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Resumo

A crescente globalizacao dos mercados financeiros tem acentuado a necessidade de estruturas
robustas de gestdo de risco nas instituigdes financeiras. Esta evolug¢do levou a implementacao
de regulamentagdes mais exigentes e a adogdo generalizada de metodologias quantitativas
avangadas, destacando-se o Value-at-Risk (VaR) como métrica padrao na avaliagcdo e controlo
do risco de mercado.

O presente estudo avalia a eficacia do VaR na andlise e mitigacao do risco num portefélio
diversificado composto por agdes e obrigacdes provenientes de trés mercados distintos. A
analise inicia-se com a avaliagdo comparativa de diferentes modelos de VaR, através de
backtesting, com o objetivo de identificar o modelo mais adequado a estrutura e caracteristicas
do portefolio. O modelo selecionado ¢ posteriormente utilizado para quantificar e comparar
duas abordagens distintas de gestdo de risco: (1) o VaR diario de um portefélio ndo sujeito a
intervengao, € (2) o VaR diario de um portefolio gerido com base numa estratégia dindmica de
cobertura ao longo de um horizonte temporal de um ano.

A andlise de desempenho assenta na métrica Return on Risk-Adjusted Capital (RORAC),
permitindo aferir a eficiéncia relativa de ambas as estratégias em termos ajustados ao risco. Os
resultados demonstram que a aplicacdo de uma estratégia de cobertura com base em limites de
VaR permite alcancar um desempenho superior face a auséncia de gestdo ativa do risco. Estes
resultados realgam a importancia de uma abordagem proativa na contencdo do risco para
potenciar o desempenho financeiro.

Além de reforcar a aplicabilidade pratica do VaR na gestdo de portefélios com multi-ativos,
este estudo oferece contributos relevantes para instituicdes financeiras que pretendem
maximizar o retorno ajustado ao risco num contexto de mercados globais cada vez mais

interligados e volateis.

Palavras-Chave: Gestao de Risco, Value-at-Risk, Portfolio, Backtesting, Hedging
Classificacao JEL: G11, G32
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Abstract

The increasing global integration of financial markets has heightened the need for robust risk
management frameworks within financial institutions. This evolution has driven the adoption
of more stringent regulatory standards and the widespread use of advanced quantitative
techniques, with Value-at-Risk (VaR) emerging as the standard metric for market risk
assessment and control.

The analysis assesses the effectiveness of VaR in risk analysis and mitigation within a
diversified portfolio comprising equities and fixed-income securities from three distinct
markets. The study begins with a comparative assessment of multiple VaR models through
backtesting, aiming to identify the specification that best captures the portfolio’s risk profile.
The selected model is subsequently applied to estimate and compare two distinct strategies: (1)
the daily VaR of an unmanaged portfolio, and (2) the daily VaR of a portfolio managed through
a dynamic hedging strategy over a one-year horizon.

Portfolio performance is assessed using the Return on Risk-Adjusted Capital (RORAC) as
the core evaluation metric, enabling a risk-adjusted comparison between approaches. The
results show that implementing a VaR-based risk management strategy that limits daily risk
exposure leads to consistently superior performance relative to a passive approach. These
findings underscore the importance of proactive risk control in enhancing financial outcomes.

Beyond reaffirming the practical relevance of VaR in multi-asset portfolio management,
this study provides valuable insights for financial institutions seeking to optimise risk-adjusted

returns in increasingly interconnected and volatile markets.

Keywords:  Risk  Management, Value-at-Risk, Portfolio, Backtesting, Hedging
JEL Classification: G11, G32
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Chapter 1.

Introduction

The increasing interconnectedness of global financial markets has intensified the challenge
faced by institutions in maintaining a delicate balance between generating adequate returns and
managing financial risk. Among the primary categories of financial risk, including credit,
operational, liquidity and market risk, market risk stands out due to its pronounced volatility
and acute sensitivity to macroeconomic developments, geopolitical events and shifts in
monetary policy. These factors can lead to significant fluctuations in asset valuations and pose
substantial threats to financial stability.

At the core of modern risk management lies the Value-at-Risk (VaR) framework, a widely
adopted statistical methodology that quantifies the maximum expected loss of a financial
portfolio over a specified time horizon and confidence level. Popularised by J. P. Morgan’s
RiskMetrics model in the 1990s, VaR has since become a cornerstone of risk assessment,
enabling institutions to define Economic Capital (EC) thresholds and optimise capital allocation
under uncertainty (Jorion, 2007). By integrating VaR with EC requirements, financial
institutions can strengthen risk oversight and ensure that capital reserves are both sufficient and
efficiently deployed.

This dissertation investigates the practical application of VaR in managing the risk of a
diversified portfolio comprising equities and bonds across multiple developed markets, namely
the United States, Europe and Asia. The study evaluates the performance of several VaR
methodologies and proposes a dynamic hedging strategy aimed at reducing risk exposure while
preserving portfolio performance. Through a systematic empirical assessment of both
parametric and non-parametric VaR models, this research seeks to identify the most robust and
effective risk management approach under conditions of heightened market volatility.

In the past decade, evolving market dynamics have exposed the limitations of conventional
risk management models. The post-2008 low-interest rate environment, followed by sharp
inflationary pressures and aggressive monetary tightening between 2021 and 2023, underscored
the vulnerability of rigid risk modelling frameworks. For instance, the European Central Bank
maintained a negative interest rate policy from 2014 to 2022, significantly impacting bond
markets. In parallel, the United States Federal Reserve implemented abrupt rate hikes in 2022,

prompting a marked contraction in equity valuations. The S&P 500 index alone declined by



approximately 25 per cent over the first three quarters of that year. These episodes highlight the
urgent need for flexible, forward-looking risk assessment models capable of capturing
asymmetric shocks and systemic disruptions. This dissertation contributes to that objective by
conducting a detailed comparative analysis of alternative VaR specifications.

The portfolio under analysis comprises fixed-income instruments from both the United
States and the Eurozone, as well as equity positions associated with major global indices. These
include the DAX 40 (GDAXI) for Germany, the CAC 40 (FCHI) for France, the AEX for the
Netherlands, the S&P 500 (GSPC) and Dow Jones Industrial Average (DJI) for the United
States, the Nasdaq Composite (IXIC) for US technology exposure, and the Hang Seng Index
(HSI) for Hong Kong. This selection ensures comprehensive regional and sectoral
representation. By decomposing total portfolio risk into systematic components, reflecting
broad market movements, and idiosyncratic components, capturing asset-specific variations,
the study isolates the primary sources of volatility and designs targeted hedging strategies to
mitigate exposure effectively. Although extensive literature, including Lee and Su (2011) and
Hull and White (1998), has compared the merits of various VaR models, no single approach has
proven universally superior. This highlights the need for portfolio-specific validation.

To navigate this model selection process, the dissertation assesses four distinct
methodologies for estimating VaR. The Normal VaR model, which assumes return symmetry
and Gaussian distribution, offers simplicity but tends to underestimate extreme losses. The
Skewed Generalised Student-t (SGSt) model, proposed by Theodossiou (1998), introduces
skewness and heavy tails, enhancing accuracy in capturing tail events. The Historical
Simulation model, refined by Hull and White (1998), adjusts past returns to reflect prevailing
market volatility. Finally, the Quantile Regression (QR) approach, introduced by Koenker and
Bassett (1978), allows for distribution-free estimation of conditional quantiles, making it well
suited to asymmetric return profiles. Volatility estimates are computed using the Exponentially
Weighted Moving Average (EWMA) technique to ensure sensitivity to recent market
conditions.

To evaluate the predictive performance of these models, the study employs a rigorous
backtesting framework based on two statistical tests. The Unconditional Coverage (UC) test
developed by Kupiec (1995) compares the number of observed exceedances against theoretical
expectations. The Berkowitz, Christoffersen and Pelletier (BCP) test (2011) assesses
exceedance clustering and serial independence. After identifying the most accurate model
through these tests, its effectiveness is examined in two practical settings over a one-year

evaluation period. In the first setting, the portfolio is monitored without risk mitigation, with
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VaR computed daily. In the second setting, a dynamic hedging strategy is implemented that
adjusts equity exposure whenever the daily Economic Capital exceeds the predefined threshold
of €133 000. This limit reflects historically observed risk levels and aligns with institutional
risk tolerance.

Finally, the study employs the Return on Risk-Adjusted Capital (RORAC) metric to
compare the performance of the two strategies, balancing profitability with risk exposure.
Preliminary findings indicate that the actively hedged portfolio not only reduces the frequency
and severity of VaR breaches but also delivers superior risk-adjusted returns. These results
support the use of VaR-based thresholds in conjunction with responsive risk mitigation
techniques.

The structure of this dissertation is organised into eight chapters. Chapter 1 introduces the
research problem, objectives, and relevance of the study. Chapter 2 presents a literature review
covering key theoretical concepts related to risk management and Value-at-Risk (VaR)
methodologies. Chapter 3 describes the composition of the portfolio under analysis, including
asset selection across equities and fixed-income instruments. Chapter 4 outlines the
methodological framework, detailing the process of risk factor mapping, volatility estimation,
and portfolio-level modelling. Chapter 5 discusses the implementation of various VaR models,
including Normal, SGSt, Historical Simulation and Quantile Regression approaches,
culminating in a summary of all configurations tested. Chapter 6 presents the backtesting
methodology, including the application of Unconditional Coverage (UC) and Berkowitz,
Christoffersen and Pelletier Test (BCP) tests, and summarises the empirical validation results.
Chapter 7 focuses on risk management implementation, detailing the VaR decomposition
process, the dynamic hedging strategy based on Marginal VaR, and the resulting impact on
portfolio risk and performance. Finally, Chapter 8 offers the main conclusions, reflecting on the
empirical findings and their practical implications for portfolio risk control.

Additional technical content is provided in the appendices, including descriptive statistics
(Appendix A), portfolio data (Appendix B), model configuration details (Appendix C), and

comprehensive backtesting results (Appendix D).






Chapter 2.

Literature Review

Risk management has long been a cornerstone of financial theory and practice, given its
significant role in promoting financial stability and mitigating unexpected losses. As financial
systems become increasingly complex and globally interconnected, the ability to accurately
measure and manage risk remains a critical concern for both regulators and practitioners.
Among the various quantitative tools developed for this purpose, Value-at-Risk (VaR) has
emerged as one of the most widely implemented risk metrics. It provides a forward-looking
estimate of the potential loss in portfolio value over a given time horizon, for a specified
confidence level.

The development of VaR methodologies has evolved in response to successive financial
crises, including the 1987 market crash, the 2008 global financial crisis, and the COVID-19
pandemic. These episodes exposed the weaknesses of static and overly simplistic models,
prompting regulators to strengthen prudential frameworks. Notably, the Basel Committee on
Banking Supervision progressively introduced VaR related capital requirements under Basel 11
and Basel III, and more recently Basel IV, which emphasises stress testing and scenario analysis
as complementary tools to address systemic risk (Bank for International Settlements, 2021).

VaR models are typically classified into three main categories: parametric, non-parametric
and semi-parametric. Parametric approaches, such as the conventional Normal VaR, are based
on strong distributional assumptions, most commonly the Gaussian distribution. While these
assumptions simplify the computational process, they often lead to an underestimation of tail
risk (Jorion, 2007). In contrast, non-parametric methods, particularly Historical Simulation, do
not impose any distributional assumptions. Instead, they derive empirical quantiles directly
from historical return data. However, their accuracy is highly dependent on the sample size and
the representativeness of past observations, which may limit their predictive capacity (Hull and
White, 1998; Pritsker, 2006).

Semi-parametric models attempt to address these limitations by incorporating distributional
flexibility. The Skewed Generalised Student-t (SGSt) distribution, introduced by Theodossiou
(1998), accounts for asymmetry and fat tails, which are common features in financial return
distributions. Empirical studies by Lee and Su (2011) and others demonstrate that SGSt-based

VaR models provide more accurate tail estimates, especially in volatile market regimes.



Similarly, Quantile Regression (QR), developed by Koenker and Bassett (1978), enables direct
estimation of conditional quantiles without imposing a strict functional form. QR models have
shown superior robustness in capturing asymmetric risk dynamics across a range of asset
classes (Xiao et al., 2015).

Another important dimension concerns the volatility forecasting techniques embedded
within VaR models. The Exponentially Weighted Moving Average (EWMA) method,
popularised by J. P. Morgan’s RiskMetrics model (1996), assigns greater weight to recent
observations, enhancing responsiveness to changing market conditions. Although widely used
for its simplicity, RiskMetrics relies on the assumption of normally distributed returns, which
often leads to the underestimation of losses during stress periods.

More recently, researchers have explored machine learning-based approaches to risk
estimation, including neural networks and reinforcement learning algorithms. These models can
capture non-linearities and dynamic patterns in large datasets, often outperforming traditional
VaR specifications in detecting tail risk and regime shifts (Fischer & Krauss, 2018). However,
their implementation requires substantial data and computational resources, and their
interpretability remains an ongoing challenge.

While model specification is critical, so too is model validation. Backtesting is the principal
technique for assessing the reliability of VaR forecasts, comparing realised losses against
model-implied thresholds. Kupiec’s (1995) Unconditional Coverage (UC) test evaluates
whether the observed number of exceedances aligns with the expected frequency, while the
Berkowitz, Christoffersen and Pelletier (2011) test (BCP) examines whether exceedances occur
independently over time or exhibit clustering. These tests are widely used to assess whether
VaR models are both statistically and economically consistent with the observed data.

Several empirical studies underscore that VaR model performance varies across asset
classes and market regimes. Barone-Adesi et al. (1998) and Boudoukh et al. (1998) highlight
the importance of volatility adjustment and weighted observations in enhancing predictive
accuracy. Furthermore, combining VaR-based limits with scenario analysis and stress testing
has been shown to improve institutional resilience to rare but extreme events.

In summary, although no VaR methodology is universally optimal, advances in semi-
parametric modelling, volatility forecasting, and statistical validation have considerably
improved risk measurement frameworks. This dissertation builds on these developments by
evaluating multiple VaR models within a diversified portfolio and extending their application
beyond risk measurement to active risk control. Specifically, the study integrates model

validation with a Marginal VaR-based hedging strategy, offering a practical contribution to the
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literature on VaR as both a regulatory tool and a decision-making instrument in dynamic

portfolio management.






Chapter 3.

Portfolio Composition

This study constructs a strategically diversified portfolio that integrates both equity and fixed-
income instruments to balance risk and return effectively. The selection of equity indices in this
study aims to ensure broad geographical and sectoral diversification across major developed
markets. The portfolio incorporates the CAC 40 (FCHI) for France, the S&P 500 (GSPC) for
the United States, the Nasdaq Composite (IXIC) to capture US technology exposure, the DAX
40 (GDAX]I) for Germany, the Dow Jones Industrial Average (DJI) as a representative of US
industrials, and the Hang Seng Index (HSI) to provide targeted exposure to the Asian market
through Hong Kong. These indices were chosen for their liquidity, market representativeness
and relevance as hedging instruments, allowing for an effective decomposition of systematic
risk across regional and sectoral dimensions. Their aggregate performance over the evaluation
period is summarised in Appendix A.

Equity selection is based on a top-down approach, targeting approximately 50 individual
stocks distributed across key economic sectors. The portfolio includes high-growth technology
companies such as Microsoft, Apple and NVIDIA, providing exposure to innovation-driven
segments like artificial intelligence, semiconductors and cloud computing. In addition, large-
cap defensive equities in the healthcare and utilities sectors are incorporated, including Johnson
& Johnson, Pfizer, NextEra Energy and Duke Energy, to mitigate cyclical volatility.

To optimise risk-adjusted returns, the equity portfolio also includes positions in cyclical
sectors such as industrials (e.g., Honeywell, Caterpillar) and energy (e.g., Chevron,
TotalEnergies), which tend to outperform during economic expansions. Furthermore, tactical
short positions are taken in selected European consumer staples and U.S. financials, serving as
a hedge against downturns in these specific market segments and enhancing the responsiveness
of the portfolio to adverse sector-specific developments.

The fixed-income component consists of high-quality government and corporate bonds
from the United States and Eurozone. The bond allocation prioritises capital preservation and
income stability, with a focus on investment-grade instruments. These include AAA-rated
sovereign bonds such as German Bunds and U.S. Treasuries, along with selectively chosen

European corporate bonds offering enhanced yield.



Bond maturities are staggered between 2028 and 2034 to optimise the portfolio’s duration
profile. This structure supports a balance between short-term liquidity and long-term interest
rate stability while minimising reinvestment risk. The bond portfolio excludes emerging market
debt, in line with the study’s focus on developed markets, although its inclusion is
acknowledged as a potential avenue for further diversification and inflation hedging.

The portfolio is primarily denominated in euros (64%) and U.S. dollars (36%), with
marginal exposure to Hong Kong dollars through selected equity holdings. As a result, foreign
exchange risk is a relevant consideration to ensure valuation consistency, a uniform currency
conversion methodology is applied across all assets. The study also assesses the impact of
currency fluctuations on portfolio volatility and risk-adjusted returns and evaluates potential
hedging mechanisms to mitigate foreign exchange exposure.

This asset allocation enables a robust empirical assessment of Value-at-Risk (VaR) models
across a representative sample of asset classes, sectors and currencies. The inclusion of both
long and short positions, combined with geographic and sectoral diversification, creates a
realistic and dynamic testing environment. This structure enhances the relevance of the study’s
findings, particularly in contexts where cross-asset correlations and risk exposures exhibit
instability under stressed market conditions.

Tables 3.1 to 3.3 summarise the full composition and structural details of the portfolio

examined throughout this dissertation.

Stock Ticker  Currency Market  Quantity ?;;?Crg (\Sjlée) A”c(’[% ;mn
Pernod Ricard SA RI.PA EUR FCHI -1 059 179.46 -190 052.80 -2.00
Carrefour SA CA.PA EUR FCHI -12 685 16.94 -215 004.54 -2.26
LVMH Moet Hennesy - Louis Vuitton MC.PA EUR FCHI 406 788.53 320 143.95 3.37
Danone S.A. BN.PA EUR FCHI -3 759 47.88 -180 008.25 -1.89
3M Company MMM usD GSPC -1840 108.67 -183 553.15 -1.93
American International Group, Inc. AIG usD GSPC -3075 61.79 -174 424.11 -1.84
Amazon.com, Inc. AMZN usD GSPC 3228 102.24 302 935.19 3.19
Advanced Micro Devices Inc. AMD usD IXIC -2785 75.40 -192 748.90 -2.03
Microsoft Corporation MSFT usD IXIC 1387 245.08 312 021.63 3.28
Apple Inc. AAPL Usb IXIC 2453 144.73 325 892.42 3.43
NVIDIA Corporation NVDA Usb IXIC 1695 203.55 316 691.52 3.33
ASML Holding NV ASML EUR IXIC 494 658.31 325 205.68 3.42
Oracle Corporation ORCL usD GSPC -2518 87.36 -201 925.35 -2.13
Salesforce.com Inc. CRM usD GSPC -1217 164.30 -183 542.95 -1.93
Adobe Inc. ADBE usD IXIC 836 370.71 284 469.64 2.99
SAP SE SAP EUR GDAXI -1 955 109.97 -215008.44 -2.26
Texas Instruments Incorporated TXN Usb IXIC 1434 167.37 220 306.19 2.32
Johnson & Johnson JINJ Usb DJI 2177 160.74 321 212.93 3.38
Pfizer Inc. PFE Usb GSPC 5362 41.02 201 933.10 2.13
Eli Lilly and Company LLY Usb GSPC 903 337.59 279 816.49 2.95
AstraZeneca PLC AZN usD GSPC -3165 63.20 -183 605.77 -1.93

10



Novartis AG NVS uUsD GSPC 2 845 82.60 215721.57 2.27

Amgen Inc. AMGN usD IXIC 932 241.53 206 629.83 2.18
JPMorgan Chase & Co. JPM usD DJI 2175 135.63 270 781.08 2.85
Bank of America Corporation BAC usD GSPC -5 565 34.13 -174 386.22 -1.84
Wells Fargo & Company WFC usD GSPC -5209 44.15 -211118.34 -2.22
Goldman Sachs Group Inc. GS Usb GSPC 824 340.42 257 477.95 271
Morgan Stanley MS Usb GSPC -2 241 91.50 -188 211.08 -1.98
American Express Company AXP Usb GSPC 1477 169.31 229 545.45 2.42
Honeywell International Inc. HON usD GSPC 844 201.45 156 067.83 1.64
Caterpillar Inc. CAT usD DJI -697 258.32 -165 271.20 -1.74
General Electric Company GE usD GSPC -3709 66.05 -224 889.66 -2.37
Union Pacific Corporation UNP usD GSPC 1604 196.39 289 158.73 3.04
FedEx Corporation FDX usD GSPC 1077 185.69 183 573.92 1.93
NextEra Energy Inc. NEE Usb GSPC 3707 72.83 247 842.08 2.61
Duke Energy Corporation DUK Usb GSPC -1 680 95.24 -146 879.22 -1.55
Consolidated Edison Inc. ED Usb GSPC 2111 89.99 174 381.50 1.84
Xcel Energy Inc. XEL usD IXIC 2750 65.46 165 241.39 1.74
PG&E Corporation PCG usD GSPC -10 286 16.04 -151 453.14 -1.59
Sempra Energy SRE usD GSPC 2383 77.62 169 776.43 1.79
The Boeing Company BA usD DJI 1610 211.17 312 071.04 3.28
Lockheed Martin Corporation LMT usD GSPC 495 44421 201 830.75 2.12
Raytheon Technologies Corporation RTX usD GSPC 2 400 95.84 211 133.53 2.22
Northrop Grumman Corporation NOC usD GSPC 504 426.93 197 508.62 2.08
General Dynamics Corporation GD usD GSPC 1108 221.17 224 938.98 2.37
Airbus SE AIR EUR FCHI 3984 50.20 199 996.80 211
TotalEnergies SE TTE EUR FCHI 4376 59.41 259 981.42 2.74
ConocoPhillips COP usD GSPC -1870 117.63 -201 910.59 -2.13
BP plc BP usD GSPC -6 636 33.90 -206 524.32 -2.17
Equinor ASA EQNR usD GSPC 9541 26.21 229 505.06 2.42
Chevron Corporation CvX Usb GSPC 1804 169.09 280 002.23 2.95
Crédit Agricole S.A. ACA.PA EUR FCHI -21 517 9.99 -214 995.43 -2.26
Industrial and Commercial Bank of China Limited 1398.HK HKD HSI -59 410 3.95 -27 549.15 -0.29
CSPC Pharmaceutical Group Limited 1093.HK HKD HSI -23241 9.03 -24 618.31 -0.26
China Resources Land Limited 1109.HK HKD HSI -5 950 37.81 -26 375.17 -0.28
Total Equity 4009 738.84 42.22

Table 3.1. Stock Characteristics. This table presents the characteristics of the stocks included in the
portfolio, along with the corresponding investment amounts converted into euros. The exchange rate
applied on 30 January 2023 is USD/EUR = 0.9179

Bond Currency Maturity ~ Coupon Rate C/g(uepac;n Fa(céljls;ue Fa(lélj/s;ue A”‘(’(‘,’/i‘ ;'On
DE000BU25018 EUR 2028-10-19 2.40% 1 500 000.00 506 015.91 5.33
DE0001135226 EUR 2034-07-04 4.75% 1 990 000.00 1255 166.35 13.21
NL0000102317 EUR 2028-07-04 5.50% 1 1100 000.00 1265 291.70 13.32
US91282CFV81 usb 2032-11-15 4.13% 2 761 857.00 805 990.04 8.48
US91282CJJ18 usb 2033-11-15 4.50% 2 858 236.50 939 912.16 9.89
LU2591860569 EUR 2033-03-02 3.00% 1 660 000.00 717 878.78 7.55
Total Bonds 5 490 254.94 57.78

Table 3.2. Bond Characteristics. This table presents the characteristics of the bonds included in the
portfolio, along with the corresponding investment amounts converted into euros. The fair value of each
bond is computed as the sum of the present value of its future cash flows, discounted to 30 January 2023
and converted to EUR where applicable. The exchange rate applied on that date is USD/EUR = 0.9179.
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Portfolio VValue

Value (EUR) Value (%)
Stocks 4009 738.84 42.22
Bonds 5490 254.94 57.78
Total 9499 993.78 100

Table 3.3. Portfolio value. This table showcases the total value of the portfolio on 30 January 2023 as
well as the amount allocated to equity and bonds.
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Chapter 4.

Methodology

This study aims to estimate and control the Value-at-Risk (VaR) of a diversified investment
portfolio over a one-year horizon, from 30 January 2023 to 2 February 2024. The primary
objective is to ensure that portfolio risk remains within a pre-defined Economic Capital (EC)
threshold, through the implementation of a dynamic hedging mechanism designed to mitigate
excessive exposure.

The methodological framework begins with the identification and mapping of relevant risk
factors, applicable to both the Total VaR and Systematic VaR perspectives. This is followed by
the selection of a suitable volatility estimation model, tailored to the time-varying nature of
financial markets. Once the volatility structure is defined, the next step involves specifying and
calibrating the VaR models that best reflect the underlying risk characteristics of the portfolio.

The selection process encompasses a comparative assessment of several VaR
methodologies and parameter configurations. Model evaluation is conducted through rigorous
backtesting procedures, which are employed to measure forecast accuracy and statistical
reliability.

This chapter outlines the methodological approach adopted for risk factor identification and
justifies the choice of the volatility estimation technique. Chapter 5 presents the VaR models
and respective specifications under analysis. Chapter 6 proceeds with the backtesting analysis,
which evaluates the robustness and predictive performance of the selected models under

empirical conditions.

4.1 Risk Factor Mapping

Risk factor mapping constitutes the foundational step in accurately measuring and managing
portfolio risk. This process requires the precise identification, quantification and classification
of the key drivers influencing portfolio value. In portfolio risk management, exposures are
typically decomposed into systematic (market-wide) risk and residual (asset-specific) risk
components. Systematic risk, driven by common factors such as interest rates or equity indices,
cannot be eliminated through diversification. In contrast, residual risk can be substantially

mitigated through appropriate asset diversification.
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To capture the portfolio’s risk profile comprehensively, both Total VaR and Systematic VaR
are computed at the risk factor level. Total VaR accounts for all asset-specific risks, delivering
a granular risk measure. Conversely, Systematic VaR aggregates individual exposures into
broader risk proxies, such as benchmark indices, enhancing scalability but at the expense of
specificity. Estimating both measures allows for comparative analysis of diversification
efficiency and the degree of systematic risk exposure.

The mapping procedure begins by determining each asset’s sensitivity to relevant risk
factors, expressed in the portfolio’s reference currency, the euro (EUR). This ensures
consistency in valuation by converting all foreign-denominated exposures into EUR, using
exchange rates as of the valuation date.

Formally, the portfolio ® consists of multiple assets exposed to different risk factors. The
exposure to each factor is denoted by 6; (for 1 = 1, ..., n), where each 8; represents the loading

of the portfolio to the i-th risk driver. These exposures are expressed as a risk factor vector:

6,
9=[s] (1)
On

A distinct mapping approach is applied to each asset class. For equities, Total VaR is
computed based on individual stock price movements, while Systematic VaR consolidates these
equities into representative market indices. This simplification retains core market risk features
while reducing computational complexity.

For fixed-income instruments, risk exposure stems primarily from interest rate sensitivity.
Bonds are mapped using the Present Value of a Basis Point (PV01), which measures the change
in bond price resulting from a one-basis-point shift in interest rates. To accommodate bonds
with irregular maturities, cash flows are projected onto standardised maturity buckets (vertices).
Throughout this transformation, the total present value (PV) and PVO01 are preserved to
maintain accuracy in the mapping process.

In terms of currency risk, foreign currency exposures are aggregated and converted into
EUR. The portfolio’s net position in each currency is identified, and its sensitivity to exchange
rate fluctuations is quantified. This step is essential for capturing the volatility introduced by
currency movements and for evaluating their contribution to total portfolio risk.

By employing asset-specific and factor-consistent mapping techniques, the portfolio’s risk

exposures are represented with precision. This rigorous foundation supports the subsequent
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steps of volatility estimation and Value-at-Risk (VaR) calculation, thereby enhancing the overall

effectiveness of the portfolio’s risk management framework.

4.1.1. Stocks

The quantification of equity risk exposures relies on estimating future volatility from historical
stock returns. The methodology adopted differs according to whether the Total VaR or the
Systematic VaR framework is applied.

Under the Total VaR framework, the risk factor associated with each equity position is
defined by the daily price movements of the individual stock. The exposure to this risk factor,
0, + is computed by converting the market value of the stock position into euros. This is given

by:
Ot =M =Ny X P XFX;, (2)

where, M; ; denotes the amount invested in EUR on the stock, N; ; denotes the number of shares
held, P;; is the stock price per share and FX;. the spot exchange rate between the asset’s
currency and EUR.

For the Systematic VaR, the risk factor is replaced by a stock market index, and the
exposure is adjusted so that the systematic risk of the index position matches the systematic

risk of the original stock, as measured by the stock’s beta relative to the index.

Hi,t = Mi,t X ﬁstock,]ndex,t (3)

The Profit and Loss (P&L) of each equity position under both frameworks depends
explicitly on the corresponding risk factor’s price movement. Specifically, the P&L for stock i

at time t 1s:

Pyt

P&L;; = 6; X -1 (4)

Pit—1

For the Systematic VaR, index values replace individual prices in the return calculation,
significantly enhancing computational efficiency when managing large portfolios.

This structured and factor-consistent approach to equity risk mapping ensures accurate

exposure quantification and facilitates robust VaR estimation under both total and systematic

risk frameworks.
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4.1.2. Bonds

In contrast to equities, fixed-income instruments are characterized by distinct risk dynamics
arising from their predetermined cash flow schedules and fixed maturity dates. As bonds
approach maturity, their price volatility tends to decline, a behaviour commonly referred to as
the pull-to-par effect. Moreover, while equity valuations are largely influenced by expectations
of future earnings, bond prices are more directly sensitive to fluctuations in prevailing interest
rates. These structural differences make volatility estimation techniques typically used for
equities inadequate when applied to fixed-income assets.

To quantify interest rate risk, this study adopts the Present Value of a Basis Point (PVO01),
a widely recognized metric that measures the change in a bond’s present value resulting from a
one basis point (0.01%) shift in the yield curve. PVO1 thus captures the marginal valuation
impact of small fluctuations in interest rates, offering a precise and interpretable measure of
interest rate sensitivity.

The Present Value (PV) of a given bond cash flow C; at time T is first computed in euros.
For foreign-denominated instruments, cash flows are converted to EUR using the prevailing
exchange rate FX; and subsequently discounted using the continuously compounded zero rate

Ty

PVCTITT = CT X e_rT X FXt (5)

Using a first-order Taylor approximation, the corresponding PVO01 is estimated as:

aPV,
PVO1c, . ~ % X (—0.01%) (6)
= T X PV, . X 0.01% 7)

here, T denotes the time to maturity of the bond (in years), Cy is the bond cash flow at time
T, FX; represents the exchange rate at time ¢, and 7; is the continuously compounded zero-
coupon interest rate used for discounting.

In a multi-cash flow bond portfolio, each cash flow may correspond to a distinct maturity.
Since complete interest rate data for all possible maturities is typically unavailable, a mapping
approach is applied whereby irregular maturities are aligned with nearby standard maturities,
referred to as vertices. This mapping preserves both the total present value and total PV01 of

the original cash flows, ensuring consistency in interest rate risk representation. This technique
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follows the PV and PV01 invariant mapping methodology, as conceptually developed by
Alexander (2008a).
To achieve this, the cash flows are proportionally allocated between two vertex maturities
(T1 and T-), representing the nearest standard maturities surrounding the original maturity (7).
The mapping conditions are expressed as:
Xrp =1—xpy

o = T,-T (8)

Note that x7, and xr, represent the proportions of the present value of the original cash

flow that are mapped to the vertex maturities T; and T, respectively. These vertices correspond

to the standard maturities with available interest rate data that are closest to the original maturity

T, with T; being the maturity directly below T and T, being the maturity directly above T.
This process generalizes effectively to portfolios with multiple vertices. The PVO01 for each

vertex can then be accurately computed as:
PV01y, = Ty X x7, X 0.01% 9

The profit and loss (P&L) for bonds, reflecting changes in their present values (APV), is

consequently expressed as:

n

P&Lpona, = Z —PV01,, X

i=1

Ary,

0.01%

(10)

Therefore, a rise in rates leads to capital losses, while declining rates result in gains.
Accurately modelling this sensitivity is essential for the effective management of fixed-income

risk, especially when constructing VaR-based frameworks.

4.1.3. Currency

The inclusion of foreign-denominated assets in the portfolio adds an additional dimension to
the risk management process, stemming from foreign exchange (FX) exposure. In addition to
the inherent market risk associated with each asset, positions denominated in currencies other
than the euro (EUR), particularly the United States dollar (USD) and the Hong Kong dollar

(HKD), introduce valuation risk due to exchange rate variability.
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This FX risk materializes when the EUR-equivalent value of foreign holdings fluctuates
because of changes in exchange rates. Such currency-induced volatility can have a material
impact on the portfolio’s total value and therefore requires explicit integration into the overall
risk measurement framework.

To quantify this exposure, the capital invested in each foreign currency is aggregated and
converted into euros using the prevailing spot exchange rate. Let FX; , denote the spot rate at
time t between a foreign currency i and the EUR. Thus, for a given investment amount M; ,
denominated in currency i, the associated profit and loss (P&L) arising specifically from

exchange rate movements is calculated as follows:

P&L;, = M;, X < P _ 1) (11)
' ' FXit—q

This equation isolates the impact of currency fluctuations on the EUR valuation of the

portfolio. Proper quantification of this effect enables the identification of potential

vulnerabilities and supports the implementation of targeted hedging strategies. In the context of

an internationally diversified portfolio, managing FX risk is essential for maintaining return

stability and ensuring consistency in risk-adjusted performance metrics.

4.1.4. Portfolio

The vector of risk factor loadings reflects the portfolio’s aggregated sensitivities to distinct
sources of financial risk and constitutes a critical input for risk measurement and
decomposition. These exposures enable a structured understanding of how specific market
variables influence overall portfolio valuation. Table 4.1 provides a detailed breakdown of the
mapped risk factor exposures expressed in euros, with a focus on Total Value-at-Risk (VaR).
This metric integrates both systematic and idiosyncratic components of risk, capturing the full
spectrum of sensitivity to equity prices, interest rates and currency fluctuations. For reference,
Systematic VaR figures are discussed separately in later sections, where factor-based
aggregation is explicitly applied.

The data presented correspond to 30 January 2023, which marks the starting point of the
evaluation period. This is the first day on which the one-day-ahead VaR is calculated, using risk

factor exposures determined in the prior step.
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Stocks Interest Rate Currency

Risk Factor Exposure (EUR) Risk Factor Exposure (EUR) Risk Factor Exposure (EUR)
RLPA -190 052.80 EUR3M -1.11 USDEUR 5743 925.37
CA.PA -215 004.55 EUR6M -1.62 HKDEUR -78 542.63
MC.PA 320 143.96 EURLY -10.85
BN.PA -180 008.26 EUR2Y -26.52
MMM -183 553.15 EUR3Y -63.13

AIG -174 424.11 EURSY -732.35
AMZN 302 935.19 EUR7Y -213.34
AMD -192 748.64 EURI0Y -1204.61
MSFT 312021.43 EURI5SY -362.86
AAPL 325892.53 EUR20Y 0
NVDA 316 691.53 USD3M -0.69
ASML 325205.68 USD6M -1.02
ORCL -201 925.35 USD1Y -4.99
CRM -183 542.95 uUsSD2Y -12.91
ADBE 284 469.65 USD3Y -27.80
SAP -215 008.45 USD5Y -58.57
TXN 220 306.20 USD7Y -120.13
INJ 321212.94 USD10Y -1153.40
PFE 201 933.11 USD20Y -97.26
LLY 279 816.50
AZN -183 605.77
NVS 215721.57
AMGN 206 629.84
JPM 270 781.09
BAC -174 386.22
WFC -211 118.34
GS 257 477.95
MS -188 211.08
AXP 229 545.45
HON 156 067.83
CAT -165271.20
GE -224 889.66
UNP 289 158.73
FDX 183 573.92
NEE 247 842.08
DUK -146 879.22
ED 174 381.50
XEL 165 241.39
PCG -151453.14
SRE 169 776.43
BA 312 071.04
LMT 201 830.75
RTX 211 133.53
NOC 197 508.62
GD 224 938.98
AIR 199 996.80
TTE 259 981.42
cop -201 910.59
BP -206 524.32
EQNR 229 505.06
CVX 280 002.23
ACA.PA -214995.43
1398 . HK -27 549.15
1093.HK -24 618.31
1109.HK. -26 375.17

Table 4.1. Risk factor exposures. This table showcases the VaR exposures of portfolio positions in
EUR as of 27 January 2023, including equities, interest rate and currencies.
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4.2. Volatility Estimation

Before computing the Value-at-Risk (VaR), it is essential to obtain accurate estimates of the
volatility associated with each underlying risk factor. Although the sample standard deviation
of historical returns is the most used method, this approach assigns equal weight to all past
observations. As a result, it may fail to adequately capture recent shifts in market dynamics,
especially under volatile conditions.

This limitation becomes particularly relevant when risk factors exhibit different scales, such
as comparing equity returns (typically in percentage terms) to changes in interest rates
(measured in basis points). Since VaR is inherently forward-looking, it is crucial to adopt a
volatility estimation method that places greater emphasis on recent market behaviour.

To address these shortcomings, we employ the Exponentially Weighted Moving Average
(EWMA) model. Unlike traditional methods, the EWMA model assigns exponentially
decreasing weights to historical observations, prioritizing recent data while diminishing the
influence of older data over time. The extent to which older observations decrease in importance
is determined by a smoothing parameter A (lambda), which lies between 0 and 1. Lower values
of A give greater weight to recent observations, thus making the volatility estimates more
responsive to current market conditions.

The recursive formulation for EWMA volatility estimation is given by:

62 = (1— a2+ 16,_, (12)

Where x, represents the return (or change) in the risk factor at time t and 67 denotes the
estimate variance at time .

Similarly, the EWMA covariance between two risk factors i at time j and at time is given

by:
Gijr = (1= Dxyexjr + A6, -1 (13)

The selection of the smoothing factor A plays a critical role in determining the
responsiveness of the volatility estimate. The RiskMetrics framework proposed by J.P. Morgan
(1996) suggests a standard value of A = 0.94 for daily data, which balances short-term
sensitivity with longer-term stability. However, the optimal value of 1 is context-specific and
depends on the volatility regime, asset class, and the institution’s risk tolerance (Alexander,
2008).

In this study, multiple values of A are evaluated to determine the most appropriate

configuration for the portfolio under analysis. The selected parameter is then validated through

20



a backtesting procedure, ensuring that the resulting VaR estimates are both accurate and aligned

with observed market conditions throughout the study period.
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Chapter 5.
VaR Models

Value-at-Risk (VaR) is a widely adopted statistical measure used to estimate the maximum
potential loss a portfolio could incur over a specific time horizon (h) at a predetermined
confidence level (1 — ). Formally, the h-day VaR at level a, denoted VaR, ;, corresponds to
the threshold loss that will not be exceeded with probability 1 — . Mathematically, this can be

expressed as:
P(X, < —VaRu,) =« (14)

where X, represents the discounted h-day profit-and-loss (P&L) distribution of the portfolio.

In alignment with the Basel Committee’s recommendations, this study adopts a confidence
level of 99% (a = 1%) and a daily time horizon (h = 1 day). Consequently, VaR; ;%
represents the daily loss that the portfolio will not exceed with 99% confidence.

Given the diversity of market conditions and portfolio compositions, no single VaR model
is universally optimal. To address this, the present study evaluates four distinct methodologies:
Normal VaR, Skewed Generalized Student-t (SGSt) VaR, Historical VaR, and Quantile
Regression VaR. Each model has been specifically chosen to represent a range of assumptions
and statistical techniques, enabling a comprehensive assessment of their performance and
suitability for our portfolio.

The analysis incorporates multiple variations within each class, encompassing parametric
and non-parametric frameworks with diverse parameterizations and volatility weighting
schemes. The objective of this extensive approach is to pinpoint the most precise and reliable
model configuration, aligning closely with our portfolio's unique characteristics and prevailing
market conditions.

Detailed outcomes from the application of these models are rigorously evaluated through
backtesting in Chapter 6. This process systematically compares predicted VaR estimates against
actual historical outcomes, highlighting each model's strengths and limitations, and offering

critical insights for optimizing risk management strategies.
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5.1. Normal VaR

Consider a portfolio’s h-day returns, represented by the random variable X},, assumed to follow

a normal distribution;

Xn~N(u,0?) (15)

Where u denotes the mean return and ¢? the variance over the horizon h. Under this
assumption, the h-day VaR at confidence level 1 — a, denoted VaR,, ,, corresponds to the

negative of the a - quantile of this normal distribution:
VaRy o = —¢; 5(@) (16)

In this expression, ¢, 5(a) denotes the quantile (or inverse cumulative distribution)
function of a normal distribution with mean p and standard deviation o.

Using the equivariance property of quantiles, which states:

Qg(x)(a) = Q(Qx(a)) (17)

Portfolio returns can be expressed as a linear transformation of a standard normal variable

Z ~N(0,1):
Xp=u+oZ (18)
Substituting this into the original quantile definition simplifies VaR expression to:

VaRy, = ¢~ (a)o —u (19)
where ¢ ~1(a) denotes the inverse cumulative distribution function (quantile function) of the
standard normal distribution, evaluated at confidence level «a.

For daily VaR estimates (h = 1), the drift term u is commonly omitted, following the
suggestion by Alexander (2008b) that short-term expected returns are negligible and difficult
to estimate accurately. Thus, setting u = 0 has minimal impact on accuracy and increases

robustness, resulting in:
VaR i, =—¢p '(a) X o (20)

In this study, volatility parameter o is estimated using the EWMA model, which emphasizes
recent market conditions, as outlined in Chapter 4. This approach allows the Normal VVaR model

to reflect recent market volatility while preserving analytical tractability.
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5.2. SGSt VaR

The standardized Skewed Generalized Student-t (SGSt) distribution, introduced by
Theodossiou (1998), is an extension of the classical Student-t distribution, by incorporating
skewness and separate control over central and tail behaviour. This flexibility allows the model
to capture both asymmetry and fat tails, characteristics commonly observed in financial return
series, particularly during periods of market stress. The SGSt distribution has five parameters:
the mean (u), standard deviation (¢ > 0), skewness parameter (—1 < A < 1), central shape
parameter (p > 0), and tail shape parameter (q¢ > 0). These parameters are typically
estimated through maximum likelihood, allowing the distribution to adapt to the empirical
characteristics of the data.

To compute the VaR using the SGSt distribution, we follow a similar methodology to the
Normal VaR. However, the quantile function is replaced by that of the SGSt distribution. The

h-day VaR at confidence level a is expressed as:

VaRy, = — ,;;,l,plq (a) (21)

By leveraging the equivariance property and assuming p = 0 for simplicity, the SGSt VaR

simplifies to:

VaRy o = —Tojfﬂ,p,q(a) X o (22)

5.3. Historical VaR

The Historical Simulation approach to Value-at-Risk (VaR) estimation constructs an empirical
distribution of portfolio profit and loss (P&L) based on past observations, without imposing
any assumptions on the underlying return distribution. This makes it a non-parametric method,
particularly useful when return distributions deviate from normality or exhibit pronounced
skewness and excess kurtosis.

The procedure begins by selecting a historical sample of n non-overlapping returns for each
risk factor over a fixed time horizon h. These returns are used to generate a series of
hypothetical h-day P&L outcomes, assuming constant portfolio exposures throughout the

sample period.
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Once the empirical P&L distribution is constructed, the VaR at confidence level a is given

by the negative of the empirical a-quantile:

VaRy , = —Quantile,(P&Lp;s) (23)

Each observation in the sample is assigned equal probability %, and the empirical

cumulative distribution function (CDF) is derived by ordering the P&L values from worst to
best.

Despite its intuitive approach, the standard Historical VaR model has a significant
limitation, it assigns equal weights to all observations within the historical sample, which
diminishes the model’s responsiveness to current market dynamics, particularly when using
larger sample sizes. Although parametric models such as Normal VaR or SGSt VaR mitigate
this issue by employing EWMA volatility estimates, the basic Historical VaR cannot directly
incorporate this solution. EWMA is suitable for estimating covariance structures but cannot
fully characterize the entire return distribution.

To overcome this limitation, Hull and White (1998) introduced an enhanced version of
Historical VaR known as volatility adjusted Historical VaR. This methodology maintains equal
weighting across observations but adjusts historical returns based on current volatility levels,
ensuring the historical sample accurately reflects prevailing market conditions. Specifically,
historical returns (73) at each historical date t (where t < T, with T representing the current
VaR measurement date) are scaled according to the ratio of current volatility (67) to historical

volatility (6;). This adjustment is mathematically expressed as:

A

o)
Po= 1y X — (24)
Ot

This transformation ensures that past returns are rescaled to reflect current market
conditions, thereby improving the relevance of the empirical distribution. The volatility-
adjusted Historical VaR is then obtained as the negative empirical quantile of these adjusted

returns, providing a more responsive and realistic measure of downside risk.
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5.4. Quantile Regression VaR

Quantile Regression Value-at-Risk (VaR) builds upon the fundamental definition of VaR as the
a-quantile of the profit and loss distribution. Unlike parametric models, this approach estimates
VaR directly as a conditional quantile function, framed within a robust regression methodology.
It allows for flexible modelling of asymmetric and non-normal distributions without relying on
restrictive assumptions.

The model specifies portfolio returns as a function of relevant explanatory variables,
typically including time-varying volatility estimates such as those obtained from the EWMA.
The conditional a-quantile of returns is then estimated through the minimisation of a quantile-
specific loss function.

Formally, the a-quantile regression VaR is expressed as:
VaR, = —(& + bx;) (25)

where @ and b denote the estimated intercept and slope coefficients, respectively, and x;
represents the volatility proxy at time i.

The parameter estimates are obtained by solving the following minimisation problem:

n

(a,b) = arga,bminz [y: = (@ + bx)1(@ — Iy~ a+bxp<ol) (26)

i=1

Here I}y, _(a+bx;)<0] denotes an indicator function that equals 1 when the residual is negative,
and 0 otherwise. This asymmetric weighting allows the model to robustly capture the
conditional distribution characteristics of returns, especially tail-risk events.

Multiple model specifications are evaluated, varying the choice of explanatory variables
and the inclusion or exclusion of a constant term, to identify the most effective and statistically
robust formulation. Typically, these explanatory variables consist of EWMA-derived volatility
measures, possibly incorporating multiple smoothing factors to enhance predictive accuracy.

The rigorous analysis and comparison of these quantile regression VaR models, as detailed
in Chapter 7, provide essential insights into selecting the most appropriate risk modelling
approach tailored specifically to the portfolio’s unique characteristics and prevailing market

conditions.
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5.5. Summary of the VaR Models

This dissertation conducts an extensive evaluation of VaR methodologies, based on the

empirical testing of 152 unique model configurations across four major model classes. Given

the scale and complexity of the modelling exercise, it is not feasible to present the results of

each individual configuration within the main body of the dissertation. Instead, Table 5.1

provides a structured summary of the parameter ranges applied to each class of models, offering

an overview of the modelling space explored.

For each model class, the number of configurations evaluated is indicated alongside the

parameters varied and their respective ranges. The full specification of all models, including

the exact combinations employed, is presented in Appendix D. Each configuration is assigned

a unique numerical identifier to ensure clarity and consistency in the comparative analysis

conducted throughout the subsequent chapters.

Model Class Models Parameters Values used
evaluated
Normal VaR 20 EWMA smoothing factor ~ From 0.9 to 0.995 (increment = 0.005)
EWMA smoothing factor ~ From 0.92 to 0.97 (increment = 0.005)
SGSt VaR 44
Sample size 250, 500, 750, 1000
EWMA smoothing factor ~ From 0.92 to 0.97 (increment = 0.005)
Historical VaR 44
Sample size 250, 500, 750, 1000
. EWMA smoothing factor ~ From 0.92 to 0.97 (increment = 0.005)
Quantile 44
Regression VaR

Sample size

250, 500, 750, 1000

Table 5.1. Summary of model classes and parameters evaluated. This table summarises the number
of models evaluated within each VaR class, along with the parameters and value ranges used during the

configuration process.
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Chapter 6.

Backtesting Methodology

The previous chapter introduced the methodology for computing four distinct types of VaR
models. A total of 152 model configurations were evaluated with the objective of estimating
both Total VaR and Systematic VaR, and of identifying the most accurate and robust
specification. Each configuration generated a series of daily VaR estimates over a ten-year
global period, spanning from 11 February 2013 to 27 January 2023, resulting in a total of 2 600
observations.

A key component of the performance assessment involved tracking exceedances, defined
as instances in which the portfolio incurred a loss greater than the corresponding VaR estimate.
Since VaR represents a threshold for potential losses, exceedances occur when the realised daily
P&L falls below the negative of the VaR value (i.e., losses exceed expectations). The frequency
and timing of these exceedances served as primary indicators of model accuracy and reliability.

To formally assess model quality, two statistical backtesting procedures were employed.
The Unconditional Coverage (UC) Test, proposed by Kupiec (1995), evaluates whether the
number of observed exceedances is statistically consistent with the expected rate, given the
specified confidence level of the VaR model. Complementarily, the BCP Test, introduced by
Berkowitz, Christoffersen, and Pelletier (2011), examines whether exceedances occur
independently over time, identifying potential clustering patterns that may indicate model
misspecification.

It is important to note that a model may pass the UC test while still failing the BCP test,
particularly if exceedances are temporally concentrated. To address this, a sequential evaluation
procedure was implemented. First, the UC test was applied over the global period to filter out
models that deviate from the expected exceedance rate. The BCP test was then used to evaluate
the independence of exceedances among the shortlisted models. Finally, the UC test was applied
again on a year-by-year basis to examine performance consistency over shorter time intervals.

This structured backtesting approach was applied to all 152 configurations, ensuring a
comprehensive and rigorous assessment of model performance. The configuration that
demonstrated the highest degree of statistical reliability and temporal stability was selected for

forward testing in the final one-year period of the study.
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6.1. Unconditional Coverage (UC) Test

The UC Test, introduced by Kupiec (1995), assesses whether the number of observed
exceedances, defined as instances where actual losses surpass the estimated VaR, is consistent
with the expected frequency under the specified confidence level.

Given a confidence level of 1 — a, there is always a probability a that the actual loss will
exceed the predicted VaR. For example, with 500 daily VaR estimates at a 99% confidence level
(@ = 1%), the expected number of exceedances is 500 X 1% =5

To formally evaluate this, an indicator function is constructed to identify exceedance

events:

[ —VaR
It _ {1, lf P&Lt < —-Va t,a (27)

0,otherwise

Let m,ps and 7,,, denote the observed and the expected exceedance rates, respectively.

The null and alternative hypothesis, for the UC test are formulated by:
Hy:iTlops = Texp = @ (28)
Hy: Tops # Texp (29)

Let n, represent the number of exceedances observed in the sample and n, denotes the

number of observations without exceedances. The test statistic can then be expressed as follows:

No

Mexp ol — Texp
LRy, = ( ) ( ) (30)
e Tops 1- Tops

Under the null hypothesis H,, this test statistic asymptotically follows a chi-squared

distribution with one degree of freedom:
LRy~ X 12 BD
A VaR model is considered well-specified if the null hypothesis defined at Equation (28) is
not rejected at the 95% confidence level. This outcome indicates that the frequency of

exceedances is in line with the model's stated confidence level, suggesting correct calibration

of the VaR estimates.
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6.2. BCP Test

The Berkowitz, Christoffersen, and Pelletier (BCP) test provides a statistical framework for
assessing the independence of exceedance events in a VaR model. While a model may pass the
UC test by generating the correct number of exceedances, it can still be misspecified if those
exceedances exhibit temporal dependence or clustering. A well-specified VaR model should
produce exceedances that occur randomly over time, without autocorrelation.

Let px = Corr(ly, L¥1,) denote the autocorrelation of order k — th in the time series of
exceedance indicators and let K represent the maximum number of lags considered in the

analysis. The test evaluates the following hypotheses:
Hy:px = 0;Vk € {1, ..., K} (32)
Hy:3k e{l,..,K}s.t.pg #0 (33)

Assuming a sample consisting of n observations, the test statistic is defined as:

Pi
T —k

K
BCPy = T(T + 2) Z (34)
k=1
where T corresponds to the number of observations in the exceedance time series.
Under the null hypothesis, the test statistic follows a chi-squared distribution with K

degrees of freedom:
BCPy ~ x2 (35)

The selection of the lag length K involves an inherent trade-off. Increasing K enhances the
test’s ability to detect higher-order autocorrelations but simultaneously raises the critical value
required for rejection. This can reduce the power of the test, particularly when dependence
exists only at lower-order lags. In such cases, the statistic may fail to exceed the threshold,
resulting in a Type II error.

To mitigate this limitation and improve robustness, the BCP test is implemented across a
range of lag values from 1 to 10. This allows for a more comprehensive evaluation of
exceedance independence, capturing both short- and medium-term autocorrelation patterns in

the exceedance sequence.
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6.3. Results of Backtesting

To ensure a methodologically rigorous and comprehensive evaluation, a total of 152 VaR model
configurations were developed and evaluated. These configurations were systematically
constructed by combining the parameter settings outlined in Table 5.1, encompassing a wide
range of specifications across four distinct VaR model classes: Normal, SGSt, Historical
Simulation, and Quantile Regression.

Given the volume of models analysed, it is not feasible to present the complete set of results
within the main body of the dissertation. Instead, this section highlights a representative subset
of 22 selected models, chosen to reflect both commonly used benchmarks and configurations
that demonstrated particularly strong empirical performance throughout the backtesting phase.

The full set of 152 model configurations and their corresponding backtesting outcomes are
documented in Appendix D.

Table 6.1 summarises the main structural features of the selected 22 models.

Model .
Description
number
5 Normal, with EWMA smoothing factor 0.92
9 Normal, with EWMA smoothing factor 0.94

14 Normal, with EWMA smoothing factor 0.965

19 Normal, with EWMA smoothing factor 0.99

33 SGSt, with EWMA smoothing factor 0.925 and sample size 500
39 SGSt, with EWMA smoothing factor 0.955 and sample size 500
44 SGSt, with EWMA smoothing factor 0.925 and sample size 750
46 SGSt, with EWMA smoothing factor 0.935 and sample size 750
54 SGSt, with EWMA smoothing factor 0.92 and sample size 1000
59 SGSt, with EWMA smoothing factor 0.945 and sample size 1000

71 Historical, with volatility adjustment, EWMA smoothing factor 0.95 and sample size 250
78 Historical, with volatility adjustment, EWMA smoothing factor 0.93 and sample size 500
93 Historical, with volatility adjustment, EWMA smoothing factor 0.95 and sample size 750

103 Historical, with volatility adjustment, EWMA smoothing factor 0.945 and sample size 1000

109 Quantile Regression, EWMA volatility with 0.92 smoothing factor as independent variable, sample size 250
112 Quantile Regression, EWMA volatility with 0.935 smoothing factor as independent variable, sample size 250
117 Quantile Regression, EWMA volatility with 0.96 smoothing factor as independent variable, sample size 250
121 Quantile Regression, EWMA volatility with 0.925 smoothing factor as independent variable, sample size 500
124 Quantile Regression, EWMA volatility with 0.94 smoothing factor as independent variable, sample size 500
131 Quantile Regression, EWMA volatility with 0.92 smoothing factor as independent variable, sample size 750
142 Quantile Regression, EWMA volatility with 0.92 smoothing factor as independent variable, sample size 1000
145 Quantile Regression, EWMA volatility with 0.935 smoothing factor as independent variable, sample size 1000

Table 6.1. Summary of selected VaR model configurations. Presents 22 representative models from
the total set of 152 tested, detailing their class and parameter settings.
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To assess the statistical adequacy of the VaR models, two standard backtesting procedures
are applied: UC test by Kupiec (1995) and the BCP test introduced by Berkowitz et al. (2011).
The UC test examines whether the observed number of exceedances aligns with the expected
frequency under correct model specification. Given 2600 daily observations and a 99%
confidence level, approximately 26 exceedances are anticipated. A p-value below 5% indicates

rejection of the null hypothesis, suggesting that the model underestimates tail risk.

Exceedance

Model Class Model number  Exceedances Rate (%) p-value (%)
5 63 2.42 0.00
Normal 9 59 2.27 0.00
14 50 1.92 0.00
19 47 1.81 0.02
33 39 1.92 1.70
39 37 1.81 4.15
44 33 1.50 19.54
SGSt 46 32 1.42 2537
54 32 1.27 25.37
59 33 1.50 18.54
71 49 1.23 0.04
Hi cal 78 52 1.27 0.00
istorica 93 34 1.77 0.01
103 30 2.42 0.00
109 34 1.88 13.22
112 30 2.00 44.15
117 27 1.31 13.22
Quantile 121 33 1.15 44.15
Regression 124 36 1.04 84.47
131 33 1.27 18.54
142 36 1.38 6.25
145 33 1.27 18.54

Table 6.2. UC test results over the global period - Total VaR. Models in bold indicate those that pass
the UC test at the 5% significance level.

The results indicate that all Normal VaR models within the full set of 152 evaluated
configurations fail to meet the statistical criteria for adequacy, with each being rejected at
conventional significance levels. This outcome is consistent with the extensive body of
empirical literature that critiques the use of the normality assumption in modelling financial
returns. As originally noted by Fama (1965) and corroborated by subsequent studies, return
distributions in financial markets tend to exhibit fat tails and negative skewness, characteristics
that the Normal distribution fails to capture effectively. This limitation is particularly relevant

in the present analysis, as the portfolio returns display pronounced excess kurtosis across
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multiple years, as shown in Appendix A. As a result, Normal VaR models systematically
underestimate the likelihood and magnitude of extreme losses, particularly when evaluated at
high confidence levels.

Notably, Model 9 corresponds to the RiskMetrics framework proposed by J.P. Morgan
(1996), which applies an EWMA with a smoothing factor of 1 = 0.94. Despite its historical
relevance, this model performed poorly in our setting, with a significantly higher number of
exceedances than expected, thereby failing the UC test.

In addition to evaluating the Total VaR models, the UC test was also applied to the
Systematic VaR configurations. These models seek to simplify risk estimation by mapping
individual asset exposures onto a reduced set of common risk factors. This methodology is
commonly adopted to improve scalability and computational efficiency, particularly in

portfolios with a large number of positions or complex asset structures.

Exceedance

Model Class Model number  Exceedances Rate (%) p-value (%)
5 90 3.46 0.00
N 1 9 85 3.27 0.00
orma 14 84 3.23 0.00
19 82 3.15 0.00
33 67 2.58 3.71
39 64 2.46 0.00
44 60 2.31 0.00
SGSt 46 58 2.33 0.00
54 59 2.27 0.00
59 58 2.23 0.00
71 72 2.77 0.00
Hi cal 78 84 3.23 0.00
Istorica 93 74 2.85 0.00
103 81 3.12 0.00
109 56 2.15 0.00
112 53 2.04 0.00
117 50 1.92 0.00
Quantile 121 55 2.12 0.00
Regression 124 55 2.12 0.00
131 56 2.15 0.00
142 58 2.23 0.00
145 57 2.19 0.00

Table 6.3. UC test results over the global period - Systematic VaR. Models in bold indicate those that
pass the UC test at the 5% significance level.
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However, as shown in Table 6.3, none of the Systematic VaR models passed the UC test.
This outcome reveals a significant discrepancy between the risk captured by the mapped
portfolio and the true exposures embedded in the original portfolio. The results suggest that the
factor-mapping process introduces distortions that lead to an underestimation of tail risk.

The rejection of all Systematic VaR configurations implies that the simplified portfolio
structure fails to preserve essential risk characteristics. In this case, the relatively low level of
portfolio diversification may have amplified this divergence, further reducing the reliability of
the simplified representation. As a result, Systematic VaR models are excluded from the
remainder of the analysis. The study henceforth focuses exclusively on Total VaR models,
which are based on the complete, untransformed portfolio data and provide a more accurate and
robust framework for risk quantification.

Following the initial screening based on the UC test, models failing to meet the minimum
statistical adequacy criteria were removed from further evaluation. The next step involved
applying the BCP test to the subset of models that were not rejected by the UC test. The BCP
test assesses the independence of exceedance events over time, thereby detecting potential
clustering effects that the UC test does not capture. Out of the 22 shortlisted configurations, 12
models passed both tests. The results of the UC and BCP tests for the full set of 152 models are
reported in Appendix D, Table D.1.

Table 6.4 presents the BCP test results for the remaining Total VaR models, specifically
reporting the lowest p-value obtained across ten different lag structures evaluated for each
model. This approach facilitates the identification of models exhibiting temporal dependence
in exceedances at any lag within the tested range. Low p-values in this test may signal instability
in model calibration or insufficient sensitivity to evolving market conditions. Only those models
that perform satisfactorily in both the UC and BCP tests are retained for the subsequent analysis

of stability and robustness over shorter time horizons.
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Model Class Model number Worst p-value Lag

44 36.29 1
46 2.15 2

SGSt 54 32.80 1

59 3.08 2

109 39.86 1

112 26.07 1

117 31.95 10

Quantile Regression 3‘1' igg; ;
131 36.29 1

142 47.12 1

145 3.08 2

Table 6.4. BCP test results over the global period. Models in bold indicate those that pass the BCP
test at the 5% significance level.

Out of the 12 models considered, nine passed both the UC and the BCP tests, confirming
their statistical adequacy in terms of exceedance frequency and independence. Beyond this
restricted set, additional configurations from the broader set of 152 models also met both
criteria, bringing the total number of validated models to 26. The complete results of this
evaluation are presented in Appendix D, Table D.2.

Table 6.5 presents the UC test results across ten consecutive annual subperiods, allowing
for a detailed assessment of exceedance consistency over time. This additional validation step
1s critical to distinguish models that exhibit genuine stability from those whose performance
may result from period-specific calibration or random variation. Based on this analysis, model
selection is further refined by identifying the configuration that demonstrates the highest

consistency in UC test outcomes across individual years.

Model class SGSt Quantile Regression

Model number 44 54 109 112 117 121 124 131 142
20022003 Exceedance rate (%) 0.77 0.77 0.77 0.77 1.15 0.38 0.38 0.38 0.38
; p-value (%) 69.67 69.67 69.67 69.67 80.77 25.44 25.44 25.44 25.44
20212022 Exceedance rate (%) 1.15 1.15 0.77 0.77 1.15 0.77 0.38 1.15 1.15
) p-value (%) 80.77 80.77 69.67 69.67 80.77 69.67 25.44 80.77 80.77
20202021 Exceedance rate (%) 2.31 2.31 1.54 1.15 1.92 2.31 1.92 1.92 2.69
: p-value (%) 7.01 7.01 41.87 80.77 18.44 7.01 18.44 18.44 2.34
20162020 Exceedance rate (%) 1.54 1.54 1.92 1.92 1.92 1.92 1.54 1.54 1.54
) p-value (%) 41.87 41.87 18.44 18.44 18.44 18.44 41.87 41.87 41.87
2018-2019 Exceedance rate (%) 0.38 0.38 0.77 0.77 0.77 0.38 0.38 0.38 1.15
: p-value (%) 25.44 25.44 69.67 69.67 69.67 25.44 25.44 25.44 80.77
2017-2018 Exceedance rate (%) 1.15 1.15 1.15 1.15 1.54 1.15 1.54 1.54 1.54
) p-value (%) 80.77 80.77 80.77 80.77 41.87 80.77 41.87 41.87 41.87
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Exceedance rate (%) 1.15 1.15 1.15 1.15 0.77 1.15 1.15 1.15 1.15
2016-2017

p-value (%) 80.77 80.77 80.77 80.77 69.67 80.77 80.77 80.77 80.77

20152016 Exceedance rate (%) 1.15 1.15 2.31 1.15 0.77 1.15 0.77 1.15 1.54
) p-value (%) 80.77 80.77 7.01 80.77 69.67 80.77 69.67 80.77 41.87
20142015 Exceedance rate (%) 1.54 1.54 1.15 1.15 1.54 1.54 1.54 1.54 1.54
) p-value (%) 41.87 41.87 80.77 80.77 41.87 41.87 41.87 41.87 41.87
20132014 Exceedance rate (%) 1.54 1.15 1.54 1.54 1.54 0.77 0.77 1.92 1.15
) p-value (%) 41.87 80.77 41.87 41.87 41.87 69.67 69.67 18.44 80.77

Table 6.5. UC test for annual sub-periods. The table indicates the results for the UC test for the sub-
periods of the models that passed the UC and the BCP test for the global period.

Based on the results presented in Table 6.5, Model 124 emerges as the most consistent and
reliable among the shortlisted candidates. It records an exceedance rate below 1% in five out of
the ten annual subperiods, more than any other model in the comparison set. This pattern
highlights the model’s temporal stability and its strong alignment with the intended confidence
level under a range of market conditions.

In addition, Model 124 presents a global exceedance rate of 1.04%, the closest to the
theoretical 1% across all 152 configurations evaluated. This reinforces the model’s robustness
by demonstrating that it neither systematically underestimates nor overstates tail risk. The
combination of stable annual performance and accurate global calibration substantiates its
selection as the most suitable model for forward looking VaR management. Furthermore, Model
124 satisfied the UC test across all individual years in the evaluation period, confirming the
temporal stability of its risk forecasts.

Accordingly, Model 124 is selected as the optimal VaR specification for this study. The
following section applies this model to assess and manage portfolio risk under both unhedged

and hedged strategies throughout the one-year out-of-sample period.
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Chapter 7.

Value-at-Risk Management

As established in the previous chapter, the model selected for the measurement and
management of VaR is Model 124. This configuration corresponds to a Quantile Regression
approach, incorporating volatility estimates from an EWMA model with a smoothing parameter
A =0.94 and a historical sample size of 500 observations. The model is applied under two
distinct strategies, both evaluated over a one-year horizon.

The first strategy is passive, allowing the portfolio to evolve without any form of risk
mitigation. In contrast, the second strategy enforces a daily VaR constraint, serving as a trigger
for active risk control. Whenever the estimated VaR exceeds the predefined limit, a hedging
mechanism is activated. This involves reducing exposure to the risk factors that contribute most
significantly to total portfolio risk, as identified via Marginal VaR, through the use of futures
contracts.

In both scenarios, bond coupon payments are reinvested as they are received throughout
the year. Reinvestment is conducted by proportionally adjusting both long and short equity
positions in line with their respective portfolio weights on the trading day immediately
preceding each coupon payment. This ensures that the portfolio’s relative equity exposure
remains consistent over time, preserving its intended risk structure. Further details regarding
the timing and allocation of these reinvestments are provided in Appendix B.

During the backtesting period, the portfolio’s daily VaR typically ranged between €100 000
and €200 000, with pronounced spikes during the COVID-19 crisis (2020-2022). Based on this
historical pattern and given that the portfolio value on 27 January 2023 was approximately €9.5
million, the maximum acceptable daily VaR is set at 1.4% of the portfolio value, corresponding
to €133 000.

This chapter is organized into three sections. It begins by outlining the methodology for
decomposing VaR by risk factor. It then describes the hedging strategy implemented when the
VaR threshold is breached. Finally, it presents a comparative analysis of the portfolio’s
performance under the hedged and unhedged strategies, focusing on their respective impacts

on risk-adjusted returns.
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7.1 VaR decompositions

To support a more effective risk management framework, VaR is computed at the level of
individual risk factors. This allows for the decomposition of total portfolio VaR, enabling the
identification and monitoring of the most significant sources of risk.

This analysis employs the Marginal Value-at-Risk (Marginal VaR), which quantifies the
contribution of a specific subset of risk factor exposures to the portfolio’s total VaR. This metric
is central to the hedging strategy, as it informs both the selection of risk factors to hedge and
the sizing of the corresponding hedge positions.

Formally, let ® denote the vector of portfolio exposures to all risk factors, and ©4 represent
a specific subset (or “slice”) of these exposures. The Marginal VaR associated with O, is defined

as:

VaR s
X O3 (36)

QL
Marginal VaRS = Vf(©)T0S = Z Y ;
i

i=1
Here Vf(0) denotes the gradient vector of the VaR function with respect to the risk factor
loadings, capturing the sensitivity of portfolio VaR to marginal changes in each individual

exposure. This gradient is expressed as:

[0VaR]
_af@) | 9%
Vf(O) = 5= = N (37)
30,

From an economic perspective, the Marginal VaR provides insight into how sensitive the
portfolio’s total risk is to incremental changes in each risk factor exposure. A higher Marginal
VaR for a given factor indicates that a slight increase in exposure would result in a
disproportionately significant increase in overall portfolio risk.

Thus, Marginal VaR serves both as a diagnostic tool for identifying the primary drivers of
risk and as a quantitative foundation for targeted hedging. By capturing the marginal impact of
each exposure, this decomposition framework enables more precise and effective risk control

interventions.
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7.2. Hedging Strategy

The hedging strategy implemented in this study is governed by a predefined maximum daily
VaR threshold, which serves as the trigger for activating risk mitigation measures. This
threshold was established based on the distribution of historical daily VaR estimates generated
during the backtesting period.

Rather than relying on the overall average or on extreme values, the threshold was
determined using the average of the VaR values at the 33rd and 67th percentiles of the ordered
VaR observations. This approach mitigates the influence of outliers and non-representative
values at both ends of the distribution, producing a more robust and informative threshold. The
resulting value, €132 069, was rounded to €133 000 to enhance interpretability and practicality.

This level reflects the typical risk range experienced under standard market conditions and

provides a consistent and disciplined criterion for triggering the hedging mechanism.

7.2.1 Hedging Decision Framework

The hedging strategy implemented in this study aims to ensure that the portfolio’s daily Value-
at-Risk (VaR) remains below the predefined Economic Capital (EC) threshold of €133 000.
Whenever the estimated VaR exceeds this limit, a systematic risk mitigation procedure is
triggered. The intervention involves opening hedging positions via equity index futures, thereby
reducing the portfolio’s exposure to the most risk-contributing market factors.

This strategy follows a parsimonious and rule-based framework, designed to promote
operational efficiency and empirical robustness. Rather than relying on discretionary judgement
or static asset weights, the hedging mechanism is guided by a daily Marginal VaR
decomposition of the portfolio. On each day when the VaR estimate breaches the EC threshold,
the Marginal VaR of each equity index is computed. These values, representing the partial
derivatives of total VaR with respect to each index exposure, quantify the marginal contribution
of each index to the portfolio’s overall market risk.

To translate these contributions into actionable hedging weights, each positive Marginal
VaR is expressed as a proportion of the sum of all positive marginal contributions. These
weights are then used to allocate notional exposure across futures contracts, ensuring that the
hedge specifically targets the most significant sources of risk. Indices with negative marginal
contributions are excluded from the hedge, as neutralizing such exposures would eliminate their

natural diversification benefit and could unintentionally increase total portfolio risk.
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The hedge is implemented by establishing long or short positions in index futures, in
proportion to each index’s relative marginal risk contribution. The use of futures contracts
ensures liquidity, low transaction costs, and scalability, rendering the approach suitable for
dynamic and responsive risk control.

Additionally, the portfolio includes fixed-income instruments that generate periodic coupon
payments. To preserve the intended equity allocation and avoid structural distortions in risk
exposure over time, all received coupons are reinvested proportionally across existing equity
holdings, based on their relative portfolio weights on the trading day immediately prior to each
payment. This rule-based reinvestment mechanism ensures that the strategic allocation and

overall risk profile of the portfolio remain stable throughout the evaluation period.
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Figure 7.1. Evolution of the unhedged daily VaR.

As shown in Figure 7.1, which plots the evolution of the unhedged daily VaR throughout
the one-year evaluation period, the portfolio frequently approached or surpassed the predefined
EC threshold of €133 000. In total, the hedging strategy was activated 124 times, representing
nearly half of the trading days.

The following section provides a detailed breakdown of the Marginal VaR decomposition

observed on each intervention day, beginning with the first instance on 30 January 2023.
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7.2.2 Marginal VaR Decomposition

Throughout the one-year evaluation period, the portfolio’s daily VaR was estimated using the
selected Quantile Regression model (Model 124). Each VaR estimate was systematically
compared to the predefined EC threshold of €133 000. When this threshold was exceeded, the
proportional hedging strategy described in Section 7.2.1 was activated.

On 30 January 2023, the portfolio’s estimated daily VaR reached €166 827.21, exceeding
the EC threshold and triggering the first hedging intervention. In line with the framework, the
initial step consisted of decomposing the total unhedged VaR through a Marginal VaR analysis.
This process identifies the risk factor components contributing most significantly to total

portfolio risk, serving as the empirical basis for calibrating the hedge.

Risk Factor Equity Currency Interest Rate
Type
Marginal VaR
(EUR) 93 641.40 41 332.87 31 852.94
Mafg(lg;j; VaR 56.13% 24.77% 19.09%
Risk Factor
Gronp FCHI GSPC IXIC GDAXI DJI HSI | USDEUR HKDEUR | IR EUR IR _USD
Mar(%%i)va}{ 982495 3172642 45513.66 -4091.93 1083574 -167.44 | 41903.81 257094 | 1799370 13 859.24
Marg(‘;a)l VaR | 5500, 19.02%  2728%  -245%  650%  -0.10% | 25.12% 2034 % 10.79 % 831 %
0

Table 7.1. Marginal VaR decomposition by risk factor. Reporting the contribution of each factor to
the portfolio’s total VaR on 30 January 2023.

The decomposition by risk factor group provides a more granular perspective on the
underlying risk architecture of the portfolio. On this specific date, equity exposures represented
over half of the total VaR, with the Nasdaq Composite (IXIC) and the S&P 500 (GSPC) jointly
accounting for a substantial share. The S&P 500, in particular, contributes not only to equity
risk but also introduces currency exposure, as futures positions in this index are denominated
in U.S. dollars. Consequently, interventions involving this instrument simultaneously affect the
portfolio’s sensitivity to exchange rate fluctuations, specifically the USDEUR pair. This
interaction underscores the importance of accounting for cross-factor linkages in an integrated
risk management process.

The proportional hedging strategy was implemented using the Marginal VaR contributions
as a basis for constructing notional weights. On each intervention date, the Marginal VaR of
each equity index was normalised by the sum of positive Marginal VaRs, yielding a set of

weights used to distribute notional exposure across index futures. Indices with negative
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marginal contributions were excluded from the hedge, as their exposures functioned as natural
diversifiers that reduced the total risk. This selective approach ensured that the hedge targeted
only risk-enhancing factors while preserving the integrity of the risk decomposition.
Interventions occurred exclusively in response to material risk deviations, minimising
unnecessary trading and maintaining the portfolio’s structural stability during periods of
moderate volatility. On activation dates such as 30 January 2023, the Marginal VaR allocation
mechanism ensured that the hedge was directed towards the most influential sources of market
risk. This dynamic and empirically grounded approach consistently restored the portfolio’s VaR

to within the acceptable bound while preserving its responsiveness to evolving risk conditions.
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Figure 7.2. Evolution of daily notional exposures by index.

The proportional distribution of notional exposures across the six equity indices was
derived from the Marginal VaR decomposition of the unhedged portfolio. As shown in Figure
7.2, indices with higher relative contributions to total risk, such as the Nasdaq Composite
(IXIC) and the S&P 500 (GSPC), were allocated larger hedge weights. This outcome reflects
the strategy's objective of concentrating risk mitigation efforts on the primary sources of
systematic market risk. Moreover, the inclusion of futures contracts denominated in foreign
currencies, particularly those linked to the U.S. dollar, introduced an additional layer of
currency exposure. This interaction highlights the importance of implementing integrated risk
management strategies capable of capturing and addressing cross-risk factor dynamics within

multi-asset portfolios.
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7.3. Value-at-Risk Management Results

This subchapter presents a comparative analysis of the portfolio’s performance under two
distinct risk management approaches. The first corresponds to the original, unmanaged
configuration, referred to as the Unhedged Portfolio, while the second incorporates the
proportional hedging strategy developed in this study, referred to as the Hedged Portfolio. The
assessment focuses on three key dimensions: the evolution of Value-at-Risk, the daily profit
and loss, and overall performance indicators. Particular attention is given to the cumulative
impact of the hedging interventions, with the aim of evaluating their effectiveness in mitigating
downside risk and improving risk-adjusted returns.

Figure 7.3 displays the daily VaR estimates for both portfolio configurations over the one-
year out-of-sample evaluation period. The Unhedged Portfolio represents a passive approach
without any risk control mechanism, whereas the Hedged Portfolio reflects the implementation

of the rule-based strategy derived from the daily Marginal VaR decomposition.
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Figure 7.3. Daily VaR of the portfolio with hedging and without hedging.

As illustrated, the comparison reveals a clear divergence in risk exposure between the two
strategies. In the absence of hedging, the portfolio's VaR exhibits greater volatility and reaches
a peak exceeding €202 000 on 17 March 2024. This value corresponds to an increase of
approximately 52 percent relative to the predefined EC threshold of €133 000, highlighting the
potential for significant risk accumulation when no mitigation mechanism is applied.

Throughout the evaluation period, the hedging strategy was activated on 124 out of 265

trading days, demonstrating its responsiveness to shifts in market risk conditions. The consistent
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gap between the two VaR trajectories confirms the framework’s ability to contain risk within
acceptable boundaries. These findings support the effectiveness of the proposed methodology
and reinforce its practical relevance for real-time portfolio risk management under varying

market conditions.
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Figure 7.4. Daily notional values of hedging positions. The exposures reflect the proportional
allocation derived from the Marginal VaR decomposition, ensuring daily alignment between hedge
structure and the portfolio’s evolving risk profile.

As illustrated in Figure 7.4, the daily notional values of the hedging positions established
throughout the evaluation period reflect the application of the proportional allocation
methodology introduced in Section 7.2.2. This approach, grounded in the Marginal VaR
decomposition of the unhedged portfolio, ensures that the hedge dynamically targets the most
significant sources of market risk. The structure of these hedging interventions, shown in detail
in Figure 7.2, directly informs the distribution of notional exposure over time. Accordingly,
Figure 7.4 provides a visual confirmation of the consistent and risk-sensitive implementation
of the strategy, highlighting the alignment between the theoretical framework and its practical
execution.

In addition to its role in risk reduction, the effectiveness of the hedging strategy must also
be evaluated through its influence on portfolio returns. While the Value-at-Risk metric captures
potential downside risk, it does not convey the realised financial impact of the strategy. For this
reason, the analysis now shifts to the portfolio’s daily profit and loss, which complements the
risk-based assessment by reflecting actual market performance. The P&L series incorporates

both market-driven fluctuations and the effects of the hedging decisions made throughout the
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evaluation period. This approach provides a more complete understanding of how the strategy
contributed to the portfolio’s return dynamics and offers further insight into its practical value

under real-world conditions.

€150 000
€100 000

€50 000

-€50000

-€100 000

-€150 000
30/01/2023 30/03/2023 30/05/2023 30/07/2023 30/09/2023 30/11/2023 31/01/2024

Portfolio P&L Unhedged Portfolio P&L Hedged

Figure 7.5. Daily P&L of the portfolio with and without hedging.

As shown in Figure 7.5, the impact of the hedging strategy on the portfolio’s daily P&L
exhibits considerable variation throughout the one-year period. On certain days, the
implementation of the hedge improves performance relative to the unhedged configuration,
while on others it results in a marginal reduction in returns. This asymmetrical effect aligns with
the fundamental objective of hedging, which is primarily to reduce downside risk, even if it
occasionally limits upside potential.

Specifically, on days when the portfolio registers negative P&L, the hedge typically acts as
a buffer, reducing the magnitude of losses. Conversely, on days characterised by favourable
market movements, the hedge may constrain performance, as the protective positions limit the
full capture of positive returns. This trade-off between risk mitigation and return optimisation
is inherent to the structure of the strategy and highlights the need for a balanced and context-
aware approach to risk management.

This asymmetry is substantiated by the results in Table 7.2, which summarises the
distribution of daily P&L differences between the hedged and unhedged portfolios. The hedge
contributed positively in 73.8% of the days when the unhedged portfolio recorded losses, while
only 23.8% of days with positive unhedged P&L showed a performance gain with hedging.
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These figures confirm that the strategy effectively dampens adverse outcomes at the cost of

limited upside capture.

P&L hedged — P&L unhedged

Statistics
Total When P&L >0 When P&L <0
Number of days 124 63 61
Positive Difference (%) 48.40% 23.80% 73.80%
Average (EUR) -451.11 -5941.86 5219.67
Median (EUR) -98.42 -3471.66 2 583.69
Maximum (EUR) 61 463.04 29 846.14 61 463.04
Minimum (EUR) -56363.71 -56363.71 -36905.01

Table 7.2. P&L differences between hedged and unhedged portfolios

To further assess the net impact of the hedging strategy on portfolio performance, the next
step involves analysing the difference in daily P&L between the hedged and unhedged
configurations. This differential provides a direct measure of the incremental effect of the risk
mitigation process, highlighting the days on which the hedge contributed positively or

negatively to the portfolio’s outcome.
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Figure 7.6. Daily differences in P&L between the hedged and unhedged portfolios. Positive values
indicate days when the hedging strategy reduced losses or enhanced gains, while negative values reflect
a reduction in returns due to risk mitigation.
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The most substantial positive contribution of the hedging strategy occurred on 22 March
2023, when it improved the portfolio’s daily P&L by approximately €61 000 relative to the
unhedged configuration. On that day, the unhedged portfolio recorded a loss of €101 000,
whereas the hedged portfolio registered a profit of €39 000. This reversal illustrates the
effectiveness of the hedging mechanism in absorbing severe market shocks and transforming
potential losses into gains. This outcome highlights the strategy’s capacity to mitigate adverse
market movements and preserve portfolio value during periods of heightened volatility.
Conversely, the most pronounced negative effect occurred on 16 March 2023, when the hedged
portfolio underperformed the unhedged configuration by nearly €56 000. On that day, the
unhedged portfolio achieved a profit of €129 732, while the hedged portfolio returned €73 368.
This divergence illustrates the inherent trade-off of risk reduction strategies, which may
constrain upside capture in pursuit of greater stability during downturns.

Focusing on the 124 trading days in which the hedging strategy was actively deployed, the
average daily difference in P&L between the hedged and unhedged portfolios was - €451.11,
while the median stood at - €98.42. These figures suggest that, although the hedge was effective
in containing extreme losses, it was associated with a modest reduction in daily profitability.
This result is consistent with the primary objective of the strategy, which prioritises risk
containment rather than return maximisation. The observed asymmetry reinforces the notion
that effective risk management often requires a deliberate trade-off between potential gains and
increased stability under adverse market conditions.

Building upon the P&L comparison, the next step in evaluating the hedging strategy
involves analysing the behaviour of exceedances. These are instances in which the actual daily
loss surpasses the VaR estimate. This metric provides a direct assessment of model performance
and the effectiveness of risk control. By comparing the frequency and timing of exceedances
under the hedged and unhedged configurations, it becomes possible to quantify the extent to
which the strategy succeeded in keeping portfolio losses within the predicted bounds. This
analysis complements the preceding performance evaluation by shifting the focus from return

outcomes to risk containment.
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Figure 7.7. Daily exceedances of the unhedged portfolio. Observations below the VaR line indicate
instances where actual losses exceeded predicted risk.
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Figure 7.8. Daily exceedances of the hedged portfolio. Observations below the VaR line indicate
instances where actual losses exceeded predicted risk.

Upon examining the exceedance profiles of both portfolio configurations, it is observed
that a single exceedance occurred in each case on 17 October 2023. On that day, the actual loss
exceeded the estimated VaR, which stood at €110 105.27 for both the hedged and unhedged
portfolios. Notably, this exceedance did not trigger a hedging intervention, as the portfolio’s
VaR remained below the predefined Economic Capital threshold of €133 000. This outcome

reinforces the design of the framework, which activates hedging strictly in response to material
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risk levels. It also highlights the importance of distinguishing between statistical model
deviations and economically significant risk events when evaluating the effectiveness of risk
control mechanisms.

To deepen the evaluation of the hedging strategy, the following analysis integrates both
VaR and P&L metrics for the unhedged and hedged portfolio configurations. This joint
perspective allows for a more nuanced assessment of the strategy’s ability not only to mitigate

losses but also to stabilise returns in varying market conditions.
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Figure 7.9. Cumulative P&L of Hedged vs. Unhedged Portfolio

A comparative analysis of the cumulative P&L trajectories indicates that, although both
portfolios concluded the one-year evaluation period with positive returns, the hedged portfolio
generated a lower total profit relative to the unhedged configuration. This outcome exemplifies
the inherent trade-off in risk mitigation strategies: while hedging serves to attenuate extreme
losses, it can also constrain upside potential by dampening exposure to favourable market
movements.

Nevertheless, this performance gap must be interpreted in the broader context of portfolio
volatility and downside risk. Throughout the year, the hedged portfolio exhibited lower return
volatility, fewer pronounced drawdowns, and closer alignment with VaR estimates. These
features underscore the strategy’s effectiveness in achieving its primary objective of enhancing
risk control and promoting return stability. In this sense, the results reinforce the strategic role
of hedging in containing tail risk and protecting portfolio value during periods of heightened

uncertainty.
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To complement this analysis, the Return on Risk-Adjusted Capital (RORAC) is adopted as
the key metric for evaluating performance efficiency. RORAC captures the relationship
between the return generated by a portfolio and the risk capital deployed to support it, offering
an integrated view of profitability relative to risk exposure. By accounting for both return
generation and downside potential, this measure enables a robust comparison between the
hedged and unhedged strategies, particularly under conditions of financial uncertainty.

Formally, RORAC is computed as the ratio between the portfolio’s daily profit and loss
(P&L) and the Value-at-Risk (VaR) estimated for the same day:

RORAC = P;&L (38)
VaR
where P&L denotes the portfolio’s daily profit and loss, and VaR corresponds to the Value-at-
Risk estimated for the same day. The analysis begins on 30 January 2023 and spans the full
one-year out-of-sample period.

To ensure a comprehensive evaluation, two complementary methodologies are used. The
first method calculates the average daily RORAC from Equation (38), capturing the consistency
of risk-adjusted performance throughout the evaluation period. The second method derives the
ratio between the average daily P&L and the average daily EC, providing a high-level aggregate
indicator of return efficiency. Together, these perspectives allow for a robust comparison

between the hedged and unhedged strategies in terms of their economic performance under

uncertainty.
2 RORACT — Average P&L (39)
verage ~ Average EC
1< P&L
A RORAC® =—z ‘ 40
verage nl, EC, (40)

These two expressions represent the alternative approaches used to quantify average risk-
adjusted return. Equation (39) relies on aggregated means, whereas Equation (40) accounts for

daily fluctuations in both return and risk.
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Table 7.3 summarises the risk-adjusted performance results for both the hedged and
unhedged portfolios, using the two RORAC methodologies described previously. The table

reports the total profit and EC over the one-year period, as well as their respective daily

averages.
Unhedged Hedged
P&L (€) 1 194 786.56 1 138 849.38
Average P&L 4 508.63 4297.54
EC (€) 36 051 784.97 32970 711.74
Average EC 136 044.47 124 417.78
Average RORAC (1) 3.31% 3.45%
Average RORAC (2) 3.48% 3.76%

Table 7.3. Summary of performance and risk-adjusted efficiency. RORAC (1) corresponds to the
ratio of total P&L to total EC, while RORAC (2) reflects the average of daily RORAC values over the
evaluation period.

Based on the results presented in Table 7.3, it becomes evident that the hedged portfolio
outperforms the unhedged configuration in terms of capital efficiency across both risk-adjusted
performance metrics. Under the first methodology, RORAC (1), defined as the ratio between
total profit and total Economic Capital (EC), the hedged portfolio achieves a value of 3.45 per
cent, exceeding the 3.31 per cent recorded for the unhedged counterpart. This indicates that,
over the full investment horizon, the hedged strategy generated more return per unit of capital
committed to absorbing risk.

A similar conclusion is reached under the second metric, RORAC (2), which reflects the
average of daily risk-adjusted returns throughout the year. In this case, the hedged portfolio
attains a value of 3.76 per cent, clearly outperforming the 3.48 per cent achieved by the
unhedged version. This result highlights not only greater capital efficiency at the aggregate level
but also improved consistency in daily risk-adjusted performance.

It is important to note that the hedging framework intentionally excluded indices with
negative marginal contributions to Value-at-Risk. By doing so, it preserved natural
diversification effects and avoided unnecessary offsetting of risk-reducing exposures. This
conceptual refinement contributed to the robustness of the strategy without compromising
performance.

Taken together, these findings support the view that dynamic hedging based on Marginal

VaR decomposition can enhance portfolio performance by improving the efficiency with which
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risk capital is allocated. In investment contexts where downside protection and capital
preservation are prioritised, such outcomes justify the integration of proactive risk control

mechanisms.
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Chapter 8.

Conclusion

This dissertation set out to assess and manage the Value-at-Risk (VaR) of a diversified portfolio,
ensuring that daily risk exposure remained within a predefined Economic Capital (EC)
threshold of €133 000. The portfolio included both equity and fixed-income instruments,
representing a broad cross-section of major developed markets. The methodology employed
throughout the study prioritised empirical rigour and practical applicability, focusing on
selecting, validating, and operationalising VaR models capable of supporting dynamic risk
control interventions.

A comprehensive evaluation of 152 model configurations across four major classes
(Normal, SGSt, Historical Simulation and Quantile Regression) highlighted the inadequacy of
assuming normality in financial return distributions. Parametric models based on Gaussian
assumptions systematically failed standard backtesting procedures, while approaches involving
strict factor mappings introduced distortions that reduced forecast accuracy. Through a multi-
stage process of statistical validation using the Unconditional Coverage (UC) and Berkowitz,
Christoffersen, and Pelletier (BCP) tests, a Quantile Regression model with EWMA volatility
(Model 124) emerged as the most robust configuration. This model delivered the most
consistent exceedance rates across both global and annual subperiods, exhibiting strong
alignment with the theoretical confidence level.

The selected model was subsequently embedded within a dynamic, proportional hedging
strategy based on Marginal VaR decomposition. This approach enabled the daily identification
of risk concentrations and guided the adjustment of hedging positions through equity index
futures. Importantly, the strategy was only activated when the estimated VaR exceeded the EC
threshold, ensuring operational efficiency and minimising trading frequency. Furthermore, the
hedge was applied exclusively to indices with positive marginal contributions to portfolio VaR,
thereby preserving the diversification benefits of negatively contributing exposures. A rule-
based coupon reinvestment mechanism complemented this framework, maintaining a stable
asset allocation and consistent risk profile throughout the evaluation period.

Empirical evidence showed that the unhedged portfolio frequently breached the VaR limit,
with the most severe exceedance surpassing €225 000. In contrast, the hedged portfolio

consistently maintained risk levels within the prescribed boundaries. While this came at the cost
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of a slight reduction in total nominal profit, the trade-off proved beneficial when viewed through
the lens of risk-adjusted efficiency.

Analysis of cumulative P&L trajectories revealed that the hedged portfolio generated lower
absolute returns but with reduced volatility and fewer drawdowns. Most importantly, the Return
on Risk-Adjusted Capital (RORAC) results provided clear evidence of improved capital
efficiency. Using the first method, defined as total profit divided by total EC, the hedged
portfolio achieved a RORAC of 3.45 per cent, compared to 3.31 per cent for the unhedged
configuration. Under the second approach, based on the average of daily RORAC values, the
hedged strategy again outperformed, with a result of 3.76 per cent versus 3.48 per cent. These
results demonstrate not only enhanced annual capital productivity but also more consistent daily
performance.

In conclusion, this research demonstrates the practical effectiveness of a model-driven,
dynamically executed risk management strategy. By combining rigorous model selection with
a rule-based hedging mechanism grounded in Marginal VaR decomposition, the proposed
framework stabilised portfolio risk, improved resilience to market shocks and enhanced the
efficiency with which economic capital was deployed. These findings support the broader
application of quantitative risk control methodologies in institutional portfolio management,

particularly in environments characterised by uncertainty and multi-asset complexity.
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Appendices

Appendix A: Detailed Statistics

Appendix A. Summary Statistics of Portfolio P&L and Returns

Standard

P&L Mean Median Maximum Minimum Deviation Skewness Kurtosis
2013-2023 4387.32¢€ 5838.73 € 391 134.68€  -526714.99 € 59 554.02 € -0.269 6.445
2023 153.13 € -8 695.81 € 193 644.78 € -117 390.19 € 7040691 € 0.984 2.028
2022 -2301.27€ -2490.23 € 391 134.68€  -273484.85€ 83 487.76 € 0.241 1.432
2021 5473.03 € 510942 € 165 025.78 € -166931.91 € 5055746 € -0.145 1.107
2020 5285.87€ 11271.25€ 377 837.98 € -526714.99 € 94 53297 € -0.528 6.657
2019 6 788.27 € 5696.49 € 106 999.24 € -115490.84 € 40 333.00 € -0.384 0.415
2018 247823 € 5785.36 € 182 459.18 € -180954.69 € 59 856.36 € -0.193 0.766
2017 4183.29¢€ 7987.38 € 190 091.63 € -123 846.45 € 38 805.01 € 0.097 2.127
2016 5313.87€ 9383.73 € 154 147.00 € -169 874.51 € 47 056.55 € -0.423 0.833
2015 4097.73 € 2404.77 € 215 825.06 € -231444.20€ 65 198.27 € -0.175 1.440
2014 823692 € 9356.81 € 146 838.48 € -131772.15 € 40 770.92 € -0.235 1.542
2013 442630€ 1599.01 € 137203.42 € -109 051.80 € 44 62448 € -0.01 0.082
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Appendix B: Portfolio Data

Appendix B. Portfolio value and asset allocation over time with coupon reinvestment

Coupon . . .
Date Bond ISIN Reinvested Remve.stn.lent Equ1ty Bon(! Portfolio value
© Description Allocation Allocation ©
27-01-2023 . . Initial setup 42 % 58 % 9 499 993.85
06-03-2023 Equity 0 0
-03- LU2591860569 ~ 19800.00 10 43 % 57% 9 394 280.76
US91282CFV81 15 743.26 Eauit
17-05-2023 R 1?“ -‘{i . 43 % 57 % 9619910.67
US91282CIJ18  19347.14 catlocatio
Equity
06-07-2023  DE0001135226 4702500 AW, 47 % 53 9% 10 068 759.37
Equity
21-102023  DE000BU25018 1200000 W% 48 % 52 % 9 996 483.62
US91282CFV81  15736.58 Eauit
17-11-2023 Real?(‘)lcaﬁion 49 % 51% 10 294 699.16
US91282CJJ18 19 338.93
Equity
15012024 NL0000102317  60500.00 VY. 50 % 50 % 10 558 967.85

Appendix B. Coupon reinvestment allocation over time. Presents the evolution of

the portfolio’s value and asset class allocation during the out-of-sample period. Bond

coupon proceeds were reinvested proportionally across existing equity positions to

preserve the portfolio’s risk structure, with fixed-income allocation adjusted

accordingly. This rule-based approach ensured consistency in asset mix and supported

the stability of the overall risk profile.
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Appendix C: VaR Models Details

Appendix C.1. Normal VaR Model configurations

Model number Model Class EWMA Smoothing
Factor
1 Normal 0.9
2 Normal 0.905
3 Normal 0.91
4 Normal 0915
5 Normal 0.92
6 Normal 0.925
7 Normal 0.93
8 Normal 0.935
9 Normal 0.94
10 Normal 0.945
11 Normal 0.95
12 Normal 0.955
13 Normal 0.96
14 Normal 0.965
15 Normal 0.97
16 Normal 0.975
17 Normal 0.98
18 Normal 0.985
19 Normal 0.99
20 Normal 0.995

Appendix C.1. Overview of Normal VaR Models evaluated.
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Appendix C.2. SGSt VaR Model configurations

Model number Model Class EWMA Smoothing Sample Size
Factor
21 SGSt 0.92 250
22 SGSt 0.925 250
23 SGSt 0.93 250
24 SGSt 0.935 250
25 SGSt 0.94 250
26 SGSt 0.945 250
27 SGSt 0.95 250
28 SGSt 0.955 250
29 SGSt 0.96 250
30 SGSt 0.965 250
31 SGSt 0.97 250
32 SGSt 0.92 500
33 SGSt 0.925 500
34 SGSt 0.93 500
35 SGSt 0.935 500
36 SGSt 0.94 500
37 SGSt 0.945 500
38 SGSt 0.95 500
39 SGSt 0.955 500
40 SGSt 0.96 500
41 SGSt 0.965 500
42 SGSt 0.97 500
43 SGSt 0.92 750
44 SGSt 0.925 750
45 SGSt 0.93 750
46 SGSt 0.935 750
47 SGSt 0.94 750
48 SGSt 0.945 750
49 SGSt 0.95 750
50 SGSt 0.955 750
51 SGSt 0.96 750
52 SGSt 0.965 750
53 SGSt 0.97 750
54 SGSt 0.92 1 000
55 SGSt 0.925 1 000
56 SGSt 0.93 1 000
57 SGSt 0.935 1 000
58 SGSt 0.94 1 000
59 SGSt 0.945 1 000
60 SGSt 0.95 1 000
61 SGSt 0.955 1 000
62 SGSt 0.96 1 000
63 SGSt 0.965 1 000
64 SGSt 0.97 1 000

Appendix C.2. Overview of SGSt VaR Models evaluated.
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Appendix C.3. Historical VaR Models configurations

Model number Model Class EWMA Smoothing Sample Size
Factor
65 Historical 0.92 250
66 Historical 0.925 250
67 Historical 0.93 250
68 Historical 0.935 250
69 Historical 0.94 250
70 Historical 0.945 250
71 Historical 0.95 250
72 Historical 0.955 250
73 Historical 0.96 250
74 Historical 0.965 250
75 Historical 0.97 250
76 Historical 0.92 500
77 Historical 0.925 500
78 Historical 0.93 500
79 Historical 0.935 500
80 Historical 0.94 500
81 Historical 0.945 500
82 Historical 0.95 500
83 Historical 0.955 500
84 Historical 0.96 500
85 Historical 0.965 500
86 Historical 0.97 500
87 Historical 0.92 750
88 Historical 0.925 750
89 Historical 0.93 750
90 Historical 0.935 750
91 Historical 0.94 750
92 Historical 0.945 750
93 Historical 0.95 750
94 Historical 0.955 750
95 Historical 0.96 750
96 Historical 0.965 750
97 Historical 0.97 750
98 Historical 0.92 1 000
99 Historical 0.925 1 000
100 Historical 0.93 1 000
101 Historical 0.935 1 000
102 Historical 0.94 1 000
103 Historical 0.945 1 000
104 Historical 0.95 1 000
105 Historical 0.955 1 000
106 Historical 0.96 1 000
107 Historical 0.965 1 000
108 Historical 0.97 1 000

Appendix C.3. Overview of Historical VaR Models evaluated.
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Appendix C.4. Quantile Regression VaR Models configurations

Model number Model Class EWMA Smoothing Sample Size
Factor
109 Quantile Regression 0.92 250
110 Quantile Regression 0.925 250
111 Quantile Regression 0.93 250
112 Quantile Regression 0.935 250
113 Quantile Regression 0.94 250
114 Quantile Regression 0.945 250
115 Quantile Regression 0.95 250
116 Quantile Regression 0.955 250
117 Quantile Regression 0.96 250
118 Quantile Regression 0.965 250
119 Quantile Regression 0.97 250
120 Quantile Regression 0.92 500
121 Quantile Regression 0.925 500
122 Quantile Regression 0.93 500
123 Quantile Regression 0.935 500
124 Quantile Regression 0.94 500
125 Quantile Regression 0.945 500
126 Quantile Regression 0.95 500
127 Quantile Regression 0.955 500
128 Quantile Regression 0.96 500
129 Quantile Regression 0.965 500
130 Quantile Regression 0.97 500
131 Quantile Regression 0.92 750
132 Quantile Regression 0.925 750
133 Quantile Regression 0.93 750
134 Quantile Regression 0.935 750
135 Quantile Regression 0.94 750
136 Quantile Regression 0.945 750
137 Quantile Regression 0.95 750
138 Quantile Regression 0.955 750
139 Quantile Regression 0.96 750
140 Quantile Regression 0.965 750
141 Quantile Regression 0.97 750
142 Quantile Regression 0.92 1 000
143 Quantile Regression 0.925 1 000
144 Quantile Regression 0.93 1 000
145 Quantile Regression 0.935 1 000
146 Quantile Regression 0.94 1 000
147 Quantile Regression 0.945 1 000
148 Quantile Regression 0.95 1 000
149 Quantile Regression 0.955 1 000
150 Quantile Regression 0.96 1 000
151 Quantile Regression 0.965 1 000
152 Quantile Regression 0.97 1 000

Appendix C.4. Overview of Quantile Regression VaR Models evaluated.
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Appendix D: Backtesting Details

Appendix D.1. UC test results of the Total VaR

[1)
Model Model Class Exceedances Exceedance p-value (o)
number rate (%)

1 Normal 64 2.46% 0.00%
2 Normal 65 2.50% 0.00%
3 Normal 65 2.50% 0.00%
4 Normal 65 2.50% 0.00%
5 Normal 63 2.42% 0.00%
6 Normal 61 2.35% 0.00%
7 Normal 58 2.23% 0.00%
8 Normal 58 2.23% 0.00%
9 Normal 59 2.27% 0.00%
10 Normal 56 2.15% 0.00%
11 Normal 55 2.12% 0.00%
12 Normal 54 2.08% 0.00%
13 Normal 52 2.00% 0.00%
14 Normal 50 1.92% 0.00%
15 Normal 49 1.88% 0.01%
16 Normal 49 1.88% 0.01%
17 Normal 51 1.96% 0.00%
18 Normal 51 1.96% 0.00%
19 Normal 47 1.81% 0.02%
20 Normal 52 2.00% 0.00%
21 SGSt 78 3.00% 0.00%
22 SGSt 75 2.88% 0.00%
23 SGSt 76 2.92% 0.00%
24 SGSt 76 2.92% 0.00%
25 SGSt 75 2.88% 0.00%
26 SGSt 75 2.88% 0.00%
27 SGSt 75 2.88% 0.00%
28 SGSt 76 2.92% 0.00%
29 SGSt 74 2.85% 0.00%
30 SGSt 68 2.62% 0.00%
31 SGSt 73 2.81% 0.00%
32 SGSt 42 1.62% 0.38%
33 SGSt 39 1.50% 1.70%
34 SGSt 39 1.50% 1.70%
35 SGSt 40 1.54% 1.06%
36 SGSt 41 1.58% 0.64%
37 SGSt 40 1.54% 1.06%
38 SGSt 41 1.58% 0.64%
39 SGSt 37 1.42% 4.15%
40 SGSt 37 1.42% 4.15%
41 SGSt 37 1.42% 4.15%
42 SGSt 37 1.42% 4.15%
43 SGSt 32 1.23% 25.37%
44 SGSt 33 1.27% 18.54%
45 SGSt 35 1.35% 9.20%
46 SGSt 32 1.23% 25.37%
47 SGSt 34 1.31% 13.22%
48 SGSt 34 1.31% 13.22%
49 SGSt 35 1.35% 9.20%
50 SGSt 35 1.35% 9.20%
51 SGSt 36 1.38% 6.25%

N
[o)



52 SGSt 36 1.38% 6.25%
53 SGSt 32 1.23% 25.37%
54 SGSt 32 1.23% 25.37%
55 SGSt 33 1.27% 18.54%
56 SGSt 34 1.31% 13.22%
57 SGSt 35 1.35% 9.20%
58 SGSt 33 1.27% 18.54%
59 SGSt 33 1.27% 18.54%
60 SGSt 34 1.31% 13.22%
61 SGSt 35 1.35% 9.20%
62 SGSt 36 1.38% 6.25%
63 SGSt 34 1.31% 13.22%
64 SGSt 32 1.23% 25.37%
65 Historical 66 2.54% 0.00%
66 Historical 66 2.54% 0.00%
67 Historical 63 2.42% 0.00%
68 Historical 60 2.31% 0.00%
69 Historical 58 2.23% 0.00%
70 Historical 54 2.08% 0.00%
71 Historical 46 1.77% 0.04%
72 Historical 44 1.69% 0.12%
73 Historical 46 1.77% 0.04%
74 Historical 44 1.69% 0.12%
75 Historical 42 1.62% 0.38%
76 Historical 67 2.58% 0.00%
77 Historical 66 2.54% 0.00%
78 Historical 63 2.42% 0.00%
79 Historical 58 2.23% 0.00%
80 Historical 53 2.04% 0.00%
81 Historical 49 1.88% 0.01%
82 Historical 43 1.65% 0.22%
83 Historical 40 1.54% 1.06%
84 Historical 39 1.50% 1.70%
85 Historical 39 1.50% 1.70%
86 Historical 38 1.46% 2.69%
87 Historical 70 2.69% 0.00%
88 Historical 70 2.69% 0.00%
89 Historical 66 2.54% 0.00%
90 Historical 61 2.35% 0.00%
91 Historical 58 2.23% 0.00%
92 Historical 56 2.15% 0.00%
93 Historical 49 1.88% 0.01%
94 Historical 44 1.69% 0.12%
95 Historical 41 1.58% 0.64%
96 Historical 40 1.54% 1.06%
97 Historical 38 1.46% 2.69%
98 Historical 67 2.58% 0.00%
99 Historical 66 2.54% 0.00%
100 Historical 62 2.38% 0.00%
101 Historical 57 2.19% 0.00%
102 Historical 54 2.08% 0.00%
103 Historical 52 2.00% 0.00%
104 Historical 48 1.85% 0.01%
105 Historical 43 1.65% 0.22%
106 Historical 40 1.54% 1.06%
107 Historical 38 1.46% 2.69%
108 Historical 35 1.35% 9.20%
109 QR 34 1.31% 13.22%
110 QR 31 1.19% 33.88%
111 QR 31 1.19% 33.88%
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112 QR 30 1.15% 44.15%

113 QR 30 1.15% 44.15%
114 QR 30 1.15% 44.15%
115 QR 32 1.23% 25.37%
116 QR 33 1.27% 18.54%
117 QR 34 1.31% 13.22%
118 QR 34 1.31% 13.22%
119 QR 36 1.38% 6.25%
120 QR 31 1.19% 33.88%
121 QR 30 1.15% 44.15%
122 QR 31 1.19% 33.88%
123 QR 27 1.04% 84.47%
124 QR 27 1.04% 84.47%
125 QR 27 1.04% 84.47%
126 QR 29 1.12% 56.15%
127 QR 31 1.19% 33.88%
128 QR 32 1.23% 25.37%
129 QR 33 1.27% 18.54%
130 QR 33 1.27% 18.54%
131 QR 33 1.27% 18.54%
132 QR 34 1.31% 13.22%
133 QR 33 1.27% 18.54%
134 QR 33 1.27% 18.54%
135 QR 33 1.27% 18.54%
136 QR 30 1.15% 44.15%
137 QR 29 1.12% 56.15%
138 QR 29 1.12% 56.15%
139 QR 30 1.15% 44.15%
140 QR 31 1.19% 33.88%
141 QR 32 1.23% 25.37%
142 QR 36 1.38% 6.25%
143 QR 34 1.31% 13.22%
144 QR 34 1.31% 13.22%
145 QR 33 1.27% 18.54%
146 QR 30 1.15% 44.15%
147 QR 29 1.12% 56.15%
148 QR 29 1.12% 56.15%
149 QR 30 1.15% 44.15%
150 QR 29 1.12% 56.15%
151 QR 30 1.15% 44.15%
152 QR 31 1.19% 33.88%

Appendix D.1. UC test results for the global period, for the Total VaR. Reports the
results of the UC test applied to Total VaR estimates over the global evaluation period.
Models highlighted in bold correspond to those that pass the test at the 5% significance
level.

68



Appendix D.2. BCP test results of the Total VaR for the models that pass the UC test.

Model number Model Class Worst p-value Lag
43 SGSt 0.00% 10
44 SGSt 36.29% 1
45 SGSt 5.75% 2
46 SGSt 2.15% 2
47 SGSt 4.27% 2
48 SGSt 4.27% 2
49 SGSt 5.75% 2
50 SGSt 5.75% 2
51 SGSt 0.00% 2
52 SGSt 0.00% 3
53 SGSt 0.00% 10
54 SGSt 32.80% 1
55 SGSt 36.29% 1
56 SGSt 4.27% 2
57 SGSt 5.75% 2
58 SGSt 3.08% 2
59 SGSt 3.08% 2
60 SGSt 4.27% 2
61 SGSt 5.75% 2
62 SGSt 0.00% 2
63 SGSt 0.00% 3
64 SGSt 0.00% 10
108 Historical 0.00% 10
109 QR 39.86% 1
110 QR 53.80% 1
111 QR 53.80% 1
112 QR 26.07% 1
113 QR 26.07% 1
114 QR 26.07% 1
115 QR 32.80% 1
116 QR 36.29% 1
117 QR 31.95% 10
118 QR 0.04% 2
119 QR 0.02% 2
120 QR 29.38% 1
121 QR 26.07% 1
122 QR 29.38% 1
123 QR 12.92% 3
124 QR 12.92% 3
125 QR 0.18% 2
126 QR 0.57% 2
127 QR 1.44% 2
128 QR 2.15% 2
129 QR 0.00% 2
130 QR 0.00% 2
131 QR 36.29% 1
132 QR 39.86% 1
133 QR 36.29% 1
134 QR 3.08% 2
135 QR 3.08% 2
136 QR 0.87% 10
137 QR 0.37% 10
138 QR 0.37% 10
139 QR 0.00% 2
140 QR 0.00% 2
141 QR 0.00% 2



142 QR 47.12% 1
143 QR 4.27% 2
144 QR 4.27% 2
145 QR 3.08% 2
146 QR 0.87% 10
147 QR 0.00% 2
148 QR 0.00% 2
149 QR 0.00% 2
150 QR 0.00% 2
151 QR 0.00% 2
152 QR 0.00% 10

Appendix D.2. BCP test results for the global period, for the Total VaR. Reports the
results of the BCP test applied to Total VaR estimates over the global evaluation period.
Models highlighted in bold correspond to those that pass the test at the 5% significance

level.

Appendix D.3.1 UC test results across annual subperiods for Total VaR — SGSt model

Model class SGSt
Model number 44 45 49 50 54 55 57 61

20222023 Exceedance rate (%) 0.77 0.77 1.15 1.15 0.77 0.77 0.77 1.15
p-value (%) 69.67 69.67 80.77 80.77 69.67 69.67 69.67 80.77

. Exceedance rate (%) 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
p-value (%) 80.77 80.77 80.77 80.77 80.77 80.77 80.77 80.77

2020-2021 Exceedance rate (%) 2.31 2.69 2.69 2.69 2.31 2.69 2.69 2.69
p-value (%) 7.01 2.34 2.34 2.34 7.01 2.34 2.34 2.34

20192020 Exceedance rate (%) 1.54 1.54 1.15 1.15 1.54 1.54 1.54 115
) p-value (%) 41.87 41.87 80.77 80.77 41.87 41.87 41.87 80.77
2018-2019 Exceedance rate (%) 0.38 0.38 0.77 0.77 0.38 0.38 0.38 0.77
: p-value (%) 25.44 25.44 69.67 69.67 25.44 25.44 25.44 69.67
2017-2018 Exceedance rate (%) 1.15 1.15 1.54 1.54 1.15 1.15 1.54 1.54
) p-value (%) 80.77 80.77 41.87 41.87 80.77 80.77 41.87 41.87
20162017 Exceedance rate (%) 1.15 1.15 1.15 1.15 1.15 L.15 L.15 1.15
: p-value (%) 80.77 80.77 80.77 80.77 80.77 80.77 80.77 80.77
20152016 Exceedance rate (%) 1.15 1.15 1.15 1.15 1.15 1.15 1.54 1.15
p-value (%) 80.77 80.77 80.77 80.77 80.77 80.77 41.87 80.77

2014-2015 Exceedance rate (%) 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
p-value (%) 41.87 41.87 41.87 41.87 41.87 41.87 41.87 41.87

20132014 Exceedance rate (%) 1.54 1.15 1.15 1.15 1.15 L.15 L.15 1.15
p-value (%) 41.87 80.77 80.77 80.77 80.77 80.77 80.77 80.77

Appendix D.3.1 UC test results across annual subperiods for Total VaR - SGSt
model. Reports the UC test applied to Total VaR model specifications over ten
consecutive annual subperiods. Models highlighted in bold correspond to those that pass

the test at the 5% significance level.
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Appendix D.3.2 UC test results across annual subperiods for Total VaR — Quantile

Regression model

Model class Quantile Regression

Model number 109 110 111 112 113 114 115 116 117

20222023 Exceedance rate (%) 0.77 0.77 0.77 0.77 0.77 0.77 1.15 1.15 1.15
p-value (%) 69.67 69.67 69.67 69.67 69.67 69.67 80.77 80.77 80.77

20212022 Exceedance rate (%) 0.77 0.77 0.77 0.77 0.38 0.77 0.77 1.15 1.15
p-value (%) 69.67 69.67 69.67 69.67 25.44 69.67 69.67 80.77 80.77

20202021 Exceedance rate (%) 1.54 1.15 1.15 1.15 1.54 115 115 115 1.92
p-value (%) 41.87 80.77 80.77 80.77 41.87 80.77 80.77 80.77 18.44

20192020 Exceedance rate (%) 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92
p-value (%) 18.44 18.44 18.44 18.44 18.44 18.44 18.44 18.44 18.44

20182019 Exceedance rate (%) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.77
p-value (%) 69.67 69.67 69.67 69.67 69.67 69.67 69.67 69.67 69.67

2017-2018 Exceedance rate (%) 1.15 1.15 1.15 1.15 115 1.54 1.54 1.54 1.54
p-value (%) 80.77 80.77 80.77 80.77 80.77 41.87 41.87 41.87 41.87

20162017 Exceedance rate (%) 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 0.77
p-value (%) 80.77 80.77 80.77 80.77 80.77 80.77 80.77 80.77 69.67

20152016 Exceedance rate (%) 2.31 1.54 1.54 1.54 1.15 0.77 0.77 0.77 0.77
p-value (%) 7.01 41.87 41.87 80.77 80.77 69.67 69.67 69.67 69.67

20142015 Exceedance rate (%) 1.15 1.15 1.15 1.15 1.15 1.15 1.54 1.54 1.54
p-value (%) 80.77 80.77 80.77 80.77 80.77 80.77 41.87 41.87 41.87

20132014 Exceedance rate (%) 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
p-value (%) 41.87 41.87 41.87 41.87 41.87 41.87 41.87 41.87 41.87

Model class Quantile Regression

Model number 120 121 122 123 124 131 132 133 142

2022- Exceedance rate (%) 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38
2023 p-value (%) 25.44%  25.44%  25.44% 25.44% 25.44%  25.44% 25.44% 25.44% 25.44%

2021- Exceedance rate (%) 0.77 0.77 0.77 0.38 0.38 1.15 1.15 0.77 1.15
2022 p-value (%) 69.67% 69.67%  69.67% 25.44% 25.44% 80.77% 80.77%  69.67% 80.77%

2020- Exceedance rate (%) 1.54 2.31 2.31 1.92 1.92 1.92 1.92 2.31 2.69
2021 p-value (%) 41.87%  7.01% 7.01% 18.44% 18.44% 18.44%  7.01% 7.01% 2.34%

2019- Exceedance rate (%) 2.31 1.92 1.92 1.54 1.54 1.54 1.54 1.54 1.54
2020 p-value (%) 7.01% 18.44% 18.44% 41.87% 41.87% 41.87% 41.87% 41.87% 41.87%

2018- Exceedance rate (%) 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 1.15
2019 p-value (%) 25.44%  25.44%  25.44% 25.44% 25.44% 25.44% 25.44% 25.44% 80.77%

2017- Exceedance rate (%) 1.54 1.15 1.54 1.54 1.54 1.54 1.54 1.54 1.54
2018 p-value (%) 41.87% 80.77% 41.87% 41.87% 41.87% 41.87% 41.87% 41.87% 41.87%

2016- Exceedance rate (%) 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
2017 p-value (%) 80.77% 80.77% 80.77% 80.77% 80.77% 80.77%  80.77% 80.77%  80.77%

2015- Exceedance rate (%) 1.15 1.15 1.15 0.77 0.77 1.15 1.15 1.15 1.54
2016 p-value (%) 80.77% 80.77%  80.77%  69.67% 69.67% 80.77% 80.77% 80.77% 41.87%

2014- Exceedance rate (%) 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54
2015 p-value (%) 41.87% 41.87% 41.87% 41.87% 41.87% 41.87% 41.87% 41.87% 41.87%

2013- Exceedance rate (%) 1.15 0.77 0.77 0.77 0.77 1.92 1.92 1.92 1.15
2014 p-value (%) 80.77% 69.67%  69.67%  69.67% 69.67% 18.44% 18.44% 18.44% 80.77%

Appendix D.3.2 UC test results across annual subperiods for Total VaR — Quantile
Regression model. Reports the UC test applied to Total VaR model specifications over
ten consecutive annual subperiods. Models highlighted in bold correspond to those that

pass the test at the 5% significance level.
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Appendix D.3.3. Exceedance rates for Total VaR during the global evaluation period

Exceedance rate

Model number Model Class (%)
44 SGSt 1.27
54 SGSt 1.23
109 Quantile Regression 1.31
110 Quantile Regression 1.19
111 Quantile Regression 1.19
112 Quantile Regression 1.15
113 Quantile Regression 1.15
114 Quantile Regression 1.15
115 Quantile Regression 1.23
116 Quantile Regression 1.27
117 Quantile Regression 1.31
120 Quantile Regression 1.19
121 Quantile Regression 1.15
122 Quantile Regression 1.19
123 Quantile Regression 1.04
124 Quantile Regression 1.04
131 Quantile Regression 1.27
132 Quantile Regression 1.31
133 Quantile Regression 1.27

Appendix D.3.3. Exceedance rates for Total VaR during the global evaluation
period. Reports the exceedance rate for the global evaluation period. Models 123 and
124 exhibited the closest alignment with the theoretical exceedance rate of 1%. Model
124 was ultimately selected as the preferred specification.
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