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ABSTRACT Massive data generation from Internet of Things (IoT) devices increases the demand for
efficient data analysis to extract relevant and actionable insights. As a result, Federated Learning (FL)
allows IoT devices to collaborate in Artificial Intelligence (AI) training models while preserving data
privacy. However, selecting high-quality data for training remains a critical challenge in FL environments
with non-independent and identically distributed (non-iid) data. Poor-quality data introduces errors, delays
convergence, and increases computational costs. This study develops a data quality analysis algorithm
for both FL and centralized environments to address these challenges. The proposed algorithm reduces
computational costs, eliminates unnecessary data processing, and accelerates the convergence of AI
models. The experiments utilized the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100 datasets, and
performance evaluation was based on main literature metrics, including accuracy, recall, F1 score, and
precision. Results show a maximum observed execution time reduction of up to 56.49%, with an accuracy
loss of approximately 0.50%.

INDEX TERMS Data quality, deep learning, federated learning, IoT, IID, non-IID.

I. INTRODUCTION
Advances in Artificial Intelligence (AI) and the Internet of
Things (IoT) have a measurable impact in multiple sectors,
enabling intelligent, data-driven applications. However, this
development presents challenges for data security and
mobility [1], particularly in the healthcare sector, where these
technologies play a crucial role in protecting patient privacy
and ensuring compliance with confidentiality regulations [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Thomas Canhao Xu .

In scenarios where data protection is paramount,
approaches to effective monitoring and management are
particularly relevant, ensuring regulatory compliance and
the safety of patient data [3], [4]. In this context, the
ability to process large amounts of data efficiently and
the collaboration between neural networks are increasingly
regarded as essential for various applications [5], [6].
From this perspective, Federated Learning (FL) has

demonstrated potential in the literature, allowing IoT devices
to collaborate to create a neural network without sharing
raw data. Edge devices share their local model variables by
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updating a global model, which in turn updates local devices
until a global minimum is reached [7].

Despite its promise, this approach introduces several
challenges, such as handling Independent and Identically
Distributed (iid) and Non-Independent and Identically Dis-
tributed (non-iid) datasets [8], [9], [10]. It also addresses
issues such asmitigating the high communication costs due to
data dispersion and the complexity of selecting clients during
model training. These factors affect learning convergence and
prolong execution time, which leads to increased computa-
tional demands and a more computationally intensive process
on edge devices, which have hardware and energy limitations.

Furthermore, establishing incentives for collaboration
and managing device heterogeneity remains a significant
challenge [11], [12]. Consequently, addressing computational
demands requires automating cost management, increasing
resource availability [13], capturing temporal dependen-
cies [14], and ensuring data quality at the edge [15].

In this context, state-of-the-art studies have explored
solutions that demonstrate the significance of signal pro-
cessing [16], with a focus on device heterogeneity and
data privacy protection. These approaches aim to optimize
resource efficiency and improve the training of FL models
while ensuring robust privacy support [11], [17].
Ultimately, these studies highlight fundamental issues in

managing large data volumes, high communication costs, and
the complexity of data selection. Furthermore, the nature of
non-iid data introduces additional complexity to the training
models.

Current FL approaches do not evaluate the quality of
the data at the edge, leading to low-quality inputs and
inefficient training. Addressing this limitation, this study
proposes an entropy-based data selection method to optimize
FL performance with the following:

i. providing a data quality analysis algorithm on edge
to select data with the highest informational value,
maintaining both class balance and accuracy levels
comparable to the original FL models;

ii. reducing unnecessary data processing with low data
quality to save energy on the edge; and

iii. improving FL the computation performance by the
reducing execution time by 50% in IoT devices.

In general, at the top layer, the FL Model and Aggrega-
tion Server orchestrate clients (nodes), detect rare events,
and ensure resistance to poisoning attacks or failures,
such as communication cost [18]. The responsibilities may
include techniques such as feature extraction [19], dynamic
regularization [20], node selection [21], client clustering [22],
client sampling [23], client contributions [24], and adaptive
selection [25], as well as layers of security, increased fairness
in collaboration between clients, and poison attack mitigation
and defense mechanisms [26], [27].
For instance, upper-layer aspects – such as client orches-

tration and connection problemmanagement – are commonly
addressed in studies of global aggregation algorithms on the

aggregation server in FL approaches. Alternatively, designers
may integrate these aspects with broader solutions (e.g.,
cryptography, blockchain, and connection management).

In addition, the taxonomy in the Continuum of the Internet
of Things (CIoT) [28], [29] assigns these responsibilities to
the orchestrator, including managing connectivity, network
resources, resource allocation, network management, and
security across distributed edge, fog, and cloud layers. Some
responsibilities are shared between the FL algorithms and the
orchestrator, especially in scenarios where coordination, data
availability, and system resilience are crucial for distributed
training and aggregation processes.

This work proposes an agnostic algorithm (i.e., a new
AI layer as a data preparation step in the edge) without
interfering with the FL algorithm execution or the server
where aggregation occurs. The algorithm is based on edge
data quality evaluation, which removes data without relevant
information for training and improves the convergence
of training algorithms by selecting the most significant
information from the input data based on the entropy metric.

The algorithm operates at the edge and selects the best
aggregated information by processing on the edge devices.
This design choice ensures that the proposed approach does
not depend on or interfere with the functionalities of the FL
Model or Aggregation Server. As a result, the algorithm
can be integrated into different FL pipelines regardless of
the server’s adopted aggregation strategies or management.
Due to this, rare event detection, FL security, attacks that
compromise the integrity or reliability of the neural model
hosted on the aggregation server, and communication issues
are outside the scope of this work.

The remainder of this paper is structured as fol-
lows. Section III provides an appropriate background, and
Section III covers Related Work. Section IV presents the
proposed model in detail. Section V presents the method-
ology and the evaluated scenarios. Section VI presents the
evaluations and the results achieved. Section VIII presents
the final considerations, Section IX outlines future directions,
and finally, Section Appendix A contains more detailed
information about the state-of-the-art.

II. PRELIMINARIES AND BACKGROUND
This section describes and contextualizes three concepts: 1)
Iid data with centralized learning, where independent and
identically distributed data are collected centrally. 2) Non-iid
data with FL addresses decentralized data, reflecting uneven
distribution and non-independent data. 3) Entropy measures
uncertainty or disorder. Finally, it introduces the Related
Work and outlines the primary challenges addressed in this
study.

A. IID AND NON-IID DATA
Iid data refers to observations where each sample is drawn
from the same probability distribution, independently of
others. For example, in a production system that consistently
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generates data following a distribution, it becomes possible
to obtain statistical inferences about these characteristics.

The iid property assumes that each observation is inde-
pendent of the others [30], meaning that one sample does
not influence another. Such an assumption allows statistical
tools, such as the law of large numbers and the central
limit theorem, to generalize the results. However, these
assumptions are often not satisfied in the real world. Data are
commonly correlated or exhibit sample heterogeneity [31].

These conditions violate the iid data assumptions, where
the observations do not follow the same probabilistic distri-
bution, and the observationsmay exhibit high correlationwith
each other or be strongly correlated rather than having more
distant relationships. Furthermore, dynamic environments
may render iid assumption invalid or inapplicable.

The distributions change over time, leading to an effect
referred to in the literature as concept drift, which represents
a shift or evolution in the data that invalidates the created
AI model. Figure 1 presents a visual representation of these
concepts.

FIGURE 1. The iid and non-iid data.

Moreover, non-iid data violate at least one of the conditions
that define iid data; each observation or sample must be
independent of the others, and all samples originate from the
same probabilistic distribution.

More specifically, non-iid data involve correlated dis-
tributions, where samples may exhibit mutual statistical
dependence, and probabilistic distributions may vary among
data. Additionally, non-iid datasets may present different
subsets of data that follow different distributions.

B. CENTRALIZED LEARNING AND FEDERATED LEARNING
In centralized Machine Learning (ML), data are collected,
stored, and processed centrally on a dedicated server or in
a centralized location. This architecture promotes efficiency
in statistical modeling and pattern detection, thereby enabling
the deployment of ML algorithms that require large amounts
of data to achieve generalization and produce reliable
outcomes.

However, centralized models present challenges, primarily
related to data security and the collection and centralization
of large volumes of data. Therefore, this exposes sensitive

information to risks, which contributes to leakage or cyber-
attacks [32]. Centralization also leads to issues related to
latency, where data from different sources is centralized on
a server, consuming a significant amount of communication,
especially with geographically distributed data [33].

Unlike the centralized approach, FL follows a decentral-
ized strategy for training ML models. Data from different
sources contribute to training multiple devices or nodes in a
network (clients), such as smartphones, tablets, IoT sensors,
and other edge-computing devices. Each device uses its data
to train an AI model and then sends model parameter updates
to a central server that aggregates the updates from the
parameters of the neural network. In this approach, private
data remains on edge devices, never being shared directly,
thereby respecting ethical and legal perspectives in sensitive
data contexts. Furthermore, it reduces massive data transfers
and the risk of large-scale data leaks [34].

Figure 2 compares ML architectures. In Figure 2 (1), the
data from multiple devices are centralized and stored for
model training. In contrast, Figure 2 (2) depicts decentralized
training, where the data remains on the devices, and themodel
trains locally. A global aggregation algorithm combines
updates from the neural networks of each device.

FIGURE 2. Centralized vs decentralized learning FL.

C. ENTROPY
Entropy is a central concept in information theory. It plays a
fundamental role in understanding efficient communication
and information transmission and providing a quantitative
means of measuring uncertainty. Consider, for example,
a simple system composed of coin flips. In such a system,
both faces have an equal probability of occurrence. The
entropy, denoted by H (X ), where X is a random variable that
represents the result of each coin flip, can be calculated using
the entropy formula. This calculation enables us to quantify
the uncertainty associated with the information produced by
the flips.

H (X ) = −
n∑
i=1

p(xi) log2 p(xi) (1)

where:
i. X represents the set of all possible symbol values.
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ii. p(xi) is the probability of occurrence of the i-th symbol
value.

iii. The
∑n

i=1 all possible values.
iv. log2 p(xi) is the logarithm with the base b of probability

p(xi), making the entropy unit in bits.
In this case, there are heads and tails, where the entropy

H (X ) represents a value of 1; thus, each coin provides one bit
of information. However, with such a result, it is impossible
to precisely determine the outcome because each outcome
remains statistically unpredictable with equal likelihood.

However, if entropy is reduced, each new flip exhibits
lower entropy and reduced informational uncertainty as
outcomes become increasingly predictable. Conversely,
uncertainty and unpredictability reach their maximum at
maximum entropy, rendering system outcomes completely
random.

Figure 3 presents the concepts discussed concerning
entropy, highlighting its applicability as a metric for quan-
tifying the uncertainty or the degree of unpredictability
of an information source. It quantifies heterogeneity and
randomness in data distributions within datasets, contributing
to the selection of features that serve as a criterion for feature
relevance.

FIGURE 3. The figure illustrates entropy reduction through symbolic
states, representing high, intermediate, and low entropy, which
correspond to decreasing uncertainty.

Furthermore, entropy serves as a tool for analyzing the
presence of noise or missing values in data samples, which,
in turn, hinders the identification of patterns and negatively
affects the convergence of ML models.

Furthermore, entropy contributes significantly to ML,
particularly in decision tree classification algorithms, where
it measures the degree of disorder and impurity in the dataset
tominimize the uncertainty regarding the classes in each split.
The information gain criterion, derived from entropy, is used
to select the best data features, aiming for a more accurate
classification [35]. About data quality, entropy is also used
in ML; noisy or incomplete data tend to increase a system’s
entropy, making it more difficult to identify clear patterns and
reducing the efficiency of AI models [36].

III. RELATED WORK
Recent advances in FL have contributed to measurable
improvements in communication efficiency, precision, and
convergence optimization, particularly when dealing with

the challenges imposed by non-iid and heterogeneous envi-
ronments. These issues are summarized in Table 1, which
presents the FL approaches related to this study, along with
their architectural and algorithmic features.

For instance, ‘‘FedAVO,’’ a method inspired by natural
optimization strategies to improve communication efficiency
in FL, reflects an interest in solutions inspired by nature [37].
Likewise, ‘‘Fedco,’’ which utilizes grouping optimization
to increase communication efficiency, has been suggested
for managing and effectively reducing data communication
overload [38]. Orlandi et al. [39] presented the FedAvg-BE
algorithm, which reduces the runtime in non-iid data in FL
by up to 22% for MNIST and 26% for CIFAR-10 using edge
entropy evaluation.

These advancements focus on improving communication
efficiency, accuracy, and convergence in FL environments
using non-iid data. Despite these advances, computational
cost, communication, optimization, and data handling chal-
lenges in FL architectures remain crucial.

Some algorithms enhance learning efficiency and pre-
cision, such as those proposed by Yu et al. [20], which
automatically adjust weights to achieve optimal performance.
Preconditioned FL was also introduced in this context,
proposing a method to precondition learning environments or
data to enhance FL performance [40].
A subsequent study introduces ‘‘FedWNS,’’ which

utilizes node selection based on data distribution through
learning by reinforcement, highlighting a node selection
strategy to achieve better results [21]. In another approach,
Wolfrath et al. considered heterogeneity and focused on
selecting grouped clients, accelerating the FL process to
address the challenges of client heterogeneity during the
learning process.

In the Li et al. [50] approach, clients send their models
to the server and share the distribution of their training
data, providing the server with additional information and
global optimization. However, this last approach violates the
sensitive data strategy of the FL.

Other approaches have introduced the FL architecture
based on blockchain technology. It leverages a data andmodel
provenance ledger built on intelligent contracts and a fair and
weighted data sampling algorithm [48]. Similarly, incentive
mechanisms have been developed to increase participation
and ensure collaboration more fairly [61].
Yang et al. [51] proposed an aggregating strategy that

improves the model’s convergence speed in non-iid environ-
ments by accounting for server-side characteristics with high
variation. Similarly, Dolaat et al. [53], and Xu et al. [45]
introduced strategies to enhance precision and personalize
global FL models to address non-iid challenges. These
studies incorporate techniques for incentive mechanisms,
aggregation techniques, and balancing strategies in FL
environments.

Ma et al. [12] explored the efficacy problem of AI model
training in distributed scenarios, especially the solution to
non-iid data in FL, and the relevance of efficient data
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TABLE 1. Overview of federated learning studies by system characteristics and optimization techniques.

selection methods. Parallel to this, other authors approach
methodologies to improve convergence and address data
heterogeneity through local model training adjustments and
‘‘hyper-knowledge’’ sharing [19], [44].

Researchers have introduced mechanisms to adjust gra-
dients, optimize learning in environments with data hetero-
geneity, and optimize global structures, approaching critical
challenges in the search for an efficient FL [23], [52]. These
studies demonstrate the impact of data heterogeneity and
how adjustments in local models, particularly at the edge,
are currently considered a primary research objective in the
literature.

The FL convergence improvement through regularization
was recently proposed by Qiao et al. [54] to address the

data heterogeneity between clients directly. Additionally,
the FedGroup Framework incorporates a client clustering
strategy using the K-means++ algorithm and optimization
techniques, including meta-learning, adaptive optimization,
and gradient aggregation strategies [55]. Another study by Ilic
et al. [58] simultaneously examined several clients updating
a global model.

The experiments involved aggregated updates using a
method known as federated averaging. Incremental updates,
in which the global model undergoes sequential updates,
are also considered. This study also includes cyclic updates,
where minor updates occur at the end of each epoch,
and semi-simultaneous updates, which combine simulta-
neous and incremental strategies. Moreover, these studies
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emphasize the importance of advanced strategies at nodes
(clients), where these techniques have a significant impact on
the learning processes and updates of global models.

Noise in the data under non-iid scenarios poses an
additional challenge for global FL models. In this context,
[56] proposed ‘‘FEDCNIA,’’ an approach aimed at miti-
gating the impact of noise on FL clients. Furthermore, the
discrimination in data distribution in FL [57] is explored
using techniques to handle the non-iid nature of data in
the healthcare and finance sectors. Regarding client data
heterogeneity, [24] proposed an adaptive mechanism inspired
by the Shapley value to promote greater client fairness.
Furthermore, client consistency is a critical factor that has
been explored in aggregation models. [22].

Thus, the FEDLAW algorithm demonstrates how data
heterogeneity, the number of local epochs, and client
variability influence the global model [62]. However, noise
and data heterogeneity remain critical challenges in global
aggregation techniques. The proposed model aims to mitigate
quality loss and address data discrimination, ensuring fairness
among clients and maintaining quality during training.

Finally, several studies in the medical field have explored
the application of FL, emphasizing different aspects and
challenges. For example, Antunes et al. [63] identified
research questions regarding adoption and data aggregation
mechanisms in Electronic Health Records (EHR). In medical
imaging, researchers applied FL to address privacy concerns
related to brain tumors [53]. Furthermore, technical chal-
lenges of FL, such as non-iid data, were discussed in [55]
using heart rate data.

Additionally, [11] addresses issues related to compli-
cations in data transfer in the healthcare field and other
medical data and applications. Furthermore, several studies
have highlighted the applications of FL, emphasizing its
importance in data privacy, sensitivity, and global aggregation
models. These issues in the medical field address the
technical challenges related to the heterogeneity of health
data and the area of medical imaging.

A. PROBLEM OVERVIEW
This section explores the main topics of the problems
addressed in this work and the state-of-the-art literature,
focusing on challenges related to data quality in FL,
particularly in non-iid scenarios.

The exponential growth of IoT devices and the massive
volume of generated data pose significant challenges for
practical analysis and the extraction of meaningful insights
while addressing critical issues such as privacy protection,
statistical heterogeneity, optimization and performance, and
communication efficiency, all while preserving privacy and
accuracy [64], [65].

These are especially critical scenarios where devices face
limitations in battery, communication costs, latency, and
synchronization. In the context of FL, data exhibits complex
characteristics, such as non-iid properties, necessitating

efficient algorithms and architectures that can securely
process large data volumes, respect privacy, and enhance
performance.

Thus, the central problem addressed in this work is data
quality, which involves mitigating unnecessary processing by
eliminating redundant information that does not add value
to the neural network or significantly contribute to model
accuracy.

The goal is to address device-related issues and reduce
energy costs. This approach allows AI systems to train more
rapidly while consuming fewer computational resources.

This work addresses these challenges by proposing an
algorithm to enhance data quality in the FL context, with a
focus on identifying information that efficiently contributes
to the neural network and reducing the computational cost of
training.

B. DISCUSSION OF PROBLEMS
The FL model inherently exhibits high latency, which
leads to delayed convergence, infrequent model updates,
synchronization issues, and an impact on accuracy, as well
as increased energy consumption. Furthermore, one of the
current limitations of the federated environment is the
selection of nodes with intermittent participation or high
churn rates by new nodes that incrementally introduce
information.

In this context, data selection procedures often overlook
input quality, instead focusing on the processing capacity
and availability of the nodes (clients). The data that has
a negligible impact on the model optimization results has
consequences at the edge processing level. As a result, such
data is underutilized and fails to produce a significant update
in the local model weights, leading to unnecessary computa-
tion at the edge, excessive communication requirements, and
increased energy consumption.

Since none of these new node sets are specifically
validated, they allow for input data of varying quality, which
can potentially increase latency and make it challenging to
achieve high accuracy and low loss.

By contrast, the proposed model (e.g., Entropy-Based
Selection (EnBaSe)) prioritizes both the quality of the nodes
and their processing capacity. Thus, the EnBaSe entropy
algorithm excludes information that does not significantly
contribute to themodel or has a limited contribution, selecting
data that exhibits the highest information content based on
entropy metrics.

Proper validation of the data’s quality can increase its
homogeneity. For example, suppose the average entropy of
a data set is reduced from 4.8 to 4.6215, representing a
decrease of 0.1785. This reductionmeans less uncertainty and
unpredictability in the system, messages, or processed data.

When reduced, entropy, which measures global uncer-
tainty, implies greater predictability and uniformity. There-
fore, this results in images and data with a high standard
of consistency, enhancing model regularity and eliminating
inconsistent samples from the system. Removing these
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sample inconsistencies accelerates the convergence of
the neural network, enabling the model to be trained
more quickly and efficiently. Consequently, this reduces
energy consumption and processing, optimizing the system’s
performance.

For clarity, the MNIST dataset, comprised of 60,000
images in the iid scenario, has a total of 4.8 bits of entropy.
Reducing entropy by removing 30,000 images results in an
increase in accuracy from 98.95% to 99.27%, as shown in
Table 9. This increase enhances the system’s predictability
and reduces the computational cost of processing the
30,000 images, which contributed negligibly to the model’s
predictive performance.

For the non-iid scenario, following the same pattern of data
removal, this results in a loss of accuracy from 81.73% to
81.26%, as shown in Table 12. Consequently, the removed
images add zero or negligible value (0.47%) to the neural
network’s accuracy, wasting processing time and energy.

IV. PROPOSED MODEL
This study tests the hypothesis and investigates the feasibility
of applying information theory to quantify and analyze the
quality of information in a dataset, as well as the uncertainty
or surprise associated with its data distribution. Additionally,
this evaluation focuses on improving input data quality and
minimizing noise to reduce the computation time and energy
costs.

In line with this perspective, the current state-of-the-art
research explores the application of Entropy to quantify the
degree of uncertainty and assess the redundancy present in
information. These studies aim to comprehensively analyze
information systems to measure the informational gain
achieved through data processing.

In this context, Entropy serves as a metric to identify
informative subsets of data that effectively contribute new
information to a system. Analyzing redundancy enables a
more detailed evaluation of distortions, data quality, and
information reliability.

This method aims to reduce statistical uncertainty and
provide a rigorous framework for quantifying information
with low bias, thereby becoming a metric of information
gain [47], [66]. Based on these principles, Entropy is
approached as a strategy in deep neural networks to address
the heterogeneity of data and clients [39], [60].

Furthermore, researchers argue that Entropy is a suitable
metric to assess the degree of disorder in a system (e.g.,
dataset) [67]. As a measure of disorder, capturing this fun-
damental characteristic of the system is considered a suitable
approach. Therefore, Entropy enables the quantification of
inter-client data heterogeneity between clients’ data, allowing
for adaptive adjustments to achieve better convergence of the
global model.

Additionally, Entropy is used to identify subsets of relevant
and representative data. By serving as a metric to assess the
relevance or diversity of data, it ensures that clients have
meaningful and relevant information [25]. Additionally, some

studies argue that Entropy reduces communication overload,
as only relevant clients send updates, decreasing the required
communication [18], [39], [59].

A. HYPOTHESIS
The hypothesis is that when Entropy applies to the field
of Computer Vision (CV), each pixel set encodes color or
intensity values, enabling the calculation of intensity values
of a specific color or intensity. Therefore, the probability of
each color or intensity value and each unique pixel occurrence
can be calculated based on the frequency with which each
specific color or intensity appears in the image.

Thus, high Entropy represents a great diversity of pixels,
indicating a high complexity in texture, significant variation,
and little predictability of the information. Conversely, low
Entropy indicates greater image homogeneity, that is, better
uniformity in identifying regions with little or no relevant
information, facilitating the segmentation of elements in a
scene.

This study further hypothesizes that the available data adds
little value to the model and introduces noise into the training
process. The following analogy illustrates this hypothesis:
Initially, an unstructured image dataset presents high Entropy
and great uncertainty. By organizing and separating these
sets of images, this process divides the images into segments
with low Entropy, considered statistically less informative or
noisy.

In contrast, the other part exhibits high Entropy and
continuous unpredictability. Consequently, data with high
Entropy tends to be viewed as low-quality or noisy and is
thus excluded from the training process to enhance model
performance.

Thus, Shannon’s entropy formula is employed as an
estimation method for CV, to measure the frequency-based
dispersion of pixel intensity values, aiming to quantify the
visual complexity of an image. This approach disregards
spatial structure and enables the identification of both
simple and complex samples, as well as the recognition of
stochastic variance, by assessing the statistical homogeneity
and heterogeneity of pixel distributions.

B. REFERENCE MODEL AND OPERATION SCHEME
Figure 5 illustrates the operational stages of the proposed
algorithm. Initially, Entropy is computed for each 2D image
class, represented by matrices, forming key-value pairs,
where the key is the image number, and the value is the
corresponding Entropy. Subsequently, the process orders
these entropy values sequentially within each class and
partitions them using themedian of the entropy distribution as
a threshold, thereby selecting images from the class. This step
applies to all classes in the dataset. The final step forwards the
selected data to the neural network for training.

Figure 4 illustrates the integration of the proposed model
with iid and non-iid data. Specifically, Figures 4 (1) and (2)
demonstrate the scenario where, in (1), data from centralized
devices are used for training an AI model, and in (2), global
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parameters are sent by the devices for aggregation into a
global model. Figure 4 (3) shows an intermediate layer
that facilitates processing, aggregation, orchestration, device
management, and security. Finally, Figure 4 (4) represents the
dataset from different IoT devices that have been centralized
or will be used in decentralized learning.

FIGURE 4. EnBaSe model applied to iid and non-iid scenarios.

C. ALGORITHM DETAILS
As established, according to state-of-the-art studies in
Information Theory, Entropy is a mathematical and statistical
tool used to measure the degree of disorder and information
gain in a system. As a result, decreasing the Entropy within an
information system increases the predictability of outcomes.
In this context, the proposed algorithm extracts informative
components by selecting the most informative samples,
which are those with the highest information gain, within
each subset.

Building on this concept, creating a data subset with
reduced redundancy and noise is possible, which ensures
a higher quality of the data subset. Consequently, neural
networks can be trained more efficiently and at lower
computational costs.

The Algorithm 1 is designed to be implemented in embed-
ded systems, whether centralized servers or IoT devices.
Specifically, among these devices is the most representative
dataset from each data subset, using Entropy to identify the
most informative and representative data.

As illustrated in Figure 5, the proposed model interacts
with both the centralized and decentralized environments,
as shown in Figure 4. Thus, the EnBaSe algorithm applies
an entropy-driven selection method across various subsets,
selecting the lower half of the entropy values for each
class. This technique creates a more homogeneous sample
within each subset and ensures a balanced representation in
both centralized and decentralized contexts, thereby reducing
computational, energy, and time costs.

The algorithm is embedded and receives training sets and
labels, represented by Initialization, which occurs by creating
two sets for data storage: X selected and Yselected. The
algorithm iterates over each class from 0 to K-1, calculating
the Entropy and measuring the degree of disorder for each
image in each class. Finally, it retains samples with entropy
below the class median. It returns the selected data in

FIGURE 5. EnBaSe Algorithm: Entropy-based selection.

X selected and Yselected, which serve as input for training.
Algorithm 1 is as follows:

where

i. K : Represents the total number of classes in the dataset.
ii. Xtrain: Training Dataset.
iii. Ytrain: Labels corresponding to the training set Xtrain.
iv. Xselected: Subset Xtrain selected by the algorithm based

on entropy.
v. Yselected: Labels corresponding to subset Xselected.
vi. label: A class label (K − 1, where K is the total number

of classes).
vii. C: Set of indices belonging to a given class label.
viii. MEntropy: An array that stores pairs (index, entropy

value) for each image in a given class.
ix. ComputeEntropy(image): A function that calculates

the entropy of an image.
x. Median: Median entropy values in the setMEntropy.
xi. IQualified: Set of indices of samples with Entropy less

than or equal to the median, Xselected and Yselected.
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Algorithm 1 EnBaSe. Where K Denotes the Total Number
of Classes
Require: Xtrain, Ytrain, K
Ensure: Selected classes based on Entropy
1: Xselected← ∅

2: Yselected← ∅

3: for label← 0toK − 1 do
4: C ← Retrieve indices belonging to class label
5: MEntropy← ∅

6: for each sample ∈ C do
7: MEntropy← (key,ComputeEntropy(image))
8: SortMEntropybyComputeEntropy(image)
9: Calculate the median ofMEntropy

10: IQualified← ∅
11: for each key ∈MEntropy do
12: if key.entropy ≤ median then
13: Append key.index to IQualified
14: for iinIQualified do
15: Append Xtrain[i] to Xselected
16: Append Ytrain[i] to Yselected
17: return Xselected, Yselected
18: function COMPUTEENTROPY(image)
19: H ←−

∑
d p(image) log2(p(image))

20: return H

xii. H: Entropy calculated for the image.
xiii. p(image): Calculations are performed using the image

represented as a one-dimensional (1D) array.
Algorithm 1 operates through several stages, detailed as

follows:
i. Initialization: Two empty sets (Xselected and Yselected),

are created to store the selected data and their corre-
sponding classes.

ii. Iteration over classes: The algorithm iterates through
each class present in the training set (Xtrain and Ytrain),
identifying the indices associated with each class.

iii. Entropy computation: For each element in the cur-
rent class, the ComputeEntropy function calculates
the Entropy of the sample based on the probability
distribution of its attributes. The results appear as
(index,ComputeEntropy) pairs in MEntropy, which is
also referred to as the entropy map.

iv. Sorting and median-based selection: The MEntropy
pairs are sorted by Entropy, and the median entropy
value is calculated. Only elements with entropy values
less than or equal to themedian are selected, ensuring the
inclusion of the most representative and least redundant
data.

v. Updating the selected subsets: The selected indices
are used to copy the corresponding data from Xtrain and
Ytrain to the subsets Xselected and Yselected.

vi. Final output: At the end of the Iteration over all
classes, the subsets Xselected and Yselected contain the
most informative and homogeneous data, optimized for
model training.

In summary, the algorithm proposed in this study,
Algorithm 1, utilizes entropy as a metric to identify relevant
data subsets for each class, thereby reducing redundancy and
noise while enhancing the quality of the selected data. The
choice of lower Entropy is grounded in Information Theory,
which asserts that systems with lower Entropy exhibit greater
predictability. In addition to its data selection strategy, the
EnBaSe is designed to operate independently, ensuring broad
applicability across different FL methods.
This design choice means that EnBaSe operates inde-

pendently of an embedded design. The approach remains
decoupled from any specific FL algorithm. As a result, our
algorithm is general-purpose and compatible with any global
aggregation method.
This design provides practical advantages in scenarios

where computational resources are limited. Thus, the data
subsets are structured homogeneously to optimize the
training process. For instance, in medical classification
systems with computational power constraints, Algorithm 1
prioritizes more informative and less redundant features,
reducing the computational effort required by the neural
network. This approach enables rapid and highly accurate
responses in real-time IoT systems.

D. MATHEMATICAL FORMULATION OF ENBASE
The model described at the beginning of Subsection IV-B,
based on Hypothesis IV-A, is grounded in the principles of
Information Theory to select data with greater information
gain II-C. In particular, it applies Shannon entropy to quantify
the degree of disorder in each image, enabling the detection
of low-entropy samples that are most representative of the
training distribution. The following formulations define the
mathematical base of pseudocode in the Subsection IV-C.
Let the amostral space I represent a matrix of pixel values

from an image, and p(xi) be its probability distribution of
pixel values xi in the image. Then, the Shannon entropy H (I )
is defined as:

H (I ) = −
d∑
i=1

p(xi) log2 p(xi) (2)

Entropy H (I ) quantifies the degree of uncertainty in
new data: the higher the uncertainty, the more associated
information. It is calculated using the log2 and measured in
bits. Thus, p(xi) represents the frequency of occurrence of
the pixel value xi in bits, and a low H (I ) value indicates
a low degree of uncertainty in the image. Therefore, a low
entropy value implies high predictability, which benefits
neural network training when specializing in a specific subset
of data. This approach improves training efficiency and
convergence behavior with fewer input data.

Thus, given a class c ∈ {1, . . . ,K } with a sample set Ic =
{Ic1 , Ic2 , . . . , Icn}, the sorted set of image entropies is defined
as:

Hc =
{
H (Icj )

∣∣ j = 1, . . . , n
}

(3)
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The selected subset Sc from the class c is defined based on
the median Entropy fromH (Icj ) set, and consists of the image
collections whose Entropy is less than or equal toHc:

Sc = {Icj ∈ Ic | H (Icj ) ≤ Hc} (4)

The data selected for training the neural network is
represented by the union of selected subsets for all classes
of Sc.

S =
K⋃
c=1

Sc (5)

EnBaSe selects samples based on Entropy that is lower
than or equal to the median value of Hc for each class c,
thereby constructing a more informative subset Sc. The final
training set S is obtained as S =

⋃K
c=1 Sc, combining all

subsets across the K classes. The higher predictability and
lower noise of the data reduce the vanishing gradient prob-
lem, improving the model’s convergence and generalization
performance with the data. As a result, the selected subset
(S) indirectly reduces computational costs and accelerates the
convergence of the neural network models.

V. EXPERIMENTAL EVALUATION
This section provides a comprehensive analysis of the
methodological approaches adopted during the execution of
this experiment, encompassing the steps taken to ensure the
reproducibility of the experiment by other researchers aiming
to replicate it and to support a thorough and critical evaluation
of the results obtained. Source code is available on GitHub1

for reproducibility.

A. DATASET DESCRIPTION
The MNIST, Fashion MNIST, CIFAR-10, and
CIFAR-100 datasets are commonly adopted for the training
and evaluation of ML and CV. The scope of the experiment
encompassed the same datasets as the iid and non-iid
scenarios. The characteristics of the selected datasets are
detailed as follows:
i. MNIST: Images in a grayscale of handwritten digits

(0-9), divided into training and test sets. Researchers
use these datasets to train models for recognizing and
classifying these digits.

ii. Fashion MNIST: An alternative to MNIST contains
images of fashion articles in categories (0-9), such as
shirts and pants, in grayscale. These datasets are adopted
to evaluate model robustness due to their increased
challenge for accurate classification.

iii. CIFAR-10: This dataset presents colored images in
different classes (0-9), including cars and animals, with
training and test sets utilized for benchmarking in image
recognition.

iv. CIFAR-100: Analogous to CIFAR-10, but with classes
(0-99) providing more granularity, including categories

1https://github.com/ernesto-arq/Entropy-Artificial-Intelligence.git

such as people and various natural elements, this dataset
introduces increased classification complexity due to the
increased number of classes.

The experiments progressed from MNIST, Fashion-
MNIST, and CIFAR-10 to CIFAR-100 to validate the
performance of FL methods in distributed and heterogeneous
CV environments using the EnBase Algorithm at the edge,
given that modern edge devices handle high-dimensional
visual data with significant class variation and complexity.
As an example, the CIFAR-100 dataset provides a realistic
benchmark for a standard dataset, enabling the reproducibil-
ity of our experiments.
In contrast, validating our results by researchers is

challenging without standard datasets, due to the impos-
sibility of reproducibility from the heterogeneous input
data sources. To address this limitation, the datasets were
selected for the experiment based on the state-of-the-art
review in Table 14, which presents the main continuous
and discrete datasets used in the literature, as well as
studies characterized by unimodal input modalities related
to the edge computing and CV challenges addressed in this
experiment. Additionally, this table outlines FL algorithms,
aggregation approaches, application scenarios, metrics used,
advantages, disadvantages, and the most frequently used
datasets in the CV area applied to experiments in FL.
Recognizing that, compared to the real world, the results

have inherent limitations, strategies proposed in the liter-
ature were adopted to simulate more realistic scenarios.
In this context, the heterogeneity and distributional properties
of the data are considered, as presented in Subsection V-C and
following [68], [69].
Therefore, we conclude that, in this methodology, the

experiment strategy relies on commonly used state-of-the-
art datasets (e.g., for FL in edge applications in the CV area),
as well as on the distributions of these datasets identified
in the literature.

B. IID EXPERIMENT CONFIGURATION
To address challenges in image processing and pattern
recognition under iid conditions, this study selected four
benchmark datasets to validate the proposed method in
this experiment. Table 2 lists the MNIST, Fashion-MNIST,
CIFAR-10, and CIFAR-100 datasets used.

TABLE 2. Datasets summary.

We aim to utilize these datasets to address a range of
benchmarks and challenges in CV. For MNIST and Fashion-
MNIST, 20% of the data was designated for validation,
whereas 10%
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C. NON-IID EXPERIMENT CONFIGURATION
1) DATA DISTRIBUTION
For the creation of the non-iid scenario in federated learning,
where the data is not independent and identically distributed,
the non-iid scenario was constructed considering feature
distribution skew, label distribution skew, and quantity
skew [68]. These skew types are representative of the
heterogeneous data characteristics [69].

The non-iid indices for the clients (nodes) are used as a
quantitative metric of the degree of data distribution among
the clients (nodes), focusing on the feature distribution,
label distribution skew, and quantity skew. The key
considerations are as follows:

i. Distortion in Feature Distribution: Feature distortion
refers to the imbalance between different quantities of
labels across various clients concerning a specific client,
which significantly affects performance and training.
This feature distortion results in each client (node)
having different features that may correspond to the
same label, which can contain different information. For
instance, the same character can be written in various
styles, such as stroke width or inclination variations,
resulting in heterogeneous representations of the same
label.

ii. Distortion in Label Distribution: Label distortion
occurs when different clients (nodes) in distinct loca-
tions exhibit varied distributions owing to demographic
differences. These variations result from demographic
and contextual factors that affect the frequency of label
occurrence for each client (node).

iii. Quantity Distortion: Quantity distortion refers to an
imbalance in the number of specific labels within a
client, which affects the amount of data available for
a single client (node). This imbalance hinders training
efficiency and model performance, resulting in an
underrepresentation or overrepresentation of specific
labels, which affects the model’s overall balance.

Initially, nodes were constructed using randomly sampled
datasets, based on available data, where sufficient or available
data from specific classes is not guaranteed. This random
distribution introduces heterogeneity across nodes because
different nodes may receive varying amounts of data or data
types.

The goal is to ensure that any variation between groups
(nodes) results from a random rather than a systematic
factor, thereby reflecting the inherent variability in IoT
environments, permitting variability in client contributions
to reflect the uneven data availability typical of real-world
IoT deployments, enhancing the model’s ability to generalize
across heterogeneous conditions.

2) AGGREGATION ALGORITHM
This study selected aggregation approaches that are
well-established in the FL literature. The objective of this
selection was to validate the hypothesis that entropy serves as

a quantitative metric for assessing data quality in a federated
environment, thereby reducing latency, noise interference,
computational overhead, and energy consumption in such
environments. The experiment implemented the following
global aggregation models:

• FedAvg: Computes a weighted average of model
updates from each client. In this method, weights are
typically proportional to the number of training samples
held by each client, thus adjusting for any imbalances in
the dataset.

• FedProx: FedProx modifies the local loss function by
incorporating a proximal regularization term. This term
penalizes large deviations of local model weights from
the global model. Thus, FedProx aims to mitigate the
effects of data and device heterogeneity, enhancing
training stability and convergence under harmonious
learning.

D. DEEP NEURAL NETWORKS
1) EXPERIMENTS UNDER iid CONDITIONS
The analysis was performed on the MNIST and Fashion-
MNIST datasets without Transfer Learning (TL) or Data
Augmentation (DA) using the Stochastic Gradient Descent
(SGD) optimizer. MNIST had 32 batches, and Fashion-
MNIST had 128 batches, both for ten epochs. In CIFAR-10,
we applied DA and utilized the Adam optimizer with a batch
size of 128 for 50 epochs. For CIFAR-100, we combined
DA and TL with SGD, trained for 50 epochs in batches
of 128, and included a training callback to enhance model
convergence monitoring.

The model configurations are listed in Table 3. To ensure
a consistent comparison across experiments of the proposed
algorithm’s performance, the same architectures were used
with the complete dataset, allowing for an assessment of its
performance and limitations when trained on all the data.

To improve convergence stability and generalization per-
formance of Deep Learning (DL) algorithms in centralized
scenarios with homogeneous data, pixel intensities were
normalized to the [0,1] range by scalingwith a factor of 1/255.

2) EXPERIMENTS UNDER non-iid CONDITIONS
For the MNIST and Fashion-MNIST datasets, Convolutional
Neural Network (CNN) were used without applying TL or
DA, optimized using SGD. For CIFAR-10 and CIFAR-100,
the adapted ResNet-50 model was employed, incorporating
DA and optimized with SGD. All models were trained for
50 epochs with batches of 128 examples.

Distinct normalization statistics were applied to each
dataset under the FL scenario with heterogeneous data
to normalize the MNIST, Fashion-MNIST, CIFAR-10, and
CIFAR-100 datasets. For MNIST, the average and standard
deviation were 0.1307 and 0.3081, respectively. In the
Fashion-MNIST dataset, the average and standard deviation
of the parameters are 0.2860 and 0.3530, respectively.
For CIFAR-10, the average values were 0.4914, 0.4822,
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TABLE 3. Model configurations iid.

and 0.4465, with standard deviations of 0.2023, 0.1994,
and 0.2010, for the Red, Blue, Green (RGB) channels,
respectively. Finally, for CIFAR-100, the averages were
0.5071, 0.4867, and 0.4408, and the standard deviations
were 0.2675, 0.2565, and 0.2761, respectively, for the RGB
channels. The model configurations are presented in Table 4
according to the previously explained criteria.

TABLE 4. Model configurations non-iid.

E. EVALUATION METHODS AND METRICS
This section evaluates the methods used to identify unbiased
and high-quality neural networks. Accordingly, this section

organizes the evaluation process based on the following
metrics:

• Dataset Utilization: This study initially used the
complete dataset to establish a baseline performance,
offering a comprehensive view of the model’s capabil-
ities (experiment: All Data).

• Random Selection Method: A random selection
method was applied to ensure diversity and impartiality
during training. This technique is well-established in
the literature. It is considered an essential step towards
creating an adaptable and unbiased network to prevent
overfitting and ensure accurate responses to new data
challenges (in the experiment named Random).

• Model Comparison: The effectiveness of the trained
models was assessed by comparing their performance
across three distinct scenarios: using all available data,
applying a 50% random selection of data, and employing
our proposed algorithm (EnBaSe), which selects half of
the dataset, utilizing 50% of the data.

Subsequently, the evaluation employed the following
metrics for a comprehensive comparison:

• Accuracy:Accuracy measures the proportion of correct
predictions among the total samples, calculated by
dividing the number of correct predictions by the total
number of samples.

• Recall: Recall evaluates the proportion of correctly
identified true positives, calculated by dividing the
number of accurate positive samples by the total number
of positive samples plus false negatives.

• F1-Score: The F1-Score is the harmonic value of
precision and recall, indicating a balance between them.
Higher values indicate a better model performance.
In this specific case, it will be used as an additional met-
ric in the context of FL owing to the high heterogeneity
of the data.

• Loss: The loss function measures the error between
predictions, with specific functions tailored to each
problem (e.g., cross-entropy for classification). The aim
is to minimize such losses to improve the model.

• Learning Curve: Represents model performance over
time, comparing training and validation to identify over-
and under-fitting and verifying model convergence.

VI. EVALUATIONS AND RESULTS
A. DATA ANALYSIS
To verify our hypothesis about the role of entropy in the
selection of information quality, we analyzed its behavior
pattern.We examined how it was influenced by normalization
and DA operations. Subsequently, we evaluated the impact
of data normalization (scaling to a range of 0 to 255 to match
the pixel sizes) on sample selection by comparing the entropy
before and after normalization.
The results demonstrated that the entropy remained stable,

with an average precision agreement of up to 14 decimal
places. These results indicate that, regardless of absolute
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value transformations, the probabilistic importance of the
data – and, therefore, its entropy – remains invariant.

Consistent with theoretical expectations based on Infor-
mation Theory, it is noteworthy that entropy, by definition,
measures uncertainty and disorder. This invariance is an
expected outcome, as relative probabilities, not absolute
values, define entropy. Table 5 presents the datasets before
and after normalization.

TABLE 5. Entropy comparison (MNIST).

Following a similar approach, the experiments applied
linear geometric transformations through DA techniques,
throughout which the entropy value showed no measurable
change. These results confirm that entropy is determined by
the intensity levels of the pixels, regardless of their spatial
position. The geometric transformations applied in DA, such
as rotations and translations, preserve the data structure and
modify only the position of the pixels while keeping their
intensity values invariant.

These findings suggest that entropy remains unaffected
by geometric transformations, thus ensuring its relevance in
areas where preserving specific informational properties is
crucial.

B. ENTROPY DISTRIBUTION AND SAMPLE SELECTION IN
DATASETS
This study also investigated the entropy distribution of
the histograms by calculating the entropy value of each
image to analyze the entropy distribution in the dataset,
as shown in Figure 6; this analysis considers both iid and
non-iid scenarios. Furthermore, the study also investigated
the heterogeneous and imbalanced data distribution across
various clients using statistical tests, such as the Shapiro-
Wilk, Kolmogorov-Smirnov, D’Agostino, and Pearson tests,
to analyze entropy characteristics.

During the implementation and evaluation of the EnBaSe
algorithm, the analysis demonstrated that the entropy values,
once computed and represented as histograms, are closely
approximated by a Gaussian-like distribution. The same
analysis consistently identified this statistical pattern in

FIGURE 6. Distribution of classes and data distribution after entropy
calculation for MNIST.

the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100
datasets.

Table 6 presents the results obtained from the mean results
in five independent trials for distribution analysis, where we
emulated a distributed learning environment with 400 nodes
receiving partitioned data in a distributed manner. In addition,
we developed a consensus algorithm, as detailed in the table.
This algorithm employs a voting mechanism to classify the
distribution as usual, provided that at least two-thirds of the
remaining statistical tests confirm these characteristics.

TABLE 6. Statistical test results for different dataset scenarios.

i. MNIST (iid & non-iid): The class distribution in
MNIST is homogeneous and balanced in the iid envi-
ronment. In contrast, in non-iid settings, after entropy
selection, it is observed that data from a large part of the
clients exhibit a near-normal distribution. Entropy plays
a significant role in bringing the distribution closer to a
Gaussian curve.

ii. Fashion-MNIST (iid and non-iid): In Fashion-MNIST,
after selection, the Gaussian distribution presents itself
less uniformly. In a considerable number of clients, the
data follow a normal distribution.

iii. CIFAR-10 (iid&non-iid): In the CIFAR-10 set, a small
proportion of the clients displayed normally distributed
data after selection, indicating a less robust statistical
distribution.

iv. CIFAR-100 (iid&non-iid): For CIFAR-100, aminimal
number of clients (nodes) exhibited data distributions
that approximated a normal distribution. This set was
the most challenging in terms of approaching a Gaussian
distribution.

The image datasets in the state-of-the-art literature cover a
range of difficulty and semantic complexity, presenting both
straightforward and more challenging labels for training AI
models. From information theory, we know that data can
possess high or low entropy and, consequently, we observe a
distribution pattern that approaches a Gaussian distribution.
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Therefore, these findings support the hypothesis that, for
images, there is a dataset of complex images with high
variability and low predictability. Similarly, some data exhibit
low variability and high predictability, which is indicative of
low entropy. As such, the EnBaSe model was constructed
using an empirical and experimental approach based on
information theory and state-of-the-art studies on entropy,
focusing on low entropy and data with entropy values near
the median of the observed distribution.

Finally, the same observation supports the selection of
a more robust metric, such as the median. Although these
results approximate a normal distribution, it cannot be
concluded that all datasets strictly adhere to the same pattern.
The asymmetric distributions identified in this experiment
suggest that the mean may exhibit skewness, with the mean
shifting toward the distribution tails, potentially leading to
underestimation or overestimation.

C. ENTROPY COMPUTATIONAL COST
We conducted a total of 120 experiments under the iid
condition experiments (10 simulations for All Data, 10 for
EnBaSe, and 10 for Random). In the non-iid scenario,
we performed 240 experiments: 10 simulations each for
the complete set, EnBaSe, and Random in FedAvg, and an
additional set of 10 simulations per configuration for the full
set, EnBaSe, and Random in FedProx.

The entropy calculation times for the execution of the
image-selection EnBaSe process are listed in Table 7, along
with the average times for iid and non-iid environments, rep-
resenting the computational time required to evaluate entropy
throughout the entire dataset and to select representative
samples.

TABLE 7. Average time for entropy computation.

Additionally, Google Colaboratory (GC) was employed
for simulations in a Cloud Computing (CC) environment.
The T4 architecture was used, featuring high-speed memory,
12 Gigabytes (GB) of Random Access Memory (RAM),
15 GB Graphics Processing Units (GPU), and a 201.2
GB disk. The models were trained in the iid scenario
in a centralized environment using Scikit-learn, reflecting
the sequential nature of the operations without advanced

parallelization. In contrast, TensorFlow was used for the
non-iid scenario.

D. EVALUATION IN THE IID SCENARIO
This section discusses the experimental results obtained
under the iid scenario. The iid scenario enables the evaluation
of the hypothesis that entropy influences the training process
as a measure of data quality. The results include analyses
of the MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100
datasets across various configurations, focusing on the data
distribution, accuracy, recall, and error rate.

The table 8 presents the datasets used in the experiment
for the iid scenario within a centralized architecture. These
datasets, widely recognized in the literature, are fundamental
for advancingML as they enable the evaluation of deep neural
network performance under diverse challenges and varying
levels of complexity.

The MNIST dataset serves as an essential starting
point for model development due to its simplicity and
widespread adoption in introductory studies. Conversely, the
Fashion-MNIST dataset increases the complexity compared
to MNIST, encompassing more diverse and challenging
visual data. In contrast, the CIFAR-10 and CIFAR-100
datasets represent significant challenges as they involve
image classification in more varied and complex scenarios,
necessitating models with greater generalization capabilities.

TABLE 8. Datasets in centralized architecture.

A total of 120 experiments were distributed equally among
the All Data, Random, and Entropy categories, as shown in
Figure 7. In the MNIST dataset experiments, the focus was
on using entropy to guide data selection for this research.
The experimental setup involved 30 experiments: 10 using the
entire dataset, 10 with random selection, and 10 employing
the proposed EnBaSe algorithm.

FIGURE 7. EnBaSe MNIST training.

Figure 7 shows that the training and validation curves of
EnBaSe are close, and when the validation curve surpasses
the training curve, it indicates better generalization. A higher
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validation curve indicates potential benefits in regularization,
thereby improving its generalization to new data.

The increase in the loss curve and reduction in the learning
curve suggests that the model exhibits signs of overfitting the
training data, indicating the need to adjust the learning rate to
prevent deeper layers from learning less helpful patterns.

In the study involving the Fashion-MNIST dataset shown
in Figure 8, we applied EnBaSe and presented a learning
curve. We found a consistently higher validation curve than
the training curve for the Fashion-MNIST dataset. Therefore,
this suggests that the model effectively generalizes to unseen
data, highlighting potential areas for improvement during the
training process.

FIGURE 8. EnBaSe Fashion-MNIST training.

Finally, we observed a positive and steady evolution in
the learning curve, accompanied by a continuous decrease
in loss for both the training and testing data. Consequently,
this indicates that with each epoch, the model enhances its
capacity to minimize the loss function and demonstrates
increasing accuracy.

In Figure 9, the overlay of the training and valida-
tion curves, with minimal variance at intersection points,
generally indicates positive performance. As a result, the
model consistently performed well on both the training and
validation datasets. Their proximity suggests that themodel is
generalized efficiently, effectively transferring the knowledge
acquired during training to the validation data.

FIGURE 9. EnBaSe CIFAR-10 training.

This scenario indicates a balance between bias and
variance. A low bias reveals that the model can understand
the complexity inherent in the data. Simultaneously, a low
variance suggests that the model does not overfit the training
data, allowing for good performance on the new data.

The learning curve, with a constant and high learning rate,
and the loss curve, with reduced values, suggest that the
model may have approached its maximum potential within
the constraints of its architecture and training settings.

As illustrated in Figure 10, the validation curve initially
starts above the training curve, likely because of the
composition of the training and validation sets, which
enhances the learning effectiveness of the model. As the
training progressed, the curves converged, indicating the
model’s ability to optimize its learning while maintaining
generalization capability.

FIGURE 10. EnBaSe CIFAR-100 training.

The decline in the training and validation losses over
time confirms that the model learns effectively and avoids
overfitting. For CIFAR-100, a well-known benchmark in
image recognition, the EnBaSe algorithm demonstrated
strong performance in handling the dataset’s complexity
while preserving the model’s generalization capability. For
this reason, this highlights the effectiveness of EnBaSe in
achieving efficient learning without introducing a bias that
compromises the model’s performance.

Table 9 presents the EnBaSe algorithm, which aims
to enhance data quality by prioritizing consistency and
precision, retaining only high-quality data, and minimizing
computational cost. This algorithm was compared with a
random selection method, which tends to minimize selection
bias and make the model more robust and less dependent on
specific features.

In doing so, observing the general scenario of complete
datasets and entropy behavior about a robust technique is
possible. For a fair comparison, half of the set was used as
a random dataset.

By doing so, it is possible to observe the general scenario
of complete datasets and entropy behavior regarding a robust
technique. For a fair comparison, half of the set was used as
a random dataset.

Furthermore, it presents the average results of the experi-
ments with All Data, EnBaSe, and Random, which resulted
in a minimal reduction in the accuracy for MNIST. For
Fashion-MNIST, we observed the same pattern of accuracy.
In CIFAR-10, the same accuracy pattern was observed.

Finally, for CIFAR-100, a benchmark in the CV field with
100 classes, a minimal and acceptable loss in processing cost
savings was observed. Additionally, a reduction in overall
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TABLE 9. Average results of the iid experiment.

computational cost was evident for MNIST, Fashion-MNIST,
and CIFAR-10 without a significant compromise in accuracy.

As shown in Table 9, the EnBaSe algorithm demonstrated
robust and consistent results when selecting half of the
datasets, preserving the accuracy with minimal possible loss
of quality. Comparing the results obtained with the accuracy
reported in other state-of-the-art studies, it is evident that the
algorithm is robust, highly scalable, lightweight, and can be
seamlessly integrated into embedded systems.

Furthermore, the algorithm exhibits high adaptability and
can address various challenges in the field of CV using
different architectures. Its efficiency is also evidenced by
the reduction in computational costs and the acceleration
of the convergence time of the AI model, enabling faster
responses to events and dynamic environments, where time
and computational cost are critical factors. For example,
onboard health systems in the AI model can take a significant
amount of time to acclimate to a patient’s patterns.

Thus, we conclude that in the scenariowith centralized data
and iid, the EnBaSe algorithm is a computationally efficient
solution that optimizes the selection of samples from the
dataset with application in the field of CV. Its integration into
embedded systems allows it to be applied dynamically as an
AI tool in different centralized learning systems.

Table 10 presents a comparison with available data
from other studies that utilized similar neural network
architectures, including the training and validation sets
provided by the authors in recent studies, which represent the
state-of-the-art.

The experiments in this section demonstrate that the
EnBaSe method may slightly underperform compared to
training with the entire dataset, resulting in a minor reduction
in accuracy. This difference becomes more pronounced in
complex benchmarks, such as CIFAR-100 (Table 9).

Furthermore, the experiments demonstrate that, although
computationally efficient, reducing the cost and convergence
time by 50%–the EnBaSe method exhibits an average
accuracy loss of 3%. On CIFAR-100, this reduction is even
more significant, achieving an accuracy of 67.68%, compared
to 72.32% for the ‘‘All Data’’ method during validation.

TABLE 10. Performance comparison (iid) with different works.

The experiments on CIFAR-100, with only 500 images
per class, challenged the EnBaSe method, which selects
250 high-quality images per class. Despite this sampling
strategy, the limitation in sample size contributes to subop-
timal results in this more complex scenario.

Finally, in Table 10, in the scenario with centralized and
distributed data in a iid manner, EnBaSe performance aligns
with findings from related studies available in the literature.
The model achieves the highest accuracy on the MNIST
dataset, with 99.28% in training and 98.64% in validation.

In the case of Fashion-MNIST, EnBaSe achieves an accu-
racy of 92.41%, compared to one of the best models, which
reaches 98.91%. EnBaSe obtains 91.01% for validation,
while the best model reaches 93.11%.

For CIFAR-10, EnBaSe achieved an accuracy of 89.22%,
compared to the top-performing model, which achieved an
accuracy of 98.91%. EnBaSe achieved 82.05% in validation,
compared to 97.71% for the best model.

In the case of CIFAR-100, EnBaSe presented an accuracy
of 77.38%, surpassing the second-bestmodel, which achieved
68.60%. In this scenario, it is observed that most authors did
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not provide validation samples, which limits more detailed
comparisons.

E. EVALUATION IN A NON-IID SCENARIO
Table 11 presents the datasets considered for evaluation
for the FL architecture. The selected datasets have varying
levels of complexity and encompass a broad range of
computational challenges in the field of ML. For instance,
the MNIST dataset serves as a baseline for state-of-the-
art experiments. In contrast, Fashion-MNIST offers greater
complexity and represents a more complex classification task
than MNIST. Finally, the CIFAR-10 and CIFAR-100 datasets
present high-complexity classification problems for the
state-of-the-art models.

In the MNIST, Fashion-MNIST, CIFAR-10, and
CIFAR-100 datasets, the distribution skew discussed in
Section V-C was applied. In this scenario, each node (e.g.,
device) involved in the training process within the FL
architecture receives data allocations randomly.

This randomized allocation yields a non-uniform distri-
bution, implying that class representation across nodes is
unbalanced and not guaranteed to be equally represented
or assigned to each node. This approach is intended to
ensure that the differences observed between nodes arise
from intrinsic randomness rather than systematic bias. This
approach aims to replicate real-world data heterogeneity in
IoT scenarios, allowing each node to contribute unevenly and
thereby simulate realistic conditions.

TABLE 11. Datasets in FL architecture.

A total of 240 experiments were conducted to identify
the model’s behavior in a non-iid environment, focusing on
optimizing data quality and reducing computational costs.

Figures 11 (a) and 11 (b) show the results of FL applied
to the MNIST dataset, using the FedAvg and FedProx
algorithms, respectively. Similarly, Figures 12 (a) and 12 (b)
show the same algorithms applied to the Fashion-MNIST
dataset. In addition, the results for the CIFAR-10 set are
illustrated in Figures 13 (a) and 13 (b), while those for
CIFAR-100 are represented in Figures 14 (a) and (b).
Table 12 presents the results obtained from 240 exper-

iments, providing the average precision, recall, F1-score,
accuracy, loss, and training time. These results provide
insight into how entropy influences data quality and reduces
computational and energy costs.

Half of the dataset was randomly selected using the
Random method to ensure a fair comparison and follow the
same methodology. As a result, this allowed for comparing
training with a complete dataset and training using an
entropy-based selection. All models in the table followed

FIGURE 11. MNIST: EnBaSe (FedAvg & FedProx).

FIGURE 12. Fashion-MNIST’s: EnBaSe (FedAvg & FedProx).

the same training pattern using 50 epochs with ten available
nodes participating.

Consequently, it is possible to underscore the efficacy of
the quality-based selection strategy using EnBaSe, which
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TABLE 12. Average experiment results with FedAvg and FedProx.

FIGURE 13. CIFAR-10: EnBaSe (FedAvg & FedProx).

demonstrates a significant reduction in training time com-
pared to the model using the entire dataset. This observation

FIGURE 14. CIFAR-100: EnBaSe (FedAvg & FedProx).

was corroborated through the analysis of the training times of
all the EnBaSe and Random datasets.
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Additionally, a marginal decrease was observed in the
overall accuracy of the EnBaSe model compared to the
model trained on the entire dataset. Finally, in the global
aggregation method, FedProx EnBaSe proved particularly
effective over time, significantly reducing computation time
while preserving accuracy within acceptable bounds.

The results presented in Table 12 compare EnBaSe and All
Data using the same neural network architecture and hyperpa-
rameters. Although EnBaSe reduces the computational cost
by approximately 50%, and the performance metrics are
similar in magnitude, a slight degradation in precision and
accuracy was observed across nearly all models.

This slight performance drop is evident in most datasets,
where EnBaSe exhibits minor reductions in metrics such as
accuracy, precision, recall, and F1-score compared to the
entire dataset (e.g., All Data) as detailed in Table 12.
Moreover, Table 12 also indicates that, in some cases, the

loss values are slightly higher than those observed with All
Data, suggesting that EnBaSe has not yet achieved complete
convergence. This observation highlights the need for further
optimization of hyperparameters and the neural network
architecture to enhance performance.

F. BENCHMARK: MULTIPLE CLIENTS AND HIGH LOAD
This section re-evaluates the experiment conducted under the
non-iid scenario using the same criteria for the evaluation
metrics specified in Section V-C. The neural networks
used were the same as those introduced in Section V-D.
The detailed experimental configurations are provided in
Section V-B. To give more insight into the core hypothesis
presented in the initial hypothesis of this work regarding
the quality of local data at the edge EnBaSe, a benchmark
experiment was conducted using FedProx, a model developed
to address challenges in more realistic scenarios, particularly
those with skewed and challenging distributions.

This test will be re-evaluated to gain a better understanding
of how an edge-embedded algorithm, improving quality,
interacts with a more sophisticated global aggregation tech-
nique. In other words, this study addresses both components
of the FL process: the edge and the global neural network.

The same settingsweremaintained for the neural network’s
architecture and parameters to test the model’s efficacy under
challenging conditions. We utilized the following hardware:
83 GB of RAM, 40 GB GPU, and 201 GB storage. The
number of clients and epochs was increased to 50 and 100,
respectively. The analysis evaluated the algorithm’s capacity
using a large workload and data diversity.

This adjustment aims to replicate an advanced compu-
tational system for rigorous model analysis under high
demand. In doing so, it is observed that with many clients
(devices with datasets), the EnBaSe algorithm achieves
smooth convergence.

The results presented in Figures 15 and 16 for the
CIFAR-10 and CIFAR-100 benchmarks, respectively, show
the performance of the FedProx model using EnBaSe over
100 epochs with 50 clients (nodes). For CIFAR-10, the model

FIGURE 15. Global model and clients (nodes) convergence for 100 epochs
and 50 clients at CIFAR-10 for the FedProx algorithm.

FIGURE 16. Global model and clients (nodes) convergence for 100 epochs
and 50 clients at CIFAR-100 for the FedProx algorithm.

achieved a precision of 82.20%, recall of 81.51%, F1-Score of
81.32%, and accuracy of 84.46%, with a loss value of 0.515,
and a training time of 47,011.90 seconds. For CIFAR-100, the
precision was 71.71%, recall 70.83%, F1-Score 70.69%, and
accuracy 72.84%, with a loss value of 1.216 and a training
time of 46,983.84 seconds.

Furthermore, the model reached the maximum neural
network architecture maximum accuracy level much earlier
than the total number of training epochs. The EnBaSe model
resulted in a considerable reduction in processing time,
approximately halving the computational cost. Therefore,
this indicates that energy consumption and computational
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expenses would likely increase if the experiment were
conducted again without the proposed EnBaSe algorithm.

Table 13 presents the benchmark test results of EnBaSe,
along with a comparison to other recent studies that use
state-of-the-art methods to evaluate the effects of the EnBaSe
algorithm on accuracy. The most representative results were
compiled from the experiments reported in this article.

TABLE 13. Performance of models on CIFAR-10 and CIFAR-100 datasets
in the non-iid scenario.

This study compares the results of the proposed algorithm,
obtained in Section VI-E (Table 12), where FL was
applied, with the benchmark results presented in this section
(Table 13).

This comparison considered the increase in the number of
connected devices from 10 to 50, as well as the increase in
the number of training epochs from 50 to 100, representing a
higher workload and an additional challenge for the algorithm
(EnBaSe). The analysis focuses on the two most challenging
datasets, CIFAR-10 and CIFAR-100, which offer a reliable
basis for comparative evaluation.

It was observed that, in the case of CIFAR-10 and
CIFAR-100, the precision values for FedProx EnBaSe
improved from 40.42% and 53.54% to 84.46% and 72.84%,
respectively. These results indicate that the algorithm exhibits
improved performance as more devices are connected under
increasingly complex non-iid conditions.

Finally, Table 13 presents a comparative analysis of
the results obtained in comparison to the state-of-the-art.
The most challenging datasets and the results obtained by
different methods were considered. In the context of the
CIFAR-10 dataset, in a non-iid scenario, the EnBaSe model
achieved an accuracy of 84.46%, a performance comparable
to that of FedPer++ (85.09%) and superior to that of
FedCOME (75.88%).

In the case of the CIFAR-100 dataset, EnBaSe presented
an accuracy of 72.84%, which yields a higher accuracy
than comparable methods, such as FedCOME (37.66%) and
Fed-IT (39.29%). These findings indicate the effectiveness of
EnBaSe in optimizing data selection, reducing computational
costs while maintaining comparable levels of accuracy of the
models.

VII. DISCUSSION
The hypothesis of this study posits that entropy can be used
to measure data quality, considering that it quantifies the
uncertainty or unpredictability in each node. High entropy
values are associated with data that is highly unpredictable
or varies within a node. As a result, each dataset in a node
provides significantly different information, reducing the
predictability of samples within the node based on previous
information.

Accordingly, the hypothesis was empirically evaluated
using the low entropy in each node, which was measured as
a separation criterion to avoid asymmetry. For clarification
purposes, this study analyzes hypotheses regarding data
quality in nodes and the reduction of computational costs in
the field of CV in collaboration with a laboratory involved in
a project under contractual confidentiality, targeting real-time
monitoring systems devices that complement data related
to biosignals, involving resource-constrained embedded sys-
tems. In this context, the study, related to the field of CV,
conducted initial experiments using a CNN due to its lower
computational complexity and cost efficiency.

A systematic literature search was conducted using key-
words in conjunction with the names of the MNIST, Fashion-
MNIST, CIFAR-10, and CIFAR-100 datasets, including
time benchmark, training benchmark, training time compar-
ison, training time performance, optimization training time,
throughput training time, throughput training performance,
and including multiple logical combinations of these terms.
Despite this effort, the literature lacks comprehensive anal-
yses of simulations that vary the implemented hardware,
training times, or the number of epochs. Therefore, we com-
pared the latest metrics from the most recent state-of-the-art
models with those in this study.

One of the complex challenges identified in the literature
during the development of this study was the need for
more standardization of the experiments presented. Many
studies report incomplete experimental details, often omitting
essential metrics such as validation, F1-score, recall, loss
values, or the model’s training time. Finally, a limitation
of the present study was the funding for the experiments,
which necessitated reducing the number of epochs to 50 and
the number of nodes to 10 due to the extensive volume of
experiments conducted, as stated in Subsection VI-E.

Recent state-of-the-art approaches in FL architecture and
centralized architectures predominantly focus on enhancing
data homogeneity and addressing the heterogeneity and
challenges associated with non-iid distributions.

However, such approaches often do not adequately address
the limitations imposed regarding the computational capacity
of devices and the resources required for neural networks to
achieve a high generalization capability.

This issue is critical for fostering more significant equity
in the integrability and applicability of systems designed for
architectures with low computational and energy capacities,
which is the primary focus of this study.
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Thus, the EnBaSe algorithm demonstrates efficiency in
optimizing the computational resources allocated to the
neural network, such as the bandwidth used for global
model updates in FL or data transfer in a centralized
architecture, yielding a reduction of approximately 50% in
communication.

This optimization also reduces the time required for
training the neural network and, correspondingly, decreases
the energy consumption, as models utilizing the EnBaSe
algorithm complete training approximately 50% more
rapidly.

To clarify the relationship between energy and execution
time, energy is directly related to the Consumption of Power
from devices and Execution time based on the following
formula:

E = P(Whatts)× Execution_time(s)

where E represents the energy consumed, P is the device’s
power inWatts, andExecution_time in seconds is the duration
of use. Thus, a decrease in execution time directly impacts
battery savings for IoT devices in the same percentage ratio
as the reduction in execution time. This is an essential benefit
of the EnBaSe algorithm strategy.

Moreover, this advancement is particularly relevant for
systems with energy and computational constraints, such
as resource-constrained smart devices, including drones or
AI-powered medical equipment with low processing capa-
bilities. The proposed approach applies to diverse real-world
computational systems.

As a result, the neural network applied to the dataset,
referred to as ‘‘All Data,’’ encompasses the entirety of
the available data, whereas EnBaSe acts as a structured
data selection framework that effectively represents the
representative abstraction of the information landscape.

Finally, the analyses conducted in this study demonstrated
the feasibility of using Shannon’s entropy formula as a
method for estimating frequency and quantifying visual
complexity, identifying complex and direct samples by
recognizing the stochastic variance of the pixel distribution,
thus selecting the sample with the best data quality and, at the
same time, reducing computational and energy processing
costs.

VIII. CONCLUSION
This study underscores the importance of assessing the
quality of input data. In this context, entropy experiments
demonstrated that it retains probabilistic relevance even after
linear transformations. Moreover, because entropy preserves
consistent probabilistic values for the data and remains
unaffected by linear geometric transformations, entropy can
be effectively utilized for data selection before applying DA
techniques and normalization, thereby optimizing resource
utilization. This approach is particularly applicable to ML
methods, which are crucial in the context of the IoT, where
the processing capacity of devices is often limited.

The primary method used in this study was the imple-
mentation of the EnBaSe algorithm, which selects data
based on its entropy to improve data quality in both iid
and non-iid scenarios. The algorithm is designed to reduce
computational costs while maintaining performance within
operational thresholds. It plays a critical role in FL for
IoT devices, where computational resources are limited, and
non-iid mitigation is essential.

Additionally, the consistency of the results demonstrates
that this approach has significant applications in real-world
systems, where controlling data volume, data quality, and
computational resources is critical. Examples include CV,
image processing, traffic monitoring, automated inspection,
digital health, diagnostics, and more.

The main contributions of this research are as follows:

• A detailed study on the behavior of entropy in images
and its distribution in CV;

• Analysis of the impact of linear transformations and
normalization on data entropy;

• Reducing the computational cost of IoT edge devices;
• The presentation of detailed metrics such as accuracy,
F1-score, recall, loss values, and model training time;

• Structuring performance metrics for reproducibility and
benchmarking for future experiments;

• The comparison of accuracy in iid and non-iid scenarios
with other experiments;

• A comprehensive literature review on data quality and
FL; and

• The development of the EnBaSe algorithm, which
efficiently selects high-quality data based on entropy
analysis. This method reduces unnecessary computa-
tional processing, optimizes model convergence, and
improves data selection for FL and centralized learning
scenarios, particularly in resource-constrained environ-
ments such as IoT.

Currently, global aggregation models for FL are being
developed to comprehensively address the challenges inher-
ent in weight aggregation, including data distribution,
customer selection, heterogeneity, and temporal and spa-
tial dependencies, especially in scenarios characterized by
non-iid samples. However, these experiments demonstrate
the feasibility of using algorithms in edge devices to
autonomously address data distribution challenges, offering
a simpler alternative to existing methods.
Finally, one of the most important contributions of this

study is an embedded algorithm that adaptively operates on
edge IoT devices based on their distribution and is compatible
with various aggregation models in FL.
In conclusion, the algorithm selects subsets of each

class with lower entropy, aiming to enhance the system’s
predictive capacity, as discussed in Subsection II-C and
Section IV. Thus, the inherent heterogeneity of each device
is reduced according to its dataset, handling data asymmetry
(e.g., extreme data, outliers) according to the distribution
of each class, as specified in Algorithm IV-C. In this
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process, the resulting sample distribution approximates a
Gaussian, and the equivalent part with lower entropy is
selected, as demonstrated in Subsection VI-B. Additionally,
subsequent investigations will be carried out to analyze the
statistical properties of extreme-value data when analyzed
using various analytical techniques.

This section presents the main conclusions of this study.
At the same time, Section IX explores the future directions for
developing this research, discussing the key areas that warrant
further investigation.

IX. FUTURE WORKS AND DIRECTIONS
Subsequent research efforts will focus on extending the
algorithm EnBaSe to additional FL use cases and data
modalities, as well as integrating it with other optimization
techniques. In summary, future research should expand the
algorithm’s applicability to different data types and FL
scenarios.

Furthermore, future research will address the convergence
of global models aimed to preventing excessive training
and minimizing the associated computing costs and energy
consumption.

In future work, we intend to expand the experiments
to create more significant variability in non-iid and iid
scenarios, for example, by utilizing the Dirichlet distri-
bution. Additionally, we aim to increase comparisons by
employing other methods, such as FedDyn, FedDF, Scaffold,
and FedLAW. Thus, evaluating EnBaSe using aggregation
methods that adopt different strategies allows us to identify
the contexts in which performance remains more robust and
where potential improvements are possible. This provides
a deeper understanding of its behavior in diverse scenarios
and solidifies its strengths and limitations for future advance-
ments. Additionally, we will assess the individual impact of
EnBaSe on the energy consumption of IoT devices.

This simulated experiment indicated a strong trend towards
the feasibility of adoption in the current AI algorithms.
Since the experiments with EnBaSe demonstrated its initial
feasibility, future work will conduct experiments under
real-world operational conditions. Furthermore, we will
conduct FL experiments on real-world IoT devices to capture
fine-grained adjustments in our algorithm.

Finally, for future work, we intend to revisit the
state-of-the-art and explore other application domains of
artificial intelligence for FL algorithms. Additionally, we aim
to explore new metrics that complement or extend existing
ones used in the state-of-the-art.

APPENDIX A
STATE-OF-THE-ART APPROACHES AND METHODS
This section provides a summary of the state of the art, based
on a systematic review of the literature. The table outlines
the main approaches adopted and the scenarios in which the
models have been applied, as well as the scenarios addressed
in the respective studies by the authors.

Additionally, the main datasets and evaluation metrics
were emphasized, as well as the metrics adopted, and the
advantages and disadvantages pointed out by the authors
in their respective works were systematically identified.
In cases where this information was not explicitly mentioned,
potential impacts were inferred based on available data when
explicit mentions were absent, using the available evidence.

Aswe can see from the state-of-the-art analysis in Table 14,
common approaches that employ customer aggregation,
selection, sampling, or measurement techniques for customer
contribution are commonly used. This strategy represents a
predominant approach to addressing device heterogeneity.
Many of these methods are adaptive, seeking to extract
characteristics to train neural networks and address the
challenges inherent to heterogeneous data distributions.

In contrast, a second approach, which has gained increas-
ing attention in recent studies, is based on Information
Theory. This research direction focuses on quantifying
information gain and system homogeneity based on entropy,
as discussed by [18], [25], [35], [39], [47], [59], and [60].

The main application scenarios in the literature predom-
inantly involve the IoT or FL context, i.e., environments
characterized by multiple connected devices and distributed
data. While some authors focus their studies on scalability
issues in multi-client systems, communication efficiency,
or addressing known limitations in existing approaches,
others concentrate on specific application areas, such as
medical or noisy data.

The primary datasets used are those widely known in
the literature, such as MNIST, Fashion-MNIST, CIFAR-10,
and CIFAR-100. These datasets represent different levels
of difficulty and complexity in problems related to deep
neural networks, with CIFAR-100 being widely regarded as
a high-complexity benchmark in the field.

However, alternative datasets are also employed for
domain-specific analyses, targeted at specific applications,
or designed for particular challenges. For example, in [47],
a dataset of crop pest images was utilized, whereas in [35],
protein-related datasets were analyzed.

The primary metrics adopted often include accuracy,
communication cost, efficiency, precision, recall, F1-Score,
and Mean Absolute Error (MAE). In addition, some authors
use metrics such as communication overhead per training
round, TPR (True Positive Rate), TNR (True Negative Rate),
entropy index, and Standard Deviation.

The primary focus and advantages discussed in the
papers relate to developing more adaptive systems capable
of addressing convergence stability, model scalability, and
efficiency, as well as the difficulties associated with training
neural networks in non-iid scenarios. These aspects are
frequently identified as core challenges faced by FL in the
literature.

Despite these advances, several approaches continue to
face limitations in achieving in achieving global model
convergence. These difficulties include loss of accuracy at the
end of training, instability at criticalmoments of convergence,
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TABLE 14. State-of-the-art approaches, metrics, and scenarios.

and disadvantages associated with adding complexity to
architectures. Furthermore, this generally results in higher
computational costs and problems related to increased
modeling complexity.

A. DISCUSSION
The analysis indicates that some articles address class
balancing or heterogeneity, while relatively few studies
address fairness and bias mitigation in FL or bias mitigation.
In addition, most studies concentrate on communication effi-
ciency and data heterogeneity, addressing FL by discussing
the importance of privacy and the relevance of IoT devices.

Although some authors have explored strategies to reduce
communication costs and improve convergence, energy
efficiency, and computational performance gains, as well as
the generalization of neural networks, a lack of standardized
evaluation metrics is evident in current FL literature experi-
ments. Standardized metrics that consider the distribution of
results and computational efficiency are particularly relevant
in scenarios with IoT applications, where energy efficiency is
as crucial as accuracy, particularly for resource-constrained
edge devices.

Most studies mention FL training in IoT systems (e.g.,
smart cities, medical applications, industrial applications,
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etc.). However, these topics remain underexplored, par-
ticularly in scenarios where prediction needs to occur in
real-time, such as continuous data flows. In addition to
the adaptive models often used, it would be interesting to
consider approaches based on online learning in the context
of FL. These systems would need to adapt dynamically
and make inferences with low latency, a requirement that is
critical in innovative city environments.

Another recurring observation in the literature is that most
domains of interest focus on image classification and analysis
problems. However, other essential domains, such as natural
language processing, audio and video systems, and biosignal
analysis, require further investigation.

In summary, the findings reveal that many aspects analyzed
in the current state of the art address core concerns, such
as privacy preservation and data security, as well as the use
of advanced technologies for data analysis. These studies
contribute to a comprehensive understanding of the current
limitations in the literature, enabling the identification of
open challenges and future research directions that remain
unaddressed.
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