.22 

 

Table 3.1. Stock Characteristics. This table presents the characteristics of the stocks included in the 

portfolio, along with the corresponding investment amounts converted into euros. The exchange rate 

applied on 30 January 2023 is USD/EUR = 0.9179 

 

Bond Currency Maturity Coupon Rate 
Coupon 

/Year 

Face Value 

(EUR) 

Fair Value 

(EUR) 

Allocation 

(%) 

DE000BU25018 EUR 2028-10-19 2.40% 1 500 000.00 506 015.91 5.33 

DE0001135226 EUR 2034-07-04 4.75% 1 990 000.00 1 255 166.35 13.21 

NL0000102317 EUR 2028-07-04 5.50% 1 1 100 000.00 1 265 291.70 13.32 

US91282CFV81 USD 2032-11-15 4.13% 2 761 857.00 805 990.04 8.48 

US91282CJJ18 USD 2033-11-15 4.50% 2 858 236.50 939 912.16 9.89 

LU2591860569 EUR 2033-03-02 3.00% 1 660 000.00 717 878.78 7.55 

Total Bonds      5 490 254.94 57.78 

 

Table 3.2. Bond Characteristics. This table presents the characteristics of the bonds included in the 

portfolio, along with the corresponding investment amounts converted into euros. The fair value of each 

bond is computed as the sum of the present value of its future cash flows, discounted to 30 January 2023 

and converted to EUR where applicable. The exchange rate applied on that date is USD/EUR = 0.9179. 
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Portfolio Value 

 Value (EUR) Value (%) 

Stocks 4 009 738.84 42.22 

Bonds 5 490 254.94 57.78 

Total 9 499 993.78 100 

 

Table 3.3. Portfolio value. This table showcases the total value of the portfolio on 30 January 2023 as 

well as the amount allocated to equity and bonds. 
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Chapter 4.  

Methodology 

This study aims to estimate and control the Value-at-Risk (VaR) of a diversified investment 

portfolio over a one-year horizon, from 30 January 2023 to 2 February 2024. The primary 

objective is to ensure that portfolio risk remains within a pre-defined Economic Capital (EC) 

threshold, through the implementation of a dynamic hedging mechanism designed to mitigate 

excessive exposure. 

The methodological framework begins with the identification and mapping of relevant risk 

factors, applicable to both the Total VaR and Systematic VaR perspectives. This is followed by 

the selection of a suitable volatility estimation model, tailored to the time-varying nature of 

financial markets. Once the volatility structure is defined, the next step involves specifying and 

calibrating the VaR models that best reflect the underlying risk characteristics of the portfolio. 

The selection process encompasses a comparative assessment of several VaR 

methodologies and parameter configurations. Model evaluation is conducted through rigorous 

backtesting procedures, which are employed to measure forecast accuracy and statistical 

reliability. 

This chapter outlines the methodological approach adopted for risk factor identification and 

justifies the choice of the volatility estimation technique. Chapter 5 presents the VaR models 

and respective specifications under analysis. Chapter 6 proceeds with the backtesting analysis, 

which evaluates the robustness and predictive performance of the selected models under 

empirical conditions. 

 

4.1 Risk Factor Mapping 

Risk factor mapping constitutes the foundational step in accurately measuring and managing 

portfolio risk. This process requires the precise identification, quantification and classification 

of the key drivers influencing portfolio value. In portfolio risk management, exposures are 

typically decomposed into systematic (market-wide) risk and residual (asset-specific) risk 

components. Systematic risk, driven by common factors such as interest rates or equity indices, 

cannot be eliminated through diversification. In contrast, residual risk can be substantially 

mitigated through appropriate asset diversification. 
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To capture the portfolio’s risk profile comprehensively, both Total VaR and Systematic VaR 

are computed at the risk factor level. Total VaR accounts for all asset-specific risks, delivering 

a granular risk measure. Conversely, Systematic VaR aggregates individual exposures into 

broader risk proxies, such as benchmark indices, enhancing scalability but at the expense of 

specificity. Estimating both measures allows for comparative analysis of diversification 

efficiency and the degree of systematic risk exposure. 

The mapping procedure begins by determining each asset’s sensitivity to relevant risk 

factors, expressed in the portfolio’s reference currency, the euro (EUR). This ensures 

consistency in valuation by converting all foreign-denominated exposures into EUR, using 

exchange rates as of the valuation date. 

Formally, the portfolio Θ consists of multiple assets exposed to different risk factors. The 

exposure to each factor is denoted by 𝜃ᵢ (for i = 1, ..., n), where each 𝜃ᵢ represents the loading 

of the portfolio to the i-th risk driver. These exposures are expressed as a risk factor vector: 

 

𝜃 = [
𝜃1

⋮
𝜃𝑛

] (1) 

 

A distinct mapping approach is applied to each asset class. For equities, Total VaR is 

computed based on individual stock price movements, while Systematic VaR consolidates these 

equities into representative market indices. This simplification retains core market risk features 

while reducing computational complexity. 

For fixed-income instruments, risk exposure stems primarily from interest rate sensitivity. 

Bonds are mapped using the Present Value of a Basis Point (PV01), which measures the change 

in bond price resulting from a one-basis-point shift in interest rates. To accommodate bonds 

with irregular maturities, cash flows are projected onto standardised maturity buckets (vertices). 

Throughout this transformation, the total present value (PV) and PV01 are preserved to 

maintain accuracy in the mapping process. 

In terms of currency risk, foreign currency exposures are aggregated and converted into 

EUR. The portfolio’s net position in each currency is identified, and its sensitivity to exchange 

rate fluctuations is quantified. This step is essential for capturing the volatility introduced by 

currency movements and for evaluating their contribution to total portfolio risk. 

By employing asset-specific and factor-consistent mapping techniques, the portfolio’s risk 

exposures are represented with precision. This rigorous foundation supports the subsequent 
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steps of volatility estimation and Value-at-Risk (VaR) calculation, thereby enhancing the overall 

effectiveness of the portfolio’s risk management framework. 

 

4.1.1. Stocks 

The quantification of equity risk exposures relies on estimating future volatility from historical 

stock returns. The methodology adopted differs according to whether the Total VaR or the 

Systematic VaR framework is applied. 

Under the Total VaR framework, the risk factor associated with each equity position is 

defined by the daily price movements of the individual stock. The exposure to this risk factor, 

𝜃𝑖,𝑡 is computed by converting the market value of the stock position into euros. This is given 

by: 

 

𝜃𝑖,𝑡 = 𝑀𝑖,𝑡 = 𝑁𝑖,𝑡 × 𝑃𝑖,𝑡 × 𝐹𝑋𝑖,𝑡 (2) 

 

where, 𝑀𝑖,𝑡 denotes the amount invested in EUR on the stock, 𝑁𝑖,𝑡 denotes the number of shares 

held, 𝑃𝑖,𝑡 is the stock price per share and 𝐹𝑋𝑖,𝑡 the spot exchange rate between the asset’s 

currency and EUR. 

For the Systematic VaR, the risk factor is replaced by a stock market index, and the 

exposure is adjusted so that the systematic risk of the index position matches the systematic 

risk of the original stock, as measured by the stock’s beta relative to the index.  

 

𝜃𝑖,𝑡 = 𝑀𝑖,𝑡 × 𝛽𝑠𝑡𝑜𝑐𝑘,𝐼𝑛𝑑𝑒𝑥,𝑡 (3) 

 
 

The Profit and Loss (P&L) of each equity position under both frameworks depends 

explicitly on the corresponding risk factor’s price movement. Specifically, the P&L for stock 𝑖 

at time 𝑡 is: 

𝑃&𝐿𝑖,𝑡 = 𝜃𝑖,𝑡 × (
𝑃𝑖,𝑡

𝑃𝑖,𝑡−1
− 1) (4) 

For the Systematic VaR, index values replace individual prices in the return calculation, 

significantly enhancing computational efficiency when managing large portfolios. 

This structured and factor-consistent approach to equity risk mapping ensures accurate 

exposure quantification and facilitates robust VaR estimation under both total and systematic 

risk frameworks. 
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4.1.2. Bonds 

In contrast to equities, fixed-income instruments are characterized by distinct risk dynamics 

arising from their predetermined cash flow schedules and fixed maturity dates. As bonds 

approach maturity, their price volatility tends to decline, a behaviour commonly referred to as 

the pull-to-par effect. Moreover, while equity valuations are largely influenced by expectations 

of future earnings, bond prices are more directly sensitive to fluctuations in prevailing interest 

rates. These structural differences make volatility estimation techniques typically used for 

equities inadequate when applied to fixed-income assets. 

To quantify interest rate risk, this study adopts the Present Value of a Basis Point (PV01), 

a widely recognized metric that measures the change in a bond’s present value resulting from a 

one basis point (0.01%) shift in the yield curve. PV01 thus captures the marginal valuation 

impact of small fluctuations in interest rates, offering a precise and interpretable measure of 

interest rate sensitivity. 

The Present Value (PV) of a given bond cash flow 𝐶𝑇 at time 𝑇 is first computed in euros. 

For foreign-denominated instruments, cash flows are converted to EUR using the prevailing 

exchange rate 𝐹𝑋𝑡 and subsequently discounted using the continuously compounded zero rate 

𝑟𝑡: 

 

𝑃𝑉𝐶𝑇,𝑟𝑇
= 𝐶𝑇 × 𝑒−𝑟𝑇 × 𝐹𝑋𝑡 (5) 

 

Using a first-order Taylor approximation, the corresponding PV01 is estimated as: 

 

𝑃𝑉01𝐶𝑇,𝑟𝑇
≈  

𝜕𝑃𝑉𝐶𝑇,𝑟𝑇

𝜕𝑟𝑇
× (−0.01%) (6) 

 

 

                    =  𝑇 × 𝑃𝑉𝐶𝑇,𝑟𝑇
× 0.01% (7) 

 

here, 𝑇 denotes the time to maturity of the bond (in years), 𝐶𝑇 is the bond cash flow at time 

𝑇, 𝐹𝑋𝑡 represents the exchange rate at time 𝑡, and 𝑟𝑡 is the continuously compounded zero-

coupon interest rate used for discounting. 

In a multi-cash flow bond portfolio, each cash flow may correspond to a distinct maturity. 

Since complete interest rate data for all possible maturities is typically unavailable, a mapping 

approach is applied whereby irregular maturities are aligned with nearby standard maturities, 

referred to as vertices. This mapping preserves both the total present value and total 𝑃𝑉01 of 

the original cash flows, ensuring consistency in interest rate risk representation. This technique 
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follows the 𝑃𝑉 and 𝑃𝑉01 invariant mapping methodology, as conceptually developed by 

Alexander (2008a). 

To achieve this, the cash flows are proportionally allocated between two vertex maturities 

(𝑇₁ and 𝑇₂), representing the nearest standard maturities surrounding the original maturity (𝑇). 

The mapping conditions are expressed as: 

 

{

𝑥𝑇2 = 1 − 𝑥𝑇1

𝑥𝑇1 =
𝑇2 − 𝑇

𝑇2 − 𝑇1

(8) 

 

Note that 𝑥𝑇1
 and 𝑥𝑇2

 represent the proportions of the present value of the original cash 

flow that are mapped to the vertex maturities 𝑇1 and 𝑇2, respectively. These vertices correspond 

to the standard maturities with available interest rate data that are closest to the original maturity 

𝑇, with 𝑇1 being the maturity directly below 𝑇 and 𝑇2 being the maturity directly above 𝑇. 

This process generalizes effectively to portfolios with multiple vertices. The PV01 for each 

vertex can then be accurately computed as: 

 

𝑃𝑉01𝑇𝑖
≈ 𝑇𝑖 × 𝑥𝑇𝑖

× 0.01% (9) 

 

The profit and loss (P&L) for bonds, reflecting changes in their present values (Δ𝑃𝑉), is 

consequently expressed as: 

 

𝑃&𝐿𝐵𝑜𝑛𝑑𝑡
= ∑−𝑃𝑉01𝑡𝑖

𝑛

𝑖=1

×
∆𝑟𝑡𝑖

0.01%
(10) 

 

Therefore, a rise in rates leads to capital losses, while declining rates result in gains. 

Accurately modelling this sensitivity is essential for the effective management of fixed-income 

risk, especially when constructing VaR-based frameworks. 

 

4.1.3. Currency 

The inclusion of foreign-denominated assets in the portfolio adds an additional dimension to 

the risk management process, stemming from foreign exchange (FX) exposure. In addition to 

the inherent market risk associated with each asset, positions denominated in currencies other 

than the euro (EUR), particularly the United States dollar (USD) and the Hong Kong dollar 

(HKD), introduce valuation risk due to exchange rate variability. 
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This FX risk materializes when the EUR-equivalent value of foreign holdings fluctuates 

because of changes in exchange rates. Such currency-induced volatility can have a material 

impact on the portfolio’s total value and therefore requires explicit integration into the overall 

risk measurement framework. 

To quantify this exposure, the capital invested in each foreign currency is aggregated and 

converted into euros using the prevailing spot exchange rate. Let 𝐹𝑋𝑖,𝑡 denote the spot rate at 

time 𝑡 between a foreign currency 𝑖 and the EUR. Thus, for a given investment amount 𝑀𝑖,𝑡 

denominated in currency 𝑖, the associated profit and loss (P&L) arising specifically from 

exchange rate movements is calculated as follows: 

 

𝑃&𝐿𝑖,𝑡 = 𝑀𝑖,𝑡 × (
𝐹𝑋𝑖,𝑡

𝐹𝑋𝑖,𝑡−1
− 1) (11) 

 

This equation isolates the impact of currency fluctuations on the EUR valuation of the 

portfolio. Proper quantification of this effect enables the identification of potential 

vulnerabilities and supports the implementation of targeted hedging strategies. In the context of 

an internationally diversified portfolio, managing FX risk is essential for maintaining return 

stability and ensuring consistency in risk-adjusted performance metrics. 

 

4.1.4. Portfolio 

The vector of risk factor loadings reflects the portfolio’s aggregated sensitivities to distinct 

sources of financial risk and constitutes a critical input for risk measurement and 

decomposition. These exposures enable a structured understanding of how specific market 

variables influence overall portfolio valuation. Table 4.1 provides a detailed breakdown of the 

mapped risk factor exposures expressed in euros, with a focus on Total Value-at-Risk (VaR). 

This metric integrates both systematic and idiosyncratic components of risk, capturing the full 

spectrum of sensitivity to equity prices, interest rates and currency fluctuations. For reference, 

Systematic VaR figures are discussed separately in later sections, where factor-based 

aggregation is explicitly applied. 

The data presented correspond to 30 January 2023, which marks the starting point of the 

evaluation period. This is the first day on which the one-day-ahead VaR is calculated, using risk 

factor exposures determined in the prior step.  
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Stocks  Interest Rate  Currency 

Risk Factor Exposure (EUR)  Risk Factor Exposure (EUR)  Risk Factor Exposure (EUR) 

RI.PA -190 052.80  
EUR3M -1.11  USDEUR 5 743 925.37 

CA.PA -215 004.55  
EUR6M -1.62  HKDEUR -78 542.63 

MC.PA 320 143.96  
EUR1Y -10.85  

  

BN.PA -180 008.26  
EUR2Y -26.52  

  

MMM -183 553.15  
EUR3Y -63.13  

  

AIG -174 424.11  
EUR5Y -732.35  

  

AMZN 302 935.19  
EUR7Y -213.34  

  

AMD -192 748.64  
EUR10Y -1 204.61  

  

MSFT 312 021.43  
EUR15Y -362.86  

  

AAPL 325 892.53  
EUR20Y 0  

  

NVDA 316 691.53  
USD3M -0.69  

  

ASML 325 205.68  
USD6M -1.02  

  

ORCL -201 925.35  
USD1Y -4.99  

  

CRM -183 542.95  
USD2Y -12.91  

  

ADBE 284 469.65  
USD3Y -27.80  

  

SAP -215 008.45  
USD5Y -58.57  

  

TXN 220 306.20  
USD7Y -120.13  

  

JNJ 321 212.94  
USD10Y -1 153.40  

  

PFE 201 933.11  
USD20Y -97.26  

  

LLY 279 816.50       

AZN -183 605.77       

NVS 215 721.57       

AMGN 206 629.84       

JPM 270 781.09       

BAC -174 386.22       

WFC -211 118.34       

GS 257 477.95       

MS -188 211.08       

AXP 229 545.45       

HON 156 067.83       

CAT -165 271.20       

GE -224 889.66       

UNP 289 158.73       

FDX 183 573.92       

NEE 247 842.08       

DUK -146 879.22       

ED 174 381.50       

XEL 165 241.39       

PCG -151 453.14       

SRE 169 776.43       

BA 312 071.04       

LMT 201 830.75       

RTX 211 133.53       

NOC 197 508.62       

GD 224 938.98       

AIR 199 996.80       

TTE 259 981.42       

COP -201 910.59       

BP -206 524.32       

EQNR 229 505.06       

CVX 280 002.23       

ACA.PA -214 995.43       

1398.HK -27 549.15       

1093.HK -24 618.31       

1109.HK -26 375.17       
 

Table 4.1. Risk factor exposures. This table showcases the VaR exposures of portfolio positions in 

EUR as of 27 January 2023, including equities, interest rate and currencies. 



20 

 

4.2. Volatility Estimation 

Before computing the Value-at-Risk (VaR), it is essential to obtain accurate estimates of the 

volatility associated with each underlying risk factor. Although the sample standard deviation 

of historical returns is the most used method, this approach assigns equal weight to all past 

observations. As a result, it may fail to adequately capture recent shifts in market dynamics, 

especially under volatile conditions. 

This limitation becomes particularly relevant when risk factors exhibit different scales, such 

as comparing equity returns (typically in percentage terms) to changes in interest rates 

(measured in basis points). Since VaR is inherently forward-looking, it is crucial to adopt a 

volatility estimation method that places greater emphasis on recent market behaviour. 

To address these shortcomings, we employ the Exponentially Weighted Moving Average 

(EWMA) model. Unlike traditional methods, the EWMA model assigns exponentially 

decreasing weights to historical observations, prioritizing recent data while diminishing the 

influence of older data over time. The extent to which older observations decrease in importance 

is determined by a smoothing parameter λ (lambda), which lies between 0 and 1. Lower values 

of λ give greater weight to recent observations, thus making the volatility estimates more 

responsive to current market conditions. 

The recursive formulation for EWMA volatility estimation is given by: 
 

𝜎̂𝑡
2 = (1 − 𝜆)𝑥𝑡

2 + 𝜆𝜎̂𝑡−1 (12) 

 

Where 𝑥𝑡 represents the return (or change) in the risk factor at time 𝑡 and 𝜎̂𝑡
2 denotes the 

estimate variance at time 𝑡. 

Similarly, the EWMA covariance between two risk factors 𝑖 at time 𝑗 and at time is given 

by: 

 

𝜎̂𝑖,𝑗,𝑡 = (1 − 𝜆)𝑥𝑖,𝑡𝑥𝑗,𝑡 + 𝜆𝜎̂𝑖,𝑗,𝑡−1 (13) 

 

The selection of the smoothing factor 𝜆 plays a critical role in determining the 

responsiveness of the volatility estimate. The RiskMetrics framework proposed by J.P. Morgan 

(1996) suggests a standard value of  𝜆 = 0.94 for daily data, which balances short-term 

sensitivity with longer-term stability. However, the optimal value of 𝜆 is context-specific and 

depends on the volatility regime, asset class, and the institution’s risk tolerance (Alexander, 

2008). 

In this study, multiple values of 𝜆 are evaluated to determine the most appropriate 

configuration for the portfolio under analysis. The selected parameter is then validated through 
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a backtesting procedure, ensuring that the resulting VaR estimates are both accurate and aligned 

with observed market conditions throughout the study period. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



22 

 

 

  



23 

 

 

Chapter 5.  

VaR Models 

Value-at-Risk (VaR) is a widely adopted statistical measure used to estimate the maximum 

potential loss a portfolio could incur over a specific time horizon (ℎ) at a predetermined 

confidence level (1 − 𝛼). Formally, the ℎ-day VaR at level 𝛼, denoted 𝑉𝑎𝑅ℎ,𝑎, corresponds to 

the threshold loss that will not be exceeded with probability 1 − 𝛼. Mathematically, this can be 

expressed as: 

 

𝑃(𝑋ℎ < −𝑉𝑎𝑅ℎ,𝛼) = 𝛼 (14) 

 

where 𝑋ℎ represents the discounted ℎ-day profit-and-loss (P&L) distribution of the portfolio. 

In alignment with the Basel Committee’s recommendations, this study adopts a confidence 

level of 99% (𝛼 =  1%) and a daily time horizon (ℎ = 1 day). Consequently, 𝑉𝑎𝑅1,1% 

represents the daily loss that the portfolio will not exceed with 99% confidence. 

Given the diversity of market conditions and portfolio compositions, no single VaR model 

is universally optimal. To address this, the present study evaluates four distinct methodologies: 

Normal VaR, Skewed Generalized Student-t (SGSt) VaR, Historical VaR, and Quantile 

Regression VaR. Each model has been specifically chosen to represent a range of assumptions 

and statistical techniques, enabling a comprehensive assessment of their performance and 

suitability for our portfolio. 

The analysis incorporates multiple variations within each class, encompassing parametric 

and non-parametric frameworks with diverse parameterizations and volatility weighting 

schemes. The objective of this extensive approach is to pinpoint the most precise and reliable 

model configuration, aligning closely with our portfolio's unique characteristics and prevailing 

market conditions. 

Detailed outcomes from the application of these models are rigorously evaluated through 

backtesting in Chapter 6. This process systematically compares predicted VaR estimates against 

actual historical outcomes, highlighting each model's strengths and limitations, and offering 

critical insights for optimizing risk management strategies. 
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5.1. Normal VaR 

Consider a portfolio’s ℎ-day returns, represented by the random variable 𝑋ℎ, assumed to follow 

a normal distribution: 

 

𝑋ℎ~𝑁(𝜇, 𝜎2) (15) 

 

Where 𝜇 denotes the mean return and 𝜎2 the variance over the horizon ℎ. Under this 

assumption, the ℎ-day VaR at confidence level 1 − 𝛼, denoted 𝑉𝑎𝑅ℎ,𝛼, corresponds to the 

negative of the 𝛼 - quantile of this normal distribution: 

 

𝑉𝑎𝑅ℎ,𝛼 = −𝜙𝜇,𝜎
−1 (𝛼) (16) 

 

In this expression, 𝜙𝜇,𝜎
−1 (𝛼) denotes the quantile (or inverse cumulative distribution) 

function of a normal distribution with mean μ and standard deviation σ. 

Using the equivariance property of quantiles, which states: 

 

𝑄𝑔(𝑋)(𝛼) = 𝑔(𝑄𝑋(𝛼)) (17) 

 

Portfolio returns can be expressed as a linear transformation of a standard normal variable 

𝑍 ∼ 𝑁(0,1): 

 

𝑋ℎ = 𝜇 + 𝜎𝑍 (18) 

 

Substituting this into the original quantile definition simplifies VaR expression to: 

 

𝑉𝑎𝑅ℎ,𝛼 = 𝜙−1(𝛼)𝜎 − 𝜇 (19) 

where 𝜙−1(𝛼) denotes the inverse cumulative distribution function (quantile function) of the 

standard normal distribution, evaluated at confidence level 𝛼.  

For daily VaR estimates (ℎ = 1), the drift term 𝜇 is commonly omitted, following the 

suggestion by Alexander (2008b) that short-term expected returns are negligible and difficult 

to estimate accurately. Thus, setting 𝜇 = 0 has minimal impact on accuracy and increases 

robustness, resulting in: 

 

𝑉𝑎𝑅1,𝑎 = −𝜙−1(𝛼) × 𝜎 (20) 

 

In this study, volatility parameter σ is estimated using the EWMA model, which emphasizes 

recent market conditions, as outlined in Chapter 4. This approach allows the Normal VaR model 

to reflect recent market volatility while preserving analytical tractability. 
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5.2. SGSt VaR 

The standardized Skewed Generalized Student-t (SGSt) distribution, introduced by 

Theodossiou (1998), is an extension of the classical Student-t distribution, by incorporating 

skewness and separate control over central and tail behaviour. This flexibility allows the model 

to capture both asymmetry and fat tails, characteristics commonly observed in financial return 

series, particularly during periods of market stress. The SGSt distribution has five parameters: 

the mean (𝜇), standard deviation (𝜎 >  0), skewness parameter (−1 <  𝜆 <  1), central shape 

parameter (𝑝 >  0), and tail shape parameter (𝑞 >  0). These parameters are typically 

estimated through maximum likelihood, allowing the distribution to adapt to the empirical 

characteristics of the data. 

To compute the VaR using the SGSt distribution, we follow a similar methodology to the 

Normal VaR. However, the quantile function is replaced by that of the SGSt distribution. The 

ℎ-day VaR at confidence level 𝛼 is expressed as: 

 

𝑉𝑎𝑅ℎ,𝛼 = −𝑇𝜇,𝜎,𝜆,𝑝,𝑞
−1 (𝛼) (21) 

 

By leveraging the equivariance property and assuming μ = 0 for simplicity, the SGSt VaR 

simplifies to: 

 

𝑉𝑎𝑅ℎ,𝛼 = −𝑇0,1,𝜆,𝑝,𝑞
−1 (𝛼) ×  𝜎 (22) 

 

5.3. Historical VaR 

The Historical Simulation approach to Value-at-Risk (VaR) estimation constructs an empirical 

distribution of portfolio profit and loss (P&L) based on past observations, without imposing 

any assumptions on the underlying return distribution. This makes it a non-parametric method, 

particularly useful when return distributions deviate from normality or exhibit pronounced 

skewness and excess kurtosis. 

The procedure begins by selecting a historical sample of 𝑛 non-overlapping returns for each 

risk factor over a fixed time horizon ℎ. These returns are used to generate a series of 

hypothetical ℎ-day P&L outcomes, assuming constant portfolio exposures throughout the 

sample period.  
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Once the empirical P&L distribution is constructed, the VaR at confidence level 𝛼 is given 

by the negative of the empirical 𝛼-quantile: 

 

𝑉𝑎𝑅ℎ,𝛼 = −𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝛼(𝑃&𝐿ℎ𝑖𝑠𝑡) (23) 

 

Each observation in the sample is assigned equal probability 
1

𝑛
, and the empirical 

cumulative distribution function (CDF) is derived by ordering the P&L values from worst to 

best. 

Despite its intuitive approach, the standard Historical VaR model has a significant 

limitation, it assigns equal weights to all observations within the historical sample, which 

diminishes the model’s responsiveness to current market dynamics, particularly when using 

larger sample sizes. Although parametric models such as Normal VaR or SGSt VaR mitigate 

this issue by employing EWMA volatility estimates, the basic Historical VaR cannot directly 

incorporate this solution. EWMA is suitable for estimating covariance structures but cannot 

fully characterize the entire return distribution. 

To overcome this limitation, Hull and White (1998) introduced an enhanced version of 

Historical VaR known as volatility adjusted Historical VaR. This methodology maintains equal 

weighting across observations but adjusts historical returns based on current volatility levels, 

ensuring the historical sample accurately reflects prevailing market conditions. Specifically, 

historical returns (𝑟𝑡) at each historical date 𝑡 (where 𝑡 < 𝑇, with 𝑇 representing the current 

VaR measurement date) are scaled according to the ratio of current volatility (𝜎̂𝑇) to historical 

volatility (𝜎̂𝑡). This adjustment is mathematically expressed as: 

 

𝑟̂𝑡 = 𝑟𝑡 ×
𝜎̂𝑇 

𝜎̂𝑡

(24) 

 

This transformation ensures that past returns are rescaled to reflect current market 

conditions, thereby improving the relevance of the empirical distribution. The volatility-

adjusted Historical VaR is then obtained as the negative empirical quantile of these adjusted 

returns, providing a more responsive and realistic measure of downside risk. 
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5.4. Quantile Regression VaR 

Quantile Regression Value-at-Risk (VaR) builds upon the fundamental definition of VaR as the 

𝛼-quantile of the profit and loss distribution. Unlike parametric models, this approach estimates 

VaR directly as a conditional quantile function, framed within a robust regression methodology. 

It allows for flexible modelling of asymmetric and non-normal distributions without relying on 

restrictive assumptions.  

The model specifies portfolio returns as a function of relevant explanatory variables, 

typically including time-varying volatility estimates such as those obtained from the EWMA. 

The conditional 𝛼-quantile of returns is then estimated through the minimisation of a quantile-

specific loss function. 

Formally, the 𝛼-quantile regression VaR is expressed as: 

 

𝑉𝑎𝑅𝛼 = −(𝛼̂ + 𝑏̂𝑥𝑖) (25) 

 

where 𝛼̂ and 𝑏̂ denote the estimated intercept and slope coefficients, respectively, and 𝑥𝑖 

represents the volatility proxy at time 𝑖. 

The parameter estimates are obtained by solving the following minimisation problem: 

 

(𝛼̂, 𝑏̂) = 𝑎𝑟𝑔𝛼,𝑏𝑚𝑖𝑛 ∑[𝑦𝑖 − (𝛼 + 𝑏𝑥𝑖)](𝛼 − 𝐼[𝑦𝑖−(𝛼+𝑏𝑥𝑖)<0])

𝑛

𝑖=1

(26) 

 

Here 𝐼[𝑦𝑖−(𝛼+𝑏𝑥𝑖)<0] denotes an indicator function that equals 1 when the residual is negative, 

and 0 otherwise. This asymmetric weighting allows the model to robustly capture the 

conditional distribution characteristics of returns, especially tail-risk events. 

Multiple model specifications are evaluated, varying the choice of explanatory variables 

and the inclusion or exclusion of a constant term, to identify the most effective and statistically 

robust formulation. Typically, these explanatory variables consist of EWMA-derived volatility 

measures, possibly incorporating multiple smoothing factors to enhance predictive accuracy. 

The rigorous analysis and comparison of these quantile regression VaR models, as detailed 

in Chapter 7, provide essential insights into selecting the most appropriate risk modelling 

approach tailored specifically to the portfolio’s unique characteristics and prevailing market 

conditions. 
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5.5. Summary of the VaR Models 

This dissertation conducts an extensive evaluation of VaR methodologies, based on the 

empirical testing of 152 unique model configurations across four major model classes. Given 

the scale and complexity of the modelling exercise, it is not feasible to present the results of 

each individual configuration within the main body of the dissertation. Instead, Table 5.1 

provides a structured summary of the parameter ranges applied to each class of models, offering 

an overview of the modelling space explored. 

For each model class, the number of configurations evaluated is indicated alongside the 

parameters varied and their respective ranges. The full specification of all models, including 

the exact combinations employed, is presented in Appendix D. Each configuration is assigned 

a unique numerical identifier to ensure clarity and consistency in the comparative analysis 

conducted throughout the subsequent chapters. 

 

Model Class 
Models 

evaluated 
Parameters Values used 

Normal VaR 20 EWMA smoothing factor From 0.9 to 0.995 (increment = 0.005) 

SGSt VaR 44 

EWMA smoothing factor 

 

Sample size 

From 0.92 to 0.97 (increment = 0.005) 

 

250, 500, 750, 1000 

Historical VaR 44 

EWMA smoothing factor 

 

Sample size 

From 0.92 to 0.97 (increment = 0.005) 

 

250, 500, 750, 1000 

Quantile 

Regression VaR 
44 

EWMA smoothing factor 

 

Sample size 

From 0.92 to 0.97 (increment = 0.005) 

 

250, 500, 750, 1000 

 

Table 5.1. Summary of model classes and parameters evaluated. This table summarises the number 

of models evaluated within each VaR class, along with the parameters and value ranges used during the 

configuration process. 
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Chapter 6.  

Backtesting Methodology 

The previous chapter introduced the methodology for computing four distinct types of VaR 

models. A total of 152 model configurations were evaluated with the objective of estimating 

both Total VaR and Systematic VaR, and of identifying the most accurate and robust 

specification. Each configuration generated a series of daily VaR estimates over a ten-year 

global period, spanning from 11 February 2013 to 27 January 2023, resulting in a total of 2 600 

observations. 

A key component of the performance assessment involved tracking exceedances, defined 

as instances in which the portfolio incurred a loss greater than the corresponding VaR estimate. 

Since VaR represents a threshold for potential losses, exceedances occur when the realised daily 

P&L falls below the negative of the VaR value (i.e., losses exceed expectations). The frequency 

and timing of these exceedances served as primary indicators of model accuracy and reliability. 

To formally assess model quality, two statistical backtesting procedures were employed. 

The Unconditional Coverage (UC) Test, proposed by Kupiec (1995), evaluates whether the 

number of observed exceedances is statistically consistent with the expected rate, given the 

specified confidence level of the VaR model. Complementarily, the BCP Test, introduced by 

Berkowitz, Christoffersen, and Pelletier (2011), examines whether exceedances occur 

independently over time, identifying potential clustering patterns that may indicate model 

misspecification.  

It is important to note that a model may pass the UC test while still failing the BCP test, 

particularly if exceedances are temporally concentrated. To address this, a sequential evaluation 

procedure was implemented. First, the UC test was applied over the global period to filter out 

models that deviate from the expected exceedance rate. The BCP test was then used to evaluate 

the independence of exceedances among the shortlisted models. Finally, the UC test was applied 

again on a year-by-year basis to examine performance consistency over shorter time intervals. 

This structured backtesting approach was applied to all 152 configurations, ensuring a 

comprehensive and rigorous assessment of model performance. The configuration that 

demonstrated the highest degree of statistical reliability and temporal stability was selected for 

forward testing in the final one-year period of the study. 
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6.1. Unconditional Coverage (UC) Test 

The UC Test, introduced by Kupiec (1995), assesses whether the number of observed 

exceedances, defined as instances where actual losses surpass the estimated VaR, is consistent 

with the expected frequency under the specified confidence level. 

Given a confidence level of 1 − 𝛼, there is always a probability 𝛼 that the actual loss will 

exceed the predicted VaR. For example, with 500 daily VaR estimates at a 99% confidence level 

(𝛼 = 1%), the expected number of exceedances is 500 × 1% = 5 

To formally evaluate this, an indicator function is constructed to identify exceedance 

events: 

 

𝐼𝑡 = {
1, 𝑖𝑓 𝑃&𝐿𝑡 < −𝑉𝑎𝑅𝑡,𝛼

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(27) 

 

Let 𝜋𝑜𝑏𝑠 and 𝜋𝑒𝑥𝑝 denote the observed and the expected exceedance rates, respectively. 

The null and alternative hypothesis, for the UC test are formulated by: 

 

𝐻0: π𝑜𝑏𝑠 = π𝑒𝑥𝑝 = 𝛼 (28) 

 

𝐻𝑎: π𝑜𝑏𝑠 ≠ π𝑒𝑥𝑝 (29) 

 

Let 𝑛1 represent the number of exceedances observed in the sample and 𝑛0 denotes the 

number of observations without exceedances. The test statistic can then be expressed as follows: 

 

𝐿𝑅𝑢𝑐 = (
π𝑒𝑥𝑝

π𝑜𝑏𝑠
)
𝑛1

(
1 − π𝑒𝑥𝑝

1 − π𝑜𝑏𝑠
)
𝑛0

(30) 

 

Under the null hypothesis 𝐻0, this test statistic asymptotically follows a chi-squared 

distribution with one degree of freedom: 

 

𝐿𝑅𝑢𝑐 ~ 𝑋1
2 (31) 

 

A VaR model is considered well-specified if the null hypothesis defined at Equation (28) is 

not rejected at the 95% confidence level. This outcome indicates that the frequency of 

exceedances is in line with the model's stated confidence level, suggesting correct calibration 

of the VaR estimates. 
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6.2. BCP Test 

The Berkowitz, Christoffersen, and Pelletier (BCP) test provides a statistical framework for 

assessing the independence of exceedance events in a VaR model. While a model may pass the 

UC test by generating the correct number of exceedances, it can still be misspecified if those 

exceedances exhibit temporal dependence or clustering. A well-specified VaR model should 

produce exceedances that occur randomly over time, without autocorrelation. 

Let 𝑝̂𝑘 = 𝐶𝑜𝑟𝑟(𝐼𝛼, 𝐿𝑘𝐼𝛼) denote the autocorrelation of order 𝑘 − 𝑡ℎ in the time series of 

exceedance indicators and let 𝐾 represent the maximum number of lags considered in the 

analysis. The test evaluates the following hypotheses: 

 

𝐻0: 𝑝̂𝐾 = 0; ∀𝑘 ∈ {1,… , 𝐾} (32) 

 

𝐻𝑎: ∃𝑘 ∈ {1,… , 𝐾} 𝑠. 𝑡. 𝑝̂𝐾 ≠ 0 (33) 

 

Assuming a sample consisting of n observations, the test statistic is defined as: 

 

𝐵𝐶𝑃𝐾 = 𝑇(𝑇 + 2) ∑
𝑝̂𝑘

2

𝑇 − 𝑘

𝐾

𝑘=1

(34) 

 

where 𝑇 corresponds to the number of observations in the exceedance time series.  

Under the null hypothesis, the test statistic follows a chi-squared distribution with 𝐾 

degrees of freedom:  

 

𝐵𝐶𝑃𝐾 ~ 𝜒𝐾
2 (35) 

 

The selection of the lag length 𝐾 involves an inherent trade-off. Increasing 𝐾 enhances the 

test’s ability to detect higher-order autocorrelations but simultaneously raises the critical value 

required for rejection. This can reduce the power of the test, particularly when dependence 

exists only at lower-order lags. In such cases, the statistic may fail to exceed the threshold, 

resulting in a Type II error. 

To mitigate this limitation and improve robustness, the BCP test is implemented across a 

range of lag values from 1 to 10. This allows for a more comprehensive evaluation of 

exceedance independence, capturing both short- and medium-term autocorrelation patterns in 

the exceedance sequence. 
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6.3. Results of Backtesting 

To ensure a methodologically rigorous and comprehensive evaluation, a total of 152 VaR model 

configurations were developed and evaluated. These configurations were systematically 

constructed by combining the parameter settings outlined in Table 5.1, encompassing a wide 

range of specifications across four distinct VaR model classes: Normal, SGSt, Historical 

Simulation, and Quantile Regression. 

Given the volume of models analysed, it is not feasible to present the complete set of results 

within the main body of the dissertation. Instead, this section highlights a representative subset 

of 22 selected models, chosen to reflect both commonly used benchmarks and configurations 

that demonstrated particularly strong empirical performance throughout the backtesting phase. 

The full set of 152 model configurations and their corresponding backtesting outcomes are 

documented in Appendix D.  

Table 6.1 summarises the main structural features of the selected 22 models. 

 

Model 

number 
Description 

5 Normal, with EWMA smoothing factor 0.92 

9 Normal, with EWMA smoothing factor 0.94 

14 Normal, with EWMA smoothing factor 0.965 

19 Normal, with EWMA smoothing factor 0.99 

33 SGSt, with EWMA smoothing factor 0.925 and sample size 500 

39 SGSt, with EWMA smoothing factor 0.955 and sample size 500 

44 SGSt, with EWMA smoothing factor 0.925 and sample size 750 

46 SGSt, with EWMA smoothing factor 0.935 and sample size 750 

54 SGSt, with EWMA smoothing factor 0.92 and sample size 1000 

59 SGSt, with EWMA smoothing factor 0.945 and sample size 1000 

71 Historical, with volatility adjustment, EWMA smoothing factor 0.95 and sample size 250 

78 Historical, with volatility adjustment, EWMA smoothing factor 0.93 and sample size 500 

93 Historical, with volatility adjustment, EWMA smoothing factor 0.95 and sample size 750 

103 Historical, with volatility adjustment, EWMA smoothing factor 0.945 and sample size 1000 

109 Quantile Regression, EWMA volatility with 0.92 smoothing factor as independent variable, sample size 250 

112 Quantile Regression, EWMA volatility with 0.935 smoothing factor as independent variable, sample size 250 

117 Quantile Regression, EWMA volatility with 0.96 smoothing factor as independent variable, sample size 250 

121 Quantile Regression, EWMA volatility with 0.925 smoothing factor as independent variable, sample size 500 

124 Quantile Regression, EWMA volatility with 0.94 smoothing factor as independent variable, sample size 500 

131 Quantile Regression, EWMA volatility with 0.92 smoothing factor as independent variable, sample size 750 

142 Quantile Regression, EWMA volatility with 0.92 smoothing factor as independent variable, sample size 1000 

145 Quantile Regression, EWMA volatility with 0.935 smoothing factor as independent variable, sample size 1000 

 

Table 6.1. Summary of selected VaR model configurations. Presents 22 representative models from 

the total set of 152 tested, detailing their class and parameter settings. 
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To assess the statistical adequacy of the VaR models, two standard backtesting procedures 

are applied: UC test by Kupiec (1995) and the BCP test introduced by Berkowitz et al. (2011). 

The UC test examines whether the observed number of exceedances aligns with the expected 

frequency under correct model specification. Given 2600 daily observations and a 99% 

confidence level, approximately 26 exceedances are anticipated. A p-value below 5% indicates 

rejection of the null hypothesis, suggesting that the model underestimates tail risk. 

 

Model Class Model number Exceedances 
Exceedance 

Rate (%) 
p-value (%) 

Normal 

5 63 2.42 0.00 

9 59 2.27 0.00 

14 50 1.92 0.00 

19 47 1.81 0.02 

SGSt 

33 39 1.92 1.70 

39 37 1.81 4.15 

44 33 1.50 19.54 

46 32 1.42 25.37 

54 32 1.27 25.37 

59 33 1.50 18.54 

Historical 

71 49 1.23 0.04 

78 52 1.27 0.00 

93 34 1.77 0.01 

103 30 2.42 0.00 

Quantile 

Regression 

109 34 1.88 13.22 

112 30 2.00 44.15 

117 27 1.31 13.22 

121 33 1.15 44.15 

124 36 1.04 84.47 

131 33 1.27 18.54 

142 36 1.38 6.25 

145 33 1.27 18.54 
 

Table 6.2. UC test results over the global period - Total VaR. Models in bold indicate those that pass 

the UC test at the 5% significance level. 

 

The results indicate that all Normal VaR models within the full set of 152 evaluated 

configurations fail to meet the statistical criteria for adequacy, with each being rejected at 

conventional significance levels. This outcome is consistent with the extensive body of 

empirical literature that critiques the use of the normality assumption in modelling financial 

returns. As originally noted by Fama (1965) and corroborated by subsequent studies, return 

distributions in financial markets tend to exhibit fat tails and negative skewness, characteristics 

that the Normal distribution fails to capture effectively. This limitation is particularly relevant 

in the present analysis, as the portfolio returns display pronounced excess kurtosis across 
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multiple years, as shown in Appendix A. As a result, Normal VaR models systematically 

underestimate the likelihood and magnitude of extreme losses, particularly when evaluated at 

high confidence levels. 

Notably, Model 9 corresponds to the RiskMetrics framework proposed by J.P. Morgan 

(1996), which applies an EWMA with a smoothing factor of 𝜆 = 0.94. Despite its historical 

relevance, this model performed poorly in our setting, with a significantly higher number of 

exceedances than expected, thereby failing the UC test. 

In addition to evaluating the Total VaR models, the UC test was also applied to the 

Systematic VaR configurations. These models seek to simplify risk estimation by mapping 

individual asset exposures onto a reduced set of common risk factors. This methodology is 

commonly adopted to improve scalability and computational efficiency, particularly in 

portfolios with a large number of positions or complex asset structures. 

 

Model Class Model number Exceedances 
Exceedance 

Rate (%) 
p-value (%) 

Normal 

5 90 3.46 0.00 

9 85 3.27 0.00 

14 84 3.23 0.00 

19 82 3.15 0.00 

SGSt 

33 67 2.58 3.71 

39 64 2.46 0.00 

44 60 2.31 0.00 

46 58 2.33 0.00 

54 59 2.27 0.00 

59 58 2.23 0.00 

Historical 

71 72 2.77 0.00 

78 84 3.23 0.00 

93 74 2.85 0.00 

103 81 3.12 0.00 

Quantile 

Regression 

109 56 2.15 0.00 

112 53 2.04 0.00 

117 50 1.92 0.00 

121 55 2.12 0.00 

124 55 2.12 0.00 

131 56 2.15 0.00 

142 58 2.23 0.00 

145 57 2.19 0.00 
 

Table 6.3. UC test results over the global period - Systematic VaR. Models in bold indicate those that 

pass the UC test at the 5% significance level. 
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However, as shown in Table 6.3, none of the Systematic VaR models passed the UC test. 

This outcome reveals a significant discrepancy between the risk captured by the mapped 

portfolio and the true exposures embedded in the original portfolio. The results suggest that the 

factor-mapping process introduces distortions that lead to an underestimation of tail risk. 

The rejection of all Systematic VaR configurations implies that the simplified portfolio 

structure fails to preserve essential risk characteristics. In this case, the relatively low level of 

portfolio diversification may have amplified this divergence, further reducing the reliability of 

the simplified representation. As a result, Systematic VaR models are excluded from the 

remainder of the analysis. The study henceforth focuses exclusively on Total VaR models, 

which are based on the complete, untransformed portfolio data and provide a more accurate and 

robust framework for risk quantification. 

Following the initial screening based on the UC test, models failing to meet the minimum 

statistical adequacy criteria were removed from further evaluation. The next step involved 

applying the BCP test to the subset of models that were not rejected by the UC test. The BCP 

test assesses the independence of exceedance events over time, thereby detecting potential 

clustering effects that the UC test does not capture. Out of the 22 shortlisted configurations, 12 

models passed both tests. The results of the UC and BCP tests for the full set of 152 models are 

reported in Appendix D, Table D.1. 

Table 6.4 presents the BCP test results for the remaining Total VaR models, specifically 

reporting the lowest p-value obtained across ten different lag structures evaluated for each 

model. This approach facilitates the identification of models exhibiting temporal dependence 

in exceedances at any lag within the tested range. Low p-values in this test may signal instability 

in model calibration or insufficient sensitivity to evolving market conditions. Only those models 

that perform satisfactorily in both the UC and BCP tests are retained for the subsequent analysis 

of stability and robustness over shorter time horizons. 
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Model Class Model number Worst p-value Lag 

SGSt 

44 36.29 1 

46 2.15 2 

54 32.80 1 

59 3.08 2 

Quantile Regression 

109 39.86 1 

112 26.07 1 

117 31.95 10 

121 26.07 1 

124 12.92 3 

131 36.29 1 

142 47.12 1 

145 3.08 2 

 

Table 6.4. BCP test results over the global period. Models in bold indicate those that pass the BCP 

test at the 5% significance level. 
 

Out of the 12 models considered, nine passed both the UC and the BCP tests, confirming 

their statistical adequacy in terms of exceedance frequency and independence. Beyond this 

restricted set, additional configurations from the broader set of 152 models also met both 

criteria, bringing the total number of validated models to 26. The complete results of this 

evaluation are presented in Appendix D, Table D.2. 

Table 6.5 presents the UC test results across ten consecutive annual subperiods, allowing 

for a detailed assessment of exceedance consistency over time. This additional validation step 

is critical to distinguish models that exhibit genuine stability from those whose performance 

may result from period-specific calibration or random variation. Based on this analysis, model 

selection is further refined by identifying the configuration that demonstrates the highest 

consistency in UC test outcomes across individual years. 

 

Model class SGSt Quantile Regression 

Model number 44 54 109 112 117 121 124 131 142 

2022-2023 
Exceedance rate (%) 

p-value (%) 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

1.15 

80.77 

0.38 

25.44 

0.38 

25.44 

0.38 

25.44 

0.38 

25.44 

2021-2022 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

0.77 

69.67 

0.77 

69.67 

1.15 

80.77 

0.77 

69.67 

0.38 

25.44 

1.15 

80.77 

1.15 

80.77 

2020-2021 
Exceedance rate (%) 

p-value (%) 

2.31 

7.01 

2.31 

7.01 

1.54 

41.87 

1.15 

80.77 

1.92 

18.44 

2.31 

7.01 

1.92 

18.44 

1.92 

18.44 

2.69 

2.34 

2019-2020 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.54 

41.87 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

2018-2019 
Exceedance rate (%) 

p-value (%) 

0.38 

25.44 

0.38 

25.44 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.38 

25.44 

0.38 

25.44 

0.38 

25.44 

1.15 

80.77 

2017-2018 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 
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2016-2017 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

0.77 

69.67 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

2015-2016 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

2.31 

7.01 

1.15 

80.77 

0.77 

69.67 

1.15 

80.77 

0.77 

69.67 

1.15 

80.77 

1.54 

41.87 

2014-2015 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.54 

41.87 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

2013-2014 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

0.77 

69.67 

0.77 

69.67 

1.92 

18.44 

1.15 

80.77 

 

Table 6.5. UC test for annual sub-periods. The table indicates the results for the UC test for the sub-

periods of the models that passed the UC and the BCP test for the global period. 
 

Based on the results presented in Table 6.5, Model 124 emerges as the most consistent and 

reliable among the shortlisted candidates. It records an exceedance rate below 1% in five out of 

the ten annual subperiods, more than any other model in the comparison set. This pattern 

highlights the model’s temporal stability and its strong alignment with the intended confidence 

level under a range of market conditions. 

In addition, Model 124 presents a global exceedance rate of 1.04%, the closest to the 

theoretical 1% across all 152 configurations evaluated. This reinforces the model’s robustness 

by demonstrating that it neither systematically underestimates nor overstates tail risk. The 

combination of stable annual performance and accurate global calibration substantiates its 

selection as the most suitable model for forward looking VaR management. Furthermore, Model 

124 satisfied the UC test across all individual years in the evaluation period, confirming the 

temporal stability of its risk forecasts. 

Accordingly, Model 124 is selected as the optimal VaR specification for this study. The 

following section applies this model to assess and manage portfolio risk under both unhedged 

and hedged strategies throughout the one-year out-of-sample period. 
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Chapter 7.  

Value-at-Risk Management 

As established in the previous chapter, the model selected for the measurement and 

management of VaR is Model 124. This configuration corresponds to a Quantile Regression 

approach, incorporating volatility estimates from an EWMA model with a smoothing parameter 

𝜆 = 0.94 and a historical sample size of 500 observations. The model is applied under two 

distinct strategies, both evaluated over a one-year horizon. 

The first strategy is passive, allowing the portfolio to evolve without any form of risk 

mitigation. In contrast, the second strategy enforces a daily VaR constraint, serving as a trigger 

for active risk control. Whenever the estimated VaR exceeds the predefined limit, a hedging 

mechanism is activated. This involves reducing exposure to the risk factors that contribute most 

significantly to total portfolio risk, as identified via Marginal VaR, through the use of futures 

contracts. 

In both scenarios, bond coupon payments are reinvested as they are received throughout 

the year. Reinvestment is conducted by proportionally adjusting both long and short equity 

positions in line with their respective portfolio weights on the trading day immediately 

preceding each coupon payment. This ensures that the portfolio’s relative equity exposure 

remains consistent over time, preserving its intended risk structure. Further details regarding 

the timing and allocation of these reinvestments are provided in Appendix B. 

During the backtesting period, the portfolio’s daily VaR typically ranged between €100 000 

and €200 000, with pronounced spikes during the COVID-19 crisis (2020–2022). Based on this 

historical pattern and given that the portfolio value on 27 January 2023 was approximately €9.5 

million, the maximum acceptable daily VaR is set at 1.4% of the portfolio value, corresponding 

to €133 000. 

This chapter is organized into three sections. It begins by outlining the methodology for 

decomposing VaR by risk factor. It then describes the hedging strategy implemented when the 

VaR threshold is breached. Finally, it presents a comparative analysis of the portfolio’s 

performance under the hedged and unhedged strategies, focusing on their respective impacts 

on risk-adjusted returns. 
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7.1 VaR decompositions 

To support a more effective risk management framework, VaR is computed at the level of 

individual risk factors. This allows for the decomposition of total portfolio VaR, enabling the 

identification and monitoring of the most significant sources of risk. 

This analysis employs the Marginal Value-at-Risk (Marginal VaR), which quantifies the 

contribution of a specific subset of risk factor exposures to the portfolio’s total VaR. This metric 

is central to the hedging strategy, as it informs both the selection of risk factors to hedge and 

the sizing of the corresponding hedge positions. 

Formally, let Θ denote the vector of portfolio exposures to all risk factors, and Θ𝑠 represent 

a specific subset (or “slice”) of these exposures. The Marginal VaR associated with Θ𝑠  is defined 

as: 

 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝑉𝑎𝑅𝑆 = ∇𝑓(Θ)𝑇Θ𝑆 = ∑
𝜕𝑉𝑎𝑅

𝜕𝜃𝑖

𝑛

𝑖=1

× Θ𝑖
𝑆 (36) 

 

Here ∇𝑓(Θ) denotes the gradient vector of the VaR function with respect to the risk factor 

loadings, capturing the sensitivity of portfolio VaR to marginal changes in each individual 

exposure. This gradient is expressed as: 

 

∇𝑓(Θ) =
𝜕𝑓(Θ)

𝜕Θ
=

[
 
 
 
 
𝜕𝑉𝑎𝑅

𝜕𝜃1

⋮
𝜕𝑉𝑎𝑅

𝜕𝜃𝑛 ]
 
 
 
 

(37) 

 

From an economic perspective, the Marginal VaR provides insight into how sensitive the 

portfolio’s total risk is to incremental changes in each risk factor exposure. A higher Marginal 

VaR for a given factor indicates that a slight increase in exposure would result in a 

disproportionately significant increase in overall portfolio risk. 

Thus, Marginal VaR serves both as a diagnostic tool for identifying the primary drivers of 

risk and as a quantitative foundation for targeted hedging. By capturing the marginal impact of 

each exposure, this decomposition framework enables more precise and effective risk control 

interventions. 
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7.2. Hedging Strategy 

The hedging strategy implemented in this study is governed by a predefined maximum daily 

VaR threshold, which serves as the trigger for activating risk mitigation measures. This 

threshold was established based on the distribution of historical daily VaR estimates generated 

during the backtesting period. 

Rather than relying on the overall average or on extreme values, the threshold was 

determined using the average of the VaR values at the 33rd and 67th percentiles of the ordered 

VaR observations. This approach mitigates the influence of outliers and non-representative 

values at both ends of the distribution, producing a more robust and informative threshold. The 

resulting value, €132 069, was rounded to €133 000 to enhance interpretability and practicality. 

This level reflects the typical risk range experienced under standard market conditions and 

provides a consistent and disciplined criterion for triggering the hedging mechanism. 

 

7.2.1 Hedging Decision Framework 

The hedging strategy implemented in this study aims to ensure that the portfolio’s daily Value-

at-Risk (VaR) remains below the predefined Economic Capital (EC) threshold of €133 000. 

Whenever the estimated VaR exceeds this limit, a systematic risk mitigation procedure is 

triggered. The intervention involves opening hedging positions via equity index futures, thereby 

reducing the portfolio’s exposure to the most risk-contributing market factors. 

This strategy follows a parsimonious and rule-based framework, designed to promote 

operational efficiency and empirical robustness. Rather than relying on discretionary judgement 

or static asset weights, the hedging mechanism is guided by a daily Marginal VaR 

decomposition of the portfolio. On each day when the VaR estimate breaches the EC threshold, 

the Marginal VaR of each equity index is computed. These values, representing the partial 

derivatives of total VaR with respect to each index exposure, quantify the marginal contribution 

of each index to the portfolio’s overall market risk. 

To translate these contributions into actionable hedging weights, each positive Marginal 

VaR is expressed as a proportion of the sum of all positive marginal contributions. These 

weights are then used to allocate notional exposure across futures contracts, ensuring that the 

hedge specifically targets the most significant sources of risk. Indices with negative marginal 

contributions are excluded from the hedge, as neutralizing such exposures would eliminate their 

natural diversification benefit and could unintentionally increase total portfolio risk. 
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The hedge is implemented by establishing long or short positions in index futures, in 

proportion to each index’s relative marginal risk contribution. The use of futures contracts 

ensures liquidity, low transaction costs, and scalability, rendering the approach suitable for 

dynamic and responsive risk control. 

Additionally, the portfolio includes fixed-income instruments that generate periodic coupon 

payments. To preserve the intended equity allocation and avoid structural distortions in risk 

exposure over time, all received coupons are reinvested proportionally across existing equity 

holdings, based on their relative portfolio weights on the trading day immediately prior to each 

payment. This rule-based reinvestment mechanism ensures that the strategic allocation and 

overall risk profile of the portfolio remain stable throughout the evaluation period. 

 

 

 

Figure 7.1. Evolution of the unhedged daily VaR. 

As shown in Figure 7.1, which plots the evolution of the unhedged daily VaR throughout 

the one-year evaluation period, the portfolio frequently approached or surpassed the predefined 

EC threshold of €133 000. In total, the hedging strategy was activated 124 times, representing 

nearly half of the trading days. 

 The following section provides a detailed breakdown of the Marginal VaR decomposition 

observed on each intervention day, beginning with the first instance on 30 January 2023. 
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7.2.2 Marginal VaR Decomposition 

Throughout the one-year evaluation period, the portfolio’s daily VaR was estimated using the 

selected Quantile Regression model (Model 124). Each VaR estimate was systematically 

compared to the predefined EC threshold of €133 000. When this threshold was exceeded, the 

proportional hedging strategy described in Section 7.2.1 was activated. 

On 30 January 2023, the portfolio’s estimated daily VaR reached €166 827.21, exceeding 

the EC threshold and triggering the first hedging intervention. In line with the framework, the 

initial step consisted of decomposing the total unhedged VaR through a Marginal VaR analysis. 

This process identifies the risk factor components contributing most significantly to total 

portfolio risk, serving as the empirical basis for calibrating the hedge. 

 

Risk Factor 

Type 
Equity Currency Interest Rate 

Marginal VaR 

(EUR) 
93 641.40 41 332.87 31 852.94 

Marginal VaR 

(%) 
56.13% 24.77% 19.09% 

Risk Factor 

Group 
FCHI GSPC IXIC GDAXI DJI HSI USDEUR HKDEUR IR_EUR IR_USD 

Marginal VaR 
(EUR) 

9 824.95 31 726.42 45 513.66 -4 091.93 10 835.74 -167.44 41 903.81 - 570.94 17 993.70 13 859.24 

Marginal VaR 

(%) 
5.89 % 19.02 % 27.28 % - 2.45 % 6.50 % -0.10 % 25.12 % - 0.34 % 10.79 % 8.31 % 

 

Table 7.1. Marginal VaR decomposition by risk factor. Reporting the contribution of each factor to 

the portfolio’s total VaR on 30 January 2023.  

The decomposition by risk factor group provides a more granular perspective on the 

underlying risk architecture of the portfolio. On this specific date, equity exposures represented 

over half of the total VaR, with the Nasdaq Composite (IXIC) and the S&P 500 (GSPC) jointly 

accounting for a substantial share. The S&P 500, in particular, contributes not only to equity 

risk but also introduces currency exposure, as futures positions in this index are denominated 

in U.S. dollars. Consequently, interventions involving this instrument simultaneously affect the 

portfolio’s sensitivity to exchange rate fluctuations, specifically the USDEUR pair. This 

interaction underscores the importance of accounting for cross-factor linkages in an integrated 

risk management process. 

The proportional hedging strategy was implemented using the Marginal VaR contributions 

as a basis for constructing notional weights. On each intervention date, the Marginal VaR of 

each equity index was normalised by the sum of positive Marginal VaRs, yielding a set of 

weights used to distribute notional exposure across index futures. Indices with negative 
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marginal contributions were excluded from the hedge, as their exposures functioned as natural 

diversifiers that reduced the total risk. This selective approach ensured that the hedge targeted 

only risk-enhancing factors while preserving the integrity of the risk decomposition. 

Interventions occurred exclusively in response to material risk deviations, minimising 

unnecessary trading and maintaining the portfolio’s structural stability during periods of 

moderate volatility. On activation dates such as 30 January 2023, the Marginal VaR allocation 

mechanism ensured that the hedge was directed towards the most influential sources of market 

risk. This dynamic and empirically grounded approach consistently restored the portfolio’s VaR 

to within the acceptable bound while preserving its responsiveness to evolving risk conditions. 

 
 

Figure 7.2. Evolution of daily notional exposures by index. 
 

The proportional distribution of notional exposures across the six equity indices was 

derived from the Marginal VaR decomposition of the unhedged portfolio. As shown in Figure 

7.2, indices with higher relative contributions to total risk, such as the Nasdaq Composite 

(IXIC) and the S&P 500 (GSPC), were allocated larger hedge weights. This outcome reflects 

the strategy's objective of concentrating risk mitigation efforts on the primary sources of 

systematic market risk. Moreover, the inclusion of futures contracts denominated in foreign 

currencies, particularly those linked to the U.S. dollar, introduced an additional layer of 

currency exposure. This interaction highlights the importance of implementing integrated risk 

management strategies capable of capturing and addressing cross-risk factor dynamics within 

multi-asset portfolios. 
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7.3. Value-at-Risk Management Results 

This subchapter presents a comparative analysis of the portfolio’s performance under two 

distinct risk management approaches. The first corresponds to the original, unmanaged 

configuration, referred to as the Unhedged Portfolio, while the second incorporates the 

proportional hedging strategy developed in this study, referred to as the Hedged Portfolio. The 

assessment focuses on three key dimensions: the evolution of Value-at-Risk, the daily profit 

and loss, and overall performance indicators. Particular attention is given to the cumulative 

impact of the hedging interventions, with the aim of evaluating their effectiveness in mitigating 

downside risk and improving risk-adjusted returns. 

Figure 7.3 displays the daily VaR estimates for both portfolio configurations over the one-

year out-of-sample evaluation period. The Unhedged Portfolio represents a passive approach 

without any risk control mechanism, whereas the Hedged Portfolio reflects the implementation 

of the rule-based strategy derived from the daily Marginal VaR decomposition. 

 

 

Figure 7.3. Daily VaR of the portfolio with hedging and without hedging.  
 

As illustrated, the comparison reveals a clear divergence in risk exposure between the two 

strategies. In the absence of hedging, the portfolio's VaR exhibits greater volatility and reaches 

a peak exceeding €202 000 on 17 March 2024. This value corresponds to an increase of 

approximately 52 percent relative to the predefined EC threshold of €133 000, highlighting the 

potential for significant risk accumulation when no mitigation mechanism is applied. 

Throughout the evaluation period, the hedging strategy was activated on 124 out of 265 

trading days, demonstrating its responsiveness to shifts in market risk conditions. The consistent 
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gap between the two VaR trajectories confirms the framework’s ability to contain risk within 

acceptable boundaries. These findings support the effectiveness of the proposed methodology 

and reinforce its practical relevance for real-time portfolio risk management under varying 

market conditions. 

 

Figure 7.4. Daily notional values of hedging positions. The exposures reflect the proportional 

allocation derived from the Marginal VaR decomposition, ensuring daily alignment between hedge 

structure and the portfolio’s evolving risk profile. 

As illustrated in Figure 7.4, the daily notional values of the hedging positions established 

throughout the evaluation period reflect the application of the proportional allocation 

methodology introduced in Section 7.2.2. This approach, grounded in the Marginal VaR 

decomposition of the unhedged portfolio, ensures that the hedge dynamically targets the most 

significant sources of market risk. The structure of these hedging interventions, shown in detail 

in Figure 7.2, directly informs the distribution of notional exposure over time. Accordingly, 

Figure 7.4 provides a visual confirmation of the consistent and risk-sensitive implementation 

of the strategy, highlighting the alignment between the theoretical framework and its practical 

execution. 

In addition to its role in risk reduction, the effectiveness of the hedging strategy must also 

be evaluated through its influence on portfolio returns. While the Value-at-Risk metric captures 

potential downside risk, it does not convey the realised financial impact of the strategy. For this 

reason, the analysis now shifts to the portfolio’s daily profit and loss, which complements the 

risk-based assessment by reflecting actual market performance. The P&L series incorporates 

both market-driven fluctuations and the effects of the hedging decisions made throughout the 
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evaluation period. This approach provides a more complete understanding of how the strategy 

contributed to the portfolio’s return dynamics and offers further insight into its practical value 

under real-world conditions.  

 

Figure 7.5. Daily P&L of the portfolio with and without hedging. 

As shown in Figure 7.5, the impact of the hedging strategy on the portfolio’s daily P&L 

exhibits considerable variation throughout the one-year period. On certain days, the 

implementation of the hedge improves performance relative to the unhedged configuration, 

while on others it results in a marginal reduction in returns. This asymmetrical effect aligns with 

the fundamental objective of hedging, which is primarily to reduce downside risk, even if it 

occasionally limits upside potential. 

Specifically, on days when the portfolio registers negative P&L, the hedge typically acts as 

a buffer, reducing the magnitude of losses. Conversely, on days characterised by favourable 

market movements, the hedge may constrain performance, as the protective positions limit the 

full capture of positive returns. This trade-off between risk mitigation and return optimisation 

is inherent to the structure of the strategy and highlights the need for a balanced and context-

aware approach to risk management.  

This asymmetry is substantiated by the results in Table 7.2, which summarises the 

distribution of daily P&L differences between the hedged and unhedged portfolios. The hedge 

contributed positively in 73.8% of the days when the unhedged portfolio recorded losses, while 

only 23.8% of days with positive unhedged P&L showed a performance gain with hedging. 

- € 150 000

- € 100 000

- € 50 000

€  

€ 50 000

€ 100 000

€ 150 000

Portfolio P&L Unhedged Portfolio P&L Hedged



48 

 

These figures confirm that the strategy effectively dampens adverse outcomes at the cost of 

limited upside capture. 

 

Statistics 
P&L hedged – P&L unhedged 

Total When P&L > 0 When P&L < 0 

Number of days 124 63 61 

Positive Difference (%) 48.40% 23.80% 73.80% 

Average (EUR) - 451.11 - 5 941.86 5 219.67 

Median (EUR) - 98.42 - 3 471.66 2 583.69 

Maximum (EUR) 61 463.04 29 846.14 61 463.04 

Minimum (EUR) - 56 363.71 - 56 363.71 - 36 905.01 

 

Table 7.2. P&L differences between hedged and unhedged portfolios 

To further assess the net impact of the hedging strategy on portfolio performance, the next 

step involves analysing the difference in daily P&L between the hedged and unhedged 

configurations. This differential provides a direct measure of the incremental effect of the risk 

mitigation process, highlighting the days on which the hedge contributed positively or 

negatively to the portfolio’s outcome.  

 

Figure 7.6. Daily differences in P&L between the hedged and unhedged portfolios. Positive values 

indicate days when the hedging strategy reduced losses or enhanced gains, while negative values reflect 

a reduction in returns due to risk mitigation. 
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The most substantial positive contribution of the hedging strategy occurred on 22 March 

2023, when it improved the portfolio’s daily P&L by approximately €61 000 relative to the 

unhedged configuration. On that day, the unhedged portfolio recorded a loss of €101 000, 

whereas the hedged portfolio registered a profit of €39 000. This reversal illustrates the 

effectiveness of the hedging mechanism in absorbing severe market shocks and transforming 

potential losses into gains. This outcome highlights the strategy’s capacity to mitigate adverse 

market movements and preserve portfolio value during periods of heightened volatility. 

Conversely, the most pronounced negative effect occurred on 16 March 2023, when the hedged 

portfolio underperformed the unhedged configuration by nearly €56 000. On that day, the 

unhedged portfolio achieved a profit of €129 732, while the hedged portfolio returned €73 368. 

This divergence illustrates the inherent trade-off of risk reduction strategies, which may 

constrain upside capture in pursuit of greater stability during downturns. 

Focusing on the 124 trading days in which the hedging strategy was actively deployed, the 

average daily difference in P&L between the hedged and unhedged portfolios was - €451.11, 

while the median stood at - €98.42. These figures suggest that, although the hedge was effective 

in containing extreme losses, it was associated with a modest reduction in daily profitability. 

This result is consistent with the primary objective of the strategy, which prioritises risk 

containment rather than return maximisation. The observed asymmetry reinforces the notion 

that effective risk management often requires a deliberate trade-off between potential gains and 

increased stability under adverse market conditions. 

Building upon the P&L comparison, the next step in evaluating the hedging strategy 

involves analysing the behaviour of exceedances. These are instances in which the actual daily 

loss surpasses the VaR estimate. This metric provides a direct assessment of model performance 

and the effectiveness of risk control. By comparing the frequency and timing of exceedances 

under the hedged and unhedged configurations, it becomes possible to quantify the extent to 

which the strategy succeeded in keeping portfolio losses within the predicted bounds. This 

analysis complements the preceding performance evaluation by shifting the focus from return 

outcomes to risk containment. 
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Figure 7.7. Daily exceedances of the unhedged portfolio. Observations below the VaR line indicate 

instances where actual losses exceeded predicted risk. 
 

Figure 7.8. Daily exceedances of the hedged portfolio. Observations below the VaR line indicate 

instances where actual losses exceeded predicted risk. 

Upon examining the exceedance profiles of both portfolio configurations, it is observed 

that a single exceedance occurred in each case on 17 October 2023. On that day, the actual loss 

exceeded the estimated VaR, which stood at €110 105.27 for both the hedged and unhedged 

portfolios. Notably, this exceedance did not trigger a hedging intervention, as the portfolio’s 

VaR remained below the predefined Economic Capital threshold of €133 000. This outcome 

reinforces the design of the framework, which activates hedging strictly in response to material 
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risk levels. It also highlights the importance of distinguishing between statistical model 

deviations and economically significant risk events when evaluating the effectiveness of risk 

control mechanisms. 

To deepen the evaluation of the hedging strategy, the following analysis integrates both 

VaR and P&L metrics for the unhedged and hedged portfolio configurations. This joint 

perspective allows for a more nuanced assessment of the strategy’s ability not only to mitigate 

losses but also to stabilise returns in varying market conditions. 

 

Figure 7.9. Cumulative P&L of Hedged vs. Unhedged Portfolio 

 

A comparative analysis of the cumulative P&L trajectories indicates that, although both 

portfolios concluded the one-year evaluation period with positive returns, the hedged portfolio 

generated a lower total profit relative to the unhedged configuration. This outcome exemplifies 

the inherent trade-off in risk mitigation strategies: while hedging serves to attenuate extreme 

losses, it can also constrain upside potential by dampening exposure to favourable market 

movements. 

Nevertheless, this performance gap must be interpreted in the broader context of portfolio 

volatility and downside risk. Throughout the year, the hedged portfolio exhibited lower return 

volatility, fewer pronounced drawdowns, and closer alignment with VaR estimates. These 

features underscore the strategy’s effectiveness in achieving its primary objective of enhancing 

risk control and promoting return stability. In this sense, the results reinforce the strategic role 

of hedging in containing tail risk and protecting portfolio value during periods of heightened 

uncertainty. 
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To complement this analysis, the Return on Risk-Adjusted Capital (RORAC) is adopted as 

the key metric for evaluating performance efficiency. RORAC captures the relationship 

between the return generated by a portfolio and the risk capital deployed to support it, offering 

an integrated view of profitability relative to risk exposure. By accounting for both return 

generation and downside potential, this measure enables a robust comparison between the 

hedged and unhedged strategies, particularly under conditions of financial uncertainty. 

Formally, RORAC is computed as the ratio between the portfolio’s daily profit and loss 

(P&L) and the Value-at-Risk (VaR) estimated for the same day: 

 

𝑅𝑂𝑅𝐴𝐶 =  
𝑃&𝐿

𝑉𝑎𝑅
(38) 

 

where P&L denotes the portfolio’s daily profit and loss, and VaR corresponds to the Value-at-

Risk estimated for the same day. The analysis begins on 30 January 2023 and spans the full 

one-year out-of-sample period. 

To ensure a comprehensive evaluation, two complementary methodologies are used. The 

first method calculates the average daily RORAC from Equation (38), capturing the consistency 

of risk-adjusted performance throughout the evaluation period. The second method derives the 

ratio between the average daily P&L and the average daily EC, providing a high-level aggregate 

indicator of return efficiency. Together, these perspectives allow for a robust comparison 

between the hedged and unhedged strategies in terms of their economic performance under 

uncertainty. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑂𝑅𝐴𝐶(1) = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃&𝐿

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝐶
(39) 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑂𝑅𝐴𝐶(2) =
1

𝑛
∑

𝑃&𝐿𝑡

𝐸𝐶𝑡

𝑛

𝑡=1

(40) 

 

 

These two expressions represent the alternative approaches used to quantify average risk-

adjusted return. Equation (39) relies on aggregated means, whereas Equation (40) accounts for 

daily fluctuations in both return and risk. 
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Table 7.3 summarises the risk-adjusted performance results for both the hedged and 

unhedged portfolios, using the two RORAC methodologies described previously. The table 

reports the total profit and EC over the one-year period, as well as their respective daily 

averages. 

 

 Unhedged Hedged 

P&L (€) 1 194 786.56 1 138 849.38 

Average P&L 4 508.63 4 297.54 

EC (€) 36 051 784.97 32 970 711.74 

Average EC 136 044.47 124 417.78 

Average RORAC (1) 3.31% 3.45% 

Average RORAC (2) 3.48% 3.76% 

 

Table 7.3. Summary of performance and risk-adjusted efficiency. RORAC (1) corresponds to the 

ratio of total P&L to total EC, while RORAC (2) reflects the average of daily RORAC values over the 

evaluation period. 
 

Based on the results presented in Table 7.3, it becomes evident that the hedged portfolio 

outperforms the unhedged configuration in terms of capital efficiency across both risk-adjusted 

performance metrics. Under the first methodology, RORAC (1), defined as the ratio between 

total profit and total Economic Capital (EC), the hedged portfolio achieves a value of 3.45 per 

cent, exceeding the 3.31 per cent recorded for the unhedged counterpart. This indicates that, 

over the full investment horizon, the hedged strategy generated more return per unit of capital 

committed to absorbing risk. 

A similar conclusion is reached under the second metric, RORAC (2), which reflects the 

average of daily risk-adjusted returns throughout the year. In this case, the hedged portfolio 

attains a value of 3.76 per cent, clearly outperforming the 3.48 per cent achieved by the 

unhedged version. This result highlights not only greater capital efficiency at the aggregate level 

but also improved consistency in daily risk-adjusted performance. 

It is important to note that the hedging framework intentionally excluded indices with 

negative marginal contributions to Value-at-Risk. By doing so, it preserved natural 

diversification effects and avoided unnecessary offsetting of risk-reducing exposures. This 

conceptual refinement contributed to the robustness of the strategy without compromising 

performance. 

Taken together, these findings support the view that dynamic hedging based on Marginal 

VaR decomposition can enhance portfolio performance by improving the efficiency with which 
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risk capital is allocated. In investment contexts where downside protection and capital 

preservation are prioritised, such outcomes justify the integration of proactive risk control 

mechanisms. 
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Chapter 8.  

Conclusion 

This dissertation set out to assess and manage the Value-at-Risk (VaR) of a diversified portfolio, 

ensuring that daily risk exposure remained within a predefined Economic Capital (EC) 

threshold of €133 000. The portfolio included both equity and fixed-income instruments, 

representing a broad cross-section of major developed markets. The methodology employed 

throughout the study prioritised empirical rigour and practical applicability, focusing on 

selecting, validating, and operationalising VaR models capable of supporting dynamic risk 

control interventions. 

A comprehensive evaluation of 152 model configurations across four major classes 

(Normal, SGSt, Historical Simulation and Quantile Regression) highlighted the inadequacy of 

assuming normality in financial return distributions. Parametric models based on Gaussian 

assumptions systematically failed standard backtesting procedures, while approaches involving 

strict factor mappings introduced distortions that reduced forecast accuracy. Through a multi-

stage process of statistical validation using the Unconditional Coverage (UC) and Berkowitz, 

Christoffersen, and Pelletier (BCP) tests, a Quantile Regression model with EWMA volatility 

(Model 124) emerged as the most robust configuration. This model delivered the most 

consistent exceedance rates across both global and annual subperiods, exhibiting strong 

alignment with the theoretical confidence level. 

The selected model was subsequently embedded within a dynamic, proportional hedging 

strategy based on Marginal VaR decomposition. This approach enabled the daily identification 

of risk concentrations and guided the adjustment of hedging positions through equity index 

futures. Importantly, the strategy was only activated when the estimated VaR exceeded the EC 

threshold, ensuring operational efficiency and minimising trading frequency. Furthermore, the 

hedge was applied exclusively to indices with positive marginal contributions to portfolio VaR, 

thereby preserving the diversification benefits of negatively contributing exposures. A rule-

based coupon reinvestment mechanism complemented this framework, maintaining a stable 

asset allocation and consistent risk profile throughout the evaluation period. 

Empirical evidence showed that the unhedged portfolio frequently breached the VaR limit, 

with the most severe exceedance surpassing €225 000. In contrast, the hedged portfolio 

consistently maintained risk levels within the prescribed boundaries. While this came at the cost 
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of a slight reduction in total nominal profit, the trade-off proved beneficial when viewed through 

the lens of risk-adjusted efficiency. 

Analysis of cumulative P&L trajectories revealed that the hedged portfolio generated lower 

absolute returns but with reduced volatility and fewer drawdowns. Most importantly, the Return 

on Risk-Adjusted Capital (RORAC) results provided clear evidence of improved capital 

efficiency. Using the first method, defined as total profit divided by total EC, the hedged 

portfolio achieved a RORAC of 3.45 per cent, compared to 3.31 per cent for the unhedged 

configuration. Under the second approach, based on the average of daily RORAC values, the 

hedged strategy again outperformed, with a result of 3.76 per cent versus 3.48 per cent. These 

results demonstrate not only enhanced annual capital productivity but also more consistent daily 

performance. 

In conclusion, this research demonstrates the practical effectiveness of a model-driven, 

dynamically executed risk management strategy. By combining rigorous model selection with 

a rule-based hedging mechanism grounded in Marginal VaR decomposition, the proposed 

framework stabilised portfolio risk, improved resilience to market shocks and enhanced the 

efficiency with which economic capital was deployed. These findings support the broader 

application of quantitative risk control methodologies in institutional portfolio management, 

particularly in environments characterised by uncertainty and multi-asset complexity. 
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Appendices 

Appendix A: Detailed Statistics 

 

Appendix A. Summary Statistics of Portfolio P&L and Returns  

 

P&L Mean Median Maximum Minimum 
Standard 

Deviation 
Skewness Kurtosis 

2013-2023 4 387.32 € 5 838.73 € 391 134.68 € -526 714.99 € 59 554.02 € -0.269 6.445 

2023 153.13 € -8 695.81 € 193 644.78 € -117 390.19 € 70 406.91 € 0.984 2.028 

2022 -2 301.27 € -2 490.23 € 391 134.68 € -273 484.85 € 83 487.76 € 0.241 1.432 

2021 5 473.03 € 5 109.42 € 165 025.78 € -166 931.91 € 50 557.46 € -0.145 1.107 

2020 5 285.87 € 11 271.25 € 377 837.98 € -526 714.99 € 94 532.97 € -0.528 6.657 

2019 6 788.27 € 5 696.49 € 106 999.24 € -115 490.84 € 40 333.00 € -0.384 0.415 

2018 2 478.23 € 5 785.36 € 182 459.18 € -180 954.69 € 59 856.36 € -0.193 0.766 

2017 4 183.29 € 7 987.38 € 190 091.63 € -123 846.45 € 38 805.01 € 0.097 2.127 

2016 5 313.87 € 9 383.73 € 154 147.00 € -169 874.51 € 47 056.55 € -0.423 0.833 

2015 4 097.73 € 2 404.77 € 215 825.06 € -231 444.20 € 65 198.27 € -0.175 1.440 

2014 8 236.92 € 9 356.81 € 146 838.48 € -131 772.15 € 40 770.92 € -0.235 1.542 

2013 4 426.30 € 1 599.01 € 137 203.42 € -109 051.80 € 44 624.48 € -0.01 0.082 

 

Appendix A. Descriptive Statistics of the P&L and return of the portfolio, during 

the global test period, from 11 February 2013 to 27 January 2023. 
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Appendix B: Portfolio Data 

 

Appendix  B. Portfolio value and asset allocation over time with coupon reinvestment 

 

Date Bond ISIN 

Coupon 

Reinvested 

(€) 

Reinvestment 

Description 

Equity 

Allocation 

Bond 

Allocation 

Portfolio value 

(€) 

27-01-2023 - - Initial setup 42 % 58 % 9 499 993.85 

06-03-2023 LU2591860569 19 800. 00 
Equity 

Reallocation 
43 % 57 % 9 394 280.76 

17-05-2023 

US91282CFV81 

 

US91282CJJ18 

15 743.26 

 

19 347.14 

Equity 

Reallocation 
43 % 57 % 9 619 910.67 

06-07-2023 DE0001135226 47 025.00 
Equity 

Reallocation 
47 % 53 % 10 068 759.37 

21-10-2023 DE000BU25018 12 000.00 
Equity 

Reallocation 
48 % 52 % 9 996 483.62 

17-11-2023 

US91282CFV81 

 

US91282CJJ18 

15 736.58 

 

19 338.93 

Equity 

Reallocation 
49 % 51 % 10 294 699.16 

15-01-2024 NL0000102317 60 500.00 
Equity 

Reallocation 
50 % 50 % 10 558 967.85 

 

Appendix B. Coupon reinvestment allocation over time. Presents the evolution of 

the portfolio’s value and asset class allocation during the out-of-sample period. Bond 

coupon proceeds were reinvested proportionally across existing equity positions to 

preserve the portfolio’s risk structure, with fixed-income allocation adjusted 

accordingly. This rule-based approach ensured consistency in asset mix and supported 

the stability of the overall risk profile. 
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Appendix C: VaR Models Details 

 

Appendix C.1. Normal VaR Model configurations 

 

Model number Model Class 
EWMA Smoothing 

Factor 

1 Normal 0.9 

2 Normal 0.905 

3 Normal 0.91 

4 Normal 0.915 

5 Normal 0.92 

6 Normal 0.925 

7 Normal 0.93 

8 Normal 0.935 

9 Normal 0.94 

10 Normal 0.945 

11 Normal 0.95 

12 Normal 0.955 

13 Normal 0.96 

14 Normal 0.965 

15 Normal 0.97 

16 Normal 0.975 

17 Normal 0.98 

18 Normal 0.985 

19 Normal 0.99 

20 Normal 0.995 

 

Appendix C.1. Overview of Normal VaR Models evaluated. 
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Appendix C.2. SGSt VaR Model configurations 

 

Model number Model Class 
EWMA Smoothing 

Factor 
Sample Size 

21 SGSt 0.92 250 

22 SGSt 0.925 250 

23 SGSt 0.93 250 

24 SGSt 0.935 250 

25 SGSt 0.94 250 

26 SGSt 0.945 250 

27 SGSt 0.95 250 

28 SGSt 0.955 250 

29 SGSt 0.96 250 

30 SGSt 0.965 250 

31 SGSt 0.97 250 

32 SGSt 0.92 500 

33 SGSt 0.925 500 

34 SGSt 0.93 500 

35 SGSt 0.935 500 

36 SGSt 0.94 500 

37 SGSt 0.945 500 

38 SGSt 0.95 500 

39 SGSt 0.955 500 

40 SGSt 0.96 500 

41 SGSt 0.965 500 

42 SGSt 0.97 500 

43 SGSt 0.92 750 

44 SGSt 0.925 750 

45 SGSt 0.93 750 

46 SGSt 0.935 750 

47 SGSt 0.94 750 

48 SGSt 0.945 750 

49 SGSt 0.95 750 

50 SGSt 0.955 750 

51 SGSt 0.96 750 

52 SGSt 0.965 750 

53 SGSt 0.97 750 

54 SGSt 0.92 1 000 

55 SGSt 0.925 1 000 

56 SGSt 0.93 1 000 

57 SGSt 0.935 1 000 

58 SGSt 0.94 1 000 

59 SGSt 0.945 1 000 

60 SGSt 0.95 1 000 

61 SGSt 0.955 1 000 

62 SGSt 0.96 1 000 

63 SGSt 0.965 1 000 

64 SGSt 0.97 1 000 

 

Appendix C.2. Overview of SGSt VaR Models evaluated. 
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Appendix C.3. Historical VaR Models configurations 

 

Model number Model Class 
EWMA Smoothing 

Factor 
Sample Size 

65 Historical 0.92 250 

66 Historical 0.925 250 

67 Historical 0.93 250 

68 Historical 0.935 250 

69 Historical 0.94 250 

70 Historical 0.945 250 

71 Historical 0.95 250 

72 Historical 0.955 250 

73 Historical 0.96 250 

74 Historical 0.965 250 

75 Historical 0.97 250 

76 Historical 0.92 500 

77 Historical 0.925 500 

78 Historical 0.93 500 

79 Historical 0.935 500 

80 Historical 0.94 500 

81 Historical 0.945 500 

82 Historical 0.95 500 

83 Historical 0.955 500 

84 Historical 0.96 500 

85 Historical 0.965 500 

86 Historical 0.97 500 

87 Historical 0.92 750 

88 Historical 0.925 750 

89 Historical 0.93 750 

90 Historical 0.935 750 

91 Historical 0.94 750 

92 Historical 0.945 750 

93 Historical 0.95 750 

94 Historical 0.955 750 

95 Historical 0.96 750 

96 Historical 0.965 750 

97 Historical 0.97 750 

98 Historical 0.92 1 000 

99 Historical 0.925 1 000 

100 Historical 0.93 1 000 

101 Historical 0.935 1 000 

102 Historical 0.94 1 000 

103 Historical 0.945 1 000 

104 Historical 0.95 1 000 

105 Historical 0.955 1 000 

106 Historical 0.96 1 000 

107 Historical 0.965 1 000 

108 Historical 0.97 1 000 

 

Appendix C.3. Overview of Historical VaR Models evaluated. 
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Appendix C.4. Quantile Regression VaR Models configurations 

 

Model number Model Class 
EWMA Smoothing 

Factor 
Sample Size 

109 Quantile Regression 0.92 250 

110 Quantile Regression 0.925 250 

111 Quantile Regression 0.93 250 

112 Quantile Regression 0.935 250 

113 Quantile Regression 0.94 250 

114 Quantile Regression 0.945 250 

115 Quantile Regression 0.95 250 

116 Quantile Regression 0.955 250 

117 Quantile Regression 0.96 250 

118 Quantile Regression 0.965 250 

119 Quantile Regression 0.97 250 

120 Quantile Regression 0.92 500 

121 Quantile Regression 0.925 500 

122 Quantile Regression 0.93 500 

123 Quantile Regression 0.935 500 

124 Quantile Regression 0.94 500 

125 Quantile Regression 0.945 500 

126 Quantile Regression 0.95 500 

127 Quantile Regression 0.955 500 

128 Quantile Regression 0.96 500 

129 Quantile Regression 0.965 500 

130 Quantile Regression 0.97 500 

131 Quantile Regression 0.92 750 

132 Quantile Regression 0.925 750 

133 Quantile Regression 0.93 750 

134 Quantile Regression 0.935 750 

135 Quantile Regression 0.94 750 

136 Quantile Regression 0.945 750 

137 Quantile Regression 0.95 750 

138 Quantile Regression 0.955 750 

139 Quantile Regression 0.96 750 

140 Quantile Regression 0.965 750 

141 Quantile Regression 0.97 750 

142 Quantile Regression 0.92 1 000 

143 Quantile Regression 0.925 1 000 

144 Quantile Regression 0.93 1 000 

145 Quantile Regression 0.935 1 000 

146 Quantile Regression 0.94 1 000 

147 Quantile Regression 0.945 1 000 

148 Quantile Regression 0.95 1 000 

149 Quantile Regression 0.955 1 000 

150 Quantile Regression 0.96 1 000 

151 Quantile Regression 0.965 1 000 

152 Quantile Regression 0.97 1 000 

 

Appendix C.4. Overview of Quantile Regression VaR Models evaluated. 

 



66 

 

Appendix D: Backtesting Details 

 

Appendix D.1. UC test results of the Total VaR 

 

Model 

number 
Model Class Exceedances 

Exceedance 

rate (%) 

p-value (%) 

 
1 Normal 64 2.46% 0.00% 

2 Normal 65 2.50% 0.00% 

3 Normal 65 2.50% 0.00% 

4 Normal 65 2.50% 0.00% 

5 Normal 63 2.42% 0.00% 

6 Normal 61 2.35% 0.00% 

7 Normal 58 2.23% 0.00% 

8 Normal 58 2.23% 0.00% 

9 Normal 59 2.27% 0.00% 

10 Normal 56 2.15% 0.00% 

11 Normal 55 2.12% 0.00% 

12 Normal 54 2.08% 0.00% 

13 Normal 52 2.00% 0.00% 

14 Normal 50 1.92% 0.00% 

15 Normal 49 1.88% 0.01% 

16 Normal 49 1.88% 0.01% 

17 Normal 51 1.96% 0.00% 

18 Normal 51 1.96% 0.00% 

19 Normal 47 1.81% 0.02% 

20 Normal 52 2.00% 0.00% 

21 SGSt 78 3.00% 0.00% 

22 SGSt 75 2.88% 0.00% 

23 SGSt 76 2.92% 0.00% 

24 SGSt 76 2.92% 0.00% 

25 SGSt 75 2.88% 0.00% 

26 SGSt 75 2.88% 0.00% 

27 SGSt 75 2.88% 0.00% 

28 SGSt 76 2.92% 0.00% 

29 SGSt 74 2.85% 0.00% 

30 SGSt 68 2.62% 0.00% 

31 SGSt 73 2.81% 0.00% 

32 SGSt 42 1.62% 0.38% 

33 SGSt 39 1.50% 1.70% 

34 SGSt 39 1.50% 1.70% 

35 SGSt 40 1.54% 1.06% 

36 SGSt 41 1.58% 0.64% 

37 SGSt 40 1.54% 1.06% 

38 SGSt 41 1.58% 0.64% 

39 SGSt 37 1.42% 4.15% 

40 SGSt 37 1.42% 4.15% 

41 SGSt 37 1.42% 4.15% 

42 SGSt 37 1.42% 4.15% 

43 SGSt 32 1.23% 25.37% 

44 SGSt 33 1.27% 18.54% 

45 SGSt 35 1.35% 9.20% 

46 SGSt 32 1.23% 25.37% 

47 SGSt 34 1.31% 13.22% 

48 SGSt 34 1.31% 13.22% 

49 SGSt 35 1.35% 9.20% 

50 SGSt 35 1.35% 9.20% 

51 SGSt 36 1.38% 6.25% 



67 

 

52 SGSt 36 1.38% 6.25% 

53 SGSt 32 1.23% 25.37% 

54 SGSt 32 1.23% 25.37% 

55 SGSt 33 1.27% 18.54% 

56 SGSt 34 1.31% 13.22% 

57 SGSt 35 1.35% 9.20% 

58 SGSt 33 1.27% 18.54% 

59 SGSt 33 1.27% 18.54% 

60 SGSt 34 1.31% 13.22% 

61 SGSt 35 1.35% 9.20% 

62 SGSt 36 1.38% 6.25% 

63 SGSt 34 1.31% 13.22% 

64 SGSt 32 1.23% 25.37% 

65 Historical 66 2.54% 0.00% 

66 Historical 66 2.54% 0.00% 

67 Historical 63 2.42% 0.00% 

68 Historical 60 2.31% 0.00% 

69 Historical 58 2.23% 0.00% 

70 Historical 54 2.08% 0.00% 

71 Historical 46 1.77% 0.04% 

72 Historical 44 1.69% 0.12% 

73 Historical 46 1.77% 0.04% 

74 Historical 44 1.69% 0.12% 

75 Historical 42 1.62% 0.38% 

76 Historical 67 2.58% 0.00% 

77 Historical 66 2.54% 0.00% 

78 Historical 63 2.42% 0.00% 

79 Historical 58 2.23% 0.00% 

80 Historical 53 2.04% 0.00% 

81 Historical 49 1.88% 0.01% 

82 Historical 43 1.65% 0.22% 

83 Historical 40 1.54% 1.06% 

84 Historical 39 1.50% 1.70% 

85 Historical 39 1.50% 1.70% 

86 Historical 38 1.46% 2.69% 

87 Historical 70 2.69% 0.00% 

88 Historical 70 2.69% 0.00% 

89 Historical 66 2.54% 0.00% 

90 Historical 61 2.35% 0.00% 

91 Historical 58 2.23% 0.00% 

92 Historical 56 2.15% 0.00% 

93 Historical 49 1.88% 0.01% 

94 Historical 44 1.69% 0.12% 

95 Historical 41 1.58% 0.64% 

96 Historical 40 1.54% 1.06% 

97 Historical 38 1.46% 2.69% 

98 Historical 67 2.58% 0.00% 

99 Historical 66 2.54% 0.00% 

100 Historical 62 2.38% 0.00% 

101 Historical 57 2.19% 0.00% 

102 Historical 54 2.08% 0.00% 

103 Historical 52 2.00% 0.00% 

104 Historical 48 1.85% 0.01% 

105 Historical 43 1.65% 0.22% 

106 Historical 40 1.54% 1.06% 

107 Historical 38 1.46% 2.69% 

108 Historical 35 1.35% 9.20% 

109 QR 34 1.31% 13.22% 

110 QR 31 1.19% 33.88% 

111 QR 31 1.19% 33.88% 
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112 QR 30 1.15% 44.15% 

113 QR 30 1.15% 44.15% 

114 QR 30 1.15% 44.15% 

115 QR 32 1.23% 25.37% 

116 QR 33 1.27% 18.54% 

117 QR 34 1.31% 13.22% 

118 QR 34 1.31% 13.22% 

119 QR 36 1.38% 6.25% 

120 QR 31 1.19% 33.88% 

121 QR 30 1.15% 44.15% 

122 QR 31 1.19% 33.88% 

123 QR 27 1.04% 84.47% 

124 QR 27 1.04% 84.47% 

125 QR 27 1.04% 84.47% 

126 QR 29 1.12% 56.15% 

127 QR 31 1.19% 33.88% 

128 QR 32 1.23% 25.37% 

129 QR 33 1.27% 18.54% 

130 QR 33 1.27% 18.54% 

131 QR 33 1.27% 18.54% 

132 QR 34 1.31% 13.22% 

133 QR 33 1.27% 18.54% 

134 QR 33 1.27% 18.54% 

135 QR 33 1.27% 18.54% 

136 QR 30 1.15% 44.15% 

137 QR 29 1.12% 56.15% 

138 QR 29 1.12% 56.15% 

139 QR 30 1.15% 44.15% 

140 QR 31 1.19% 33.88% 

141 QR 32 1.23% 25.37% 

142 QR 36 1.38% 6.25% 

143 QR 34 1.31% 13.22% 

144 QR 34 1.31% 13.22% 

145 QR 33 1.27% 18.54% 

146 QR 30 1.15% 44.15% 

147 QR 29 1.12% 56.15% 

148 QR 29 1.12% 56.15% 

149 QR 30 1.15% 44.15% 

150 QR 29 1.12% 56.15% 

151 QR 30 1.15% 44.15% 

152 QR 31 1.19% 33.88% 

 

Appendix D.1. UC test results for the global period, for the Total VaR. Reports the 

results of the UC test applied to Total VaR estimates over the global evaluation period. 

Models highlighted in bold correspond to those that pass the test at the 5% significance 

level. 
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Appendix D.2. BCP test results of the Total VaR for the models that pass the UC test. 

 

Model number Model Class Worst p-value Lag 
43 SGSt 0.00% 10 

44 SGSt 36.29% 1 

45 SGSt 5.75% 2 

46 SGSt 2.15% 2 

47 SGSt 4.27% 2 

48 SGSt 4.27% 2 

49 SGSt 5.75% 2 

50 SGSt 5.75% 2 

51 SGSt 0.00% 2 

52 SGSt 0.00% 3 

53 SGSt 0.00% 10 

54 SGSt 32.80% 1 

55 SGSt 36.29% 1 

56 SGSt 4.27% 2 

57 SGSt 5.75% 2 

58 SGSt 3.08% 2 

59 SGSt 3.08% 2 

60 SGSt 4.27% 2 

61 SGSt 5.75% 2 

62 SGSt 0.00% 2 

63 SGSt 0.00% 3 

64 SGSt 0.00% 10 

108 Historical 0.00% 10 

109 QR 39.86% 1 

110 QR 53.80% 1 

111 QR 53.80% 1 

112 QR 26.07% 1 

113 QR 26.07% 1 

114 QR 26.07% 1 

115 QR 32.80% 1 

116 QR 36.29% 1 

117 QR 31.95% 10 

118 QR 0.04% 2 

119 QR 0.02% 2 

120 QR 29.38% 1 

121 QR 26.07% 1 

122 QR 29.38% 1 

123 QR 12.92% 3 

124 QR 12.92% 3 

125 QR 0.18% 2 

126 QR 0.57% 2 

127 QR 1.44% 2 

128 QR 2.15% 2 

129 QR 0.00% 2 

130 QR 0.00% 2 

131 QR 36.29% 1 

132 QR 39.86% 1 

133 QR 36.29% 1 

134 QR 3.08% 2 

135 QR 3.08% 2 

136 QR 0.87% 10 

137 QR 0.37% 10 

138 QR 0.37% 10 

139 QR 0.00% 2 

140 QR 0.00% 2 

141 QR 0.00% 2 
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142 QR 47.12% 1 

143 QR 4.27% 2 

144 QR 4.27% 2 

145 QR 3.08% 2 

146 QR 0.87% 10 

147 QR 0.00% 2 

148 QR 0.00% 2 

149 QR 0.00% 2 

150 QR 0.00% 2 

151 QR 0.00% 2 

152 QR 0.00% 10 
 

Appendix D.2. BCP test results for the global period, for the Total VaR. Reports the 

results of the BCP test applied to Total VaR estimates over the global evaluation period. 

Models highlighted in bold correspond to those that pass the test at the 5% significance 

level. 

 

 

Appendix D.3.1 UC test results across annual subperiods for Total VaR – SGSt model 

 

Model class SGSt 

Model number 44 45 49 50 54 55 57 61 

2022-2023 
Exceedance rate (%) 

p-value (%) 

0.77 

69.67 

0.77 

69.67 

1.15 

80.77 

1.15 

80.77 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

1.15 

80.77 

2021-2022 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

2020-2021 
Exceedance rate (%) 

p-value (%) 

2.31 

7.01 

2.69 

2.34 

2.69 

2.34 

2.69 

2.34 

2.31 

7.01 

2.69 

2.34 

2.69 

2.34 

2.69 

2.34 

2019-2020 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.54 

41.87 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.15 

80.77 

2018-2019 
Exceedance rate (%) 

p-value (%) 

0.38 

25.44 

0.38 

25.44 

0.77 

69.67 

0.77 

69.67 

0.38 

25.44 

0.38 

25.44 

0.38 

25.44 

0.77 

69.67 

2017-2018 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

2016-2017 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

2015-2016 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.15 

80.77 

2014-2015 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

2013-2014 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

 

Appendix D.3.1 UC test results across annual subperiods for Total VaR - SGSt 

model. Reports the UC test applied to Total VaR model specifications over ten 

consecutive annual subperiods. Models highlighted in bold correspond to those that pass 

the test at the 5% significance level. 
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Appendix D.3.2 UC test results across annual subperiods for Total VaR – Quantile 

Regression model 

 

Model class Quantile Regression 
 

Model number 109 110 111 112 113 114 115 116 117 

2022-2023 
Exceedance rate (%) 

p-value (%) 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

2021-2022 
Exceedance rate (%) 

p-value (%) 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.38 

25.44 

0.77 

69.67 

0.77 

69.67 

1.15 

80.77 

1.15 

80.77 

2020-2021 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.92 

18.44 

2019-2020 
Exceedance rate (%) 

p-value (%) 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

1.92 

18.44 

2018-2019 
Exceedance rate (%) 

p-value (%) 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

2017-2018 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

2016-2017 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

0.77 

69.67 

2015-2016 
Exceedance rate (%) 

p-value (%) 

2.31 

7.01 

1.54 

41.87 

1.54 

41.87 

1.54 

80.77 

1.15 

80.77 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

0.77 

69.67 

2014-2015 
Exceedance rate (%) 

p-value (%) 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.15 

80.77 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

2013-2014 
Exceedance rate (%) 

p-value (%) 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

1.54 

41.87 

 

Model class Quantile Regression 

Model number 120 121 122 123 124 131 132 133 142 

2022-

2023 

Exceedance rate (%) 

p-value (%) 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

2021-

2022 

Exceedance rate (%) 

p-value (%) 

0.77 

69.67% 

0.77 

69.67% 

0.77 

69.67% 

0.38 

25.44% 

0.38 

25.44% 

1.15 

80.77% 

1.15 

80.77% 

0.77 

69.67% 

1.15 

80.77% 

2020-
2021 

Exceedance rate (%) 

p-value (%) 

1.54 

41.87% 

2.31 

7.01% 

2.31 

7.01% 

1.92 

18.44% 

1.92 

18.44% 

1.92 

18.44% 

1.92 

7.01% 

2.31 

7.01% 

2.69 

2.34% 

2019-

2020 

Exceedance rate (%) 

p-value (%) 

2.31 

7.01% 

1.92 

18.44% 

1.92 

18.44% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

2018-

2019 

Exceedance rate (%) 

p-value (%) 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

0.38 

25.44% 

1.15 

80.77% 

2017-
2018 

Exceedance rate (%) 

p-value (%) 

1.54 

41.87% 

1.15 

80.77% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

2016-

2017 

Exceedance rate (%) 

p-value (%) 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

2015-

2016 

Exceedance rate (%) 

p-value (%) 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

0.77 

69.67% 

0.77 

69.67% 

1.15 

80.77% 

1.15 

80.77% 

1.15 

80.77% 

1.54 

41.87% 

2014-
2015 

Exceedance rate (%) 

p-value (%) 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

1.54 

41.87% 

2013-

2014 

Exceedance rate (%) 

p-value (%) 

1.15 

80.77% 

0.77 

69.67% 

0.77 

69.67% 

0.77 

69.67% 

0.77 

69.67% 

1.92 

18.44% 

1.92 

18.44% 

1.92 

18.44% 

1.15 

80.77% 

 

Appendix D.3.2 UC test results across annual subperiods for Total VaR – Quantile 

Regression model. Reports the UC test applied to Total VaR model specifications over 

ten consecutive annual subperiods. Models highlighted in bold correspond to those that 

pass the test at the 5% significance level. 
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Appendix D.3.3. Exceedance rates for Total VaR during the global evaluation period 

 

Model number Model Class 
Exceedance rate 

(%) 

44 SGSt 1.27 

54 SGSt 1.23 
109 Quantile Regression 1.31 
110 Quantile Regression 1.19 
111 Quantile Regression 1.19 
112 Quantile Regression 1.15 
113 Quantile Regression 1.15 
114 Quantile Regression 1.15 
115 Quantile Regression 1.23 
116 Quantile Regression 1.27 
117 Quantile Regression 1.31 

120 Quantile Regression 1.19 

121 Quantile Regression 1.15 

122 Quantile Regression 1.19 

123 Quantile Regression 1.04 

124 Quantile Regression 1.04 

131 Quantile Regression 1.27 

132 Quantile Regression 1.31 

133 Quantile Regression 1.27 

 

Appendix D.3.3. Exceedance rates for Total VaR during the global evaluation 

period. Reports the exceedance rate for the global evaluation period. Models 123 and 

124 exhibited the closest alignment with the theoretical exceedance rate of 1%. Model 

124 was ultimately selected as the preferred specification. 

 


