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ABSTRACT Augmented reality systems in dynamic environments still struggle with the challenge of
what information should be displayed at which time. This work focuses on the case of Mobile Pervasive
Augmented Reality Systems (MPARS) and their use in dynamic environments such as outdoor sports.
An open-source proof-of-concept for a machine learning-based architecture to implement an MPARS on
a specific use case of outdoor usage in a sports environment is presented. The new design for the system
relies on heuristics that combine technology acceptance indicators, sensing, and information volume criteria
to show the user a contextually meaningful subset of information. The information to the user is displayed
in close-to-real-time, and the system can adjust and customise to prevent information overload. A first set of
experiments was carried out based on end-user preferences to show the feasibility of the proposed system.
To provide meaningful feedback, i.e., the right information when needed or wanted, to sports users on their
MPARS experience, a predictive model was trained and shown to be able to estimate when information
should be displayed to the user.

INDEX TERMS Mobile pervasive augmented reality system, machine learning, sensing, context-awareness,
information modeler learning, adaptable system.

I. INTRODUCTION

Augmented Reality (AR) is a technology that integrates
images, information (e.g., situational information), and other
types of digital objects. AR products are now being applied
in several areas, like sports, games, health, industry, culture,
tourism, and education [1], [2], [3]. Over two decades,
AR systems evolved from dedicated devices or personal com-
puters to be used on heterogeneous mobile platforms, such
as desktops, tablets, smartphones, and notebooks [4]. In fact,
Cao et al. advocate that mobile augmented reality systems
have to be adaptable to address several on-demand user
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interactions with various IoT devices in smart environments
and for different application areas [3].

Meeting the requirements of technology adoption for AR,
such as customisation, adaptability, and familiarity (i.e., end-
user experience), is made possible by the data generated
by appropriate devices such as smart glasses, smartphones,
or other AR devices. A key aspect of ensuring that AR
becomes ubiquitous is making it human-centric. This requires
the underlying technology to add value in terms of Quality of
Experience (QoE) [5], [6].

While AR holds great promise for enhancing our percep-
tions and helping us to see, hear, and feel our environment in
new and enriching ways, there are still issues to overcome.
These include a better acceptance of the technology and
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the ability to achieve a higher QoE. Some of the current
challenges are (i) how to properly calibrate and adjust the
data, (ii) how to take user preferences into account when
providing information, and (iii) how to measure the amount
of information to be displayed [7].

Another relevant point to be made for successful tech-
nology adoption and useful use of AR is the question of
what information to display and when. This relates to the
concept of information overload, which here means that
a user is ‘“‘receiving too much information” [8]. These
issues become critical for the integration of AR in mobile
devices and, in particular, for mobile outdoor activities,
where the adoption of AR is expected to grow at a higher
rate [3], [9].

The motivation behind this work is to provide a better
Quality of Experience (QoE) to the user through the
automated and continuous integration of user preferences
into the AR system. To this end, this work focuses on
Mobile Pervasive Augmented Reality Systems (MPARS) [10],
i.e., AR systems that are carried by the user and that are
capable of adapting the information to be displayed over time
and space, based on the current situational and contextual
awareness.

To achieve such a level of automation, an MPARS
should consider user preferences, context awareness, and also
situational awareness. This enables an MPARS to provide
meaningful feedback to end-users in various environments,
by displaying the right information at the right time,
thus avoiding information overload. To this end, a new
architecture is proposed and tested using a specific use case
of an outdoor sports environment. Previously, an MPARS
was defined as an information manager for specific sports
activities, with an automatic activity recognizer in outdoor
environments [10], [11], but now the new MPARS enriched
architecture is complemented with a machine learning
module, capable of persistent adaptation of information for
each user within the same sports activity. See Figure 1 with
an original MPARS diagram.

The main contributions of the work are two-fold:

« A functional description of a novel MPARS architecture
capable of adapting its feedback to the user context in
outdoor environments.

« A context assessment model based on real user prefe-
rences, which can be used as a basis to assist future
work to define adaptation variables based on realistic
user preferences.

To address issues relating to the increase of QoE expec-
tations by reducing information overload in an AR for
outdoor activities, this work focuses on the following research
questions: (i) How can QoE be improved by automatically
adjusting the information displayed/suggested to the user in
real time? and (ii) What is the feasibility of using a Machine
Learning (ML) algorithm to predict and adjust meaningful
feedback?

Research into these issues led to an improved AR-
adjustable MPARS architecture, which is discussed in this
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paper and validated through an experimental ML approach
involving field tests combined with end-user surveys.

The rest of the paper is organised as follows. Section II
addresses the related applicability and needs of MPARS
applications. Section III presents the MPARS architecture.
Section IV provides examples of scenarios where MPARS
can be used. Section V presents the performance evaluation
with measurements, machine learning, and an analysis of
the results. Finally, Section VI presents the conclusions
highlighting directions for future work.

Il. RELATED WORK

1) ON AR IN SPORTS

We start by looking at how AR is transforming fan
engagement and experience in sports, highlighting AR’s
ubiquity, technological challenges, and applications on
personal devices. The tracking and interaction in AR are
analyzed, highlighting mobile sensors for activity recogni-
tion. However, information overload in AR impacts the user
experience. Studies suggest that ML can filter and personalize
data, but adaptation to user preferences is still limited.
Sawan et al. provide a concise and systematic literature
review, analysing how mixed reality and AR are providing
a growing number of applications in the world of sport. The
authors believe that the introduction of this technology in
sports can implement and greatly improve fan engagement
strategies and experience in the world of e-sports [12].

Kim et al. discuss concepts of AR applications and
highlight the need for technology efficiency [13]. They
describe a variety of new AR applications and the issues
that arise in the development of these basic technologies
and applications. AR is present today on most personal
devices, such as smartphones and tablets, and thus it is
ubiquitous [13], [14]. A representative case of ubiquity is the
continuous display of images and other types of information
superimposed on the real environment [13].
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2) ON THE INTERPLAY OF AR AND SENSING

Billinghurst et al. explore some areas of AR, such as tracking
and display, development tools, input and interaction, and
social acceptance. A requirement of AR technology for
virtual image superimposition on the real view is the
existence of a tracking system to locate the user’s point of
view seamlessly blending the real and the virtual images.
Mobile devices for AR, like smartphones and smart glasses,
present new opportunities for hybrid tracking, as they are
today capable of performing integrated sensing based on a
variety of sensors such as accelerometers, gyroscopes, GPS,
and wireless interfaces, thus resulting in a higher degree of
accuracy in the context of activity recognition [15].

In fact, smartphones today integrate several sensors,
of which the accelerometer is one of the most popular and
is used to detect end-user activities. Regarding sensors for
data acquisition in outdoor contexts, we showed that good
results could be achieved by using only the accelerometer
and GPS for activity recognition in sports environments [11].
Bayat et al. carried out an experiment with the smartphone’s
accelerometer sensor to identify human physical activities,
such as walking, running, dancing, etc. The system used
an ML approach for the detection of the activity being
performed and tested several classifiers, each achieving good
performance in recognising the activities [16].

3) ABOUT ADAPTIVE MACHINE LEARNING SYSTEMS

ML techniques are important for predicting future events,
such as sports. Regarding automated feedback, while most
of the work focuses on automatic control loops, some
works relate to adapting feedback information to the user.
Schmitt et al. propose using static decisions based on rules
and first-order logic to define situations in terms of the
basic context but built with ML techniques [17]. The authors
recognise that to provide self-adaptive services, it is necessary
to capture contextual information from sensors and use the
collected information to reason and classify situations [17].

Liu and Li present a study on an intelligent computer-based
sports learning system with predictive control that can
provide feedback and adjust in next to real-time based on
the athlete’s performance to improve training efficiency and
results. The experimental results show that this intelligent
learning system has great potential for application in sports
training and competition, improving athletes’ skill levels
and performance. The system aims to provide information
volume adjustments for efficient feedback to improve sports
training and competition [18].

The work of Stacchio et al. makes an important contribu-
tion to support the need for dynamic interface adjustment
in AR systems to assist users during activities. Suitable
for outdoor sports, the authors present Magic AuGmentEd
Workout, a dynamic AR guidance system for outdoor running
that can adapt a workout scenario to a user’s performance and
manage a sequence of different activities: running, sprinting,
bodyweight, and rest. The system follows a workout plan
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and then adjusts its intensity based on the user’s current
performance [19].

Another approach that helps support the need and oppor-
tunity for dynamic tuning of an MPARS system is the
one proposed by Soltani et al.. The authors reviewed the
current literature and found that using AR provides additional
information and feedback on the learning of sporting skills
can be used to encourage practice, offering supplemental
advantages when compared to other technologies [20].

4) ON INFORMATION OVERLOAD

While there is a strong focus today on using AR in personal,
pervasive systems, related work regarding information over-
load is scarce. Existing work usually aims to improve image
transmission or the decluttering of objects when information
is transmitted [3], [21], [22].

Information overload is a critical aspect to handle in
the context of QoE improvement and directly relates to
perception. Miller describes the so-called inelastic limit of
human capacity or cognitive ability [23]. If the amount
of information received exceeds certain thresholds, the
human ability to process information quickly degrades [23].
Sawyer et al. investigate the use of AR in the context of
driving [5]. AR can distract drivers, as the results show
that messaging using a Google Glass or a smartphone-based
messaging interface impaired driving compared to driving
without multitasking [5]. As explained by Bawden et al.,
information overload is currently a major barrier to successful
MPARS adoption. The strategy for providing meaningful
information can go through filtering and removing informa-
tion noise, establishing balanced useful information [24].

We have investigated criteria for selecting the information
to be provided to the user under specific conditions and
activities to prevent information overload [11]. The results
show that potential users’ interests in feedback vary with
the type and level of effort of the activity being performed,
and that information overload is directly related to user
speed. Concerning functionalities/actions preferred when in
an outdoor activity, users also expressed preferences varying
with the activity [11]. In this regard, ML can be a useful tool
to adjust the information to be received so that it is relevant
and timely [25], [26].

In a nutshell, the use of sensing in AR systems concerns
the integration or classification of aspects related to human
behaviour in different activities. Previous related work pro-
posed using sensing to provide additional information (con-
text) into AR systems to improve QoE and the overall system
performance regarding the system’s main goals. However,
none of the found works considers context awareness, not just
based on information that can be sensed to understand the
activity, but also integrating user preferences, i.e., employing
a user-centric calibration of the system, which may bring into
play the issue of information overload. Activity recognition in
this setting must consider the personalisation of AR systems
to improve QoE. The present work brings complementarity
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by (i) using user preferences to provide finer customisation,
(ii) proposing an ML-based solution to improve the type
and volume of information that should be provided to the
user based on external conditions, the specific activity being
performed, and (iii) encompassing and adjusting to the user’s
preferences, in order to diminish as much as possible the
occurrence of information overload and providing the right
information at the right time.

The gap in research lies in the lack of adaptation of AR to
individual user preferences. Although there are studies on ML
engagement, tracking, and information filtering, there is still
little exploration of dynamic personalization of information
based on external conditions and user preferences, which
impacts the experience and can lead to cognitive overload.

IIl. MPARS ARCHITECTURE

This section presents a new proposal designed to provide
meaningful feedback, i.e., useful and timely information to
the mobile user in the outdoor activity context. As previously
noted, the system is designed to be adjustable via context
and user preference awareness. To best illustrate the proposal,
a dynamic environment, namely an outdoor sports environ-
ment, is considered. In this environment, the information
provided in the MPARS display must be adapted to the
type of activity in progress and the user’s surroundings, also
considering the user’s preferences.

Users interact with the MPARS by performing specific
actions (e.g., taking photos, filming, calling, messaging,
or using social networks) and by requesting information
elements (e.g., weather, location, biometric counts, and
social information). Therefore, the MPARS requires a set of
working modules to build an adaptive AR layout, as shown
in Figure 2.

In the first step (Data Acquisition), the system acquires
(via sensing and the direct user input) information related to
the user (personal information), contextual data and sensing
data from the available sensors.

The second step (Tech Adoption Variables) concerns
the data processing aspects. Namely, technology adoption
metrics derived from authors’ previous work [11] are
used to calibrate a set of weights or technology adoption
variables. Currently, the proposed proof-of-concept considers
the following metric categories: convenience (contributing to
expectation, experience), adjustable system to avoid infor-
mation overload, and familiarity contributing to expectation,
experience, auto adjustment.

The third step (Context Adaptation Weighting) consists
of calibrating the weights used to adapt the contextual
information to be provided to the user, to establish a
relationship between the contextual information and the
user’s preferences for the information to be displayed, using
the acceptance weights derived from the previous step. Data
relating to each type of information (weather, location, social
information, or biometric signal counts) to be displayed
on the MPARS screen are aggregated into elements. Each
element is then weighted in terms of preference to provide a
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more fine-grained QoE and avoid information overload. For
example, Comfort includes several weather elements such as
ambient temperature, wind speed, weather outlook, relative
humidity, and barometric pressure, as well as heart rate and
calories burned. Data aggregation is therefore performed on
each element based on a proposed weighting to reduce the
information to be transmitted and displayed. The different
weighting adjustments for the acceptance variables are based
on the results obtained in [11] and are combined for the
initial configuration of the layout shown in the experimental
application, as seen in Figure 2 at the bottom left.

For instance, previously expressed preferences can be
converted into percentages, giving an initial preference
weight of 30,45% for showing geographic information
elements, 24, 57% for biometrical, 26, 30% for weather, and
18, 68% for social information. Geographical, demographic
and personal data, as well as time of use, will therefore
contribute to an initial setup that can be further enhanced
through real-time dynamic tuning, such as geolocation for
Points of Interest (Pol).

The fourth step (Learning and Inference) ensures that
the system can provide meaningful feedback to the user.
This step involves two main phases: (i) activity tracking
detection, which identifies the sporting activity taking place
at the moment, and (ii) inference, which decides what type
of information is most relevant to provide to the user at
each moment. The ML modules (i) and (ii) help to feed the
output with meaningful information that is reflected in the
final layout by training a model on the data of preferences
for classes of information elements given by a dataset that
can be updated with the user’s latest preferences (Final
Calibration). After using (i) to determine what activity is
being performed, module (ii) infers from different classes
what type of feedback is most appropriate for the user’s
current state: “Alerts”, “Advice/Suggestions”, ‘““Points of
Interest” or “Encouraging Goals™ .

The use of multiple sensors for activity tracking,
particularly in the context of outdoor sports, is an important
consideration. Today, most smart systems, gadgets, IoT
devices and smartphones have internal sensors that can be
used to recognise the required sports activity in a non-
intrusive way, generating smart data [10], [27]. The main
sensors used for these types of activities are a) accelerometer,
b) GPS, c¢) gyroscope, and d) other sensors such as compass,
microphone, camera, proximity sensor, light sensor, temper-
ature sensor, pressure sensor [28]. Mobile sensing should be
reduced to a few sensors to minimise the device’s power con-
sumption. Ideally, no more than two sensors should be used
[29], [30].

The fifth and final step (Customized Feedback) involves
feedback to the system when the user validates the active
information elements received in the visible layout. In this
way, customisation occurs by having the user validate the
information presented in the dynamic layout according to
their preferences simply by answering ‘yes’ or ‘no’. This is
done more frequently at the beginning of the user’s interaction
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FIGURE 2. New enhanced MPARS intelligent architecture.

with the system and less frequently over time. This interaction
helps to tailor the MPARS to each user, calibrating the
weights of the information elements and tuning the ML
module to approximate the ideal for each user, i.e., improving
the QoE of the MPARS usage. An example of the changes
in the information displayed after this adaptive AR layout
process can be observed in Figure 3 (previous layout) versus
Figure 4 (after incorporating the user’s preferences).

Event “X”
Drink water -~ 8

Reduce speed
To the left, coffee of the
. riders 5,4 qus away

FIGURE 3. Information in an AR initial layout before adaptation.

IV. MPARS ILLUSTRATIVE USE-CASES

The proposed MPARS architecture (1f. to Section III) has
been devised considering the requirements of a use-case
based on outdoor usage. In this scenario, a mobile user
performs activities and may require continuous adjustment
of information received based on the surroundings, personal
status, and user preferences. It should be highlighted that
the choice of scenario can be applied to different domains,
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FIGURE 4. An example for a dynamic layout in an MPARS after learning
on data integrated via processing of user feedback.

like outdoor sports, smart cities, manufacturing, and health,
among others. Next, the usage of the MPARS architecture
proposal in the previous section is illustrated via three use
cases.

The first scenario relates to a smart city application and
gaming-on-the-go. Bob, a 50-year-old user, is carrying his
smartphone holding an MPARS gaming application, for
which Bob gets continuous rewards based on the level of
interaction with the game. The interaction requires Bob to
provide regular updates on the city’s historical path, e.g.,
historical landmarks and sightseeing. The MPARS directs
Bob to perform specific tasks (like walking towards a
specific area to obtain more points). Bob’s surroundings (e.g.,
outdoors), geo-location, and even walking speed are some
of the contextual aspects being considered. Based on these
aspects, the MPARS adapts the information to be displayed to
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Bob’s device layout. For instance, if Bob is sitting in a coffee
shop, the MPARS may ask for more information to be sent,
and the type of information (e.g., a simple click or sending a
photo) may change.

A second scenario, focused on health, targets well-being
awareness. Anne is on her daily run and carries an MPARS
integrated into her smart glasses. The health MPARS app
provides Anne with the usual fitness information, similar to
several personal gadgets that exist today. The key difference
is that based on situational awareness and sensed information
(such as geo-location), the MPARS may suggest alternative
routes to reach her goals or allow Anne to be more motivated
to reach her goals based on her interests. The required
information adaptation in this case will be strongly related
to Anne’s interests and also to her context - user behaviour
and specific health condition.

The third example focuses on outdoor sports usage.
Martin is a mountain biker equipped with an MPARS on a
smartwatch. While biking, he interacts with the MPARS via
voice commands. The MPARS replies with specific routes
based on the current location, weather, road conditions,
Martin‘s interests, and heart rate. The type of information
provided is adjusted by Martin‘s measurable physical and
surrounding conditions. The focus is on reducing information
based on situational awareness and user preferences.

The described use cases help explain that the proposed
architecture has been designed to allow its use across different
usage scenarios in different outdoor applications. In the
following, a use case focused on outdoor sports activities
has been elected to illustrate the usage of an MPARS, the
feasibility of the proposed system architecture and the power
of user preferences towards information overload reduction.
However, this focus does not undermine the broader scope
of the proposed architecture, which can easily be adapted for
other scenarios such as the ones described in this section.

V. SYSTEM'S FEASIBILITY EVALUATION
In order to establish a proof-of-concept on the viability of
developing the proposed architecture and testing the inte-
gration of user preferences for costumisation and reducing
information overload, a real-world experiment was conducted
based on developed middleware. A simple application was
designed and implemented to run on a smartphone! to provide
the user with an initial layout that displays some AR elements
and supports the user’s ability to request some common
functionalities, like taking a photo, making a phone call or
opening a social media application while on the move. This
allowed the collection of a first set of data expressing user
preferences for receiving several classes of information.
Sports activities performed with the MPARS app involve
dynamic mobility, so sports in static facilities, such as
aerobics and football, were excluded. Other outdoor sports
(such as swimming, diving, and climbing) were also excluded

IMPARS  Layout:
MPARS_wireframe.pdf

https://github.com/ruilupas/MPARS/blob/master/
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since users may be unable to safely interact with a ubiquitous
mobile system (in this case, a mobile phone)z.
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FIGURE 5. Middleware layout example. Informative elements are
indicated by the blue boxes, system-related elements by white boxes, and
functional elements by the grey ones.
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Figure 5 shows the layout of the middleware developed
with all informational elements. The remaining elements are
functionalities that allow for user interaction (taking photos,
filming, calling, sending messages, and social interaction) or
prototype-related elements.

A. DATA COLLECTION

Measurements using the user’s smartphone sensors were
recorded in a controlled outdoor environment in Lisbon,
Portugal, between February and September 2022. Outdoor
sporting activities were carried out at different times of the
year, covering all regular seasons in Lisbon, Portugal (winter,
spring, summer, and autumn)® The volunteers performed four
independent activities. Each activity was carried out for two
minutes.

Volunteers installed the application on a smartphone with
the Android operating system and at least 4GB of RAM. Then
they had to enable the app’s permissions and turn on the GPS.
While looking at the information on the smartphone display,
volunteers were also asked to perform at least one function
of their choice (take a photo, make a film, make a phone
call, send a message, or interact on a social network). Finally,
each participant was asked to indicate their preference for
receiving an alert, a suggestion (a POI or advice, for instance),
or encouragement to achieve a goal. For example, if a heart
rate higher than a threshold is detected, the app could provide
an alert by displaying a message such as “Reduce your
speed”.

One hundred end-users participated in the experiment
using this prototype of MPARS and completed a specially
designed questionnaire after the field test.* The questionnaire
integrates eight questions that range from having experienced
information overload to what users prefer about the (type of)

2Demo and data at: https://github.com/ruilupassMPARS

3Data set available at: https://github.com/ruilupas/MPARS/blob/master/
logs_mpars_total.xIsx

4Questionnaire available at: https://github.com/ruilupas/MPARS/blob/
master/mpars-questionnaire.pdf
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information that an MPARS application in an outdoor sports
context should convey during the activity. The questions also
include demographic and gender diversity information, and
the duration of the prototype test. The remaining questions
aimed to understand which functionalities were chosen and
to grade the level of importance of the information displayed.
The volunteer should also indicate the frequency of the
sporting activity. The participants are volunteers from an
academic community in Lisbon, Portugal, with an average
age of 36 years, an average weight of 74 kilograms, and an
average height of 1.71 meters, displaying a heterogeneous
universe in terms of sexes. The participation was promoted
via academic communities’ mailing lists and online social
networks of Iscte Instituto Universitirio de Lisboa and
University Luséfona, and research centers (ISTAR_Iscte,5
COPELABS,® and CISUC7). These channels reach the
general university population and are not targeted at any
specific discipline.

B. SURVEY RESPONSE ANALYSIS

After collecting all the responses to the questionnaire,
a descriptive and exploratory analysis was carried out. The
percentages of positive responses regarding the prototype
functionalities and of users’ preference towards receiving
several kinds of feedback information are shown in the fol-
lowing figures. In particular, there have been found obvious
differences in the answers originating from volunteers less
than 37 years of age and those remaining, which can be
observed especially in Figures 6, 7, and 9.

By observation of the plot at the right of Figure 6
(Feedback), it is clear that the respondents are very
receptive to receiving feedback in almost all existing
classes. Nevertheless, they express that an alert might not
be relevant, especially for the respondents over 36 years
of age. In terms of functionalities (plot at the left), the
receptiveness varies. While the main preference is for
taking photos (86%), followed by social media (73%),
the remaining functionalities are not as expressive as the
former: sending messages reaches 55% of preferences, and
the less preferred are filming and calling, whose expressed
preferences are below 40%. Interestingly, the preferences
for using functionalities during training are always lower for
users older than 36 than for the youngest users.

However, the walking scenario responses contrast with the
results from other activities results. While at the different
activities, the respondents still prefer to receive information
about personal goals (92% for biking and 95% for running
and race-walking), the remaining feedback classes preferen-
ces vary between the different activities. For example, when
cycling (Figure 7), places of interest (§89%) and warnings are
considered to be very important (88%). The least preferred
feedback information is suggestions (55%) and advice (42%),

5 http://istar.iscte-iul.pt/
6http://copelabs.ulusofona.pt/
7https://Www.cisuc.uc.pt/
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FIGURE 6. Walking: preferred functionalities and feedback information.

which are basically in the same category of informational
content. In terms of functionalities, calling and recording are
the most preferred, with 80% and 69% respectively, while the
remaining functionalities only reach about 10% preferences
each.

Functionalities Feedback
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FIGURE 7. Biking: preferred functionalities and feedback information.

For the race-walking activity, respondents ignore all
functionalities except for the call functionality. Even then,
they only reach 53% (Figure 8). Users also express that
they are most interested in receiving information about
goals, alerts, and suggestions with 95%, 89%, and 88%
respectively. Running presents a preference scenario very
similar to race-walking, but with a significant decrease in
receiving suggestions, reaching only 55% of user preferences
(Figure 9), while alerts are perceived as more relevant (92%).

The higher the intensity of the physical effort, the fewer
users care about receiving optional information. In this case,
users prefer to receive information about targets (almost 95%
of preferences) and warnings (about 90%). It is also clear
that age influences the preferences expressed for the different
information to be received for each activity, although more so
for some sports (such as cycling) than others.

C. ADAPTIVE FEEDBACK RESPONSE MODULE
EVALUATION

The answers to the survey show that preferences for
meaningful feedback vary with the activity being performed

155161



IEEE Access

R. Pascoal et al.: Reducing Information Overload With Machine Learning in MPARS

Functionalities Feedback
95%
89% 88% 8%
B 2%
90% 595 88% 89%
53%
57%
49%
3}%
38% 38% 2%
e
13% 27%
—_—— 10% 24%
: 7%
W6 12% —_—r— 4%
i 9% 8% ——
in im e =
| i M= | F .
Fim

photo call Message social App Advices Alerts suggestions  Places of Goals
Interest

@ Race-Walking Age < 36 B Race-Walking Age 2 37 @ Race-Walking Age < 36 B Race-Walking Age 2 37

FIGURE 8. Race-walking: preferred functionalities and feedback
information.
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and are influenced by the age of the practitioner. Furthermore,
the expressiveness of preferences may also depend on the
location where the activity is performed or other contextual
factors. It is therefore important to understand whether the
proposed MPARS system, fed with contextual information
and end-user expressed preferences, can successfully adapt
the information in the layout. The idea is to provide the
user with some type of information — suggestion, advice,
alert — in a way that is adjusted in time and space, to the
situation and context of the user. As such, a proof-of-concept
has been developed for testing the viability of the proposed
MPARS architecture adaptive feedback module where, once
the activity being performed is detected, the opportunity for
giving a certain type of feedback to the user is decided by an
ML module trained on the feedback preferences data set.
Using the data collected with the questionnaire, selected
classification methods have been tested with the aim to
understand their accuracy in terms of determining which
feedback information should be used in a given context and
at a given time. Simple tests of the predictive power of
the system were carried out. This was done using the data
collected in the field test described in Subsection V-A on
preferred information feedback during each activity.
However, even with 100 participants testing the system,
the data obtained resulted in very fine-grained data and small
data sets. The original data collected consisted of 2, 401 logs
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for each outdoor sports activity, with 24 logs per user
collected every 5 seconds, for a total of 9, 604 logs. To better
understand the behaviour, user logs were concatenated into
30-second observations: based on 4 logs per user, the previous
5-second logs were logged into a 30-second log to get the
accumulated trend of logs of user interactions. This gives a
total of 772 logs of real data observations (a reduction of the
original 9, 604 logs).

Based on the original 772 logs, a second synthetic data set
containing in total of 1.632 logs has been generated. Hence,
the synthetic data set consisted of 2.404 logs, that is, 601 logs
per sporting activity. This means that, for each one of the
real data observations, four new synthetic instances have been
created.®

Synthetic data was created using random functions, such
as the Microsoft Excel RANDBETWEEN() function, and
data analysis techniques to create systematic samples. For
example, when creating a new instance from an existing
one, a new data age value was created by imputing a
random number generated in the range [y — 5, y + 5], where
y is the real data instance value. Similarly, for temperature,
a random value was generated in the range +5 degrees
Celsius, and for wind speed, the new value was drawn from
£10 km/h. Relative humidity and air pressure depend on the
weather forecast (clear sky, clouds, rain). Thus, the last two
were created conditionally according to the weather outlook
previously drawn (e.g. for a clear sky, lower relative humidity
and higher air pressure should be drawn).

Table 1 shows the real and mixed (real + synthetic) data
distributions of users’ preferences for features and feedback
information. Note that the final preference distributions are
slightly different from the real data distributions because
the synthetic data was drawn uniformly using a predefined
randomisation function.

To understand the predictive power of the data to
decide on meaningful feedback, several experiments were
conducted with models trained on a dataset consisting of the
concatenation of real and synthetic data for all the different
outdoor sports activities, using the Orange Data Mining tool.”

Itis assumed that a specific activity detection technique has
already established the activity being performed. For the final
adjustment, the system will rely on trained models to decide
if any type of meaningful information should be displayed
in the AR layout. As a proof-of-concept, the results obtained
by fixing Biking as the activity being performed and using a
predictive model trained on a binary feedback option target,
i.e., one of the expressions of preferences for feedback: either
Advices, Alerts, Suggestions, Interesting Places, or Goals are
considered.

The mixed dataset (real data plus synthetic data) con-
sisting of 601 (mixed) data instances corresponding to the
cycling activity was uploaded into an Orange workflow. The

8Data available at: https://iscteiul365-my.sharepoint.com/:x:/g/personal/
rmspl_iscte-iul_pt/EbOkS9QRkalLn_qTNv4Z61ABIn-iC2K3ufVgU6HK
udbmw?e=DzBIMT

9https://orangedatamining.com/
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TABLE 1. Comparison of distributions for preferred feedback between real data and mixed data (real + synthetic) by age.

Activity Age Advices Alerts Suggestions POI Goals
Real | Mixed | Real | Mixed | Real | Mixed | Real | Mixed | Real | Mixed
Walking <36 0.92 0.82 0.43 0.41 0.93 0.88 0.92 0.95 0.94 1.00
> 37 0.88 0.89 0.17 0.17 0.82 0.70 0.90 0.89 0.95 0.99
Race- <36 0.38 0.25 0.90 0.85 0.88 0.86 0.27 0.27 0.98 1.00
Walking >37 0.38 0.29 0.89 0.86 0.89 0.84 0.24 0.19 0.92 0.97
Running <36 0.31 0.22 0.90 0.86 0.56 0.38 0.28 0.29 0.91 0.99
> 37 0.31 0.20 0.94 0.97 0.54 0.35 0.24 0.38 0.97 1.00
Biking <36 0.49 0.30 0.83 0.79 0.56 0.48 0.88 0.86 0.89 0.84
> 37 0.36 0.23 0.92 0.77 0.54 0.47 0.91 1.00 0.96 1.00
Average preferences 0.50 0.40 0.75 0.71 0.72 0.62 0.58 0.60 0.94 0.97

dataset consists of 20 features with information on personal
attributes (age, sex, height, and weight), biometric attributes
representing measurements during the activity (such as heart
rate, calorie consumption, steps), speed (km/h), distance
traveled (m), and weather conditions (ambient temperature
(hPa), wind speed (km/h), as well as weather outlook (clear,
some clouds, cloudy, rain, relative humidity), and binary
expressions of preferences (true or false) for Advice, Alerts,
Suggestions, Interesting Places and Goals. Each data point is
also marked as real or synthetic.

500 469
450

350
Z 300
g
$ 250
g
£ 200

m FALSE
TRUE

FIGURE 10. Biking activity dataset: distribution of the preferences for the
binary target Alerts.

The first experiment involved predicting whether an alert
would be issued (true) or not (false) for a new data instance,
so the target feature will be Alerts. Therefore, a hold-out
set was randomly sampled from the previously described
dataset by sampling a small portion of each target class
(approximately 10%). It should be noted that this is an
unbalanced classification problem since the distribution of
preferences in the examples for the feature Alerts consists of
132 negative observations (false labels) and 469 true labels
(Figure 10). Consequently, the hold-out sample consists of
61 instances, of which 46 are true labels and 15 are not.
A more balanced dataset has been selected for training.
The true label class was randomly sampled and contributed
208 observations, which were concatenated with the 117 false
label observations to create a training dataset containing
325 instances.

In a recent work [31], the authors’ findings suggest
that personalisation is most effective when applied with
traditional ML techniques rather than deep learning ones,
which supports our proposal to use an ML approach for
personalisation. Thus, several ML algorithms were used to
train models using this more balanced dataset and most of the
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features described above. Unused features were: the binary
indication of whether it was a real or synthetic data point,
Outdoor Activity, the remaining feedback-giving options
(Goals, Interesting Places, Advice, and Suggestions), and the
attributes Sex, Heart Rate, and Footsteps. The latter is due to
the fact that the activity analysed is cycling, and, of course,
the number of steps is usually zero. On the other hand, the
sex of the user was not used because the distribution of the
target values is very similar between the sexes. Finally, heart
rate was not considered because it is consistent throughout
the set.

TABLE 2. Models’ evaluation using usual metrics averaged over both
classes: AUC (area under the curve), CA (classification accuracy), F1
(F1-score), Prec (precision), Recall, and MCC (Matthews correlation
coefficient).

Model AUC CA F1 Prec | Recall | MCC
Gradient Boosting 0.981 | 0.93 | 0.94 | 0.94 0.93 0.83
kNN 093 | 0.85 | 0.86 | 0.89 0.85 0.68
Tree 0.83 | 0.82 | 0.83 | 0.85 0.82 0.57
Random Forest 0.84 | 079 | 0.79 | 0.80 0.79 0.47
Logistic Regression 0.62 0.69 | 0.70 | 0.72 0.69 0.25
Naive Bayes 0.65 | 0.66 | 0.68 | 0.74 0.66 0.28

The models have been tested using the hold-out instances.
Overall, they have achieved good performance, as can be
seen in Table 2. The best performance is achieved by a
scikit-learn [32] Gradient Boostinglo model, which took
0.105 seconds to train its model and 0.004 seconds to test. The
confusion matrix in Figure 11 shows that the performance is
good, not only in terms of accuracy but especially because of
a very interesting balance between precision and recall, both
above 93%.

false true 3
false 14 1 15
©
2 true 3 43 46
<
b 17 a4 61

FIGURE 11. Confusion matrix resulting from the test of the model
Gradient Boosting.

lOhttps://0rang(;tdatamining.com/widg:{et-catalog/model/g:,rradientboosting/
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Notably, the second best model is the 5-kNN model,
whose confusion matrix is shown in Figure 12. Compared
with Gradient Boosting, the kNN model loses sensitivity,
increasing the number of false negatives. Nevertheless, the
model correctly predicts the true label in more than 82% of
the cases.

false true b
false 14 1 15
©
2 true 8 38 46
<C
3 22 39 61

FIGURE 12. Confusion matrix resulting from the test of the model 5-kNN.

The good performance of KNN was an interesting result.
Since this technique is very light in terms of retraining the
model with new labelled examples, it is suitable for the
MPARS implementation, where user feedback is used for
system adaptation and tuning. The MPARS proposed here
relies on the computational power of the underlying device
for the continuous adaptation of the AR layout, so the easier
the retraining of the ML model, the better. In this sense, Naive
Bayes would be preferable, but its performance in this test is
quite inferior.

These are very simple experiments where no special
preparation was used to train the models, and they demon-
strate the feasibility of the MPARS system proposed in
Section III, where models trained on data without any special
preparation and preprocessing show good performance in
terms of reducing information overload. In fact, the results of
the models Gradient Boosting and KNN (Figures 11 and 12,
respectively) are quite accurate for both true positive and
true negative hits but are particularly robust for true negative
results (over 93%). This suggests the feasibility of a working
MPARS prototype capable of real-time adaptation based on
expressed user preferences and ML techniques.

VI. CONCLUSION

This work proposes a first architectural framework for the
implementation of a mobile pervasive augmented reality
system or MPARS specifically designed for dynamic outdoor
environments involving sports activities, taking into account
technology acceptance indicators derived from end-users.
The work also provides a proof-of-concept for the feasibility
of the proposed MPARS prototype architecture, which is
capable of real-time adaptation based on a collected sample
of end-user preferences and volume of information criteria
indicators to allow adaptation of the system and avoid
information overload in the augmented reality display. The
indicators considered in this work are based on geographical,
meteorological, biometric, and social information. Together
with personal and biometric data, these elements work
in a real-time adaptation system to adjust the volume of
information and reduce information overload to provide the
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right information at the right time, thus improving end-user
QoE in AR sports environments.

From the analysis of the questionnaire obtained after a
field test, it is clear that aspects such as age or activity
affect the interest in obtaining specific information. Speed,
integrally linked with the activity, is, naturally, an additional
factor of impact in information preferences, which is directly
related to the user’s speed, as users feel more overloaded
when performing dynamic activities such as running and
cycling than when performing less dynamic activities such
as walking. The higher the intensity of the physical effort,
the lower the intention to receive optional information.
Furthermore, on average, expressed preferences tend towards
receiving information on personal Goals (94%), Suggestions
(close to 81%), and Alerts such as weather or route conditions
(close to 75% of preferences), indicating that this information
should be prioritised.

The MPARS framework proposed here is that of a
context-aware system both in terms of its user and in terms
of the surrounding environment and activity. All variables
that determine the information elements of the layout are
to be adapted both from data obtained via the end user’s
device (e.g., accelerometer) and from other online sources
(e.g., weather data). Calibration of the user with personal data
(such as age and height) is also essential to better adapt the
system to the user. The final calibration of the AR layout is
determined by an intelligent module based on the device’s
sensors, the determination of the activity being performed,
the end user’s personal calibration, and trained models for
controlling the information elements to be displayed at any
given moment.

The findings of this work open opportunities for future
work in the field of real user preferences, serving as a basis
for realistically approximating preferences for outdoor sports
activities for a greater diversity of users. It will also be
relevant to better explore the possibility of encouraging goals
by introducing a gamification component, to help users fulfill
sporting objectives, especially when competing with other
users.

As usual, this work has its limitations. In order to imple-
ment a functional prototype, a more operational application
needs to be developed and distributed to a larger cohort
of volunteers to be used over a wider range and duration
of sporting activity types and to allow a more in-depth
investigation of the system’s performance. Furthermore,
comparative investigations should be implemented to validate
the usability of the proposed MPARS vs. a solution that
does not support adaptation and collection of user feed-
back. This research should also address the use of device
resources in terms of energy and computational load. The
implementation of ML modules presents its challenges.
Unlike activity detection, where a large number of approaches
already exist, the same cannot be said for automated
adaptation systems. Especially in the present case, where
the feedback of information concerns various possibilities
for providing informational elements concurrently, a deeper
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and comprehensive investigation is needed, integrating all
possible feedback elements and a measure for the degree of
information overload experienced.
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