IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 29 September 2025, accepted 11 October 2025, date of publication 16 October 2025, date of current version 27 October 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3622497

== RESEARCH ARTICLE

Toward Automatic Detection and Mitigation of
High-Risk Cybersecurity Vulnerabilities at
Networked Systems

JOAO POLONIO ", JOSE MOURA'2, AND RUI NETO MARINHEIRO -2
nstituto Universitdrio de Lisboa (ISCTE-IUL), Lisboa, Portugal
2nstituto de Telecomunicagdes, Lisboa, Portugal

Corresponding authors: José Moura (jose.moura@iscte-iul.pt) and Rui Neto Marinheiro (rui.marinheiro @iscte-iul.pt)
2024.07624.IACDC/2024 funded by FCT — Fundac@o para a Ciéncia e a Tecnologia under PRR — Plano de Recuperagdo e Resiliéncia
funding, investment RE-C05-i08 - Ciéncia Mais Digital, DOI: 10.54499/2024.07624.IACDC, and by national funds through FCT —

Fundagio para a Ciéncia e a Tecnologia, I.P., and, when eligible, co-funded by European Union funds under project/support
UID/50008/2025 — Instituto de Telecomunicacdes.

ABSTRACT The current manuscript investigates a comprehensive security framework designed to
proactively detect, classify, prioritize, and mitigate high-risk cybersecurity vulnerabilities in networked
systems controlled by software-defined networking (SDN). While available literature explores various
approaches, it lacks solutions that aggregate in a logically centralized and automated ways the previous
referred capabilities. Orchestrating efficiently all these capabilities is crucial to continuously ensure the
reliable operation of high-complexity networked systems. This article integrates in a novel way SDN
with the Security Orchestration, Automation, and Response (SOAR) paradigm to automatically identify and
address security vulnerabilities in network devices before they can be exploited. The proposed open-source
framework leverages standardized risk indicators to rank discovered vulnerabilities and apply the most
suitable mitigation strategies to mitigate the vulnerabilities with the highest risk of being explored against
the system normal operation. The paper framework enhances the reactive security capabilities offered by
legacy network devices such as Firewalls and Intrusion Detection Systems (IDSs). The paper details the
design, implementation, and evaluation of the framework, validated through both emulation and hardware-
based tests. The results confirm that the solution is effective in identifying and mitigating vulnerabilities
across diverse devices. Analyzing the results obtained from scalability tests, as the number of scanned
devices exceeds a certain threshold, CPU usage increases significantly, while memory and communication
resources remain underutilized. In addition, after identifying high-risk device vulnerabilities, the framework
automatically applies mitigation measures, timely protecting the system normal operation. Future work
may improve the capabilities of the framework by using artificial intelligence for more efficient device
vulnerability discovery, context-aware security risk evaluation, and better-aligned mitigation actions
targeting identified high-risk security vulnerabilities.

INDEX TERMS System vulnerability, detection, risk, mitigation, software defined networks, automation,
network security.

I. INTRODUCTION Managing a considerable number of network nodes with

Computer networks are growing more complex due to the
proliferation of data, advanced applications, and the Internet
of Things (IoT), all of which have significantly increased
both the number and heterogeneity of connected devices.

The associate editor coordinating the review of this manuscript and

approving it for publication was Adamu Murtala Zungeru

distinct functional characteristics is very difficult and prone to
mistakes. Many of these nodes often exhibit security vulner-
abilities, making them appealing targets for cyberattackers.
Typically, attackers have a persistent economic advantage
over defenders. While defenders must secure every potential
vulnerability, an attacker might need to exploit only a single
weakness to achieve their goal. This economic disparity,

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/

181957

https://orcid.org/0009-0009-0559-2950
https://orcid.org/0000-0002-3516-8781
https://orcid.org/0000-0002-0385-8876
https://orcid.org/0000-0003-2412-6559

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

coupled with the growing difficulty for human defenders
to maintain system security amidst constantly evolving
cyber threats targeting complex, high-connectivity networked
systems, highlights the urgent need for further research
into novel solutions. In this context, extensive research into
scalable, automated, and proactive approaches is essential for
effectively detecting and mitigating system vulnerabilities,
thereby reducing the risk of disruptions to system normal
operation, caused by cyberattacks or natural events, which
exploit or expose the system security weaknesses [1].

Given the last referred open security issues, we investigate
the very common scenario of an organization network
infrastructure that is visualized in Fig. 1. The institution
aims to keep its networked system as secure as possible
from cyberattacks. In this scenario, new devices may
be integrated, emerging technologies adopted [2], and
existing devices updated. These ongoing system changes
can unintentionally introduce new security vulnerabilities,
increasing the risk of external threats to undermine the
normal operation of the institutional infrastructure. In our
opinion, the typical legacy security defense line formed by
rigid policy-based devices such as firewalls and intrusion
detection systems are not sufficient to keep always secure
the organization’s network infrastructure and they should
be complemented by proactive security solutions running
at the internal part of the network infrastructure. These
proactive solutions should allow the anticipation of possible
occurrences of new security problems, such as vulnerabilities
in the network devices. In addition, running the proactive
solution at the internal part of the network infrastructure,
it allows the first line defense, formed by firewalls and
IDSs, to protect the normal operation of that proactive
solution.

As already mentioned, the network devices vulnerabilities
can expose critical systems to system threats , making crucial
the proactive management of those vulnerabilities to guaran-
tee the system normal operation. The primary objective of this
research is to correctly coordinate the automated discovery of
high-risk security vulnerabilities and the next mitigation of
those vulnerabilities. To accomplish this first goal, a resilient
and comprehensive architecture was developed, integrating
a considerable range of open-source security technologies.
Special attention was placed on the seamless orchestration
of these tools, thereby facilitating automatic and coordinated
responses to discovered security vulnerabilities. This novel
architecture relies on the additional security defense provided
by legacy security defense solutions such as firewalls and
intrusion detection systems (see Fig. 1). In addition, this
research has the secondary objective of rigorously evaluating
the impact of the new proposal on the network and device
performance, ensuring that the detection and mitigation
of security vulnerabilities are executed correctly and in
a timely manner. The paper main contributions are as
follows:

1) The design and implementation of a novel security

architecture that extends the capabilities of existing

181958

Organization Internal Security Zone

Internet Border Security Zone
»a

SOAR Management Loop with SDN Enhancement
Legacy Security
Defense Solutions Discovering Host Risk-based
Vulnerabilities Vulnerability Ranking|
Firewall /
Intrusion
Detection System
‘ ‘ High-Risk Vulnerabilities Mitigation via SDN
_ |
T) \
E)
T)

8 !
< ?

<———> Data message Bidirectional Flow Through the Networked System
—> Management message

FIGURE 1. Proposed SOAR-SDN management loop, with SDN enhancing
SOAR's response phase for host high-risk vulnerability mitigation.

network devices by integrating a proactive vulnera-
bility detection and mitigation layer. This framework
enhances system resilience beyond what is offered by
traditional security tools, such as, firewalls and IDSs.

2) The development of a customized Security Orches-
tration, Automation, and Response (SOAR) logic,
including a tailored playbook and specifically designed
interaction flows. These orchestrated processes enable
seamless automation across different components of
the SDN-based system, allowing for efficient, scalable,
and intelligent responses to detected vulnerabilities.

3) A discussion of the unique contributions of the pro-
posed framework and orchestration logic as a cohesive
and novel system, rather than a mere integration of
existing tools. The SOAR playbook and interaction
flows are central to this innovation, enabling adaptive
and context-aware responses that go beyond current
approaches in the literature.

4) It highlights that future SOAR-based proposals should
consider limitations like restrictive APIs, limited con-
trol during automated execution, inefficient debugging,
and unclear documentation. It also offers a novel
practical example of overcoming these challenges by
combining modular and reusable components with
agile and flexible strategies to ensure robust, scal-
able, and adaptable security automation in modern
networked environments.

5) Ituses adynamic and virtualized testbed, incorporating
Hardware-in-the-Loop (HIL) capabilities, to evaluate
the system’s performance. The testbed is used to
assess system burden and measure the latency from
vulnerability detection to host isolation within the
network.

The rest of the paper is structured as follows. Section II
discusses related literature. Section III presents the design of
solution’s architecture. Section IV details the implementation
of the proposed system. Section V discusses the results
obtained from the evaluation of the proposal . Finally,
Section VI concludes the paper and establishes upcoming
research.

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

II. LITERATURE REVIEW
A very recent work [1] has comprehensively analyzed
the literature for the discovery and mitigation of security
vulnerabilities in networking infrastructures controlled by
SDN, which are strongly related to the current paper. Most
of this revised work supports system security in a reactive
way. This means the majority of previous contributions try to
successfully detect and mitigate running attacks, which does
not guarantee a robust system protection. Exceptionally, some
work have proposed mitigation techniques such as Moving
Target Defense (MTD) [3], [4], [5] or Honeynet [6], which
can be seen as proposals toward the proactive defense
of networking environments using active cyberdeception
techniques against potential attackers. These proposals
aim to reduce the likelihood of an attacker successfully
exploiting network vulnerabilities. However, there is always
a possibility for an attacker may still manage to exploit
one of the existing vulnerabilities and carry out a dis-
ruptive cyberattack, such as Denial of Service (DoS) or
data exfiltration. To effectively prevent these attacks, new
security management approaches are needed, such as the one
proposed in this paper, which can automatically detect and
eliminate high-risk vulnerabilities from network devices.

Regarding the analysis of discovered security vulnera-
bilities, including those associated with hosts, only a
limited number of literature contributions performed security
vulnerability assessments using standardized metrics [1],
calling for further contributions using Common Vulnera-
bilities and Exposures (CVE) to identify the vulnerabilities
and Common Vulnerability Scoring System (CVSS) to
classify their risk. The use of standardized metrics is
fundamental for companies seeking to improve their
security defenses and actively prioritize the mitigation of
high-risk vulnerabilities, before these could be explored.
In addition, the adoption of standardized security metrics
enhances strategic decision-making by providing deeper
insights into emerging threats. It also enables a more efficient
dissemination of data associated to security vulnerabilities
among the security players of distinct organizations. Another
area that remains underexplored in the literature is the
integration of active probing tools within SDN environments,
relevant for organizations to promptly detect vulnerabilities
by actively examining their systems and, as an example,
discover open application ports that could be used for non
authorized system accesses. After the discovery of these open
ports, these should be closed or protected by convenient
mitigation techniques. Thus, active probing techniques
support the prioritization of mitigation efforts by enabling
organizations to swiftly and effectively address the most
critical security vulnerabilities within their systems. The
active scanning prevents security incidents, because it enables
a fast deployment of proactive measures against imminent
vulnerabilities exploitation by external attackers.

Further investigation using SOAR is needed for enhancing
the automation and orchestration aspects on SDN-based

VOLUME 13, 2025

solutions protecting the system security. In fact, the adoption
of SOAR has several important benefits. One of the most
important is the ability to optimize and automate incident
response workflows. With SOAR, incident responses can
be executed through automated playbooks and workflows,
integrating and orchestrating various tools such as vulner-
ability scanners, analysis of discovered vulnerabilities, risk
classification of vulnerabilities, selection of vulnerabilities
to mitigate, and mitigation of high-risk vulnerabilities.
The automated and orchestrated response provided by
SOAR to timely eliminate high-risk security vulnerabilities
in large-scale and complex networks [7] can be further
enhanced by the SOAR’s flexibility in coordinating artificial
intelligence agents using various data learning models [8],
[91, [10].

Another major concern that must be addressed is the secu-
rity risk posed by IoT devices, which are frequently deployed
with insufficient protection, rendering them highly suscep-
tible to cyberattacks. One proposed framework enhances
IoT security by leveraging an SDN-based architecture to
automatically scan devices for known vulnerabilities before
they are granted access to the network [11]. Upon detecting a
vulnerability, the system attempts automated remediation; if
unsuccessful, it notifies the user and provides recommended
mitigation actions. In experimental evaluations, the frame-
work effectively identified and neutralized vulnerabilities, for
instance, by isolating compromised devices using firewall
rules.

The same evaluation also showed that incorporating
additional checks, such as, veryfing whether a host has
already been scanned, which introduces only minimal
performance overhead. Specifically, the average packet
transmission delay increased by just 5.05 ms, and bandwidth
usage rose by approximately 0.45% compared to baseline
implementations [11]. However, these values reflect internal
orchestration overhead rather than the time required to
perform actual vulnerability scans. For instance, scanning
for weak or default passwords using a custom scanner may
take an average latency of 2.12 minutes, while detecting
vulnerabilities such as Badlock using tools like Nessus can
require up to 7.25 minutes.

An illustrative example of applying automated vulnerabil-
ity management in real-world environments is the Vulnerabil-
ity Assessment as a Service (VAaaS) system proposed in [12].
Designed specifically for complex ICT infrastructures, par-
ticularly in healthcare, the VAaaS framework addresses the
challenges of securing heterogeneous devices distributed
across cloud, fog, and extreme edge layers. Its architecture
leverage SDN for real-time network monitoring and employs
the OpenVAS scanner to assess both newly connected and
existing devices. Devices are evaluated against CVSS metrics
and subsequently assigned to appropriate VLANSs based on
their risk profiles. Reported latency results indicate that the
scanning duration for generic devices ranged from 13 seconds
to 15 minutes, with an average of 441 seconds. In contrast,

181959

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

specialized healthcare devices required significantly more
time, averaging 38 minutes and 11 seconds due to their
operational complexity.

These examples highlight that while orchestration over-
head can be minimal, the overall scan time, impacting
latency, remains a critical factor in system responsiveness
and scalability. In practice, scanning latency is influenced
by multiple parameters, including the number of vulner-
ability tests performed, the complexity of the detection
logic, the computational resources available on the scanner
host, and the target device’s operating system and service
configuration. Additionally, network conditions and scan
configurations (e.g., full vs. fast scans) also play a role.
Therefore, the latency should be interpreted in light of
these influencing factors, which can vary significantly across
different tools and deployment environments.

Complementing orchestration-focused approaches, some
research has explored the integration of machine learning
for proactive threat detection. For example, the framework
introduced in [13] combines vulnerability assessment with
a machine learning-based Intrusion Detection System (ML-
IDS), enabling real-time monitoring of network flows and
predictive detection of attack patterns. Hosts are also
segmented into network slices based on their CVSS v3.0
risk scores, allowing for differentiated handling according to
assessed severity.

As summarized in Table 1, most related works address
vulnerability detection or mitigation in isolation, often
focusing on specific techniques such as MTD, honeynets,
or VLAN segregation. However, they generally lack a
cohesive orchestration framework that integrates discovery,
risk-based prioritization, and mitigation in a unified work-
flow. Furthermore, to the best of our knowledge, no prior
SOAR-SDN proposals provide publicly available implemen-
tations that allow for reproducibility or direct benchmarking
of orchestration complexity and response times. These gaps
highlight the novelty of our contribution, which combines
standardized risk scoring (CVSS with QoD) and SDN-based
mitigation into an open-source SOAR playbook, enabling
both replication and future comparative studies.

IIl. SYSTEM ARCHITECTURE

This section discusses the system architecture and design
concepts, with the objective of addressing the challenges
mentioned in Section II. Section III-A discusses the method-
ology and principles that guided the system’s development.
Section III-B details each system component, explaining
their functions, relationships, and contributions to the overall
system operation.

A. METHODOLOGY

The system architecture building blocks and system work-
flow are visualized in Fig. 2. It begins with the detection
phase, when the proposed SOAR-based solution discovers
hosts (see 1.2.1 in Fig. 2), using network tools. Then, the
SOAR invokes a scanner to inspect host vulnerabilities and

181960

‘ Security Orchestration, Automation and Response (SOAR) Framework

11 2.1 3.1 4.1

Network Tools CVE, Vulnerability| | CVSS, Risk ’SDNComm”er
Evaluation

1.2 2.2 3.2 4.2
‘ . " Discovered & Host Host
1’:‘EtV\|’0r — Dls:‘overe ——{Classified Host |—| Vulnerability || Vulnerability
opology 1.2 osts 2.2 yylnerabilities |3-2-1| to Mitigate 4.2.1 Mitigated

FIGURE 2. Proposal functional blocks orchestrated by SOAR framework.

classify them via CVE (see 2.2.1). Once the vulnerabilities
have been classified, the SOAR framework moves on to
the analysis phase, where the severity and risk associated
with each vulnerability are assessed by means of CVSS,
sorted out, and compared against a decision threshold. This
step identifies the vulnerabilities with the higher security
risk, which need to be mitigated (see 3.2.1). Based on
the last results, the SOAR triggers the mitigation phase
of high-risk vulnerabilities (see 4.1), where appropriate
mitigation measures are implemented, such as isolating
vulnerable devices through VLAN switching or blocking
malicious traffic towards those devices. The final solution
outcome is to ensure the high-risk vulnerabilities in hosts
are successfully removed (see 4.2.1).

Based on the proposed solution methodology, a clear
sequence of management steps is required to ensure that
each vulnerable device on the network is systematically
discovered, classified, analyzed and its associated security
risk addressed in a prioritized manner. The correct
execution order of all management phases must be orches-
trated by a new SOAR playbook. Therefore, in order to
develop the proposed system, the following stages were
identified:

« Host discovery;

o Detection of host vulnerabilities;

o Generation of a vulnerability report for each host;

o Parse the host vulnerability report and analyze the
extracted vulnerability information;

o Classify the risk associated to each host vulnerability;

« Identify the topmost hosts with high-risk vulnerabilities
against the system normal operation;

« Mitigate the high-risk vulnerabilities.

Each phase of the system development lifecycle plays
a vital role in ensuring robust network security. Device
discovery is fundamental, as it provides a comprehensive
view of all active components within the network. Identifying
vulnerabilities in these devices is crucial for uncovering
security flaws before they can be exploited by malicious
actors. Generating a detailed vulnerability report ensures
consistent and accurate communication of security issues,
thereby supporting informed decision-making regarding mit-
igation strategies. Parsing and analyzing the report is essential
for assessing the severity of each vulnerability, enabling the
prioritization of responses to the most critical threats. Finally,

VOLUME 13, 2025

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

TABLE 1. Related work comparison.

Paper Vulnerability Detect SDN Controller = SOAR Risk Evaluation Vulnerability Scan ~ Mitigation Measure Resources Latency
[3] o N/A (@] CVSS+Exploitation (o] MTD+Decoy nodes o @)
[4] (@) ONOS O CVSS+Exploitation (@) MTD o]
[5] [J OpenDaylight (o] CVSS+IDS Nessus MTD o 0]
[6] (@) POX (@) O (o) Honeynet o o
(7 O O (@) CVSS+Risk Graph (0] 0] o 0]
[91 o o [(o] (o] VLANSs-+Honeypots o (0}
[11] o POX (@) Custom Nessus Firewall o]
[12] o ONOS O CVSS OpenVAS VLANSs (@) o
[13] ([OpenDaylight O CVSS (o] Network Slices o (0]

Ours [Ryu o CVSS GVM VLANSs [(]

Legend: @: topic is covered; @ topic partially covered; O: uncovered topic; N/A: unspecified SDN controller.

implementing appropriate mitigation measures is key to
effectively reducing the risk of exploitation and strengthening
the network’s resilience against future attacks.

The effective execution of these development phases
followed a set of fundamental design principles outlined
in [14]:

« Interoperability;

« Proactivity;

o Adaptability.

Interoperability ensures that the system can seamlessly
integrate with diverse tools, platforms, and technologies,
thereby enhancing its compatibility and overall operational
efficiency. Proactivity empowers the system to anticipate and
address potential threats and vulnerabilities before they can
be exploited, significantly strengthening network security.
Lastly, adaptability preserves the system’s flexibility and
responsiveness to change, enabling it to evolve in alignment
with emerging requirements, technological advancements,
and newly identified security challenges.

B. DESIGN

The architecture of the proposed proactive detection and
mitigation solution is visualized in Fig. 3. The SOAR
platform orchestrates host discovery, vulnerability scanning,
risk evaluation, and mitigation through SDN, ensuring an
automated and prioritized response to high-risk vulnerabili-
ties. This solution offers a hierarchical design and sequential
functionality among architecture components identified by
numbered interactions, which follow the discussion made in
Section III-A (see Fig. 2). The architecture consists of two
primary elements: the SOAR Server and the Security Tools
Server. The SOAR Server hosts the SOAR Platform, while
the Security Tools Server houses essential tools, including the
Device Discovery Module and the Vulnerability Scanner. The
separation between the SOAR Server and the Security Tools
Server enhances scalability, and flexibility in updates and
maintenance on each server, allowing independent changes
without negative repercussions on the other server perfor-
mance. Moreover, it promotes effective task segregation,
which is an essential practice to ensure that the centralized
control of the SOAR Server remains unaffected by the
operational demands of individual tools, thereby reinforcing

VOLUME 13, 2025

the system’s structural integrity. Additionally, this approach
enables the deployment of Security Tools Servers in locations
beyond the direct visibility or reach of the SOAR Server,
thereby extending the scope and effectiveness of SOAR
Server security orchestration capabilities.

There are two additional important architecture com-
ponents. The Database component , further detailed in
Section IV-D, that persistently stores in-memory key—
value information about relevant networked system status,
namely discovered network devices and found security
vulnerabilities. The SDN controller offers an NorthBound
API that receives SOAR requests to initiate vulnerability
mitigation actions.

As already mentioned, the SOAR platform orchestrates the
diverse modules of Fig. 2 such as network tools, vulnerability
scanner, risk evaluation, and SDN controller, ensuring that
detected vulnerabilities are logged and promptly addressed.
This SOAR-based solution enables the fast automatic
response to high critical vulnerabilities in a structured and
scalable manner, reducing response time significantly com-
pared to manual intervention or non-orchestrated automatic
solutions. In the text below, we further detail the following
four features orchestrated by SOAR (see Fig. 3): i) device
discovery; ii) vulnerability scanner; iii) vulnerability risk
evaluation; and iv) vulnerability mitigation.

The SOAR framework, using the interaction numbered as
“1.0” of Fig. 3, initiates the sequence of automatic steps to
perform the device discovery feature via the security service
adapter (see 1.1 of Fig. 3), which in its turn invokes (see
1.1.1) the host discovery function (see 1.2). Each returned
result from the discovery function is permanently stored on
the database (see 1.2.1) for posterior consultation by other
system components interested on that information.

The trigger 2.0 in the SOAR framework starts the sequence
of steps to perform the vulnerability scanner feature via the
security service adapter (see 2.1), which by its turn invokes
(see 2.1.1) the vulnerability scanner function of Security
Tools Server over each network host (see 2.2). Each returned
result from the vulnerability scanner function is stored on the
database (see 2.2.1).

The SOAR framework can initiate (see 3.0) a sequence
of automated steps to execute the risk evaluation feature.

181961

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

This process begins by collecting vulnerability data from the
database (see 3.1), evaluating the risk associated with each
vulnerability, identifying the highest-risk vulnerabilities on
each host (see 3.2), and storing the results in the database (see
3.2.1). The severity of the identified vulnerabilities enables
the subsequent SOAR capability to make well-informed
mitigation decisions based on a risk-prioritized list of host
security vulnerabilities.

Through interaction “4.0”, the SOAR framework per-
forms the mitigation feature by retrieving high-risk vul-
nerable devices from the database and triggering (see 4.1)
the SDN controller to initiate a sequence of management
actions aimed at mitigating the risk associated to each
host vulnerability (see 4.2). The results of these mitigation
actions are stored in the database (see 4.2.1). Here, the
SDN controller plays a central role. As an example of a
possible mitigation action, the SOAR component can instruct
the SDN controller to temporarily move a vulnerable host
to a separate VLAN. This isolation remains in place until
corrective actions are performed on the host to eliminate its
vulnerabilities.

IV. IMPLEMENTATION

This section details the process of implementing the proposed
system, describing the major elements and their interactions.
Section IV-A presents the logic of the system, explaining the
server where each component is running and the interaction
among the various components of the current proposal,
through a system activity diagram. The following sections
provide a detailed explanation of each tool or functional
module used in the implementation of the proposed solution
. The proposal code is publicly available in [15].

A. DATA FLOW AND INTERACTION
The Fig. 4 depicts a comprehensive activity diagram that
illustrates the end-to-end process from device discovery, vul-
nerability scanning, and risk evaluation to the mitigation of
high-risk vulnerabilities via SDN. This sequential functional
process was deployed as debated in the following text.
The process begins in the SOAR by creating a network
scanning ticket that requests a device discovery (1), thus
initiating a device discovery task (2) from the SSA. The
system then checks for any active devices on the network
(3) after sending the request. If no devices are detected, the
process waits for a timeout period (4) before returning to
the initial device discovery request, restarting the loop. After
detection, the status of the device is checked in the database
(5). This status refers to the date of the last vulnerability
scan carried out on the device, and, based on this parameter,
it is decided whether or not the device should be scanned
(6). As the SOAR decides the device should be scanned,
it then generates a vulnerability scanning ticket for that
device (7) and starts the vulnerability scan (8). The scan
results after being stored in the database are analyzed (9)
to calculate a severity score (10). Based on the calculated
score, the SOAR initiates a VLAN change (i.e. Mitigation

181962

Measure 1) to relocate the device to a quarantine zone via
the SDN controller (11). This mitigation strategy is just
one of several possible approaches. Other measures (i.e.
Mitigation Measure 2), such as Deep Packet Inspection (DPI)
to analyze network traffic for malicious content towards the
vulnerable host, the use of firewall rules to block flows
involving the vulnerable host, or even MTD to dynamically
shift the network configuration and protect the vulnerable
host, could also be implemented in the proposed solution.
These mitigation alternatives to VLAN isolation can be
studied in future work. If the device is considered safe, the
process is finished and a new scanning is scheduled in the
future (12).
The next Section details how the SOAR was deployed.

B. SOAR PLATFORM

Catalyst [16] is an open-source SOAR platform that
automatically alerts about security incidents and deals with
them. The platform is adaptable to various processes and
workflows, allowing customization through ticket types,
conditional custom fields, and playbooks to meet specific
requisites . Catalyst enables firms to enhance their
operations. It also allows the management of security alerts
with high efficiency.

Catalyst version 0.10.3 was chosen because of its support
for creating customized automation scripts written in Python.
This version has the capability of creating detailed playbooks.
It allows the remote execution of processes via an APL

Playbooks are a particularly valuable feature of Cata-
lyst, offering the ability to define automation workflows
from scratch using the YAML language, with graphical
representation available through the user interface (UI).
While the concept of a visual Ul is appealing, its current
implementation requires further refinement, as constructing
complex playbooks remains cumbersome. Although YAML
provides considerable flexibility, it lacks support for essential
programming constructs such as loops and conditional
branching, which are critical for building advanced automa-
tion logic. A more intuitive and expressive language could
enhance usability and facilitate the creation of sophisticated
workflows, including the ability to revisit previous automa-
tion steps. As playbook complexity increases, tracking
modifications and identifying errors in YAML code become
progressively more difficult in the absence of an integrated
debugging environment. Furthermore, the documentation
available for the Catalyst version used in this study was
notably limited, particularly regarding playbook develop-
ment. This inadequacy compelled developers to rely on
example-driven learning and trial-and-error experimentation
to understand and utilize the platform’s capabilities effec-
tively.

Develop Catalyst automation scripts offers numerous
advantages, particularly programming in Python, which
provides a wide range of capabilities. In Catalyst, automation
scripts are executed within Docker containers, where each
script runs in its own container. This approach improves

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

SOAR Server (Automatic Scripts)

Start
1.0
Device Discovery |«
2.0
Vulnerability Scanner
3.0)
Risk Evaluation

Security Tools Server

Security Service Adapter

1.11]

211

Host Discovery

4.0 |
Mitigation

—

4.2.1

ntroller

SDN Co

4.2

Switch

FIGURE 3. Proposed system architecture and functional components.

12

Vulnerability Scanner

7

SO0AR
Server

. Opened Ticket for — Device Discovery
Host Discovery Request

(1 @)

Check Host Status

®)

Create Vulnerability
Scanning Ticket >\ SeanDeviee)

))

Mitigation
Measure 1

(1)

(10)

Mitigation
Measure 2
Policy Action

Change host to safe
VLAN

Request SDN
Controller

Security Tools
Server

Container
nmap

(ARP scan H Return resuft)

@)

SDN
Controller,

Change VLAN for Install flow rule on
given interface Switch

XML Report
Generation

Request scanning to
Gvm —)@VM Active Problng)—)(

SDN
Switch

Install flow rule on
Switch

'
I
H
)— Report Parsing C"""i';gﬁf“"'“)—»[SaveReport |

[S—

u

FIGURE 4. Proposed system workflow and interaction sequence.

VOLUME 13, 2025

181963

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

compatibility and ensures process isolation. However, execut-
ing each script in a distinct container can create some issues.
Specifically, a new container must be instantiated every time a
script is run, which increases overhead, latency, and resource
consumption.

Catalyst has proven to be a tool with a highly interesting
and promising concept. As previously noted, its ability to
enhance automation while preserving a traditional ticketing
interface for opening and closing tasks demonstrates sig-
nificant innovation compared to other available open-source
tools. However, the software still requires substantial devel-
opment before it can be considered suitable for organizational
use.

During the Catalyst implementation, several challenges
and limitations were encountered, which in our opinion
should be carefully addressed in future versions:

o The Catalyst API presented several limitations. For
instance, it required requests to be made using a
complete JSON object, with parameters hardcoded
directly within it. When creating a ticket via the API,
the system did not auto-generate an ID, forcing the user
(i.e., the application using the API) to manually generate
one. Moreover, there was no built-in function to retrieve
the most recently assigned ID, making it necessary
to analyze all existing tickets to determine the latest
one;

o Another issue with Catalyst was the inability to
manually close a task while a playbook was still
running. This limitation led to the unnecessary execution
of automated scripts, even when further processing
was redundant or potentially harmful. This behav-
ior not only increased system load but also posed
risks, particularly on the Security Tools Server, where
sockets sometimes remained open, requiring a service
restart;

o Debugging in Catalyst was notably challenging, pri-
marily because testing a single automation script at the
end of a chain required executing the entire playbook.
This made the development cycle inefficient and time-
consuming;

e The tool’s documentation was minimal and often
unclear, which significantly hindered the installation,
implementation, and overall usability of the system.

To address the limitations encountered with Catalyst, our
system was deliberately designed to bypass or mitigate
several of these challenges. Specifically, in response to the
complexity of YAML-based playbook development and the
absence of integrated debugging support, we implemented
a set of practical workarounds. One key strategy was
the modularization of playbook logic, wherein complex
automation tasks were decomposed into smaller, reusable
components. This modular approach enhanced maintainabil-
ity and facilitated iterative testing and development, even
in the absence of native debugging tools. By structuring
the playbooks in this way, we reduced error-proneness

181964

and improved the overall robustness and scalability of the
automation logic.

The next Section details the implementation of the Security
Service Adapter.

C. SECURITY SERVICE ADAPTER

The Security Service Adapter (SSA) was completely devel-
oped in Python. The SSA behaves as an intermediary
between the SOAR Server and the security tools, Greenbone
Vulnerability Manager (GVM) and Nmap. Through the SSA
REST API, it receives instructions from Catalyst SOAR to
execute processes related to the GVM, as well as store and
read data from a database. FastAPI [17] was selected as
the library for the development of the SSA API. This Python
library was selected for its simplicity and performance.
FastAPI allows SOAR to quickly access the functionalities
offered by the SSA, such as running scans and extracting
reports. The choice of this technology was reinforced by
its use in network automation scenarios, as emphasized
in [18]. Although the focus of this research is not to have
secure communications, the HTTPS protocol was adopted to
improve the security of communications between the SSA
and SOAR, thus ensuring the integrity and confidentiality of
the data exchanged.

The decision-making logic for handling device vulnerabil-
ities was implemented within SOAR, as it is the most suitable
environment for this functionality. This implementation
provides users with greater flexibility to tailor vulnerability
analysis and mitigation workflows without affecting the over-
all system operation. Thus, SOAR assumes responsibility
for the decision logic, while the SSA focuses on delivering
the necessary support functions, promoting a modular and
scalable architecture.

The scanning process is initiated when a request is made
to scan a specific target, with an IP address provided as input.
This triggers the function responsible for launching the scan.
In the activity diagram (Fig. 4), this step (8) is represented
by the block indicating the execution of the scan task, which
continues until the scanner produces a report detailing the
identified vulnerabilities.

During the scan, it is essential to monitor its progress to
determine when it has completed. In the implementation, this
is achieved through a function that periodically checks the
scan status using the report identifier. The system queries the
current scan status (e.g., “Running”, “Stopped”, “Done’’)
from the GVM at regular intervals. By default, this interval is
set to 2 minutes but can be adjusted via the Device Discovery
Automation settings in SOAR to suit the environment’s
needs.

There are two possible approaches for monitoring:
callback-based or polling. A callback mechanism would
allow the GVM to notify the system immediately upon
scan completion, but it introduces additional implementa-
tion complexity. The adopted approach based on periodic
polling, it queries about the scan status at configurable

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

intervals. Shorter intervals enable quicker detection of
scan completion but increase system load, while longer
intervals reduce resource usage at the cost of delayed
detection.

Once the scan concludes, the system processes the
results by extracting relevant data and storing it in the
database for further analysis. This stage begins as soon
as the monitoring function detects scan completion. The
corresponding function then parses the XML report generated
by GVM and converts it into JSON format for analysis by the
SOAR platform. As part of this process, the SSA reads the
report, extracts all pertinent information, and prepares it for
SOAR to make informed decisions. This design allows for
customization and alignment of the extracted data with the
system’s objectives, including specific characteristics of the
scanned nodes.

D. DATABASE

Redis [19] was used to manage the work queues and
temporary storage of data critical to the system’s operation.
Redis is an in-memory key-value store, categorized as a
NoSQL database, which provides high-performance storage
for various data structures such as strings, hashes, lists, sets,
and sorted sets. Unlike traditional relational databases, Redis
does not employ tables or schemas and does not enforce
relational integrity constraints. Its primary advantage is rapid
data access, which makes it particularly suitable for managing
queues and transient data required for system responsiveness.

In the Security Service Adapter (SSA), tasks such as
device discovery and report parsing are queued in Redis
to facilitate asynchronous processing. This setup enables
parallel execution of multiple tasks, significantly reducing
response times for new requests. Consequently, the SSA
can continuously accept and enqueue new scan or operation
requests without needing to wait for preceding tasks to
complete.

The Redis database itself is deployed within a dedicated
virtual machine, which ensures isolation, scalability, and
ease of maintenance, while providing flexibility to scale or
relocate the database infrastructure if needed.

Next Section discusses how the Device Discovery Module
was deployed.

E. DEVICE DISCOVERY MODULE
Nmap (Network Mapper) [20] is an open-source tool used for
exploring and evaluating network systems, including network
inventory and monitoring the availability of devices or
services and security purposes. While it is primarily designed
for scanning large networks quickly, it is also effective
for targeting individual devices [21]. Nmap is widely
recognized for its efficiency and performance, offering fast
and comprehensive network scans.

In the deployed system, Nmap (version 7.93) is executed
within a Docker container, ensuring an isolated, reproducible,
and platform-independent environment for device detection.

VOLUME 13, 2025

The integration with the “python-nmap” library facilitates
programmatic control of Nmap from Python, enhancing the
system’s versatility by enabling seamless automation and
integration into broader data processing workflows.

Nmap was configured for device discovery using two
specific scan types: sP, which performs a basic ping scan
to find active devices without further testing such as port
scanning or OS detection, and PR, which runs an Address
Resolution Protocol (ARP) scan, which determines device
activity by mapping IP addresses with their respective Media
Access Control (MAC) addresses.

The next Section discusses how the Vulnerability Scanner
was deployed and how the vulnerability risk was evaluated.

F. VULNERABILITY SCANNER

The purpose of the vulnerability scanner is to identify security
vulnerabilities across various devices within the network.
Once detected, these vulnerabilities are evaluated based on
the potential risk they pose to normal network operations if
exploited by cyberattacks. The used vulnerability scanning
tool was GVM [22] which is the successor to OpenVAS.

GVM utilizes two scanners to assess devices on the
network: the OpenVAS Scanner and the Notus Scanner. The
OpenVAS Scanner is a comprehensive engine that executes
individual vulnerability tests (VTs) sequentially, primarily
using Nessus Attack Scripting Language (NASL) scripts
against target systems. It draws on either the Greenbone
Enterprise Feed or the Greenbone Community Feed to ensure
up-to-date vulnerability information. While thorough, this
method can be resource-intensive and slower, as each NASL-
based local security check (LSC) is executed separately for
every device.

In opposition, the Notus Scanner enhances performance by
replacing the NASL-based LSC logic. Rather than executing
individual scripts, it performs a bulk comparison of the
installed software on a device against a known list of
applications with vulnerabilities. This significantly reduces
resource usage and scanning time, making the Notus Scanner
a faster and more efficient option, particularly for LSCs.

GVM provides a variety of scan configurations tailored to
different requirements and levels of detail. These configura-
tions are designed to balance the depth of analysis with the
potential impact on the normal operation of target systems.
Users can choose between quick, low-impact scans or more
exhaustive, potentially disruptive ones, depending on their
specific needs. For the purposes of this research, the Full and
Fast scan configuration was selected for the tests described
in Section V, due to its efficiency and ability to deliver fast
and reliable results without causing operational disruption
to the target systems.

GVM supports exporting scan data in multiple formats,
including PDF, CSV, and XML. For this research, XML
was chosen due to its ability to encapsulate comprehensive
scan details and facilitate seamless integration with other
tools. GVM-generated XML files are extensive, containing

181965

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

numerous fields, some of these intended solely for internal
system use. For practical analysis, it is recommended to focus
on the report’s critical data fields rather than processing all
reported information.

G. VULNERABILITY RISK EVALUATION

The data in the report, obtained from the component in the
previous section, are used to determine whether a device is
considered vulnerable, as shown in Equation 1. This equation
computes a vulnerability score for each finding by combining
its Severity (S) with the corresponding Quality of Detection
(QoD), normalized as QoD/100. The QoD parameter reflects
the accuracy and confidence of the vulnerability detection
provided by GVM.

GVM calculates QoD based on predefined criteria con-
sidering the reliability of the detection methods used.
Specifically, vulnerabilities explicitly confirmed via reliable
methods, such as direct version or patch-level checking,
or clear proof of exploitation, are assigned high QoD
values. Detections based on indirect evidence, such as
service banners or other strong indicators, receive medium
QoD values, whereas vulnerabilities inferred heuristically or
through low-confidence indicators, such as generic behaviors
or uncertain patterns, are given lower QoD values.

Multiplying Severity by QoD/100 thus effectively captures
both the potential impact of the vulnerability and the accuracy
of its detection. Therefore, QoD represents a structured
measure of the reliability and accuracy of vulnerability
identification, providing essential context and confidence
levels for users making risk-based decisions.

For each device, the highest of these vulnerabilities scores
is denoted as V. If V exceeds a predefined threshold, the
device is classified as vulnerable. This threshold can be easily
adjusted within the Mitigation Measure Automation script to
accommodate varying risk assessment policies or operational
requirements.

As future work we envision to replace the current high-risk
decision mechanism, based on CVSS cores exceeding a
predefined threshold, by more comprehensive alternatives.
These include incorporating additional factors into the
vulnerability risk evaluation process, such as: i) the vulner-
ability’s exploitability value [3], [4]; and ii) the likelihood
that a CVE vulnerability could be exploited, as obtained from
a public API [23]; iii) the role or system’s function of the
affected device within the network; and iv) the number of
interactions the affected device have performed with other
network devices during a specific time interval. These
factors are expected to significantly improve the precision of
risk prioritization. Their omission in the current implemen-
tation was primarily due to the increased complexity in data
acquisition, integration, and real-time processing within the
orchestration pipeline. Nonetheless, their inclusion remains a
key direction for future development.

QoD;
100

V = max (S,-x
.,n}

) , V> Thresh @))
ie{1,2,..

181966

where:

« V is the highest vulnerability score;

« S is the severity score of vulnerability i;

o QoDi; is the quality of detection value of vulnerability i;

o nis the total number of vulnerabilities;

o The operator max selects the highest score;

e The condition V> Thresh means the device is
considered vulnerable if the severity score exceeds the
severity Threshold.

GVM supports remote task execution, such as initiating
scans and retrieving reports, which enables its integration and
management by the SSA. To facilitate automated commu-
nication with GVM, the gvm-tools toolkit was installed.
Among the available tools, gvm-script was selected for
its simplicity and efficiency. It allows direct interaction
with GVM by executing Greenbone Management Protocol
(GMP) commands via the command line, streamlining the
automation of scanning tasks.

The gvm-script interface, which is intuitive and user-
friendly, allows users to perform tasks such as initiating vul-
nerability scans, selecting scan configurations, and retrieving
detailed reports using concise, single-line commands. This
approach helps mitigate the complexity typically associated
with API-based interactions.

Moreover, the use of gvm-script and its scripting-based
design simplifies maintenance. By leveraging scripts, a clear
separation of responsibilities was successfully implemented.
This modularity facilitates easier updates and modifications,
particularly when adjusting the scanning logic contained
within the scripts. As aresult, the integration process becomes
more straightforward, while the risk of bugs and errors, which
are common in other more complex API-based interactions,
is significantly reduced.

The gvm-script method enhances the testing and debug-
ging process, as each script can be independently validated,
ensuring reliable and predictable behavior.

The next two sections debate the deployment of the SDN
system.

H. SDN CONTROLLER

Ryu was chosen as the SDN controller [24], an open-source,
modular platform developed by Nippon Telegraph and
Telephone (NTT), a Japanese telecommunications company.
In Japanese, “Ryu” means “flow’, a name that effectively
describes the controller’s capability to dynamically manage
network traffic flows. Written in Python and licensed
under Apache 2.0, Ryu supports a wide range of network
management protocols, including NETCONF, OF-Config,
and the Open vSwitch Database Management Protocol.
It also implements the standard SouthBound API OpenFlow,
supporting versions from 1.0 to 1.5. In this implementation,
OpenFlow v1.3 was used to control software-based switches
via OpenvSwitch. Ryu provides a rich set of libraries
for packet handling and supports various tunneling and
encapsulation methods, such as VLAN.

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

The decision to adopt Ryu was driven by its open-
source nature, extensive documentation, and Python-based
implementation, which aligns well with the team’s expertise.
Additionally, Ryu’s ability to integrate smoothly with differ-
ent platforms and tools through its REST API (NorthBound
interface), combined with strong community support and a
flexible architecture, made it a robust choice for building a
resilient SDN environment. In this setup, the Ryu controller
operates within a Docker container.

I. SWITCH
The implementation has used Open vSwitch (OVS) [25],
a robust, multi-layer virtual switch licensed under the
open-source Apache 2.0 license. OVS is designed to support
advanced network automation while maintaining compati-
bility with standard management protocols and interfaces.
It integrates seamlessly with various virtualization platforms,
such as Docker and VMware, and is particularly well-suited
for virtualized environments involving multiple servers.
These environments are characterized by dynamic endpoints,
the need to preserve logical abstractions, and the offloading
or delegation of tasks to specialized switching hardware.
Version 3.1.0 of OVS was employed in this implementation.

The network topology was constructed using Mininet [26],
a lightweight network emulator that creates virtual networks
for testing and development purposes. Version 2.3.0 of
Mininet was used. Additionally, Mininet enabled the con-
figuration of an SDN router within one of its virtual hosts,
providing Internet connectivity to all emulated hosts. This
virtualized testbed was crucial for simulating diverse network
scenarios and assessing system behavior under controlled
conditions before transitioning to more complex and realistic
testing environments.

The next Section debates DHCP Server deployment.

J. DHCP SERVER

The DHCP service is provided through the implementation of
the ISC DHCP server [27]. Version isc-dhcpd-4.4.3-P1 was
selected for its proven stability and ease of use. This version
is well-suited to the system’s requirements, offering reliable
performance and a straightforward configuration process
without unnecessary complexity.

It is worth noting that, at the time of writing, ISC DHCP,
while still supported, it is no longer receiving maintenance
releases and it has been officially succeeded by Kea [28].

The next Section details how the Mitigation Module was
built.

K. MITIGATION MODULE

In this research, the chosen mitigation strategy involved
reassigning the VLAN of vulnerable devices to isolate them
from the rest of the network. To achieve this, it was necessary
to modify the behavior of the SDN controller by changing
its source code. As illustrated in Fig. 4, when a device is
identified as vulnerable, the SDN controller is responsible for

VOLUME 13, 2025

updating the VLAN assignment (see step 11) on the device’s
interface and applying specific flow rules on the switch to
enforce the new network policy. This effectively reroutes the
device to a quarantine VLAN, isolating it from the main
network.

Algorithm 1 is executed within the SDN controller
after the SOAR platform triggers a VLAN change for
a high-risk host via Ryu’s REST API. This approach
offers several advantages, as VLAN assignments are
dynamically managed based on switch ports, allowing
for straightforward and flexible updates. The algorithm
relies on two dictionaries: port_to_vlan (line 1) and
ip_to_switch_port (line 2). The port_to_vlan
dictionary maintains real-time mappings of VLAN IDs
to switch ports, while ip_to_switch_port links IP
addresses to their corresponding switch IDs and source ports.

Upon receiving an IP address (line 3) and a new VLAN ID
(line 4), the function first checks whether the IP exists in the
ip_to_switch_port dictionary. If found, it retrieves the
associated switch ID and port (line 7); otherwise, it returns
a 404 error (line 9), indicating the IP is not recognized.
Once the relevant switch and port are identified, the function
updates the port_to_vlan mapping with the new VLAN
ID (line 11). It then removes any existing flow rules for that
port to avoid conflicts (line 13), ensuring the new VLAN
configuration is correctly applied in the data plane. Finally,
the function returns the updated port_to_vlan dictionary
(line 16), reflecting the current VLAN assignments.

The next section presents and analyzes the results obtained
through a comprehensive set of evaluation tests conducted to
assess the proposed system.

V. RESULTS

This section presents and analyzes the results obtained from
testing the proposed system in two distinct environments,
aiming to comprehensively evaluate its performance under
varied conditions. Due to infrastructure limitations, the
physical testbed lacked SDN-capable switches, rendering
it unsuitable for validating the VLAN-based mitigation
mechanism. In traditional switching environments, VLAN
assignments are typically static and tied to physical port con-
figurations, which restricts the dynamic and programmable
VLAN reassignments necessary for responsive host isolation.
Therefore, a virtualized SDN-enabled environment was
employed to assess the mitigation mechanism, offering the
flexibility to simulate and observe VLAN transitions in a
controlled setting.

Conversely, the physical environment was instrumental
in validating the vulnerability scanning process within a
real-world network context, where interaction with actual
hardware devices (referred to as hosts or machines) could
be evaluated more realistically. Specifically, tests A to D,
focused on performance analysis of the vulnerability scanner,
were conducted in the physical environment, while test E,
which evaluates the orchestration performance, including
automated response execution, was performed in the virtual

181967

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

Algorithm 1 Change VLAN ID
Require: Dictionaries port_to_vlan and ip_to_switch_port.
1: port_to_vlan: Tracks which VLAN each port is assigned
to.
2: ip_to_switch_port: Maps an IP address to its associated
port and switch.
3: ipaddress: IP address of the device whose VLAN ID
needs to be changed.
4: vlanid: New VLAN ID to be assigned.
{Step 1: Check if IP address exists in ip_to_switch_port
dictionary. }
6: if ipaddress exists in ip_to_switch_port then
7: Retrieve switch ID and source port.
8
9

W

. else
: return 404 (Not Found).
10: end if
11: {Step 2: Update port_to_vlan dictionary with the new
VLAN ID.}
12: Update port_to_vlan for the source port with vlanid.
13: {Step 3: Clean all flow rules associated with the source
port.}
14: Use the clean_flows method to clear the flow rules.
15: {Step 4: Return the updated port_to_vlan dictionary.}
16: return Updated port_to_vlan dictionary.

environment, where more control over the network setup
was possible. Together, these complementary testbed envi-
ronments enabled a well-rounded assessment of the system’s
functionality, scalability, and responsiveness.

The physical environment tests were conducted in the
computer networks laboratories at ISCTE-IUL [29]. These
tests aimed to evaluate the performance of the vulnerability
scanner integrated into the developed system. The labora-
tories provided access to 32 machines distributed across
16 workbenches in two separate rooms. By conducting
tests with varying numbers of hosts, the scalability and
performance of the scanner were evaluated under different
load conditions. Incrementally increasing the number of
target hosts allowed for an analysis of how resource
consumption and scan duration scaled with the number of
devices being scanned.

Each laboratory machine hosted a virtual machine (VM)
designated as a scan target. Table 2 details the specifications
of both the physical machines and the target VMs.

The physical machine designated as the Security Tools
Server hosts a VM running Kali Linux, where the vulnera-
bility scanner, GVM, is installed and operational. This server
is connected to the laboratory switch, providing it with access
to the network. Within the VM, a DHCP server is configured
to assign IP addresses to the laboratory machines. Table 3
presents the hardware specifications of the physical server
and the configuration details of the server VM.

According to our current best knowledge, we have not
identified any prior SOAR-SDN proposals with publicly

181968

TABLE 2. Hardware and software specifications of the laboratory
machines and their corresponding target virtual machines used in the
physical testbed. The laboratory machines hosted Windows 10 Enterprise
with virtualized Windows Server 2003 targets for vulnerability scanning.

Specification | Laboratory Machine Target VM
oS Windows 10 Enterprise | Windows 2003
CPU Intel i5-6600 8 CPU Cores
RAM 32GB 1GB

TABLE 3. Hardware and software specifications of the Security Tools
Server and its associated virtual machine used for running GVM in the
physical testbed. The server hosted a Kali Linux VM configured with DHCP
and vulnerability scanning services.

Specification Server Machine Server VM
(O] Windows 11 Home Kali Linux 2022.2
CPU Model AMD Ryzen 5 5600H 8 CPU Cores
RAM 24 GB 12 GB

available implementations that would enable a direct,
quantitative comparison of orchestration complexity and
response times. Most related works provide only concep-
tual architectures or partial implementations, which limits
the possibility of benchmarking our proposal performance
against them. As an alternative, and to promote transparency
and reproducibility, we have made our full implementation
publicly available on [15]. This allows the community to
replicate our results and provides a reference point for future
work to compare orchestration complexity and response
times against our proposal.

A. SCAN TIME ANALYSIS

The objective of this test was to evaluate the resource
consumption of GVM and its impact on scan duration.
The time required to complete a scan directly influences
how frequently scans can be performed and how quickly
vulnerabilities can be detected and mitigated. Long scan
durations may delay vulnerability identification, thereby
increasing exposure to potential threats.

Assessing the scanner’s impact on system resources,
specifically CPU, RAM, and network bandwidth, ensures
that scanning operations do not degrade overall system
performance or lead to unexpected downtime. Bandwidth
usage was also monitored to verify that the scanning process
does not saturate the network, which could disrupt host
communication or worse the performance of other services.
The parameters CPU, RAM, and bandwidth, were selected to
monitor the system performance in the tests described below.
The goal was to identify any resource bottlenecks that might
correlate with increased scan durations and limit the system’s
overall performance.

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

60

Duration (min)
[o = vt
=] =] =1 =]

[

27
5 18 19 20 I
1 2 4 8 16
Number of Hosts

FIGURE 5. Duration of vulnerability scans with 1 to 32 hosts in the
physical testbed. Tests were executed with GVM (Full and Fast
configuration) running on Kali Linux, scanning Windows-based virtual
machines connected via laboratory switches.

Tests were conducted in the laboratory environment
using 1, 2, 4, 8, 16, and 32 hosts. Fig. 5 illustrates the
relationship between the number of scanned hosts and the
corresponding scan duration.

The results indicate a noticeable increase in scan duration
as the number of scanned hosts grows, with a particularly
sharp rise observed beyond 8 hosts. This escalation can be
attributed to the complexity of the Vulnerability Tests (VTs)
performed by GVM on each individual host. As the number
of targets increases, the scanner must handle a proportionally
greater volume of data and processing tasks, leading to longer
execution times.

Further insights into this behavior are provided in subsec-
tions V-B, V-C, and V-D, where the scanner’s resource usage
is examined in greater detail. These analyses help identify
external limiting factors that may contribute to increased scan
durations.

B. CPU LOAD

This subsection analyzes CPU usage across the different
test scenarios. Table 4 presents the maximum, average, and
standard deviation values of CPU utilization recorded during
scans to a variable number of hosts. The standard deviation
indicates the variability of CPU usage over time, providing
insight into the consistency of resource consumption. All
CPU usage values were calculated from a representative
sample, with the CPU initially operating at 1%.

For tests involving up to 2 hosts, maximum CPU usage
remained moderate, and average usage was relatively low.
Although the test with 4 hosts showed a peak CPU usage
nearing 100%, the increase in scan duration was minimal,
only about two minutes longer than the single-host test (see
Fig. 5). This can be attributed to the average CPU usage
still being within acceptable limits, allowing the system to
maintain efficient operation (see Table 4).

However, starting from 8 hosts, the CPU experienced
full saturation, accompanied by a significant rise in average
usage, indicating a notable strain on server resources.
With 16 hosts, the impact on scan duration became more

VOLUME 13, 2025

e 16 HoSts 4 hosts

100
90
80
70
60

CPU (%)

1 2345678 9101112131415161718192021 2223 24 252627
Time (min)

FIGURE 6. CPU utilization during vulnerability scanning with 4 and

16 hosts in the physical testbed. Scans were performed using GVM with
the Full and Fast configuration, and measurements were collected from
the Security Tools Server running Kali Linux on a virtual machine.

pronounced. The CPU not only reached its maximum
capacity but also remained at high utilization levels for
extended periods. In the 32-host scenario, the situation
further deteriorated, with average CPU usage approaching
90%, signaling a critical overload. This sustained high
usage reduced the scanner’s efficiency, preventing it from
effectively handling all hosts and resulting in a substantial
increase in scan completion time.

An analysis of the standard deviation values presented in
Table 4 reveals a notable variation in CPU usage consistency
as the number of hosts increases. For tests involving 1 and
2 hosts, the standard deviation remains relatively low,
indicating stable and predictable CPU usage with minimal
fluctuation around the mean. This suggests that under lighter
loads, resource consumption is more consistent.

However, for scenarios with 4 and 8 hosts, the standard
deviation increases significantly, reflecting greater variability
in CPU utilization. This implies that the system experienced
intermittent peaks in resource demand. Despite the high
average CPU usage, the increased variability suggests that
the system was frequently operating near capacity, with only
brief and infrequent periods of reduced load.

These results highlight a substantial rise in CPU demand
as the number of hosts grows, underscoring the scalability
challenges associated with running vulnerability scans in
environments with a high number of connected devices.

Fig. 6 illustrates CPU utilization over time for workloads
involving 4 and 16 hosts, respectively. In both scenarios,
the initial CPU load is approximately 13%, which is
attributed to the initiation of tasks within the GVM system.
In the 16-host scenario, CPU usage subsequently exhibits
a marked increase, particularly at minute four, reaching
saturation at 100%. This sharp increase likely corresponds
to the initial intensive execution phase of vulnerability tests
(VTs). Following these peaks, CPU utilization decreases
around minute six, with further reductions observed at
minute eleven. Toward the conclusion of the scan, resource
usage progressively declines as expected. Conversely, in the
4-host scenario, CPU utilization reaches saturation only

181969

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

TABLE 4. CPU utilization results during vulnerability scans with 1 to 32 hosts in the physical testbed. Values include maximum, average, and standard
deviation of CPU load measured on the Security Tools Server running GVM with the Full and Fast configuration.

CPU load \ 1Host 2Hosts 4Hosts 8Hosts 16 Hosts 32 Hosts
Max (%) 27.5 58.6 99.0 100 100 100
Avg (%) 14.3 24.3 47.8 78.0 82.1 87.7
STD Deviation (%) 6.7 13.9 29.0 35.2 329 27.0
RAM (%) W Upload m Download
2500
55 2036
= 50 2000 1854
s 4 z 1513
< .0 < 1500
35 " =
m ' 2 1000 on 785 784
o 13151710 - 77 cee
15171921 33 55 57 59 3133 2 o 307 377 >
99 35 37 39 4143 45 . 500 ~ - o
2 47 49 76 170 171 ‘ I
Time (min) 0 - |
1 2 4 8 16 32

m1Host 2 Hosts 4 Hosts M8 Hosts M16Hosts m32Hosts

FIGURE 7. Comparison of RAM usage during vulnerability scans with with
1 to 32 hosts in the physical testbed. Scans were conducted using GVM
(Full and Fast configuration) on Windows-based target virtual machines,
with memory consumption monitored on the Security Tools Server.

once at minute fifteen, demonstrating overall more efficient
resource management throughout the measurement period.
The observed fluctuations in CPU utilization are presumably
correlated with the timing of specific VTs, reflecting their
varying computational complexity and intensity. Comparing
periods of highest CPU utilization across both scenarios,
it is evident that the 16-host scan requires approximately
seven additional minutes to conclude compared to the 4-host
scenario, a result consistent with the findings presented in
Fig. 5.

C. MEMORY USAGE

This subsection analyzes RAM usage during the various
test scenarios. As shown in Table 5 and Fig. 7, memory
consumption remains relatively stable despite the increase
in the number of scanned hosts. Although there is a slight
upward trend in RAM usage as more hosts are added, the
variation is minimal and does not follow the same increasing
pattern observed in scan duration results.

These findings suggest that GVM handles memory effi-
ciently, even as the workload scales, indicating that RAM is
not a limiting factor in the scanning process. Instead, the CPU
appears to be the primary contributor to the increased scan
times. RAM usage values were derived from a representative
sample, with the initial memory usage recorded at 37%
(approximately 4.3 GB).

The analysis of RAM usage over time, as illustrated
in Fig. 7, revealed no significant outliers, confirming the
consistency of the results throughout the testing process. This
stable behavior indicates that no anomalous or unexpected

181970

Number of Hosts

FIGURE 8. Average upload and download bandwidth usage during
vulnerability scans with 1 to 32 hosts in the physical testbed. Tests were
conducted on a 100 Mbps LAN, using GVM with the Full and Fast
configuration. Bandwidth consumption was monitored between the
Security Tools Server and the scanned hosts.

events occurred during the test runs, thereby reinforcing
the reliability of the experimental data. The absence of
abrupt fluctuations in memory usage suggests that the system
maintained predictable performance, even under varying load
conditions.

D. NETWORK OVERHEAD

This subsection examines the network bandwidth utilized
during the different test scenarios. Fig. 8 presents band-
width usage as a function of the number of scanned
hosts. Throughout the tests, upload bandwidth consistently
remained lower than download bandwidth, indicating that the
scanner received more data than it transmitted.

Following an initial increase, the growth in bandwidth
usage begins to plateau once the number of hosts exceeds 8.
This stabilization is likely due to the system reaching 100%
CPU utilization, which limits the scanner’s ability to process
and execute vulnerability tests in parallel. Both upload and
download bandwidth usage show a positive correlation with
the number of hosts, although the increase in download
bandwidth is more pronounced. The average bandwidth
values were calculated from a representative sample. Initial
average values were recorded at 0.7296 Kbps for upload and
1.0203 Kbps for download.

Although bandwidth usage increased over time, the values
remained well within acceptable limits and did not represent
a bottleneck for the vulnerability scanning process. The tests
were conducted on a LAN with a capacity of 100 Mbps,
which is significantly higher than the peak bandwidth
observed in Fig. 8, approximately 2 Mbps. This means

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

TABLE 5. RAM usage results during vulnerability scans with 1 to 32 hosts in the physical testbed. Maximum, average, and standard deviation values were
recorded on the Security Tools Server to assess the impact of scaling on memory consumption.

RAM memory \ 1Host 2Hosts 4Hosts 8Hosts 16 Hosts 32 Hosts
Max (%) 41.6 423 432 46.7 50.4 529
Avg (%) 41.1 41.6 42.1 434 444 449
STD Deviation (%) 0.5 0.6 0.8 1.7 2.7 2.8

that the scanning process utilized only about 2% of the
available network capacity, confirming that bandwidth was
not a limiting factor in this context.

E. PERFORMANCE AND ORCHESTRATION TIMING

The tests conducted in the virtual environment involved
running vulnerability scans on a single host running the
Windows 2003 operating system (see Table 2), hosted within
a VMware virtual machine. The objective of these tests was to
measure the execution time of each step in the workflow, not
to benchmark different operating systems, but rather to assess
the orchestration performance of the proposed SOAR-based
framework. Using a host with well-documented vulnera-
bilities allowed for a consistent and efficient evaluation of
detection, response, and mitigation sequences. To support
this, a logging mechanism was implemented on both the
SOAR Server and the Security Tools Server, enabling precise
tracking of when the system transitioned from one task to the
next (refer to Fig. 4).

Table 6 presents the time taken for each step. By analyzing
these durations, it becomes possible to identify stages that
may be contributing disproportionately to the overall exe-
cution time. The first entry, “Device Discovery,” represents
the time between initiating the network discovery request
and receiving a response. The second column, ‘‘Prepare Vuln
Scan,” shows the time required to prepare the vulnerability
scan request, which includes queuing the device information
and creating an automation ticket, until the scan request is
initiated.

Following this, the vulnerability scan itself is executed for
a single host, lasting approximately 18 minutes as shown
in Fig. 5; this duration is not included in the Table 6.
The “Request Report” column reflects the time between
requesting and receiving the vulnerability report, while
“Parsing Report” visualizes the time taken to process and
interpret the report data. Lastly, the “Change VLAN”’ column
indicates the time required to reassign the VLAN, and the
diverse values associated to the “Change IP” column are
available in Table 7.

The communication time between the SDN controller
and the switch during the VLAN change process was also
evaluated. This was done by measuring the time interval
between the transmission of the FLOW_MOD message and
the receipt of its corresponding acknowledgment (ACK).
However, some discrepancies were observed in the recorded
timings during message capture.

VOLUME 13, 2025

In one instance, the controller sent three separate
FLOW_MOD messages, each corresponding to a distinct com-
mand (ADD, DELETE, and MODIFY), resulting in a total
communication time of 0.000075302 seconds. In another
case, all command headers were encapsulated within a single
message, yielding a shorter time of 0.000024276 seconds.
Despite these variations, both durations are extremely short
and do not introduce any meaningful delay to the system,
as expected.

Referring to Table 6, we observe that once the vulnerability
is detected by GVM, the combined time to request (16 ms)
and parse (3 ms) the vulnerability report totals only 19 ms.
This swift processing enables the system to rapidly identify
the need for mitigation, promptly isolating the vulnerable host
and minimizing exposure to potential security threats.

An additional issue identified during testing in the
virtual environment was the delay in reestablishing network
connectivity at the host level following a VLAN change.
The expected behavior was for the host’s network interface
to automatically disconnect and reconnect after the VLAN
switch. While the VMware virtual switch correctly detected
the interface as inactive, it failed to trigger any action on the
host side. As a result, the host retained its previous IP address
and did not initiate a new DHCP request.

Consequently, even though the host was now connected
to a switch port in the new VLAN, it continued operating
with the old IP address until the DHCP lease expired and was
renewed. To address this issue, the DHCP server’s lease time
was significantly reduced, enabling faster reassignment of IP
addresses and ensuring that hosts could more promptly adapt
to the new network context.

While reducing the DHCP lease time represents a practical
workaround, it incurs additional network overhead due to
more frequent lease renewal traffic. Although alternatives
such as leveraging SDN to trigger DHCP renewals or
implementing 802.1X-like port-based authentication may
offer more direct control, they typically require either root
access, specialized client-side software, or tight integration
with specific networking infrastructures. In our opinion,
such approaches compromise transparency and limit general
applicability. By contrast, the proposed solution avoids the
installation of agents or host-level code execution, preserving
the non-intrusive nature of the system. It also remains
agnostic to specific network configurations or authentication
mechanisms, operating effectively across generic switches
and diverse topologies, thus maximizing its deployability and
ease of integration.

181971

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

TABLE 6. Execution time of each orchestration step in the virtual testbed during a single-host vulnerability scan. Measurements include device discovery,
vulnerability scan preparation, report retrieval and parsing, and mitigation actions (VLAN and IP reassignment).

Device Discovery | Prepare Vuln Scan | Request Report | Parsing Report | Change VLAN | Change IP

1,5 sec ‘ 0,98 sec ‘

0,016 sec

‘ 0,003 sec ‘ ~ 0 sec ‘ Table 7

TABLE 7. Delay in IP renewal following VLAN reassignment, measured
under different DHCP lease times (60 s and 300 s) in the virtual testbed.
Results show the average renewal time and standard deviation across
40 measurements.

Lease Time (sec) \ Average (sec) \ STD Deviation (sec)

60 38 8
300 212 62

As previously discussed, VLAN switching was exe-
cuted almost instantaneously at the SDN controller level,
effectively isolating the vulnerable host by applying the
appropriate OpenFlow rules to the topology switch. However,
despite the rapid VLAN reassignment, the host remained
disconnected until it obtained a new IP address. Adjusting the
DHCEP lease time helped mitigate this limitation, enhancing
the overall responsiveness of the mitigation process.

To evaluate this behavior, two tests were conducted using
DHCP lease times of one and five minutes, respectively.
Each test included 40 measurements to determine the average
time required for lease renewal. Theoretically, the expected
average renewal time is half the lease duration, assuming
that the VLAN change request occurs randomly within the
lease cycle. Under a uniform distribution of waiting times,
the average remaining time until lease expiration should
converge to this midpoint.

A critical aspect of the testing methodology was ensuring
that VLAN change requests were issued at random points
within the lease interval. If requests were made immediately
after one another, the host would consistently wait the full
lease duration before acquiring a new IP address, skewing
the results. To ensure accurate and representative sampling,
requests were randomized throughout the lease cycle.

The results, presented in Table 7, confirm that the observed
average renewal times align with theoretical expectations,
falling within the standard deviation range.

F. SCALABILITY AND PERFORMANCE BOTTLENECKS

The evaluation results demonstrated the proposal’s respon-
siveness, with no excessive delays observed throughout
the complete SOAR workflow (Table 6). The vulnera-
bility detection process was divided into several critical
functional steps, including device discovery, preparation
for vulnerability scanning, and report generation, all of
which exhibited minimal execution times. The mitigation
measure, i.e. Change VLAN in the present scenario, was
executed almost instantaneously by the SDN controller,
indicating that the tested architecture can timely isolate
susceptible hosts. Only the vulnerability scanning phase

181972

showed a noticeably extended duration due to its inherent job
complexity.

The laboratory tests revealed that GVM exhibits high CPU
utilization when scanning more than eight hosts concurrently,
which can significantly prolong the overall scanning dura-
tion. These reported results reflect a worst-case scenario in
which all hosts were scanned simultaneously to stress-test the
system and expose its upper performance bounds. In practical
deployments, however, scalability can be improved through
several strategies. These include enforcing a predefined
concurrency limit with queued jobs, distributing workloads
across scanning clusters, or applying scan scheduling to
stagger vulnerability assessments. Alternatively, lightweight
preliminary scans could be employed to reduce the load
on the main vulnerability assessment engine. Finally, the
modular design of the Security Tools Server enables
parallelization across multiple instances, further enhancing
scalability and performance. We identify the application
of these techniques as an important direction for future
work.

G. IMPLICATIONS FOR SYSTEM ENHANCEMENT
The current solution operates within the internal boundaries
of the organization’s network, benefiting from existing in-situ
security mechanisms, such as, firewall policies. While the
proposed SOAR-based approach does not currently interface
directly with these legacy assets, real-world deployments
often require coordination with broader enterprise security
ecosystems, including SIEM platforms and firewalls. To this
end, future work will explore integration strategies, such as,
the use of RESTful APIs provided by either SIEM platforms
or firewalls, enabling the SOAR correct orchestration with
legacy security infrastructure. Such orchestration is essential
for enabling a scalable, cohesive, and responsive security
management in complex enterprise environments. The
current solution relies uniquely on the Nmap tool [20] to
discover new hosts connected to the network. Additionally,
in future investigation, other system components, such as
the DHCP server or the SDN controller could be used to
discover a new arriving host (or in general, detect any change
in the network topology) and inform the SOAR framework
about that. As an example, after the SOAR is notified
about a new host, it could trigger right away a vulnerability
scan process on that specific host, avoiding the SOAR
resort to a more resource-intensive active scanning in the
network.

The risk evaluation of each host vulnerability should
combine the CVSS score with other future compensating
factors, such as the likelihood of exploitation by a malicious

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

actor. In this way, a high CVSS score associated with a
specific vulnerability may be adjusted downward if the
probability of successful exploitation is low. Such a scenario
may occur, for example, when an attacker would need
local access or elevated remote privileges on the host
before being able to exploit the vulnerability. Additionally,
other adjustment factors available from public vulnerability
databases, e.g. [23], they can be also incorporated on the
final calculation of the host vulnerability risk. Some previous
proposals [3], [4] studied the vulnerability’s exploitability
value by an attacker and they should be considered in future
work. Other interesting idea to modulate the host risk is
to factorize the average number of interactions the affected
device have performed with other network devices during a
specific time window.

Let us assume now the scenario of the current SOAR-based
proposal to select a possible mitigation action like moving
a high-risk host to a quarantine VLAN. This host isolation
should remain in place until corrective actions are performed
on the host to eliminate its vulnerabilities. Nevertheless, this
solution could have a drawback. For instance, isolating in this
way a critical server simply because it crosses the severity
risk threshold could result in service disruptions or broader
network issues. In this way, as future work, the mitigation
solution selected by the SOAR should also consider the
role or system’s function of the affected device within the
network.

The next Section concludes the paper and presents further
guidelines for upcoming research.

VI. CONCLUSION AND FUTURE WORK

This section presents the conclusions drawn from this
research and proposes further future work, complementing
what was already debated in V-G.

A. CONCLUSION
This research explored the proactive and automated detection
and mitigation of vulnerabilities in network environments
managed by SDN, using a SOAR platform to orchestrate
various open-source tools. The system automates processes
such as discovering devices, assessing vulnerabilities, ana-
lyzing results, and executing mitigation measures, ensuring
interoperability, proactivity, and adaptability. It integrates
tools like Nmap and GVM through a Security Service
Adapter, enabling workflow automation and continuous
monitoring. Vulnerable devices are promptly isolated via
VLAN switching implemented by the SDN controller, with a
modular architecture allowing future enhancements. Beyond
the integration of existing tools, this work presents a cohesive
and novel framework, where the orchestration logic and
SOAR playbook are central to its innovation. These elements
enable adaptive and context-aware responses that surpass
current approaches in the literature, highlighting the system’s
unique contribution to the field.

Tests conducted in laboratory and virtual environments
validated the system’s functionality and performance.

VOLUME 13, 2025

Laboratory results highlighted GVM’s significant CPU
demands when scanning more than eight devices, with CPU
usage increasing from 14-48% for 1-4 devices to 78-88%
for 8-32 devices. RAM usage remained stable (41-45%),
while bandwidth ranged from 76 Kbps (TX) and 170 Kbps
(RX) for one device to 784 Kbps (TX) and 2036 Kbps (RX)
for 32 devices. Scan durations increased from 18 minutes
for one device to 49 minutes for 32 devices. The VLAN
switching mitigation was applied almost instantly, taking
just 19 ms, demonstrating the system’s responsiveness and
efficiency.

The research successfully developed a proactive system
that automates vulnerability detection and mitigation by inte-
grating SDN, open-source tools, and a SOAR platform. The
system efficiently identified vulnerabilities, implemented
VLAN switching as a mitigation measure, and with effective
orchestration among components, addressing all initial goals.

B. FUTURE WORK

Complementing what was already discussed in Section V-G,
below are presented some suggestions for future work,
as follows: i) node classification and scanning; ii) applying
more mitigation measures; iii) vulnerabilities in IoT sensor
environments; iv) automated intelligent generation of system
security tests; and v) multiple Al agents managing vulnera-
bilities in network domains controlled by SDN.

1) NODE CLASSIFICATION AND SCANNING

The SDN controller can be further enhanced to classify
network nodes based on their contextual relevance within
the topology, such as, their proximity to critical assets or
the nature of the services they provide. This would enable
prioritization of vulnerability scans for devices that perform
essential functions, such as servers or nodes with elevated
privileges. Moreover, the framework could benefit from the
implementation of customizable scan configurations. For
instance, it could dynamically adjust scan aggressiveness
based on system load, conducting lighter scans during peak
usage periods to minimize performance impact, and reserving
more intensive scans for off-peak hours. Additionally, the
scanning strategy could be adapted based on a device’s
position within the network and the number of its active
direct neighbors. This would allow the system to fine-tune the
frequency and intensity of scans, focusing resources where
they are most needed and improving overall efficiency and
responsiveness.

2) APPLYING MORE MITIGATION MEASURES

To ensure a robust defense posture, the implementation
of additional mitigation measures is essential. The system
developed in this research was designed with flexibility in
mind, allowing for the seamless integration of new mitigation
strategies. Deep Packet Inspection (DPI) serves as a valuable
complement to VLAN isolation, particularly for devices with
low-risk vulnerabilities. By monitoring network traffic in
real time, DPI enables the detection of potentially malicious

181973

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

activity without restricting the device’s access to system
resources, thus maintaining operational continuity while
enhancing security. Moving Target Defense (MTD) is another
mitigation approach that can be applied in cases where
immediate isolation is not required. Vulnerable devices could
be placed in a dedicated VLAN where MTD techniques are
employed, such as, periodically changing the device’s IP
address—to create a dynamic and less predictable network
presence. This provides an intermediate level of containment
that is less disruptive than full isolation. Additionally, a more
granular analysis of the CVSS vector could be leveraged to
tailor mitigation strategies. By interpreting individual metrics
within the vector, the system can derive more context-aware
insights, enabling the application of mitigation measures that
are better aligned with the specific characteristics and sever-
ity of each vulnerability. Additional mitigation strategies
could also draw upon architectures designed for media-
independent handovers [30] and flow mobility management,
as exemplified in systems combining PMIPv6 with IEEE
802.21 for simultaneous multi-access across heterogeneous
networks [31]. These approaches enable dynamic routing
of traffic flows across multiple interfaces (e.g., WiFi and
cellular), providing flexible control and continuous service
even during access transitions, capabilities that could support
the deployment of mitigation zones or adaptive quarantine in
mobile IoT contexts.

3) VULNERABILITIES IN 10T SENSOR ENVIRONMENTS

A key direction for future work is to extend the frame-
work’s capabilities to IoT environments, where devices are
often deployed without sufficient security controls, making
them potential attack vectors. IoT scenarios introduce new
technical considerations: devices typically have constrained
processing power and battery life, and they utilize diverse
communication protocols that may offer limited bandwidth
or intermittent connectivity. Integrating support for these
technologies will likely require adapting our scanning and
mitigation techniques to operate efficiently under such con-
straints. For example, one promising approach is to leverage
SDN-based admission control for IoT endpoints, similar to
the framework proposed in [11], which automatically scans
IoT devices for known vulnerabilities before allowing them
to join the network. If a device is found to be vulnerable, that
system attempts automated remediation or isolates the device
(e.g., using firewall rules) to prevent it from exposing the
network to risk. Notably, this type of pre-admission scanning
was shown to incur only minimal performance overhead
(on the order of a few milliseconds of added latency),
suggesting that our architecture could incorporate similar
IoT device checks without significantly impacting overall
performance.

We plan to explore this direction in crowd-monitoring
scenarios, where sensors are deployed in urban environments,
heritage sites, and public spaces to collect occupancy and
movement data [32], [33]. Adapting the current scanning and

181974

mitigation system to support such devices would demonstrate
its applicability to smart city infrastructures, where ensuring
the secure operation of sensor networks is essential for
maintaining data integrity, system resilience, and public
trust.

4) SELF-GENERATION OF AUTOMATIC SYSTEM SECURITY
TESTS

Generative Al can produce security tests to perform more
efficient automatic pentesting procedures, reducing human
intervention and enabling a more proficient detection and
posterior mitigation of eventual security vulnerabilities [34].
Pentesting is also referred as penetration testing [35] or
ethical hacking [36]. Another interesting topic to investigate
is explainable artificial intelligence (XAI) [37], [38]. The
main aim for using XAl in scenarios where AI/ML models
artificially self-produce security tests for high complex
systems is to guarantee to the humans as network security
managers to always trust on all the (learned) management
security decisions made by artificial agents, because these
agents never could make a wrong automatic decision. In this
way, Al models must satisfy the following range of criteria to
boost in humans a sufficient level of trust on the automatic
Al decisions [38]: reliability, safety, privacy, explanatory
justifiability, impartiality (fairness), and usability. A recent
review [39] on interpretability in Al offers a new strategy
on how humans can develop trust in the automated decisions
made by a specific AI model. This trust can be established
if people understand how the AI algorithm is trained
and how it arrives at reliable security management
decisions across various system scenarios. The authors
of [40] provide theoretical foundations of XAlI, clarifying
important definitions and identifying research goals, open
issues, and future research lines related to turning opaque
ML outputs into more transparent decisions to humans.
In [41], two XAI methods, i.e. LIME and SHAP, were
used in a machine learning-based intrusion detection system.
They have conducted a survey analysis in which participants
answered questions evaluating the degree of interpretabil-
ity increase when each XAI method was used, directly
comparing both methods. The authors conclusions are
in [41].

5) AUTONOMOUS VULNERABILITY MANAGEMENT IN SDN

The autonomous [42] detection and mitigation of device
security vulnerabilities [1] in SDN environments [2] should
be viewed as a cross-cutting capability that interacts with
all primary SDN control actions, namely, flow management,
traffic engineering, topology control and, fault detection
and recovery. Rather than functioning as an isolated task,
Al agents responsible for the autonomous security vulnerabil-
ity management could influence and modify each one of these
control loops. For instance, flow rules may be updated to
isolate malicious traffic, traffic paths may be rerouted to avoid
compromised nodes, topology may be reconfigured to disable

VOLUME 13, 2025

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

IEEE Access

affected links, and anomaly detection mechanisms may
trigger security responses. As such, Al-based vulnerability
management acts as a longitudinal layer, enhancing the
overall resilience and trustworthiness of the network.

REFERENCES

[1]

[2]
[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J. Pol6nio, J. Moura, and R. Neto Marinheiro, “On the road to
proactive vulnerability analysis and mitigation leveraged by soft-
ware defined networks: A systematic review,” IEEE Access, vol. 12,
pp. 98546-98566, 2024.

R. Masoudi and A. Ghaffari, “Software defined networks: A survey,” J.
Netw. Comput. Appl., vol. 67, pp. 1-25, Apr. 2016.

M. Ge, J.-H. Cho, D. Kim, G. Dixit, and I.-R. Chen, “Proactive
defense for Internet-of-Things: Moving target defense with cyberde-
ception,” ACM Trans. Internet Technol., vol. 22, no. 1, pp.1-31,
Feb. 2022.

S. Yoon, J.-H. Cho, D. S. Kim, T. J. Moore, F. Free-Nelson, and H. Lim,
“Attack graph-based moving target defense in software-defined net-
works,” IEEE Trans. Netw. Service Manage., vol. 17,no. 3, pp. 1653-1668,
Sep. 2020.

A. Chowdhary, A. Alshamrani, D. Huang, and H. Liang, “MTD analysis
and evaluation framework in software defined network (MASON),” in
Proc. ACM Int. Workshop Secur. Softw. Defined Netw. Netw. Function
Virtualization, Mar. 2018, pp. 43-48.

S. Kyung, W. Han, N. Tiwari, V. H. Dixit, L. Srinivas, Z. Zhao, A. Doupe,
and G.-J. Ahn, “HoneyProxy: Design and implementation of next-
generation honeynet via SDN,” in Proc. IEEE Conf. Commun. Netw. Secur.
(CNS), Oct. 2017, pp. 1-9.

G. Stergiopoulos, P. Dedousis, and D. Gritzalis, “Automatic analysis of
attack graphs for risk mitigation and prioritization on large-scale and
complex networks in industry 4.0,” Int. J. Inf. Secur., vol. 21, no. 1,
pp- 37-59, Feb. 2022.

J. Kinyua and L. Awuah, “AI/ML in security orchestration, automation and
response: Future research directions,” Intell. Autom. Soft Comput., vol. 28,
no. 2, pp. 527-545, 2021.

U. Bartwal, S. Mukhopadhyay, R. Negi, and S. Shukla, “Security orches-
tration, automation, and response engine for deployment of behavioural
honeypots,” in Proc. IEEE Conf. Dependable Secure Comput. (DSC),
Jun. 2022, pp. 1-8.

T. Zhang, F. Kong, D. Deng, X. Tang, X. Wu, C. Xu, L. Zhu,
J. Liu, B.Ai, Z. Han, and R. H. Deng, “Moving target defense
meets artificial-intelligence-driven network: A comprehensive
survey,” IEEE Internet Things J., vol. 12, no. 10, pp. 13384-13397,
May 2025.

R. M. Ogunnaike and B. Lagesse, “Toward consumer-friendly
security in smart environments,” in Proc. IEEE Int. Conf. Pervasive
Comput. Commun. Workshops (PerCom Workshops), Mar. 2017,
pp. 612-617.

Y. Nikoloudakis, E. Pallis, G. Mastorakis, C. X. Mavromoustakis,
C. Skianis, and E. K. Markakis, ‘“Vulnerability assessment as a service
for fog-centric ICT ecosystems: A healthcare use case,” Peer-Peer Netw.
Appl., vol. 12, no. 5, pp. 1216-1224, Sep. 2019.

Y. Nikoloudakis, I. Kefaloukos, S. Klados, S. Panagiotakis, E. Pallis,
C. Skianis, and E. K. Markakis, “Towards a machine learning based situa-
tional awareness framework for cybersecurity: An SDN implementation,”
Sensors, vol. 21, no. 14, p. 4939, Jul. 2021.

Systems and Software Engineering—Systems and Software Quality Require-
ments and Evaluation (SQuaRE)-Product Quality Model, International
Organization for Standardization, Geneva, Switzerland, 2023.

J. Polonio. (2024). SDN-Vuln: Proactive Discovery and Mitigation of
Security Vulnerabilities Leveraged By SDN. Accessed: Apr. 12, 2025.
[Online]. Available: https://github.com/linuxer1337/sdn-vuln

Catalyst. (2025). Catalyst - Speed Up Your Reactions. Accessed: Apr. 12,
2025. [Online]. Available: https://catalyst.security-brewery.com/
FastAPI. (2025). FastAPI Framework, High Performance, Easy to Learn,
Fast to Code, Ready for Production. Accessed: Apr. 12, 2025. [Online].
Available: https://fastapi.tiangolo.com/

T. Muhammad and M. Munir, “Network automation,” Eur. J. Technol.,
vol. 7, no. 2, pp. 23-42, 2023.

Redis. (2025). Redis: The Real-Time Data Platform. Accessed: Apr. 12,
2025. [Online]. Available: https://redis.io/

VOLUME 13, 2025

(20]
(21]

[22]

(23]

[24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

[38]

(39]

(40]

(2025). Nmap: Discover Your Network. Accessed: Apr. 12,2025. [Online].
Available: https://nmap.org/

(2009). Nmap Network Scanning. Accessed: Apr. 12, 2025. [Online].
Available: https://nmap.org/book/

Greenbone AG. (2025). Vulnerability Management: Open Source
and GDPR-Compliant. Accessed: Apr. 12, 2025. [Online]. Available:
https://www.greenbone.net/en/

(2025). API That Returns Exploit Prediction Scoring System (EPSS)
Probabilities for CVE Security Vulnerabilities. Accessed: Apr. 12, 2025.
[Online]. Available: https://api.first.org/

Ryu SDN Framework Community. (2017). Python Controller Ryu: Build
SDN Agilely. Accessed: Apr. 12, 2025. [Online]. Available: https://ryu-
sdn.org/

The Linux Foundation. (2016). Open VSwitch: Production Quality,
Multilayer Open Virtual Switch. Accessed: Apr. 12, 2025. [Online].
Available: https://www.openvswitch.org/

Mininet Project Contributors. (2022). Mininet: An Instant Virtual Network
on Your Laptop (or Other PC). Accessed: Apr. 12, 2025. [Online].
Available: https://mininet.org/

Internet Systems Consortium. (2025). ISC DHCP: Enterprise-Grade
Solution for IP Address-Configuration Need. Accessed: Apr. 12, 2025.
[Online]. Available: https://www.isc.org/dhcp/

Internet Systems Consortium. (2025). Kea DHCP: Modern, Open Source
DHCPv4 and DHCPv6 Server. Accessed: Apr. 12, 2025. [Online].
Available: https://www.isc.org/kea/

ISCTE-IUL. (2025). Iscte-IUL: Laboratories. Accessed: Apr. 12, 2025.
[Online]. Available: https://www.iscte-iul.pt/conteudos/research/1002/
laboratories

A. Mateus and R. N. Marinheiro, “A media independent information
service integration architecture for media independent handover,” in Proc.
9th Int. Conf. Netw., Apr. 2010, pp. 173-178.

H. Alves, L. M. Silva, R. Neto Marinheiro, and J. A. R. S. Moura,
“PMIPv6 integrated with MIH for flow mobility management: A
real testbed with simultaneous multi-access in heterogeneous mobile
networks,” Wireless Pers. Commun., vol. 98, no. 1, pp. 1055-1082,
Jan. 2018.

R.D.D. Silva, R. N. Marinheiro, and F. B. E. Abreu, “Crowding detection
combining trace elements from heterogeneous wireless technologies,”
in Proc. 22nd Int. Symp. Wireless Pers. Multimedia Commun. (WPMC),
Nov. 2019, pp. 1-6.

T. M. Santos, R. N. Marinheiro, and F. B. E. Abreu, “Wireless
crowd detection for smart overtourism mitigation,” in Smart Life Smart
Life Engineering: Current State Future Vision, E. Kornyshova, R.
Deneckere, and S. Brinkkemper, Eds., Cham, Switzerland: Springer, 2025,
pp. 237-258.

E. Hilario, S. Azam, J. Sundaram, K. Imran Mohammed, and B.
Shanmugam, “Generative Al for pentesting: The good, the bad, the ugly,”
Int. J. Inf. Secur., vol. 23, no. 3, pp. 2075-2097, Jun. 2024.

Q. Li, M. Hu, H. Hao, M. Zhang, and Y. Li, “INNES: An intelli-
gent network penetration testing model based on deep reinforcement
learning,” Int. J. Speech Technol., vol. 53, no. 22, pp.27110-27127,
Nov. 2023.

Y. Wang and J. Yang, “Ethical hacking and network defense:
Choose your best network vulnerability scanning tool,” in Proc.
31st Int. Conf. Adv. Inf. Netw. Appl. Workshops (WAINA), Mar. 2017,
pp. 110-113.

S. Ali, T. Abuhmed, S. El-Sappagh, K. Muhammad, J. M. Alonso-Moral,
R. Confalonieri, R. Guidotti, J. Del Ser, N. Diaz-Rodriguez, and F. Herrera,
“Explainable artificial intelligence (XAI): What we know and what is left
to attain trustworthy artificial intelligence,” Inf. Fusion, vol. 99, Nov. 2023,
Art. no. 101805.

F. K. Dosilovic, M. Brcic, and N. Hlupic, “Explainable artificial
intelligence: A survey,” in Proc. 41st Int. Conv. Inf. Commun. Technol.,
Electron. Microelectron. (MIPRO), May 2018, pp. 0210-0215.

U. S. Kathait, A. Rana, R. Chauhan, and R. Rawat, “A comprehensive
review of interpretability in AI and its implications for trust in critical
applications,” in Proc. 4th Int. Conf. Sustain. Expert Syst. (ICSES),
Oct. 2024, pp. 1683-1693.

E. S. Ortigossa, T. Gongalves, and L. G. Nonato, “Explainable artificial
intelligence (XAI)—From theory to methods and applications,” IEEE
Access, vol. 12, pp. 80799-80846, 2024.

181975

IEEE Access

J. Polénio et al.: Toward Automatic Detection and Mitigation of Cybersecurity Vulnerabilities

[41] D. Gaspar, P. Silva, and C. Silva, “Explainable Al for intrusion detection
systems: LIME and SHAP applicability on multi-layer perceptron,” IEEE
Access, vol. 12, pp. 30164-30175, 2024.

[42] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
A survey,” Artif. Intell. Rev., vol. 55, no. 2, pp. 895-943, Feb. 2022.

JOAO POLONIO received the B.Sc. and M.Sc.
degrees in telecommunications and computer
engineering from Iscte-Instituto Universitdrio de
Lisboa, Portugal, in 2021 and 2024, respectively.
During his undergraduate studies, he developed a
strong interest in computer networks and network
security. Throughout his time with Iscte, he has
actively contributed to teaching activities in com-
puter network architectures and has been involved
in the management and support of departmental
laboratories.

181976

JOSE MOURA received the B.Sc. degree in

electronics and telecommunications from the Uni-
versidade de Aveiro, Portugal, in 1989, the M.Sc.
degree in computer networks from the Faculdade

de Engenharia, Universidade do Porto, Portugal,

s in 2001, and the Ph.D. degree in computer

| - science from Lancaster University, U.K., in 2011.

N From 1989 to 2000, he was an Engineer in

‘ \ ' '“ supervisory control and data acquisition (SCADA)

o ’ “ systems and industrial automation with EFACEC
Sistemas Electrénica, Portugal. From 2000 to 2001, he was a Researcher
with INESC, Porto, Portugal. Since 2001, he has been with Iscte—Instituto
Universitdrio de Lisboa, Portugal, where he teaches Computer Networks,
and he is also a Researcher with the Instituto de Telecomunicagdes.
He serves as an active reviewer for several Quartile one journals. His
current research interests include network management, edge computing,
optimization, virtualization, software-defined networking, security, and
resilience in networked systems.

RUI NETO MARINHEIRO received the M.Eng.
degree in electrical and computer engineering
with a specialization in telecommunications from
the Faculty of Engineering, University of Porto,
Portugal, and the Ph.D. degree in multime-
dia information systems from the University of
Southampton, U.K. He is an Associate Profes-
sor with Iscte-Instituto Universitdrio de Lisboa,
Portugal, and a Researcher with the Instituto
de Telecomunicagdes. He has coordinated and

 ERON
contributed to numerous national and international research projects.
He has extensive experience in teaching and research in the fields of
telecommunications, computer networks, security, and the Internet of
Things.

VOLUME 13, 2025

