
Department of Information Science and Technology

Achieving Successful DevOps Adoption in IT Organizations

Ricardo Manuel Duarte Amaro

PhD in Information Science and Technology

Supervisors:
Doctor Rúben Filipe de Sousa Pereira, Assistant Professor,
ISCTE - Instituto Universitário de Lisboa

Doctor Miguel Leitão Bignolas Mira da Silva, Full Professor,
IST - Instituto Superior Técnico

September, 2024

ii

Department of Information Science and Technology

Achieving Successful DevOps Adoption in IT Organizations

Ricardo Manuel Duarte Amaro

PhD in Information Science and Technology

Jury:
Doctor Fernando Brito e Abreu, Associate Professor (President),
ISCTE - Instituto Universitário de Lisboa
Doctor Jessica Díaz, Associate Professor,
Universidad Politécnica de Madrid
Doctor António Rito Silva, Associate Professor,
Instituto Superior Técnico
Doctor Vitor Basto-Fernandes, Associate Professor w/ Aggreg.,
ISCTE - Instituto Universitário de Lisboa
Doctor Rúben Filipe de Sousa Pereira, Assistant Professor,
ISCTE - Instituto Universitário de Lisboa

September, 2024

iv

To my loving family, Dália, Vicente, and Maria Rita.
Without your unconditional support, I would never have completed this thesis successfully.

ii

Acknowledgment

Where to begin? Every journey starts with a small step. And, as some predicted, this
journey has been like walking through the desert. However, as with any desert, you can
cross it if you have strong motivation and enough resources. Both things I owe to my family,
colleagues, friends, teachers, and anonymous individuals who helped me succeed. Looking
back, I believe it eventually allowed me to bring something special to share with you all through
this acknowledgment.

To commence, I am grateful to my professors Rúben Pereira and Miguel Mira da Silva for
challenging me and providing guidance throughout my doctoral studies. Their knowledge and
invaluable support enabled me to successfully complete my doctorate.

I would want to offer my heartfelt gratitude to my wife Dália for all of her love, commitment,
patience, and assistance in making this work a success, as well as for being by my side during
the most difficult times in my life. Also, thank you to my son Vicente and daughter Maria Rita
for all of the joy, support, and kindness you bring into my life, inspiring me every day to make
the world a better place.

Thank you to my family, including father João, mother Maria, brother Bruno, father and
mother-in-law, brother and sister-in-law, nephew, uncles, and cousins, for your unwavering
support, strength, and affection.

Additionally, I would like to extend my appreciation to all the fiends and colleagues I have
known in Acquia, Drupal, DevOps and in the Free and Open source community. This is another
contribution back for all that you have given me along so many years. Together, we continue to
shape the world.

Finally, I want to gratefully acknowledge the organizations and people who helped with this
thesis.

This is dedicated to each of you. Thank you for being an important part of this incredible
journey.

iii

iv

Resumo

No contexto dinâmico das organizações de TI, DevOps — desenvolvimento (Dev) e oper-
ações de TI (Ops) — tornou-se uma estratégia crítica para facilitar as necessidades crescentes
de eficiência contínua e ótima no desenvolvimento e entrega de software nas organizações. Esta
necessidade é impulsionada por exigências dos clientes, a concorrência intensa, as ameaças ex-
ternas sofisticadas e a legislação rigorosa. Apesar dessa importância reconhecida, ainda existem
desafios de adoção e trabalho empírico limitado sobre a forma como as capacidades e métricas
inerentes impulsionam a adoção bem sucedida de DevOps, levando a resultados inconsistentes
nas organizações.

Esta tese tem como objetivo explorar a forma de melhorar e conseguir uma adoção bem
sucedida do DevOps nas organizações de TI, centrando-se nas principais capacidades, métricas
e processos do ciclo de vida do DevOps. As questões de investigação apontam para encontrar os
vetores relacionais mais impactantes e como as organizações podem aplicá-los para superar os
desafios de adoção. São utilizados vários métodos de investigação, como revisões de literatura,
entrevistas, análise de documentos, estudo de caso, grupos de foco e Design Science Research
(DSR) ao longo de seis artigos submetidos a revistas científicas.

O trabalho resultante oferece uma descrição detalhada de como entender e implementar
DevOps, fornecendo valor a profissionais da indústria, peritos, e investigadores. Uma estrutura
é proposta com o objetivo de abordar os principais desafios através do desenvolvimento de
estratégias de melhoria contribuindo para o desenvolvimento e a entrega de software fiável
e de elevado desempenho. Os artigos desenvolvem e comunicam o conjunto organizado de
conhecimentos necessários para a adoção bem sucedida de DevOps.

Palavras-chave: Capacidades e práticas de DevOps, Métricas de DevOps, Processo de en-
genharia de software, Gestão e entrega de software, Desenvolvimento de software, Desempenho
de entrega de software.

v

vi

Abstract

In the dynamic Information Technology (IT) landscape, DevOps — development (Dev)
and IT operations (Ops) — has become a critical strategy to facilitate the increasing needs for
continuous and optimal efficiency in software development and delivery across organizations.
This need is driven by constraints such as customer demands, intense competition, sophisticated
external threats, and strict government legislation. Despite its acknowledged importance, there
are still adoption challenges, and limited empirical work on how inherent capabilities and metrics
drive successful DevOps adoption, leading to inconsistent results across organizations.

This thesis aims to explore how to improve and achieve successful DevOps adoption in IT
organizations by focusing on the main DevOps capabilities, metrics, and life cycle processes. The
research questions point to finding the most impacting relational vectors and how organizations
can apply those to overcome adoption challenges. Multiple research methods are used, like
literature reviews, interviews, document analysis, case study, focus group and Design Science
Research (DSR) over six articles submitted to scientific journals.

The resulting work offers a detailed description of how to understand and implement DevOps,
providing value to industry professionals, experts, and researchers. A framework is proposed
focusing on addressing the main challenges by developing improvement strategies contributing
to reliable and high-performing software development and delivery. The articles develop and
communicate the organized body of knowledge required for successful DevOps adoption.

Keywords: DevOps Capabilities and Practices, DevOps Metrics, DevOps Adoption, Soft-
ware Engineering Process, Software release management and delivery, Software Delivery Per-
formance.

vii

viii

Contents

Acknowledgment . iii

Resumo . v

Abstract . vii

List of Figures . xiii

List of Tables . xvii

List of Code. xxi

List of Acronyms .xxiii

Introduction . 1
1.1 Motivation . 1
1.2 Research Problem . 2
1.3 Objective . 3
1.4 Research Background . 4

1.4.1 DevOps Adoption . 4
1.4.2 DevOps Capabilities and Practices . 6
1.4.3 DevOps Metrics . 8
1.4.4 DevOps Life Cycle Processes . 9
1.4.5 DevOps Challenges and Benefits. 10
1.4.6 DevOps Outcomes . 13
1.4.7 DevOps Culture . 15

1.5 Research Communication . 16
1.6 Thesis Organization . 21

Article #1 . 23
2.1 Introduction . 24
2.2 DevOps . 25
2.3 Multivocal Literature Review . 26

ix

2.4 Research Design and Implementation . 27
2.5 Conducting the MLR . 28
2.6 Reporting the MLR . 29
2.7 Conclusion . 38

Article #2 . 45
3.1 Introduction . 46
3.2 DevOps . 48
3.3 Multivocal Literature Review . 49
3.4 Conducting the MLR . 51
3.5 Reporting the MLR . 54
3.6 Discussion and Findings . 69
3.7 Conclusion . 76

Article #3 . 87
4.1 Introduction . 88
4.2 Related Work . 89
4.3 Research Methodology . 90
4.4 Capabilities and metrics multivocal literature reviews . 93
4.5 Research proposal . 99
4.6 Evaluation . 105
4.7 Conclusion . 109

Article #4 . 113
5.1 Introduction . 114
5.2 Research Background . 115
5.3 Research Methodology . 115
5.4 First SLR: List of Benefits . 117
5.5 Second SLR: Empirical Evidences of DevOps Benefits . 120
5.6 Results and Discussion of DevOps Empirical Evidences . 123
5.7 Challenges in DevOps Adoption: The Other Side of the Coin 123
5.8 Validity of the SLRs . 126
5.9 Conclusion . 127

Article #5 . 137
6.1 Introduction . 138
6.2 Research Background . 140
6.3 Systematic Literature Review . 142
6.4 Reporting the Literature Review . 145

x

6.5 Discussion . 154
6.6 Conclusion . 158

Article #6 . 163
7.1 Introduction . 164
7.2 Background and Related Work . 165
7.3 Research Methodology . 169
7.4 Results . 182
7.5 Discussion . 192
7.6 Conclusion . 192

Conclusion . 199
8.1 Summary and Discussion . 199

8.1.1 RQ1: What are the key DevOps capabilities, metrics, and processes that
have the most positive impact on DevOps adoption? . 199

8.1.2 RQ2: How can organizations effectively apply key DevOps capabilities,
metrics, and processes to overcome adoption challenges? 203

8.2 Closing Remarks . 207
8.3 Limitations. 208
8.4 Future work . 208

References . 211

xi

xii

List of Figures

Chapter 1. Introduction . 1
Figure 1.1: Research Problem: Inconsistent DevOps Adoption Success 2
Figure 1.2: DevOps Adoption Concepts. 4
Figure 1.3: Publications included in this research . 17

Chapter 2. Article #1 . 23
Figure 2.1: DevOps Capabilities and Practices Conceptual Map. 24
Figure 2.2: The Three Ways: The principles underpinning DevOps. 26
Figure 2.3: The relationship of SLR, GLR and MLR Studies. 26
Figure 2.4: Multivocal Literature Review (MLR) steps adopted in this research 27
Figure 2.5: Review protocol performed in this research . 27
Figure 2.6: Followed Multivocal Literature Review process. 28
Figure 2.7: Distribution of the final set of documents per database.. 29
Figure 2.8: Distribution of publications per type over the years. 29
Figure 2.9: Number of publications mentioning Capabilities and Practices among

sources. 34
Figure 2.10: DevOps Capabilities and Practices instantiation. 37
Figure 2.11: Related Capabilities, Practices and Outcomes. 37
Figure 2.12: Capabilities generating Outcomes. 38

Chapter 3. Article #2 . 45
Figure 3.1: The Three Ways: The principles underpinning DevOps. 49
Figure 3.2: Relationship of SLR, GLR, and MLR. 50
Figure 3.3: MLR steps based on Garousi et al. 50
Figure 3.4: Review protocol performed in this research. 51
Figure 3.5: Followed multivocal literature review process. 52
Figure 3.6: Distribution of publications per type over the years. 54
Figure 3.7: Top main metrics mentioned in publications over the years. 56
Figure 3.8: DevOps metrics categorization and relation of concepts. 72

xiii

Figure 3.9: DevOps metrics in practice infinity loop. 73
Figure 3.10: DevOps metrics and incremental changes in the DevOps context. 75

Chapter 4. Article #3 . 87
Figure 4.1: Review protocol planned and used for the literature review. 89
Figure 4.2: Document relevance breakdown. 90
Figure 4.3: Publication year of final documents per type. 90
Figure 4.4: Adapted phases of the DSR process mode. 91
Figure 4.5: DevOps capabilities Multivocal Literature Review (MLR) Steps. 91
Figure 4.6: DevOps capabilities multivocal literature review process. 92
Figure 4.7: DevOps metrics multivocal literature review process. 92
Figure 4.8: Capabilities – distribution of publications per type over the years. 93
Figure 4.9: Metrics – distribution of publications per type over the years. 94
Figure 4.10: Number of publications mentioning capabilities or practices among

sources. 95

Chapter 5. Article #4 . 113
Figure 5.1: Steps performed in each of the performed SLRs. 116
Figure 5.2: Case studies segregation. 122

Chapter 6. Article #5 . 137
Figure 6.1: Relating DevOps Capabilities to LCPs conceptual map. 140
Figure 6.2: Categorization of DevOps Capabilities. 141
Figure 6.3: Processes and Life Cycle Processes in Software Engineering.. 141
Figure 6.4: Software Life Cycle Processes (LCPs). 142
Figure 6.5: The SLR process adapted from Kitchenham et al. 142
Figure 6.6: Systematic review flow of information diagram for this study. 144
Figure 6.7: Break down of publication quality based on ranking. 144
Figure 6.8: Distribution of publications per type over the years. 145
Figure 6.9: Improving LCP outcomes with exceptional DevOps Capabilities. 158

Chapter 7. Article #6 . 163
Figure 7.1: Categorization of DevOps Capabilities. 166
Figure 7.2: Categorization of DevOps Metrics. 167
Figure 7.3: Software Life cycle processes. 167
Figure 7.4: Proposed Conceptual Framework of DevOps Adoption. 169
Figure 7.5: The Case Study Research process. 170

xiv

Figure 7.6: alidation using triangulation of methods and data in this study. 171
Figure 7.7: Case Study Protocol Process. 171
Figure 7.8: DORA assessment results from 2021 to 2023. 180
Figure 7.9: CI/CD Pipeline onboarding and repositories with no clear owner over

time. 181
Figure 7.10: Escaped defects and Release volume over time. 181
Figure 7.11: nvitation letter to participate in the case study research. 197

Chapter 8. Conclusion . 199
Figure 8.1: Proposed Framework for Improving DevOps Adoption Success. 204

xv

xvi

List of Tables

Chapter 1. Introduction . 1

Chapter 2. Article #1 . 23
Table 2.1: Spectrum of the ’white’, ’gray’ and excluded literature. 26
Table 2.2: Inclusion and exclusion criteria applied in this research. 28
Table 2.3: Filters used in the MLR protocol. 28
Table 2.4: List of DevOps Capabilities proposed by Senapathi et al. 29
Table 2.5: List of Capabilities in five categories proposed by Accelerate. 30
Table 2.6: List of four Capability categories proposed by DOR. 30
Table 2.7: List of Capabilities identified by number of publications over the years. . . 31
Table 2.8: Categorization of DevOps Capabilities. 31
Table 2.9: Six publication properties identified from the MLR. 35
Table 2.10: Definition of DevOps Capability. 36
Table 2.11: Definition of DevOps Practice. 36

Chapter 3. Article #2 . 45
Table 3.1: Inclusion and Exclusion Criteria Applied in This Research. 52
Table 3.2: Filters Used in the MLR Protocol. 53
Table 3.3: Definition of DevOps Metric from Literature. 55
Table 3.4: Purpose and References for Each Main DevOps Metric. 58
Table 3.5: Summarized Definition for Each Main DevOps Metric and Their Optimal

Trend. 60
Table 3.6: Six Publication Properties Identified from the MLR. 70

Chapter 4. Article #3 . 87
Table 4.1: Databases and steps used in the initial systematic literature review (SLR). 89
Table 4.2: Filters used in the capabilities MLR protocol. 93
Table 4.3: Filters used in the metrics MLR protocol. 94
Table 4.4: Six publication properties identified from the MLR. 95

xvii

Table 4.5: Number of publications mentioning capabilities or practices. 95
Table 4.6: Definition of DevOps capability. 96
Table 4.7: Definition of DevOps practice. 96
Table 4.8: Purpose and total references for each main DevOps metric. 97
Table 4.9: First batch of interviews with practitioners’ details. 98
Table 4.10: Total contributions from participants during the build phase. 98
Table 4.11: Categorization of DevOps capabilities. 100
Table 4.12: Categorization of main DevOps metrics. 100
Table 4.13: DevOps capabilities influencing main metrics. 101
Table 4.14: Proposed artifact showing categorized DevOps capabilities influencing

main metrics. 102
Table 4.15: Semi-structured interview iterations for evaluation with practitioners

details. 104
Table 4.16: Relations updated in the artifact during each evaluation iteration. 105
Table 4.17: Validated artifact with categorized DevOps capabilities influencing main

metrics. 106
Table 4.18: Capability categories, weight on KPI categories. 106
Table 4.19: Questions used in the research proposal. 107
Table 4.20: Interview iterations topics used in evaluating the proposed artifact. 107

Chapter 5. Article #4 . 113
Table 5.1: List of benefits identified in literature. 117
Table 5.2: List of DevOps implementation case studies analyzed. 121
Table 5.3: DevOps benefits analysis. 122
Table 5.4: Case study analysis: DevOps benefit and problem solved. 124
Table 5.5: DevOps adoption challenges. 126
Table 5.6: Validity tests. 127

Chapter 6. Article #5 . 137
Table 6.1: Inclusion and exclusion criteria applied in this research. 143
Table 6.2: Databases and steps used in the Systematic Literature Review (SLR)

protocol. 145
Table 6.3: Papers relating DevOps Capabilities to Life Cycle Processes(01-08). 147
Table 6.4: Papers relating DevOps Capabilities to Life Cycle Processes(09-16). 149
Table 6.5: Papers relating DevOps Capabilities to Life Cycle Processes(17-23). 151
Table 6.6: Papers relating DevOps Capabilities to Life Cycle Processes(24-30). 152
Table 6.7: Relation sums and averages for each DevOps Capability category. 154

xviii

Table 6.8: Relation sums and averages for each Life Cycle Process category. 154
Table 6.9: Comparison of Objectives, Methodology, and Findings between our

current and previous studies.. 155
Table 6.10: Categories with fewer relations but high average. 155
Table 6.11: Agreement process and Measurement capabilities relation overview. 155
Table 6.12: Capabilities with exceptional and very high impact on Life Cycle Processes.157
Table 6.13: Publications contributing to this study concepts from Figure 1. 157

Chapter 7. Article #6 . 163
Table 7.1: Research questions. 165
Table 7.2: Benefits of DevOps Adoption. 168
Table 7.3: Challenges of DevOps Adoption. 169
Table 7.4: Relations in the Conceptual Framework of DevOps Adoption. 169
Table 7.5: Six Phases of a Case Study. 170
Table 7.6: List of semi-structure interviews. 172
Table 7.7: List of relevant documents. 173
Table 7.8: List of focus group panel participants. 173
Table 7.9: A summary of the main findings in this research. 183
Table 7.10: Percentile-Based Impact Classification for Thematic Ranking. 183
Table 7.11: Impact of DevOps Capabilities in DevOps adoption. 184
Table 7.12: Impact of DevOps Metrics in DevOps adoption. 185
Table 7.13: Impact of DevOps Life Cycle Processes in DevOps adoption. 186
Table 7.14: Top correlations mentioned between Capabilities and Metrics. 187
Table 7.15: Relations summary for Capabilities and Metrics. 188
Table 7.16: Top correlations mentioned between Capabilities and Life Cycle Processes.189
Table 7.17: Relations summary for Capabilities and LCPs.. 190
Table 7.18: List of key benefits found. 190
Table 7.19: List of key challenges found. 190
Table 7.20: Top correlations mentioned between Metrics and Life Cycle Processes. . . 191
Table 7.21: Relations summary for Metrics and LCPs. 191
Table 7.22: Main Strategies and Initiatives. 191
Table 7.23: Questions used in the Semi-structured interviews. 196

Chapter 8. Conclusion . 199
Table 8.1: Instantiation of the Framework for Improving DevOps Adoption Success 205

xix

xx

List of Code

4.1 Python code for consistent fetching of a large number of Google search results. 108

xxi

xxii

List of Acronyms

CALMS Culture, Automation, Lean principles, Measuring and Sharing

CAMS Culture, Automation, Measuring and Sharing

CD Continuous Delivery or Deployment

CFR Change Failure Rate

CI/CD Continuous Integration & Delivery or Deployment

DevOps Developer (Dev) and Operations (Ops)

DevSecOps Developer (Dev), Security (Sec) and Operations (Ops)

DF Deployment Frequency

DORA DevOps Research and Assessment

DSR Design Science Research

FLOSS Free/Libre and Open Source Software

IaC Infrastructure as Code

IT Information Technology

KPI Key Performance Indicator

LCP Life Cycle Process

MLR Multivocal Literature Review

MLT Mean Lead-time for Changes

MSA Microservices Architecture

MTTD Mean Time To Detection

MTTR Mean Time To Recover/Restore

QA Quality Assurance

SDLC Software Development Life Cycle

SD Software Development

SLI Service level Indicator

SLO Service level Objective

SLR Systematic Literature Review

SRE Site Reliability Engineering

WIP Work in Progress

xxiii

xxiv

CHAPTER 1

Introduction

This thesis builds upon the research initiated during the completion of the Master’s Degree in
Information and Enterprise Systems. The intricate issues identified and highlighted earlier, along
with the fundamental goals of this study, are also reflected in this introduction, indicating a work
of critical and contextual analysis. Therefore, the initial exploration of motivation demonstrates
the significant importance and intellectual curiosity surrounding the subject being studied, with
the aim of offering specific responses to the problem and research questions.

1.1 Motivation

In an increasingly competitive world of software development, delivery and support, the DevOps
movement has emerged as a fundamental strategy, driven by the development (Dev) and opera-
tions (Ops) teams themselves[1], with a vision of achieving continuous and optimal efficiency[2].
More specifically, DevOps is a growing trend resulting from the alignment between companies
and the constantly evolving IT, which face challenges arising from the needs of their customers,
under intense competition, sophisticated external threats and strict government legislation [3].
At the same time, they seek to establish a competitive advantage by delivering and supporting
software faster and more efficiently than their competitors. In this context, it has been observed
that the acceleration of continuous software delivery and support without an integration of
DevOps capabilities [4] can compromise the reliability and performance of the activity, unless
it is accompanied by consistent builds, adequate testing and release automation[5]. All of this
in turn underlines the crucial importance of adopting DevOps for the development and delivery
of software in a consistent and predictable manner, as well as for the adaptability, monitoring,
reliability and security of systems[6].

Contextually, agile methods, through their manifesto, began to influence software develop-
ment in organizations at the beginning of the 21st century, having had a positive impact by
improving collaboration with the customer and accelerating development iteratively in develop-
ment teams [7]. Therefore, this acceleration ended up highlighting the misalignment between the
development and operations teams, leading to more friction and silos between these teams [8, 9].
With this sudden acceleration in software delivery, the operations teams, accustomed to slower
and more spaced releases and updates, experienced a substantial detriment to their quality of life
and service, due to the increase in recurring errors in production, which escaped due to a lack of
consistency in testing and compilation. These facts are well portrayed in iconic books such as
“The Phoenix Project” [10] or “Continuous Delivery” [5]. In this context, DevOps emerges as
a dialectical response, seeking to extend the benefits of the Agile movement and find a healthy

1

balance between the worlds of development and operations, keeping the focus on both of their
antagonistic goals: development teams want faster deliveries, while operations teams want more
stability. DevOps has thus become a widely recognized concept in the last decade, promoting
an organizational approach that values empathy and encourages closer collaboration between
the teams in charge of delivering software [11]. This effort seeks not only to provide a better
end-user experience but also to decrease development time, increase delivery rates, improve sta-
bility and optimize processes while reducing Software Development Life Cycle (SDLC) costs
and decreasing the average time to recover from problems [12].

1.2 Research Problem

However, despite the growing consensus in the industry and in academia on how DevOps
is a crucial factor in improving software development and efficiency [13, 14], there is still
little empirical evidence of how inherent capabilities and metrics influence successful DevOps
adoption. This is reflected in the inconsistency of results obtained when trying to adopt DevOps
in different organizations. Several recent studies point out challenges and complications [15–18],
namely because it is necessary to provide organizational leaders with the appropriate strategies,
together with information and tools, so that they can overcome adoption challenges within the
software life cycle [19, 20].

On the other hand, to support the effective use of DevOps in organizations, a clear under-
standing and guidance is needed [16]. For leadership to be able to apply improvements to the
process, it is crucial to have a thorough understanding of the processes to follow, based on
concrete data, to increase efficiency and facilitate the successful implementation of DevOps
capabilities. This challenge necessitates a rigorous self-assessment and continuous monitoring
through efficacy metrics to enhance maturity and performance levels.

Therefore, the research problem and questions of this thesis, synthesized in Figure 1.1, are:
"RQ1: What are the key DevOps capabilities, metrics, and processes that have the most

positive impact on DevOps adoption?"
"RQ2: How can organizations effectively apply key DevOps capabilities, metrics, and

processes to overcome adoption challenges?"

Challenges
in DevOps Adoption

Strategies for
Overcoming Challenges

DevOps Capabilities,
Metrics and Processes

Need for Empirical Evidence and Appropriate Strategies

positive impact?

Figure 1.1: Research Problem: Inconsistent DevOps Adoption Success

2

1.3 Objective

Hence, the general objective of this thesis is to investigate how to improve and achieve a
successful adoption of DevOps in IT organizations. The specific objectives mentioned in each
of the articles outline the stages of this task to be accomplished through exploratory, descriptive
and explanatory processes.

This thesis is grounded on the idea that it is possible to provide strategies for successful
DevOps adoption if we find a strong and impactful relation between the concepts involved in
the adoption of DevOps [4, 17, 21–24]. Figure 1.2 shows the concepts of DevOps Capabilities,
DevOps Metrics, Life cycle Processes, Strategies, DevOps Benefits, DevOps Challenges, and
Successful DevOps Adoption since these are the core elements identified in the research as
critical to understanding and implementing DevOps successfully.

• DevOps Capabilities are the required skills and practices for executing DevOps[4].

• DevOps Metrics measure the effectiveness of DevOps capabilities[22].

• Life Cycle Processes are the activities and tasks around software and systems improved
by DevOps capabilities[23].

• DevOps Strategies are hereafter defined as the initiatives and drivers which facilitate
DevOps transformation [25].

• DevOps Benefits are the result or the gain from the use of DevOps [4].

• DevOps Challenges are the conditions restricting the implementation of DevOps[4].

• Successful DevOps Adoption is the intended research outcome showing the effective
execution of DevOps along with the benefits to be received and challenges to be minimized.

The conceptual structure in Figure 1.2 proposes that DevOps capabilities influence the
selection and use of metrics observed in measuring their effectiveness [25, 26]. Metrics, on the
other hand, are the indicators of information that can help to enhance life cycle processes [23].
Capabilities define the strategies that must be executed, and these strategies deliver on relevant
benefits [27]. But attaining gains also implies facing challenges [28] and when difficulties are
overcome, it can, in fact, bring advances to the life cycle processes [23]. This is the reason
behind the feedback loops [29] from Metrics to Capabilities and from Life cycle processes to
metrics, in order to demonstrate that the feedback cycle has improved as reported on Chapter 6.
Finally, the arrows to successful DevOps adoption indicate that in the end all efforts will lead
into a successful adoption of DevOps being the central target [28].

This is a compass or navigation tool for navigating the interrelationships of capabilities,
metrics, life cycle processes, strategies, benefits and challenges. When seen together, these

3

DevOps Capabilities DevOps Metrics Life cycle Processes

Strategies Benefits Challenges

Successful
DevOps Adoption

evaluateenhance

inform

lead to mitigate

impact

enable

quantify impact

drive

m
ot

iv
at

e

hinder

Figure 1.2: DevOps Adoption Concepts.

relationships show organizations and researchers what factors influence successful DevOps
adoption and how this view can help them plan future strategies.

This thesis generated several research questions that were answered throughout six articles.
Intended for publication in periodic scientific journals of this area. As a result, new and organized
knowledge is generated that is important for professionals, industry, and researchers.

1.4 Research Background

This thesis, as previously mentioned, is focused on the successful adoption of DevOps while
considering all of its associated concepts. Consequently, this section provides a comprehensive
overview of these concepts, with a particular emphasis on the interconnected theories that have
influenced and furthered their development. It is the objective of this section to establish a
theoretical background that enables the subsequent chapters to be more comprehensive and
detailed in their discussion and analysis.

1.4.1 DevOps Adoption

Prior to exploring the concept of DevOps adoption, it is crucial to have a comprehensive
understanding of DevOps itself. The term "DevOps" refers to coordination and cooperation
between development (Dev) and operations (Ops) teams. Together, these engineering teams
work to eliminate the so-called "information silos" [30], based on a cultural shift initially
advocated by Patrick Debois [1], in order to achieve collaboration, automation, and integration
between software developers and IT professionals, fostering a culture that promotes agility,
reliability, and security in technology organizations. Thus improving the efficacy of the life
cycle process and delivering high-quality software continuously.

Jabbari et al. (2016) [31] mentioned that DevOps is a development approach that bridges the
gap between development and operations by leveraging communication, collaboration, continu-
ous integration, automated delivery, and consideration for quality assurance through automated

4

delivery. Humble et al. (2010) [5] suggested prioritizing Culture, Automation, Measuring and
Sharing (CAMS), and later, they have added the Lean (L) to these four building blocks, resulting
in Culture, Automation, Lean principles, Measuring and Sharing (CALMS) [32].

More recently, the IEEE Std 2675-2021 [23] introduced a standardized definition of DevOps:
a set of principles and practices that make it easier for teams involved to communicate and
collaborate, with the goal of creating, developing, and running software systems, products, or
services while continuously improving software and system life cycle processes.

According to Díaz et al. (2021) [19], DevOps is a cultural and professional movement that
aims at improving the delivery of business value. Since the inception of DevOps, authors have
looked at different ways to define the term, and they include the various practices that enable the
software delivery process to be automated. DevOps is generally regarded as a methodology that
focuses on continuous integration, continuous delivery, and rapid deployment to adapt to the
dynamism of the market [4, 33]. For a delivery to be considered high-quality, Luz et al. (2019)
argue that DevOps needs to be implemented within a system, something that results from the
collaboration between development and operation teams in any organization [25]. A cultural
shift is needed to break down silos, enhance communication, and embrace a true collaborative
environment within organizations, as it promotes the close working of the development and
operations teams. DevOps, in the software industry, prioritizes the integration of development
and client support, enabling teams to collaborate effectively. The advantages of DevOps include
reduced development time, increased deployment frequency, enhanced stability, shorter delivery
cycles, and cost savings in both delivery and execution [29].

The DevOps adoption process is used in organizations to integrate DevOps capabilities and
practices into their software development and IT operations. This integration is to facilitate better
collaboration between teams, automate the software delivery process overall by improving the
speed and quality of releases [34–36]. Several authors in the literature make reference to the term
DevOps adoption. It stands for the process when organizations incorporate DevOps capabilities
and practices into their software development and IT operations [34, 37]. DevOps adoption
introduces cultural changes, adding new tools, and changing processes to support continuous
integration, delivery, and deployment [2, 38, 39].

Per Maroukian and Gulliver (2020) [39] successful DevOps adoption requires an organiza-
tional shift in organizational mindset, skillset, and toolset, where more concern about collab-
orating rather than just focusing on things like containerization, automation, or tooling [25].
Transformational and servant leadership are related features of leaders who can influence the
adoption or resistance to DevOps [39]. In regulated domains like medical device development,
DevOps adoption could be a big challenge, but it can outweigh conventional practices, especially
in compliance and security aspects [26, 40].

In further reviewing related work previous to this research, authors write about various as-
pects of DevOps adoption and implementation, including the challenges and processes involved
as explained in Section 1.4.5. Although implementing DevOps can offer many benefits such as

5

faster releases with fewer deployment errors and better incident handling [18], it can be difficult
based on cultural, organizational and technological reasons [19, 41].

Bucena et al. (2017) [13] conducted a study that focused on both the challenges of DevOps
adoption and methods for simplifying DevOps adoption. Maroukian et al. [39] concentrated on
the latter issue, discussing aspects of leading the adoption of DevOps practices and principles.
Rafi et al. (2020) [38] presented RMDevOps, which could be a specific model or framework for
DevOps implementation. Another empirical study by Zarour et al. [42] focused on the case of
adopting a DevOps process model in Saudi Arabia, implying a possible assisted replication that
could directly or indirectly support implementation. While not presenting a model, Smeds et
al. (2015) [12] provide a clear definition of DevOps and identify impediments to its adoption,
introducing failures that should help organizations anticipate and overcome such barriers.

Perez et al. (2022) argue that academic explanations may be far from reality and not general-
izable to real productive environments, DevOps adoption is an ideal candidate for nontraditional
ways of teaching that “bring” industry experience to DevOps courses in some way [43]. Leite et
al. (2019) [17] finds that there is poor discussion in academia on the technical implications and
complexity of adopting DevOps practices such as automation, microservices architectures, con-
tainerization, and toolset management. Practical DevOps concepts and implications empower
managers to make assertive and strategic decisions and provide engineers with best practices for
adoption. Adopting new tools takes time and effort, and doing so without considering the results
can waste it. A DevOps adoption process must prioritize team structure over tool selection.

Despite the mentioned research, the adoption of DevOps is still a challenging task and
none of the previous authors as approached solving the challenges of this task from a three
vector perspective, effectively researching empirical evidence of the impactful relations between
DevOps capabilities, metrics and life cycle processes.

Several aspects of DevOps adoption still need to be addressed. The first step is to integrate
continuous security practices. It is supported by a conceptual model for automated Developer
(Dev), Security (Sec) and Operations (Ops) (DevSecOps) on the cloud that employs Free/Libre
and Open Source Software (FLOSS) mentioned by Kumar et al. (2020) [44]. The next aspect is
that there are many challenges, like code and data quality in DevOps, as observed by Rafi et al.
(2020) in applying their fuzzy analysis in the context of the DevOps challenges [38]. Meaning,
the adoption of cutting-edge DevOps practices and trends should also be prioritized [39]. The
final aspect is the transition to enterprise-scale agile software development, which is frequently
achieved through DevOps, and the lessons learned from this process can help with DevOps
adoption [45]. To achieve a successful DevOps transformation, the approach should be aligned
with the organization’s dynamics, internal and external competitive forces, and constraints [23].

1.4.2 DevOps Capabilities and Practices

The literature indicates a progression and refinement of capabilities, practices and tools to
improve software delivery and operational performance. Overall, the studies on DevOps ca-

6

pabilities over the years presented in Figure 2.8 suggest there is an ever-growing interest in
exploring what DevOps uncovers from its evolving nature. On the other hand, the morphing
lists of capabilities seen in Tables 2.4 and 2.5 and 2.6 suggest that DevOps capabilities have
evolved to become more sophisticated, with a greater emphasis on automation, collaboration,
and continuous improvement to meet the demands of modern software development and delivery
[4, 12, 46].

The 2016 DevOps Handbook recommends automation, continuous integration, delivery, and
collaboration, to assist IT organizations in adopting DevOps for increased agility, dependability,
and security [29]. According to the 2019 State of DevOps Report [47], the sector has matured,
and there is an increasing interest in quantifying performance [22] leading to the importance
of also exploring DevOps metrics in Article 2 to measure capabilities. Puppet Labs DevOps
report (2019) [48] discovered that top performers improve automation, integration, and delivery
while also using key metrics. This thesis seeks to standardize DevOps capabilities and practices
that are currently ambiguous and interchangeable in the Multivocal Literature Review (MLR)
of Article 1.

The existing studies on DevOps capabilities and practices, make use of both terms, and
are vague and ambiguous regarding their definitions. Thus, the empirical evidence required
to attain DevOps practices that enable capabilities, while improving software development and
deployment speed, quality, and reliability while encouraging continuous improvement [39, 44,
49, 50]. In the absence of research on the main capabilities and practices of DevOps, as well as
their distinctions, this study sheds light on how and why practitioners should adopt them, as well
as what aspects they should change or keep in mind. Teixeira et al. (2020) [14] mentioned that
future research should be carried out into the most referenced capabilities, while other authors
indicate that several DevOps capabilities and practices aspects still pose challenges and require
consensus and solutions like aligning DevOps principles and practices with organizational
culture and goals to ensure commitment from stakeholders, developing lightweight model-
based testing methods, prioritizing team collaboration, tool chain integration, and quality at
speed [39, 44, 51–53].

Lastly, a few other commonly mentioned capabilities include: Software Delivery Process
Automation, which is said to enhance software release speed, quality, and reliability [14, 18].
Collaboration between Development and Operations Teams, promoting Continuous improve-
ments Culture [33, 54]. Monitoring and Logging supports software to meet necessary standards
and expectations [19, 33] specially on the customer side [55]. Continuous Security Integration of
DevSecOps represents a few challenges while adding security capabilities into DevOps pipeline
[18, 44]. Efficient Test Automation needs lightweight model-based testing for quick and efficient
automation [18, 33]. Learning New Skills: Both developers and system administrators need to
acquire new skills for continuous software delivery [12, 18].

7

1.4.3 DevOps Metrics

There are a few important points discussed in previous literature regarding DevOps metrics or
measurements. The main points where there appears to be an agreement is that DevOps metrics
are essential to improve the software quality and the delivery process [2, 38, 56, 57]. Also,
the community has developed tools and methods for quality analysis and to support DevOps
[2, 56, 58]. However, there is a lack of cohesiveness in research themes, as well as a scarcity of
detailed empirical evidence to support the key DevOps metrics already being used by engineering
teams while improving their adoption of DevOps [17, 54]. Furthermore, despite the increase in
interest from the community, there is still lack of systematic discussion and consensus on the
metrics and how to implement them in a DevOps cultural way, as seen in Figure 3.6.

As such, this thesis also aims to explore and discuss the concept of metrics in DevOps and
how to apply them in an organizational context. DevOps metrics are quite diverse and have
various applications throughout the DevOps life cycle as investigated in the MLR of Article 2.
Despite the DevOps metrics being diverse, most authors agree on the four DevOps core metrics
proposed by the DevOps Research and Assessment (DORA)1:

• Mean Time To Recover/Restore (MTTR): The amount of time it takes to get back
to normal after a service interruption, whether the disruption was caused by a recent
deployment or a single system failure.

• Mean Lead-time for Changes (MLT): This is the time taken to commit and release
(deploy) it from the default (trunk) branch up until production.

• Deployment Frequency (DF): The cadence at which new code is deployed to production
over some period.

• Change Failure Rate (CFR): The percentage of code changes that require hot fixes or
post-production fixes.

In terms of previous work related to DevOps metrics, it is stated by Riungu-Kalliosaari et al.
(2016) [24], that DevOps reduces the time it takes to implement system changes in production,
affecting MLT and DF. While also doing it with trust and empathy, improving the MTTR and
setting a standard for high-quality work while minimizing conflicts, blame and CFR. The book
"Accelerate" [59] explores how modern organizations apply DevOps principles and practices, to
achieving delivery performance. It uses statistical methods to assess organizational performance
of IT organizations, specifically for producing software and delivering it at a high rate. Forsgren
et al. (2018) [22] also defined two ways for measuring the performance of DevOps, survey data
and system data. Each has its advantages and disadvantages, while multiple authors suggest
starting by determining the metrics to measure when evaluating a DevOps implementation in

1https://dora.dev/

8

organizations. There is little literature on the quantification of DevOps capabilities and practices
[17, 60].

Authors discuss DevOps measurements in specific contexts. Particularly, Forsgren et al.
(2018) [22] investigate the need to measure DevOps implementations at scale in organizations,
with a focus on establishing a measurement baseline through system-based measurements, which
includes survey-based software development metrics. Farshchi et al. (2018) [61] examined the
utilization of metrics in cloud operations, specifically for detecting anomalies during DevOps
operations, and propose a metric selection approach based on regression analysis.

In their book, Snyder and Curtis (2017) [58] present a case study on Fannie Mae IT’s
transition to Agile/DevOps from traditional waterfall methods; software analytics were used to
guide improvements and assess progress. It is specifically stated that "project-level analytics
allowed agile teams to monitor structural quality and assess their practices". Detailed insights
into detecting anomalies in public clouds are provided by Sun et al. (2016) [62], emphasizing
the difficulty of distinguishing between these and DevOps activities. On the other hand, Roche
(2013) [57] discusses how DevOps capabilities are implemented in the areas of quality assurance
and mentions metrics while not specifically advocating for them.

Mishra et al. (2020) [2] mention the need for further research in many areas of DevOps. Such
as measurement, development of metrics of different stages to assess their performance, culture,
practices toward ensuring quality assurance, and quality factors such as usability, efficiency, soft-
ware maintainability and portability. While Erich et al. (2017) [33] emphasize that measuring
the effect of DevOps on actual benefits accurately is essential. Nevertheless, it can be difficult
to track proper quantitative measures of DevOps success and clarify the different definitions of
value, which represent another perspective on what constitutes a definition for DevOps. The
effectiveness of applying DevOps capabilities and practices should not only be measured subjec-
tively. However, the absence of clear metrics to quantify DevOps implementation effectiveness
has been cited as a challenge in multiple research papers.

1.4.4 DevOps Life Cycle Processes

Based on the IEEE Std 2675-2021 [23], Life Cycle Processes (LCPs) can be described as
processes that comprise the life cycle of software and systems. These processes are applicable to
“software, systems, products, and services” and include “conception, development, production,
utilization, support, and retirement”. The standard also specifies that these processes are meant
to be applied concurrently, iteratively, recursively and incrementally to its elements with the
involvement of stakeholders and with the aim of achieving customer satisfaction. The life
cycle processes also encompass “the activities necessary to establish an agreement between two
organizations” through Acquisition and Supply processes. Additionally, the document clarifies
that the order of the processes does not imply the sequence of implementation, as they “can
be performed iteratively and concurrently with other processes”. The compiled list of LCPs is
shown in Figure 6.4.

9

Other authors cover various aspects closely related to the DevOps LCPs. Akbar et al. (2022)
[63] proposed developing security in depth for DevSecOps as part of the engineering process
aimed at building intrinsically secure applications. Alnafesaah et al. (2021) [56] observe a lack
of thematic consistency in DevOps research, as well as low coverage in surveys of quality engi-
neering within DevOps processes. Waseem et al. (2020) [64], systematically classify research
on Microservices Architecture (MSA) related to DevOps, including microservices development
and operations in DevOps, process approaches, and tool support for the implementation of
MSA-based systems, as well as migrating to MSA in DevOps. Rafi et al. (2020) [38] discuss
quality assessment process challenges, particularly from heterogeneous sources, highlighting a
few important trends that may be harmful to the data quality assessment process when combined
with DevOps technology.

Mishra et al. (2020) [2] perform a Systematic Mapping of the impact of DevOps on the
software quality process. Importantly, it is emphasized the need of research in “measurement,
development of metrics of different stages to assess performance, culture, practices toward ensur-
ing quality assurance, and quality factors such as usability, efficiency, software maintainability
and portability”. John et al. (2017) [65] introduce the Service Provider DevOps (SP-DevOps)
framework, which addresses issues with service verification, observability, and troubleshooting.
The study also examines the entire development process, from design goals to tool implemen-
tation, demonstrating how SP-DevOps can enable carrier-grade operations and management in
the network virtualization era.

Furthermore, the IEEE DevOps standard mentions that the purpose of DevOps LCPs is to
specify required capabilities and practices for operations, development, and other key stakehold-
ers to collaborate and communicate to deploy systems and software in a secure and reliable way
[23]. Aiming to provide “a defined set of processes and methods to facilitate DevOps principles
and practices, including improved communication between stakeholders throughout the systems
life cycle”, but this is described while not relating or explaining directly the larger set of capa-
bilities or metrics found in literature and gathered in Article 1 and in Article 2. Despite that, the
standard does mention that DevOps LCPs are designed to address the increased rate of change
in modern development methodologies and to achieve “end user goals for increased productivity
and quality”, which reinforces the need to address the research problem of this thesis.

Finally, the LCP vector of this research builds upon the mentioned IEEE standard, drawing
themes like the associated Quality Assurance (QA) process in DevOps provides objective
evidence that prescribed processes have been followed competently and according to approved
plans to meet expected outcomes [23]. This thesis addresses this and other related issues in
Article 6.

1.4.5 DevOps Challenges and Benefits

The DevOps adoption together with its capabilities, metrics and process, has multiple benefits for
business, such as increased speed to market, product and service quality, customer relevance and

10

satisfaction, productivity, and innovation [44], however, this does not come without challenges.
In a study by Jabbari et al. (2018) [26] many challenges for the DevOps adoption were identified
which shows the need to prioritize what are the high-impact ones that need to be prioritized.
While Leite et al. (2019) [17] critically explore some of the most relevant DevOps challenges
reported by the literature.

Previous reviewed authors have largely acknowledged the obstacles faced by organizations
in adopting Developer (Dev) and Operations (Ops) (DevOps) capabilities to improve software
delivery. These challenges include communication structures that may hinder cross-department
collaboration, cultural change required to embrace DevOps practices, and technical barriers,
such as different development or production environments [23]. For instance, there are clear
problems when operation teams don’t align in monitoring metrics or often the developers
disagree internally over priorities like server uptime versus release frequency, according to Leite
et al. (2019) [17]. The refined aspects of cultural behavior are complex, specifically in big
organizations where management is not prepared for a cultural shift, or does not see it as a
requirement for a competitive advantage in a digital transformation. On the other hand, the
increase in Deployment Frequency (DF) is considered having a benefit, as are test automation
practices and greater cross-department collaboration for good communication [12]. In addition
to the speed advantages of small releases, DevOps adoption provides a highly powerful and
effective means of enhancing the final product by virtue of its more experimental nature.

In the following subsections, a background is provided based on the existing literature
within a synthesized list of challenges and benefits. A more detailed Systematic Literature
Review (SLR) research is done in Article 4.

Challenges

Technical and cultural: While adopting DevOps, several barriers prevent close collaboration
between the development and operations teams due to technical and cultural challenges [33, 66].
Adoption of DevOps requires overcoming technical challenges, such as different development
and production environments, as well as cultural ones, which are limiting cooperation between
engineering teams [33, 66]. Anandya et al. (2021) [67] mention highly bureaucratic deployment
processes, insufficient communication and collaboration issues, and a lack of a clear definition
of the strategic direction that is part of DevOps implementation. Miller et al. (2022) [68]
investigate the obstacles associated with DevOps in an environment of combat systems at US
Navy, where most challenges serialized were non-technical challenging circumstances, but
business regulations related restrictions still present significant bureaucratic friction.

Security integration: DevSecOps is the practice of integrating security processes and controls
into an organization’s DevOps pipeline. This comes with some challenges — protecting software
delivery while preserving agility in DevOps [69, 70]. The challenges of DevSecOps include
the absence of secure coding patterns, the nonexistence of automated security test tools, and the

11

lack of knowledge of static security tests due to unfamiliarity [63]. Rafi et al. (2020) [38] talk
about the problem in quality assessment of heterogeneous environment integrated data as well
DevOps security challenges and a prioritization based taxonomy to address them. Al-marsy
et al. (2021) [71] proposed a model to assess the issues in applying cloud computing for
health information systems, namely financial performance/cost, IT operational efficiency, and
security/governance/compliance.

Complexity in automation: The complexity of performance engineering approaches and
tools is a major hurdle to the common use of performance analysis in DevOps-driven projects as
well [72]. Hemon et al. (2020) [73] identify risk amplification with DevOps, and orchestration
of interactions between automation and knowledge sharing, respectively as problems areas
that need to be addressed, stating the need for research of any emergent sharing practices for
DevOps in large organizations. Waseem et al. (2020) [64] discuss challenges on implementing
Microservices Architecture (MSA) in DevOps and provide a list of common pitfalls.

Lack of a clear definition: It is difficult to determine the specific practices that organizations
ought to implement because there is no clear definition of what DevOps is [17, 31]. In Luz et al.
(2019) [25] the lack of knowledge for successful paths to DevOps adoption has been described
as a challenge. Kumara et al. (2021) [74] find challenges in implementation, design and the
violation of/adherence to the essential principles of Infrastructure as Code (IaC). Teixeira et
al. (2020) [14] highlight the challenge around common understanding of what "Dev-Ops" is, as
well as a lack of adoption models or fine-grained maturity models to assist DevOps maturation
and implementation.

Benefits

Improved collaboration and trust: DevOps strengthens the relationships between devel-
opment and operations teams, which in turn makes the workflow much more fluent [4, 12].
Alnafessah et al. (2021) [56] described DevOps as a method to break the silos between devel-
opers and operations teams for continuous and fast delivery, and quick responses to changing
requirements within the software life cycle. Hemon-Hildgen et al. (2020) [73] argue that DevOps
leads to higher job satisfaction compared to Agile only, and mention automation, orchestration
and sharing as a means of increasing the levels of job satisfaction and trust.

Enhanced IT performance: DevOps capabilities contribute to enhanced IT performance
by reducing waste and optimizing the entire delivery pipeline [5, 75]. Leite et al. (2019)
[17] review the literature and correlate the DevOps automation tools with performance, which
benefits engineers, managers, and stakeholders. Díaz et al. (2019) [76] describe the benefits
when adopting DevOps in terms of software delivery performance and highlights the metrics

12

provided by DORA as indicators for defining a set of software delivery performance industry
profiles (elite, high, medium and low performance).

Increased deployment frequency: DevOps enables organizations to increase the frequency
of software releases, allowing for rapid delivery of new features and products [21, 59]. Romero
et al. (2022) [77] document the implementation of DevOps practices, stating that DevOps “helps
organizations to speed up delivery time, improve software quality and collaboration between
teams” with practices such as IaC and Continuous Integration & Delivery or Deployment
(CI/CD), which also lead to increased product quality.

Better Quality Assurance and security: While DevOps practices improve services develop-
ment and quality assurance throughput, it also results in better software [78] Rafi et al. (2020)
[38] also discuss creating a taxonomy for DevOps security challenges to help practitioners
“with securing their DevOps implementations to provide secure better and continuous software.
According to Mishra et al. (2020) [2], DevOps focuses on the concept of deployment speed,
frequency, and quality as a key strategy to this quality pressure.

Regarding the IEEE Std 2675-2021 [23], it does not explicitly list challenges, but it implies
that there is a need for “establishing effective compliance and information technology (IT)
controls” as a response to challenges in “build, package, and deploy systems and applications in
a reliable and secure way”, which are stated has benefits.

In summary, there are several types of benefits resulting from DevOps’ adoption, which
can be translated into technical, cultural, and business benefits [29]. The adoption of DevOps
capabilities automates the development process, resulting in improved service performance,
enhanced scalability, and continuous software release and deployment, which may greatly reduce
the production cycle time, which was typically considered slow. Microservice architectures
are cited as an advantage because they allow faster release cadences to be achieved through
component decomposition. To sum-up, the authors recommend that DevOps various challenges
concerning communication & cultural change should not discourage organizations from its
adoption.

1.4.6 DevOps Outcomes

According to the previous authors, DevOps outcomes can be categorized into tangible and intan-
gible accomplishments that can be achieved through the implementation of DevOps capabilities
and cultural values [26, 69]. They aim to improve collaboration between the development and
operations teams, improve the speed and quality of Software Development (SD), and guaran-
tee the systems and applications safety and reliability. More precisely, the outcomes can be
considered an accelerated frequency of deployment, improved recovery times, and decreased
change failure rates, which will lead to better organizational results. Furthermore, the outcomes

13

of DevOps pertain to the effective utilization of CI/CD, and automated testing within the IT
infrastructure, with the aim of enhancing efficiency and accountability [38]. Overall, the ulti-
mate goal of these outcomes is the delivery of a product of the necessary quality to users and
other stakeholders. As a result, business purposes and technical demands may be addressed
over the Software Life Cycle Processes (LCPs) [23]. The DevOps standard defines DevOps
results as tangible outcomes of software development and IT operations teams integrating and
collaborating [26]. These outcomes are enabled by the set of practices and procedures that
simplify the entire software development cycle, from the design to production and implemen-
tation. The implementation of DevOps practices in accordance with IEEE Std 2675-2021 [23]
is expected to ensure that the outcomes of faster delivery of value to end-users, higher system
reliability, and enhanced compliance with legal and other requirements will be achieved. In
summary, DevOps outcomes are focused on improving the performance, quality of service, and
security of software delivery by bringing development and operations processes together and
using automated workflows and communication strategies among the parties.

Other authors offer insights into less systematized outcomes, like performance oriented
culture where DevOps facilitates earlier and more frequent communication between develop-
ment and operations, which reduces the time needed to set up development environments [33].
Low burnout, since organizations expect that the goal of reducing time-to-market will not be
achieved at the expense of product quality or increased staff burnout [19]. This leads to the
outcome of job satisfaction since DevOps adoption is expected to increase worker’s well-being,
team effectiveness and customer’s satisfaction [2]. Consequently, an increase in speed and effec-
tiveness of problem-solving permits faster recovery, due to improved communication between
development and operations personnel, which leads to more efficient and effective resolution
of problems [33] and better informed decisions. Therefore, with fewer problems, customer
satisfaction itself is stated as another important outcome [17]. Predictable and faster releases
are another outcome resulting from optimization and automation of processes leading to faster
time-to-market and improve software quality and faster delivery of new products and fea-
tures, reducing the lead time from development to deployment [19, 79] and release reliability.
DevOps strives to continuously improve software testing results by producing high-quality
code, which means fewer production failures [26] and better security and compliance [44].
This thesis proposes organizing capabilities with outcomes in Figure 2.10.

Finally, better communication and collaboration among stakeholders throughout the software
life cycle positively affects DevOps outcomes for acquirers, suppliers, integrators, maintainers,
and users. DevOps practices allow teams to create a continuous delivery pipeline that automates
the application build, package, and deployment. This, in turn, leads to faster and iterative
development.

14

1.4.7 DevOps Culture

The word "Culture" is defined as the way of life, especially the general customs and beliefs,
of a particular group of people at a particular time [80]. The literature suggests that DevOps
culture is associated with a movement intended to improve business value and at the same time
enhancing collaboration between development and operations teams. The DevOps culture aims
to break down the conventional silos, which Agile has evidenced [81], and take a next step
to foster collaboration among software-producing departments, addressing the issue of slow
feature releases and the compromise between speed and quality [2]. DevOps shifts the mindset
to say that organizations can achieve both speed and quality without having to sacrifice one of
them. This culture, if well adopted, can change the current environment to one that focuses on
standardization, automation, and a customer-oriented approach for quick software delivery.

Furthermore, DevOps culture is not limited to tools or associated practices, but instead serves
as an indicator of a broader organizational shift toward constant learning and adaptation to market
needs. It is characterized by a set of principles that promote a more flexible software development
life cycle centered around quality and efficiency [82]. In other words, DevOps culture will
encourage the removal of technical and cultural blockers while additionally promoting the
following principles:

Collaboration: reduces barriers between development and operations, enhancing software
deliveries with a shorter development lifecycle, and providing Continuous Delivery or Deploy-
ment (CD) at higher software quality [25, 83].

Automation: is an essential DevOps culture pillar for building, deploying, and infrastructure
provisioning/management. [82, 83].

Continuous Improvement: promotes Feedback loops and iterative development are impor-
tant in the culture of DevOps [2, 25, 84].

Knowledge Sharing: enables a collaborative DevOps culture via the exchange of learned
know-how and transparency across teams [82, 84].

Quality Assurance: benefits from integrating continuous testing and monitoring, QA hap-
pens through the life cycle [2, 31, 83].

Resilience: prompt recovery from failures and sustaining high availability. An autonomous
system is highly resilient in a DevOps culture because software systems are designed to not fail
easily or at all, while high available [23, 25, 85].

Agility: DevOps culture also promotes agile organizations that are responsive to or even
encourage changes in market condition and consumer demands [25, 86, 87].

Customer-Centric Approach: DevOps culture is associated with delivering valuable out-
comes directly to customers (end-users) and advocates for solid customer support [23, 62, 83, 88].

Cultural shift: to adopt DevOps culture, the organization needs to move away from the
traditional function-based, siloed structures [24, 83].

Measurement and Metrics: DevOps culture supports the use of metrics and continuous

15

measurement to gain insights into progress, performance, and reliability [2, 22, 25, 44].
However, some problems may also arise because emerging capabilities and practices might

call for a loosely defined concept, as do possible emerging metrics, which is likely to slow
adoption rates and lead to disagreements between team members [19, 33]. A deeper examination
of the possible interactions between continuous integration, culture, sharing, automation, and
others is done in this thesis to discover and systematize capabilities and metrics.

Finally, the transition to DevOps may also be more complex because it is a collaborative
process that is different from the methods that software companies have been using for many
years, thus the need for a cultural mindset shift [14]. DevOps is more than simply implementing
certain tools or practices. It implies a change in the organizational mindset, promoting a culture
of continuous improvement, knowledge sharing, and embracing changes triggered by market
demands [4, 89]. The culture is supported by values that facilitate a more responsive and agile
software development life cycle, along with standards of quality in performance efficiency [4, 25].
In essence, DevOps culture is about breaking down the silos between software development and
IT operations staff, all in order to establish a more closely integrated and automated approach
to creating, delivering high-quality software quickly and with flexible reliability [4, 25, 33, 89].

1.5 Research Communication

This thesis’s main contributions are related to the research problem that is stated in Section 1.2.
Given the aim of this research, the expected contributions are going from a theoretical approach
towards gathering empirical evidence to a more practical application of the findings in the last
article and in Chapter 8, the conclusion of this thesis. The enablement starts by considering
the lack of consensus in the literature regarding DevOps practices, capabilities, and metrics.
Subsequently, it encompasses the exploration and systematization of understudied capabilities
and metrics by extending the research to the existing gray literature. Which leads to a third
relational vector of DevOps life cycle processes from the meanwhile released IEEE Std 2675-
2021 [23] as seen in Figure 1.3.

By including original research that could be published, the goal was to ensure that the
findings had a steady and significant impact on the field, were peer-reviewed, and published in
reputable journals. As it can be observed in Figure 1.3 this was achieved by addressing the
research problem during thesis development. The responsibility of publishing and revising the
papers is done within the group of researchers, while the PhD candidate was the first author in
five of the six papers, the other authors provided essential feedback, mentoring or supervision.

A1) Capabilities and Practices in DevOps: A Multivocal Literature Review.
This first article conducts a MLR on the correlation between DevOps capabilities and

practices, aiming to comprehend diverse community perspectives and gain valuable insights
towards a more effective mapping of processes. An expanded literature review of 93 documents
in the form of books, academic articles, white papers and conference proceedings was used

16

Software and Systems
Life Cycle Processes

Publication Date:
May 2023
Journal:
Information & Management
Cited by: 9
Status:
Published

Capabilities and metrics in DevOps:
A design science study A3

Publication Date:
May 2022
Journal:
Software - Practice and
Experience
Cited by: 28
Status:
Published

DevOps benefits:
A systematic literature review

Publication Date:
September 2024
Journal:
Information and Software
Technology
Status:
Published

Mapping DevOps Capabilities to the
Software Life Cycle:
A Systematic Literature Review

A5

Submitted Date:
June 2024
Journal:
Journal of Systems &
Software
Status:
Under review

Exploring DevOps Success: A Case Study
on Key Capabilities,Metrics, and Lifecycle
Processes

A6

IEEE DevOps Std
2675-2021

ISO/IEC/IEEE Std
12207

Achieving
Successful

DevOps Adoption
in IT

Organizations

 Framework for
Improving DevOps
Adoption Success

Capabilities and Practices in DevOps:
A MUltivocal Literature RevIew

Publication Date:
April 2022
Journal:
IEEE Transactions on
Software Engineering
Cited by: 35
Status:
Published

A1 DevOps Metrics and KPIs:
A Multivocal Literature Review

Publication Date:
March 2024
Journal:
ACM Computing Surveys
Cited by: 1
Status:
Published

A2

A A

A4

Published article or
accepted for publication

Submitted
articlePhD Thesis

Figure 1.3: Publications included in this research

17

for this investigation. The report looked at 37 different DevOps capabilities and grouped them
into four categories: cultural, measurement, process, and technical. This article investigates
how capabilities emerge and evolve over time, demonstrating the adaptation process in the
context of dynamic collaboration among teams. The article explains the relationship between
capabilities and practices at various levels, as well as how they should be applied. Therefore,
the study indicates that industrial research vastly exceeded scientific research on this topic,
which supports a clear difference between capabilities and practices in achieving better DevOps
implementation.

This publication aims to assist in the adoption of DevOps. The explicit mapping of capabili-
ties to practices aids organizations in identifying the skills needed, and the processes contained,
making the transition from one process to a more refined and effective one easier. Collaboration
between teams, visual management to determine maturity levels, clear information about key
practices and capabilities, community agreement on important practices and capabilities, and fo-
cusing on specific capabilities like cross-team collaboration, continuous integration, continuous
delivery, proactive monitoring, and visual management capabilities.

A2) DevOps Metrics and KPIs: A Multivocal Literature Review.
The article presents the task of defining and categorizing the DevOps metrics to simplify

the process of DevOps adaptation and improve the performance analysis of DevOps practices
in organizations. The MLR included 139 documents, and the output was the identification of
22 main metrics and their definition, importance, in sets of Key Performance Indicators (KPIs).
The investigation reveals the need to use precise metrics to determine whether the software
delivery is being done well or needs improvement. The study’s outcomes assist researchers
and practitioners in understanding DevOps metrics and how to implement them effectively. The
findings highlight the importance of metrics like Mean Time To Recover/Restore (MTTR), Mean
Lead-time for Changes (MLT), Deployment Frequency (DF), and Change Failure Rate (CFR)
in driving outcomes and improving DevOps adoption success.

As DevOps adoption helpers, these metrics provide organizations with the tools to measure
and improve their DevOps processes, ensuring that they can track progress and make data-driven
decisions to enhance their software delivery performance. The publication points out that the
success of DevOps adoption in organizations can be attained by using suitable DevOps metrics
that are quantifiable, business-relevant, trustworthy, actionable and traceable indicators; catego-
rizing these metrics into Key Performance Indicators (KPIs); ensuring metrics are measurable,
relevant, actionable, reliable, and traceable; collecting broader sources, including practitioners’
perspectives; and using precise metrics to assess the success of DevOps capabilities adoption.

A3) Capabilities and metrics in DevOps: A design science study.
This is a research article that aims at finding the correlation between DevOps capabilities

and metrics, developing an artifact in the form of a matrix for evaluation, which supports the
implementation and the adoption of DevOps. The study included the two MLRs and 31 semi-
structured interviews with practitioners and experts, resulting in 37 DevOps capabilities and 24

18

metrics identified. Being that 22 metrics are gathered from the literature and two additional
were strongly mentioned in interviews. The publication also shows that for DevOps to succeed,
teams will need to be empowered, and the organizational culture will need to change. The
key contribution is a newly created outcome-based capability evaluation matrix. This matrix
helps understand which capabilities could use long-term gains with the right measurements
and converge, as well as which skills should be the main focus of future IT investments. As a
result, this finding shows that DevOps adoption requires a comprehensive approach to IT and
organizational improvement, which is vital for the delivery of a software performance.

As a DevOps adoption helper, the evaluation matrix provides a structured approach for
organizations to assess and improve their DevOps practices, ensuring that they focus on the most
impactful capabilities and metrics to drive continuous improvement: Such as empowering teams
to make decisions and changes, cross-team collaboration and communication, support learning
culture and experimentation, enabling transformational leadership, and shifting to blameless
postmortems to reduce fear of failure Thus increasing job satisfaction, team happiness, and
talent retention.

A4) DevOps benefits: A systematic literature review.
This work performs two SLRs. The first uses a total of 98 publications to elicit benefits, while

the second synthesizes the 19 DevOps benefits found, mapping them into 36 DevOps case studies.
The study identifies several key benefits, including improved collaboration and communication
between developers and operators, faster time to market, increased code quality, and enhanced
automation. Additionally, the study highlighted the challenges that companies face while
adopting DevOps, including resistance to change and cultural transformation. Consolidating
the benefits and challenges associated with DevOps is the most significant contribution this
study makes, providing actual data to support the various conclusions. The research provides
organizations who are interested in adopting DevOps with significant insights, highlighting the
need of tackling cultural and technical challenges in order to achieve effective adoption.

As DevOps adoption facilitators, the detailed mapping of benefits to specific case studies
offers practical examples of how organizations have successfully implemented DevOps and
the outcomes they achieved, providing a roadmap for other organizations to follow: Concept-
centric approach, willingness to share knowledge, use of technological tools for automation
and measurement, process optimization through lean methodologies, improving people/pro-
cesses/technologies capabilities, providing training to employees, and inclusion of operation
team members early in development.

A5) Mapping DevOps Capabilities to the Software Life Cycle: A Systematic Literature
Review.

This SLR maps DevOps capabilities to the Life Cycle Processes (LCPs) established in the
IEEE 2675-2021 standard [23]. The study investigated the relationships between DevOps capa-
bilities and LCPs, categorizing them and emphasizing the close interaction between technical
DevOps capabilities and LCP technical procedures. The main finding of this study is that eight

19

capabilities seem to have a very high impact on the supply process, requirements definition,
integration, and validation process. On the other hand, we can see that agreement processes
and measurement capabilities, despite having fewer relations, their influence with LCPs seems
particularly effective and meaningful based on the results. These findings can be useful for
organizations willing to improve the DevOps adoption by aligning capabilities with LCPs in
order to enhance the speed, quality, and reliability of the software delivery.

It is seen as DevOps adoption helpers, tools, and education aimed at applying the structured
approaches to processes optimization and DevOps capabilities assessment will enable organiza-
tions to get better performance and maturity levels in LCPs. This will also ensure that DevOps
practitioners will be able to seamlessly adopt the principles into their workflows: Cultural mind-
set change, collaboration among stakeholders, CI/CD, automation using FLOSS tools — like
Chef, Puppet, or Ansible — continuous monitoring and feedback loops, alignment with IEEE
standards, a structured approach for optimizing processes, providing appropriate information to
managers and teams, fostering a culture of learning and experimentation.

A6) Exploring DevOps Success: A Case Study on Key Capabilities, Metrics, and Life
Cycle Processes.

In this case study, the journey of a private software company is examined towards adopting
DevOps as a software development approach and discuss the implications of this adoption. The
study identifies, in total, 38 symbiotic relations between capabilities and metrics and between
metrics of life cycle processes; along with key initiatives, benefits, and challenges observed.
It also sheds light on the need for self-service repository management along with other self-
services for empowering teams, like an internal catalog to validate maturity and cloud-native
infrastructure that enables ease of management. These findings do reinforce the strong need
for product prioritization of non-functional requirements, information transparency, automation,
and standardization for successful DevOps adoption. The results include important takeaways
for companies seeking to adopt DevOps with attention paid largely to business, technical and life
cycle process alignment in driving towards capabilities working together as one engine instead
of disjointed units.

As DevOps adoption helpers, the detailed analysis of the company’s DevOps journey provides
insights into the practical challenges and strategies for overcoming them, offering a compre-
hensive guide for other organizations to follow: Self-service repository management, internal
catalog for evaluating maturity, cloud-native and open-source solutions, product prioritization,
information visibility, automation, standardization, improved collaboration and communication,
CI/CD, automated testing, monitoring, continuous improvement through data gathering and
analysis. Furthermore, the case study was presented internally in the organization, where feed-
back was given and considered. Plans have been discussed to publish a practical version of the
case study together with Google DORA in the future.

In conclusion, the six articles emphasize the importance of establishing and classifying
DevOps capabilities and metrics with lifecycle processes, as well as dealing with cultural

20

and technical challenges for better DevOps adoption success. The full scope of the research
underscores the importance of a holistic strategy for increasing team autonomy, sustaining
an environment where it is safe to take risks and learn from failure on a consistent basis.
Furthermore, using concrete operational performance improvement metrics to achieve better
software delivery performance. These observations should give good direction for organizations
who are building new DevOps teams and also improving their software and systems life cycle
processes.

1.6 Thesis Organization

The presented document follows the format of an article-based thesis. This allowed the authors
to have more time to write high-quality scientific papers.

The Introduction is done in Chapter 1, where the motivation, research problem, the ob-
jectives and deliverables of this research are explained and at the same time In Section 1.4 a
detailed theoretical background of the key concepts is given about DevOps, DevOps Adoption,
Capabilities, Metrics, Life Cycle Processes, Challenges and Benefits, Outcomes and Culture.
The remainder of the document is structured as follows.

From Chapter 2 to Chapter 7 the six articles are introduced and included, retaining the
same format that was submitted, in order to comply with the required formatting of the journals.
Despite them appearing as separate work, their respective figures, tables, and major sections
appear and are linked via the lists and table of contents. This was done using the LaTeX package
pdfpages2. The articles appear in the same order as numbered in Figure 1.3.

Lastly, Chapter 8 contains the conclusion of the research with summary and discussion
where the key concepts and the framework for improving DevOps adoption success is presented
and discussed as another important output of this thesis. After this, limitations are listed and
some possible upcoming future work is suggested.

2https://ctan.org/pkg/pdfpages

21

22

CHAPTER 2

Article #1

This article (A1) starts the research that motivated and led to this thesis [90]. Since its inception,
it has been produced, strongly improved, and published during the development of this thesis.
Therefore, it is included as the basis for gathering community consensus on the relationship
between DevOps capabilities and practices. The study conducts a Multivocal Literature Review
(MLR) to identify, categorize, and analyze the main DevOps capabilities and practices, their
definitions, relationships, and how they contribute to better DevOps adoption.

As a result, it contributes and categorizes 37 capabilities, their mentions in literature, and
their definitions. The concepts of Practices and Capabilities were mapped in ordered taxonomy.
The outcomes are designed to help researchers and practitioners understand how capabilities
and practices are connected at different levels. The research framework of analysis was used to
analyze data in a structured way and connect capabilities and practices findings. The relation
of several capabilities and practices was analyzed and discussed for generating outcomes and
results.

Article details:

– Title: Capabilities and Practices in DevOps: A Multivocal Literature Review

– Date: April 2022

– Journal: IEEE Transactions on Software Engineering

– Scimago Journal Rank: Q1

– Publisher: Institute of Electrical and Electronics Engineers Inc.

23

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Capabilities and Practices in DevOps:
A Multivocal Literature Review
Ricardo Amaro∗ , Ruben Pereira† and Miguel Mira da Silva‡

Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal Email:∗ricardo_amaro@iscte-iul.pt,†ruben.filipe.pereira@iscte-iul.pt
Instituto Superior Técnico, Universidade de Lisboa, Portugal Email:‡mms@tecnico.ulisboa.pt

Abstract—Context: To meet the demands of customers and market, IT organizations are seeking to implement DevOps. While many
succeed in DevOps adoption, others lack the knowledge on how to incorporate DevOps culture, process, measurements, and techniques
in their business. Thus, successful adoption is still inconsistent, highlighting the need to provide management with relevant information to
support the development of DevOps Capabilities effectively. But what are these Capabilities? Unfortunately, there is still a lack of clarity
about DevOps Capabilities and their relationships to DevOps Practices and Outcomes among researchers and practitioners.
Objective: This research aims to gather community consensus on the relationship between Capabilities and Practices, so a better
DevOps implementation can be mapped. Seeking to define DevOps Capabilities and Practices concepts and to identify, organize and
summarize Capabilities as they relate to Practices.
Method: A MLR is conducted, with 93 documents gathered and thoroughly examined from throughout the community, including books,
scientific articles, white papers, and conferences, among others.
Results: This survey contributes a list of 37 organized Capabilities, their mentions in literature, and their definitions. The concepts of
Practices and Capabilities were mapped and categorized in an ordered taxonomy.
It is concluded that industry research has much outweighed scientific research on this topic, with Capabilities evolving dynamically over
time, reinforcing team collaboration and communication as the most crucial one. The study’s Outcomes will assist researchers and
practitioners understand how Capabilities and Practices are related at different levels and how to better implement them.

Index Terms—DevOps Capabilities, DevOps Practices, Software Engineering Process, Software release management and delivery,
Software Development, Multivocal Literature Review

F

1 INTRODUCTION

Today, IT organizations are increasingly challenged with
ever-changing customer requirements, competition, regu-
latory environments and sophisticated outside threats [1].
Therefore, the need to establish a competitive advantage
by doing things faster and better than competitors [2], like
delivering and supporting software, with reliability and in
a predictable form has become increasingly important [3].
However, this need for frequent software delivery, without
sustained builds, proper testing and release automation,
generates burnout and pain in the engineers doing op-
erations, decaying software delivery performance [4] and
reliability [5].

In consequence, during the last decade, DevOps has
become a rising mindset [6] in the Software Engineering (SE)
industry. DevOps organizational approach stresses empathy
and encourages greater collaboration between engineering
teams involved in the software delivery [7], in order to pro-
vide better end user experience [8], reduce development time,
enhance deployment rates, increase stability [9], optimize
Mean Time to Recover and reduce cost of deployment and
implementation [10].

On the other hand, in the cases that leadership supports
this transformation, it still needs to have a clear vision [11]
of the steps to take ahead based on information in order to
increase efficiency [2] and ensure the success of applying Dev-
Ops Capabilities. This implementation is a complex process
[12] demanding control via a rigorous systematization of self-
assessment [13], which in turn should result in growth of the

maturity levels that will lead to improved performance [14].
A good way to control and assess these levels of maturity and
adoption would be by implementing visual management [15]
communicating, in a way that takes little or no prior training
to interpret, for instance, if a given software delivery process
within the pipeline [16], is at optimal levels or could be
improved.

As a result, it would be beneficial to visually comprehend
the Practices that comprise DevOps as a process, as well as
the teams skills included in Capabilities required to carry out
these Practices as shown in Figure 1.

Figure 1. DevOps Capabilities and Practices Conceptual Map.

In this conceptual map, to be treated as the research
framework of analysis, based on literature findings, the

24

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

team learns skills [17] that are required by DevOps Capa-
bilities and related Practices, generating DevOps Outcomes
and results [18]. Following an impact mapping [19] where we
should work backwards from the Outcome [9]. This might
be beneficial for practitioners, since it will later improve a
DevOps assessment [1] that is done to ensure Outcomes
are met and evaluate [20] each DevOps Capability. The
framework is instantiated and analyzed in Section 6.5.

In this model, if a team wanted to enhance a specific
Capability’s Outcome, such as doing Continuous Integration
(CI) well, they might look at which related team skills have
a positive influence on the Outcome and seek to improve
the team’s knowledge needed for these Practices [21] as
part of the DevOps Process. If the team does CI properly,
they may be able to deploy more regularly. This Continuous
Delivery or Deployment (CD) is likewise a desirable Outcome,
and it is done through other Practices. Thus, the meaning
of Capability varies according to context. Outcomes are
the expected results researched by Diaz et al. [18] like
faster time-to-market, better software of research process
productivity, and team effectiveness & satisfaction. In essence,
a framework supported by a good distinction between
Capabilities and Practices focused on Outcome results to
pursue a better DevOps implementation.

Providing teams and managers a clear picture of the key
Practices, the Capabilities required of individuals and teams
to do these Practices well, and the desired Outcomes would
contribute to better knowledge of how to apply DevOps
Capabilities iteratively to various organizational situations.
But what are these Capabilities and their relation to Practices?
Unfortunately, relationships between DevOps Capabilities
and Practices, leading to Outcomes, are still unclear within
the DevOps community, with dispersed publications having
different or incomplete approaches to clarify the problem.

Therefore, the research problem is identified as the follow-
ing: There is a lack of clarity about DevOps Capabilities
and their relationships to DevOps Practices among the
DevOps communities of researchers and practitioners, as
there seems to be scattered knowledge about their definitions
and relations in dispersed publications.

This article proposes to understand and synthesize the
main DevOps Capabilities that are mentioned in publications
and how they relate to DevOps Practices. Based in Figure 1
do a broad literature review in order to instantiate this theory,
which is found in the formal literature, and try to deepen
some concepts of this theory by expanding the research to
texts from practitioners in the industry. It is in this connection
that an investigation will be conducted using a literature
review to determine what Capabilities exist and how they are
related to Practices. The objective of the research is to survey
a community consensus on which DevOps Practices and
Capabilities are most significant, as well as their relationships,
enablement, and Outcomes.

What Practices and Capabilities are important in DevOps,
and what are their relationships, enablement and Outcomes?
Since the DevOps topic has been much more explored and
analyzed from the industry side than from the scientific side,
as observed in several previous related MLR works [22], [23],
[24], [25], [26], with major technology companies releasing
regular reports [10], [27], [28], [29], [30], [31], [32] and regular
conferences [33], [34], notwithstanding Systematic Literature

Reviews (SLRs) and Surveys [20], [35], [36], [37], in this
paper a Multivocal Literature Review [38] is conducted
to identify the main DevOps Capabilities and Practices,
their definitions and relationships in order to map out the
Capabilities mentioned by DevOps practitioners, researchers
and how they relate Capabilities to Practices. Therefore,
including the viewpoint of practitioners and contrasting
academic and practitioner disparities in place, with the goal
of aligning them, hypothesizing, and drawing attention to
these discrepancies.

The primary objective of this study, which is to investi-
gate Capabilities and Practices, can be translated into the
following research questions:

• RQ1. What are the main Capabilities needed to imple-
ment DevOps?

• RQ2. How frequently are Practices or Capabilities
mentioned in gray literature compared to academic
literature?

• RQ3. Are authors aligned on the relation between
DevOps Capabilities and Practices?

2 DEVOPS

DevOps is an acronym for the Developer (Dev) and Op-
erations teams (Ops). These engineering teams work col-
laboratively to eliminate so-called “information silos” [39],
based on a cultural mindset change early proposed by Debois
et al. [40], in order to achieve higher delivery, quality and
cooperation [41] via human collaboration across departments
and automation [36]. A standard definition for DevOps
is proposed by Olszewska et al. in the IEEE Standard
2675-2021 [42] where it is mentioned a set of principles
and Practices that promote greater communication and
cooperation among key stakeholders for the goals of defining,
creating, and operating systems and software products or
services, as well as continual improvement in all elements of
that entity’s life cycle.

From the industry side, blog posts on the topic are
common, but they mostly distinguish on a concrete concept
of the term. Jabbari et al. [43] proposed that DevOps is
defined as a development approach aiming at bridging
the gap between development and operations by stressing
communication and cooperation, continuous integration,
quality assurance, and delivery with automated deployment
through the use of a set of development processes [44]. It
can also be seen as a conceptual framework that is based
on the Capabilities, mentioned in Section 6.2. Humble et al.
proposed it to be focused on the acronym CAMS (Culture,
Automation, Measurement and Sharing) [45] and later added
to these four pillars, the Lean (L) pillar, becoming the
acronym CALMS [46].

Ebert et al. [48] in his paper about DevOps, emphasizes
the culture shift toward collaboration between development,
quality assurance, and operations. This new approach to soft-
ware delivery that occurs through the three ways, which are
the principles underpinning DevOps, illustrated in Figure 2,
as opposed to the traditional approach that is separated in
organizational silos. This characteristic of good cooperation
between IT Development and IT Operation teams is crucial
in order to ensure successful deployment and operations of
IT systems [49].

25

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

The	First	Way:
Systems	Thinking	

The	Second	Way:
Amplify	Feedback	Loops

The	Third	Way:
Culture	Of	Continual
Experimentation	And
Learning

Figure 2. The Three Ways: The principles underpinning DevOps
(adapted) [47].

DevOps is then a culture, movement or Practice em-
phasized on collaboration and communication, focused on
improving the software release cycle speed to production
and build automation of new software components, while
keeping high quality, mentioned in Lwakatare et al. [17],
where a literature review on the term DevOps concludes
that DevOps is a change of mindset substantiated with a set
of automated Practices to encourage cross-functional team
collaboration.

Lastly and according to Riungu-Kalliosaari et al. [50],
DevOps is a set of Practices aimed to reduce the time that a
change made to a system takes to go into normal production,
while ensuring high quality and the least friction and blame
between teams as opposed to trust and empathy.

3 MULTIVOCAL LITERATURE REVIEW

A Multivocal Literature Review (MLR) [38] is a type of
Systematic Literature Review (SLR) [51], which aims to
incorporate gray literature like blogs, videos, web-pages
and white papers, which are constantly produced by SE
practitioners outside academic forums, notwithstanding
the published (peer-reviewed) writing like journal articles
and conference papers. Therefore, MLRs are important to
the expansion of the research by including literature that
normally would not be taken due to its “gray” nature [52],
as show in Figure 3.

MLR
SLR
Formal

Literature

GLR
Gray

Literature

Figure 3. The relationship of SLR, GLR and MLR Studies [38].

While considering conducting a Literature Review from
formal literature in the specific topic of DevOps, a few
researchers already realized that “broadening” the scope and
including Gray Literature (GL) would add value and benefits
to the review study. Some examples of successful DevOps
research, in the same area, using MLR already exist [22],
[23], [24], thus corroborating the practical usefulness of this
method for the proposed research, expanding the diversity

of sources that are available in a variety of forms, reflecting
different purposes and perspectives [53]. The objective to be
pursued with this MLR research is to map out the DevOps
Capabilities and Practices, mentioned by both DevOps
practitioners and researchers, and how they relate Practices
to Capabilities. Therefore, it is fundamental to survey what
practitioners outside the academia are also saying on this
matter.

Given the need to expand this study outside the bound-
aries of scientific knowledge and therefore MLR gives us that
opportunity, while still maintaining a rigorous qualitative
analysis procedure [53] for reviewing that literature. The
separation of several types of literature is seen in Table 1,
where is listed ’White’ and ‘Gray’ literature sources into
1st tier, with high credibility, and 2nd tier with moderate
credibility. For DevOps, it is preferable to include 2nd tier,
given that there is valuable expertise and knowledge on those
sources. However, it is also necessary to exclude literature
that corresponds to ideas, concepts and thoughts, like tweets,
social networks or emails from the 3rd tier.

Table 1
Spectrum of the ’white’, ‘gray’ and excluded literature (adapted) [38].

’White’ literature ’Gray’ literature Excluded literature

Published journal papers Preprints Ideas
Conference proceedings e-Prints Concepts

Books Technical reports Thoughts
Lectures
Data sets

Audio-Video (AV) media
Blogs

Multiple guidelines exist in the literature to conduct
SLR studies in SE. However, several phases of MLRs differ
from those of traditional SLRs. In particular, the process of
researching and assessing the quality of the source. Therefore,
SLR guidelines are only partially useful for conducting MLR
studies as seen in Figure 4. This process shows the planning,
conducting and reporting as proposed by Garousi et al. [38].

In following this process, it is expected that the gray
literature will return substantial knowledge in certain areas
of this DevOps research, but of course, the inclusion of
such literature will bring certain challenges as the evidence
provided is often based on experience and opinion. For that
reason, for this research process systematic guidelines will be
used for performing MLR in software engineering (SE) [52],
to approach a structured search, similarly to SLR, collecting
the materials by applying the inclusion and exclusion criteria
in the search results obtained from well known search
engines like Google search, Google Scholar and others.

1) The MLR planning phase consists of the following two
phases.
• Establishing the need for an MLR in a given topic.
• Defining the MLR’s goal and raising its research

questions.
2) Once the MLR is planned, we proceed to conducting

the review in five phases.
• Search process for formal or GL is typically done via

means of using defined search strings.
• Source selection normally includes determining the

selection criteria and performing the selection process.

26

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

Establishing the need for an MLR

Lack of consensus on the concepts of

DevOps capabilities and practices
among the DevOps research and

practice communities.

--

Defining the MLR’s goal and raising

its research questions
 Identify the main capabilities, practices,

their definitions and differences.

RQ1 - What are the main Capabilities
needed to implement DevOps?

RQ2 - How frequently are Practices or
Capabilities mentioned in gray literature

compared to academic literature?

RQ3 - Are authors aligned on the

relation between DevOps Capabilities
and Practices?

Planning the MLR Conducting the MLR Reporting the MLR

Search process & source selection
Includes search keywords

on chosen search engines and

having a pool ready for

inclusion/exclusion
--

Study quality assessment
Apply inclusion/exclusion criteria

--
Design of data extraction forms

Attribute identification and
generalization

--
Data extraction

Starts the systematic mapping

--

Data synthesis

Returns MLR results (answers to RQs)

Summarizing the extracted data

from the selected literature

Organizing retrieved data

into consumable form

in charts, tables and lists.

--

Report findings

Writing the report

Elicit the main DevOps capabilities

and practices, their definitions and

differences

Figure 4. Multivocal Literature Review (MLR) steps adopted in this research [38].

• Study quality assessment of sources in order to
determine the extent to which a source is valid and
free of bias.

• Data extraction design forms, procedures and logis-
tics, with possibility of automated data extraction and
synthesis.

• Data synthesis with chosen qualitative and quantita-
tive techniques.

3) Finally, reporting the review is the last phase.
• The reporting phase of an MLR is similar to the

SLR guidelines of Kitchenham and Charters [54],
summarizing the extracted data from the selected
literature and report findings.

4 RESEARCH DESIGN AND IMPLEMENTATION

This section corresponds to the first phase of the mentioned
MLR process. It begins by explaining the motivation for
this work, followed by the objectives and the corresponding
research question that is intended to be answered throughout
the research. After that, a review protocol is presented.

4.1 Motivation
In software development organizations, that want to im-
plement DevOps internally, management needs to have
relevant supporting information about this technological
transformation, in order to assess the success and increase
efficiency [2] of applying Capabilities [55], [56]. However, the
concept and relationship of Capabilities and Practices is still
not well-defined within DevOps practitioners community.

As this topic has been further explored and analyzed from
the industry side than from the scientific side, with leading
technology companies regularly publishing reports [57],
a Multivocal Literature Review expands the diversity of
sources to identify the main Capabilities and Practices.

To provide order and clarity to the meanings and re-
lationships of DevOps Practices and required Capabilities,
an expanded variety of sources must be gathered. With
the addition of gray literature to review, a comprehensive
survey can be conducted on not only what the scientific

literature specifies about Capabilities and Practices, but also
what the industry generates dynamically and uses internally.
Combining both points of view will enrich the research
questions that are proposed in Section 1.

4.2 Review Protocol

The complete review protocol is illustrated in Figure 5.

Dataset searching with string

Snowballing

Inclusion and Exclusion Criteria

Abstracts Screened

Full-text document to assess eligibility

Final Document Set

Figure 5. Review protocol performed in this research.

In order to find other studies related to this work, that
may achieve answers to the proposed research questions, a
search was conducted in April 2021 using various keywords.
The search string used to perform the search in order to
retrieve the maximum number of studies and the chosen
datasets are listed in this section.

• Search String: (devops AND (Practices OR
Capabilities)) .

• Datasets: The search engines used were, Google search1,
Scopus2, Web of Science3, IEEE4, ACM5 and EBSCO6.

The first set of papers is obtained. In a first phase, after
the search is complete and snowballing is done, inclusion

1. https://www.google.com
2. https://www.scopus.com
3. https://apps.webofknowledge.com
4. https://ieeexplore.ieee.org
5. https://dl.acm.org
6. https://search.ebscohost.com

27

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

and exclusion criteria will be applied for refining the search
results.

To facilitate searching and collecting high volumes of gray
literature, some code was developed as seen in the source
code in Appendix ?? (??) in order to parse the data into CSV
files [58]. This way we can ensure obtaining clean results
that are not specific for the user, but general, this solving
the problem of consistency in the returned results because
Google returns customized results that are tailored differently
for different users based on their previous search history and
preferences. Lastly, it facilitates the work of fetching the
results into spreadsheet files that are easily consumable in
the MLR process.

The inclusion and exclusion criteria for this MLR is shown
in Table 2. After that step, the abstracts must be screened
in order to evaluate the relevance they have to the research.
Finally, the relevant papers are read in order to obtain the
final selection of studies to perform the review.

Table 2
Inclusion and exclusion criteria applied in this research.

Inclusion Criteria Exclusion Criteria

Written in English Unidentified author
Published in and after 2013 No publication date

Full-text accessible Advertisement or Job Post
Mentions DevOps Capabilities or Practices

5 CONDUCTING THE MLR
In this section, it is described how the review is conducted,
which is the second phase of the SLR. At this moment, the
search is performed using the search query over the selected
databases and an analysis is carried on top of the extracted
data.

5.1 Selection of Studies

For reference, the complete summary of the review process is
shown in the diagram in Figure 6 with a visual representation
of the applied MLR selection process. This reflects all the
selection work done through the methodical process of MLR.

EBSCO
(560)

Inclusion/Exclusion Criteria

Filter 1 - Dataset Searching with String
All fields; All documents (3929 papers)

Filter 2 - Dataset filter by Abstract
Abstract; All documents (1463 papers)

Filter 4 - Removed duplicates
(287 papers)

ACM
(878)

IEEE
(178)

Web of Science
(224)

Scopus
(1855)

In
iti

al
 S

ea
rc

h
of

 K
ey

w
or

ds
 w

ith
 S

ea
rc

h
St

rin
g:

(d
ev

op
s

AN
D

 (p
ra

ct
ic

es
 O

R
 c

ap
ab

ilit
ie

s)
)

Filter 3 - Inclusion & Exclusion Criteria
Peer-reviewed & revelant (464 papers)

Filter 5 - After Abstracts
Screened: (167 papers)

Filter 6 - Full-text
Document

Assess
(93

papers)

Google
(243)

Snowballing - Over start literature search
Peer-reviewed & revelant (1477 papers)

Figure 6. Followed Multivocal Literature Review process (adapted) [38].

In the initial search step filter 1 (All fields; All documents)
was used together with the search string, both present
in Table 3. This is shown in Table 3, as part of the MLR
protocol to find the final set of article, which gives us a
relation of the articles found in conjunction with the filters
used.

The discrepancy from filter 1 to filter 2 is justified by the
fact that initially the keywords could be found anywhere
within the returned item and some search engines return
more literature than just academic papers, like newspapers
or reports. While in the case of Google search engine, this
does not apply. Thus, the results remaining the same.

On a second pass, filter 2 (Abstracts; All documents) was
used over the existing search results, therefore reducing the
number of documents that have an abstract mentioning the
keywords, narrowing down to a total of 1463 publications.

Table 3
Filters used in the MLR protocol.

Database Filter 1 Filter 2 Snowballing Filter 3 Filter 4 Filter 5 Filter 6

Google 243 243

+14

89 89 77 75

Scopus 1855 342 157 42 40 2

Web Of Science 224 174 91 29 24 1

IEEE 178 146 67 67 14 8

ACM 878 92 22 22 6 4

EBSCO 560 475 38 38 6 3

Total 3929 1463 1477 464 287 167 93

Legend: Filter 1 = Query All fields, All documents; Filter 2 = Query
Abstracts, All documents; Snowballing = Applied over starting
literature search [38] Filter 3 = Relevant (inclusion/exclusion criteria);
Filter 4 = Remove duplicates; Filter 5 = After Abstracts Screened; Filter
6 = Full-text Document Assess;

In the next phase a snowballing [59] is conducted leading
to extra 14 relevant publications found, which increased the
total number of papers.

Applying inclusion & exclusion criteria filter 3, present
in Table 2, 464 publications remain. This leads to filter 4,
which is defined to remove the duplicates from the list
of results in order to obtain the set of documents to have
abstracts screened. For the cases belonging to gray literature,
there is no abstract. Therefore, all text was skimmed, making
it possible to better assert an inclusion or exclusion of that
publication. In the end, after all abstracts are screened, 93
publications remain for full-text document assess.

5.2 Data Extraction Analysis
After selecting the final set of publications, an analysis of the
different components of the results is presented here, in a
relationship of the final set of documents based on the source
data. This analysis arises from the evaluation of the full text
of the 93 publications eligible for extraction of any relevant
information for this research. An overview is also given of
which years and categories of publications were selected for
full reading.

5.2.1 Gray and white literature number of contributions
The relation of final document set by database reflected
in Figure 7 show that 75 results came from Google search

28

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

with 80,65% of gray literature. For the cases of Scopus, Web
Of Science, IEEE, ACM and EBSCO they all contributed with
the total sum of 18 (19,35%) of relevant research documents.

75

8

4

3

2
1

Google Search (80.65%)

IEEE (8.60%)

ACM (4.30%)

EBSCO (3.23%)

Scopus (2.15%)

Web Of Science (1.08%)

Figure 7. Distribution of the final set of documents per database.

5.2.2 Distribution of publications over the years

Important to note the distribution and growth of the selected
papers shown over the years in relation to the publication
seen in Figure 8. This shows a growing interest in the last
three years with an increase in volume of research work
related to researching Capabilities, confirming the potential
interest and usefulness of this research might have in the
area. The first publication from this set was Puppet Labs’
2013 State of DevOps Report [27], that was followed by the
next 2014 State of DevOps Report [28] and a webpage on “Six
Core Capabilities of a DevOps Practice” from the New Stack
website [60]. In 2015, 2016 and 2017, there is a continued
growth in webpages and conference papers in 2017.

The interest in gray literature has risen significantly in
2018, coinciding with the release of the book Accelerate [9],
as evidenced by the enormous increase of webpages in
that year, indicating that practitioner publications have
evolved far quicker than scientific research. Despite a brief
reduction in publications in 2019, practitioners’ publications
still continued to grow in 2020 as we can see in Figure 8. It
becomes important to note that the values for 2021 are lower
because the search that created the database for this paper
occurred in March 2021, and therefore it is an incomplete
year.

2014 2016 2018 2020

0

5

10

15

20

25

Years

N
um

be
r

of
Pu

bl
ic

at
io

ns

Techreport Webpage Article
Conference Book

Figure 8. Distribution of publications per type over the years.

6 REPORTING THE MLR
At this step of the MLR, the DevOps Capabilities and
Practices are discussed and reported, and all three research
questions are assessed in light of the publications obtained us-
ing the research protocol. This leads to improved definitions
of DevOps Capabilities and DevOps Practices in Section 6.5,
together with a DevOps Capabilities and Practices instan-
tiation of the framework presented in Figure 1. Based on
the achieved definitions given in Table 10 and Table 11, this
section will focus on using the term “Capability”, since that
is better aligned with the findings and more applicable for
the research in hand.

6.1 Results Analysis

For the systematic coding review a set of base studies were
selected that already elicit different Capabilities based on
the work of Smeds et al. [55] and Senapathi et al. [61], the
scientific book Accelerate [9] and the DevOps Research and
Assessment (DORA) [56]. Since most of the Capabilities
names have a match, a list was extracted and then used
on the full-text analysis of the papers. From this point
on, a compilation of Capabilities and Practices (when also
mentioned as Capabilities) is gathered, with the attention
to only retain the relevant ones that are mentioned and
explained in the texts and keep the list manageable.

The publications found were also analyzed with the
protocol seen in Table 9 in mind. The first base study dates
back to 2015, when Smeds et al. [55], proposed a set of
Capabilities that were later referenced and augmented in
another research conducted by Senapathi et al. [61] in 2018.
In this paper, the author discusses and establishes what the
DevOps technology enablers and engineering Capabilities
are, here presented in Table 4.

Table 4
List of DevOps Capabilities proposed by Senapathi et al. [61].

1) Collaborative and continuous development
2) Continuous integration and testing
3) Continuous release and deployment
4) Continuous infrastructure monitoring and optimization
5) Continuous user behavior monitoring and feedback
6) Service failure recovery without delay
7) Continuous Measurement

Interestingly, from all the final publications gathered in
this research, only two of the scientific literature papers refer
to the work of Senapathi et al. [61]. The mentioned papers are
“A maturity model for DevOps” [62] and “Managing quality
assurance challenges of DevOps through analytics” [63],
therefore evidencing the low impact of the first definition
proposals had in the long term.

It is noted in literature that these Capabilities bring
several types of advantages which can be grouped or
categorized into technical, cultural and business benefits,
Kim et al. [64]. The technical Outcomes are mostly in the
Practices of Continuous Integration, Delivery and Reliabil-
ity [5]. The cultural benefits reside in the improvement of
communication and the creation of stronger feedback and
collaboration between different teams [20], [28], [32], [44],

29

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

[61], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
[75], [76] and, in result, to improve employee motivation,
which usually contributes to achieving the organization goals.
Finally, the business benefits are on the customer side and the
faster delivery of value, and at the same time ensuring greater
business stability and increased innovation [77]. Evolving
from the various State of DevOps reports research done over
the years [8], [57], 24 Key Capabilities have been published
in the book Accelerate [9] in 2018, where the five categories
were initially proposed can be seen in Table 5.

Table 5
List of Capabilities in five categories proposed by Accelerate [9], [78].

Continuous
Delivery Architecture

Product
and
Process

Lean
Management
and
Monitoring

Culture

Version control
Loosely
coupled
architecture

Customer
feedback

Change
approval
processes

Westrum
organizational
culture

Deployment
automation

Empowered
teams

Value
stream Monitoring Supporting

learning

Continuous
integration

Working in
small
batches

Proactive
notification

Collaboration
among teams

Test
automation

Team exper-
imentation WIP limits Job satisfaction

Test data
management

Visualizing
work

Transforma-
tional
leadership

Shift left on
security
Continuous
delivery (CD)

More recently the DevOps Research and Assessment
(DORA) [56] team has redefined a set of Capabilities seen
in Table 6, that correlate to Accelerate [9], but expands and
refines them based on a several year research and data from
practitioners worldwide. The correlation can be immediately
noticed in the way continuous delivery and architecture
categories are merged into a single technical category of
Capabilities.

The research here presented also identifies how an
important Capability such as collaboration among teams
was dropped from Table 6 cultural category, when compared
to Table 5, despite the fact being the most mentioned from
all Capabilities, 81 times out 93 publications seen in ??. As a
result, this Capability was kept and assumed relevant.

Many are high-level Outcome Capabilities, while others
are Capabilities in the sense of being able to do a Practice
effectively. But in general, it is noticed a growth in the number
of technical and measurement Capabilities, such as database
change management, monitoring systems to inform business
decisions, cloud infrastructure and code maintainability.

Regarding the frequency characteristics of identified
Capabilities, it is important to reflect on the growth year-
by-year seen in ?? and observe in Table 7 that there is a
sudden growth in almost all of them in 2018, coinciding with
the release of the book Accelerate [9], from which several
practitioner publications have been inspired and evolved [78],
[79], [80].

The following Table 7 is a summary of ?? where 2021 is
excluded as an incomplete year and the remaining years are
grouped together to give better visibility of the Capabilities’
growth over the years.

Table 6
List of four Capability categories proposed by DORA [15], [56].

Technical Process Measurement Cultural

Version control Team experi-
mentation

Monitoring
systems to
inform business
decisions

Westrum
organizational
culture

Trunk-based
development

Streamlining
change approval

Monitoring and
observability Learning culture

Continuous
integration

Customer
feedback

Proactive failure
notification Job satisfaction

Deployment
automation

Visibility of
work in the
value stream

Work in process
limits

Transformational
leadership

Continuous testing Working in
small batches

Visual
management
Capabilities

Continuous delivery
Architecture
Empowering teams
to choose tools
Test data
management
Shifting left on
security
Database change
management
Cloud infrastructure
Code
maintainability

Important to note that since the values gathered in 2021
are only up to March they are residual, and could give a
wrong perception of the growth of the several Capabilities.
Therefore, they are omitted to not affect the reading.

This gives an overview of how the various Capabilities
have grown steadily in the literature over the years, and
observe the big leap in 2029-2020, namely in cross team
collaboration, continuous integration, continuous delivery,
monitoring and test automation.

The most recent rising stars seem to be C20-Shift left
on security, C30-Customer focus/feedback and C37-Visual
management Capabilities, which have seen a relative jump in
2019-2020. Interestingly, C37-Visual management Capabilities
in DevOps have been getting more traction in the latest
years, which can be clearly supported by the interest that
organizational management has shown in recent years, which
has also been observed in the literature.

Finally, from the relation of these and other Capabilities
over the years, it is concluded that practitioners are cham-
pioning these principles, Practices and tools to minimize
waste [69], [81], enabling faster feedback cycles [15], [82],
exposing invisible technical debt [64], improving value in
delivery, maintenance and operational functions [69].

6.2 RQ1 - What are the main Capabilities needed to
implement DevOps?

In this section, the MLR provides an answer to the first
research question, by revealing a list of 37 Capabilities,
categorizing them in table 8 and discussing them in detail.

For the coding process of recognizing these categories into
the discovered Capabilities, earlier work from Table 4, Table 5,
and Table 6 was first considered. This largely highlighted
what categories were already specified by authors [9], [56],
[61] into a category list with the majority of the Capabilities

30

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Table 7
List of Capabilities identified by number of publications over the years.

2013-14 2015-16 2017-18 2019-20
C01 - Cross team collaboration and communication 3 9 30 35
C02 - Continuous Integration 2 11 28 35
C03 - Continuous Delivery/Deployment automation 1 10 29 34
C04 - Proactive Monitor, Observability and autoscale 3 10 25 33
C05 - Test Automation and environments 3 7 25 25
C06 - Continuously improve processes/workflows 2 8 18 18
C07 - Version Control System 2 7 14 21
C08 - Support learning culture and experimentation 2 4 15 21
C09 - Empower teams to make decisions/changes 2 4 11 24
C10 - Focus on people, process and technology 1 4 11 15
C11 - Configuration Management 2 5 11 12
C12 - Cloud infrastructure and cloud native 0 4 11 15
C13 - Artifacts versioning and registry 2 5 9 10
C14 - Loosely coupled architecture 0 4 8 14
C15 - Database change management 1 3 7 13
C16 - Infrastructure as Code 0 5 8 11
C17 - Emergency response 0 3 7 14
C18 - Containerization 0 5 9 10
C19 - Open source software adoption 0 4 10 7
C20 - Shift left on security 0 1 5 14
C21 - Transformational leadership 1 3 6 10
C22 - Trunk based development 1 4 5 9
C23 - Monitor systems, inform business decisions 0 4 6 9
C24 - Performance/Westrum organizational culture 1 4 3 11
C25 - Working in small batches 0 2 3 11
C26 - Centralized log management 1 3 3 8
C27 - Lightweight change approval 0 1 3 11
C28 - Visibility of work in the value stream 0 2 4 8
C29 - Working in progress limits 0 2 3 9
C30 - Customer focus/feedback 0 0 3 10
C31 - Blameless Postmortems 1 3 4 4
C32 - Data-driven approach for improvements 0 3 5 4
C33 - Job satisfaction 1 2 1 7
C34 - Test data management 0 1 2 7
C35 - Chaos Engineering 0 4 2 3
C36 - Code maintainability 0 2 2 5
C37 - Visual management Capabilities 0 1 0 8

Legend: This table is a summary of ?? for simplifying the analysis of the
Capabilities’ growth over the years, excluding 2021’s incomplete year results.

already mapped. For example, the more generalized “Con-
tinuous Measurement” evolved to “Lean Management and
Monitoring” and eventually to just “Measurement” which
was selected for its clear scope and state of the art. Following
this study, the mentioned list was cross-referenced with
extracts from all publications into a Capability code with
relevant categories leading to table 8.

The Capabilities list is based on the literature review
of the 93 publications, also considering the fact that some
practitioners mention them as Practices and others as Capa-
bilities as shown in Figure 9. The list includes their name, the
number of publications in which they have been mentioned,
and, most importantly, their definitions associated with a
label of (N) Needed Capabilities for DevOps Practices [9],
[56], or (E) Enablers of good practice [61], [72], [83] as shown
in Figure 11. This is meant to indicate their relation to
the framework of analysis presented in Figure 1 and later
discussed in Section 6.5.

C01-Cross team collaboration and communication, mentioned
in 81 publications (N). In order to enable cross-functional
collaboration between application teams, operations and
security teams [20], [30], [61], [63], [72], [73], [80], [81],
[84], [85], [86], [87] the organization has to identify the

Table 8
Categorization of DevOps Capabilities.

Category ID DevOps Capability

Cultural C01 Cross team collaboration and communication
Cultural C08 Support learning culture and experimentation
Cultural C19 Open source software adoption
Cultural C21 Transformational leadership
Cultural C24 Performance/Westrum organizational culture
Cultural C31 Blameless Postmortems/reduced fear of failure
Cultural C33 Job satisfaction
Measurement C04 Proactive Monitoring, Observability and autoscaling
Measurement C17 Emergency response/proactive failure notification
Measurement C23 Monitor systems to inform business decisions
Measurement C29 Working in progress limits
Measurement C37 Visual management Capabilities
Process C06 Continuous Improvement of processes/workflows
Process C10 Focus on people, process and technology
Process C25 Working in small batches
Process C27 Lightweight change approval
Process C28 Visibility of work in the value stream
Process C30 Customer focus/feedback
Process C32 Data-driven approach for improvements
Technical C02 Continuous Integration
Technical C03 Continuous Delivery/Deployment automation
Technical C05 Test Automation and environments
Technical C07 Version Control System
Technical C09 Empower teams to make decisions/changes
Technical C11 Configuration Management
Technical C12 Cloud infrastructure and cloud native
Technical C13 Artifacts versioning and registry
Technical C14 Loosely coupled architecture
Technical C15 Database change management
Technical C16 Infrastructure as Code
Technical C18 Containerization
Technical C20 Shift left on security
Technical C22 Trunk based development
Technical C26 Centralized log management
Technical C34 Test data management
Technical C35 Chaos Engineering
Technical C36 Code maintainability

stakeholders, including customers [88], of every project so
that they join, have insights about various project phases
and processes, and start making valuable contributions. As
highlighted by Kim et al. [64], this also signifies an opposition
to a culture of fear, with firm embracing DevOps aiming
for a high-trust, collaborative culture where individuals are
rewarded for taking chances.

C02-Continuous integration (CI), mentioned in 80 publica-
tions (N). Continuous integration takes tasks like testing and
building, and automates them [15], [32], driving teams to
produce high-quality software, to reduce the cost of ongoing
software development and maintenance [67], [74], [78], [82],
[85], [89], [90], [91], and to increase the productivity of the
teams. [61], [82]. The CI process creates canonical builds
and packages that are ultimately deployed and released [9].
Continuous integration (CI) and continuous delivery (CD)
are the corner stone of software delivery, denoting the
huge importance of a Continuous Integration & Continuous

31

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

Delivery or Deployment (CI/CD) pipeline [61], [63], [69], [72],
[76], [92], [93], [94]. Continuous integration is the Capability
of multiple developers to commit and merge their code [95],
[96].

C03-Continuous delivery and deployment automation, men-
tioned in 78 publications (N). While continuous delivery
automates the entire software release process with a manual
step, continuous deployment automates that step, deploying
smaller changes [35] to production as soon as they are
released from acceptance testing [69], [97], without manual
intervention [9], releasing faster and more frequent, reducing
the risk of production deployments and providing faster
feedback to the teams [56], [81]. Continuous delivery entails
deploying code updates to production as frequently as
feasible.

C04-Proactive monitoring, observability and autoscaling, men-
tioned in 74 publications (N). It is critical to monitor the
infrastructure [35], [44], [64], [69], [98], whether it is in
the cloud or in a local data center. Combining proactive
monitoring with autoscaling can automatically solve capacity
issues [28], [73], [96], [99] and reduces the need to scale the
system manually.

C05-Test automation and environments, mentioned in 62
publications (E). Getting quick feedback on the impact of
changes across the Software Development Life Cycle (SDLC)
is fundamental to integrate quality into software [27], [64].
It is important to have automated and correctly provisioned
test environments along the pipeline [61], [79], [96], [100],
reducing long lead times [8], [31], [32], [97], [101].

C06-Continuous improvement of processes and workflows,
mentioned in 46 publications (N). Continuous improvement
is enabled through a combination of continuous integration,
deployment, testing, workflows and monitoring [63], like,
implementing branch-naming consistency, where all work
originates from the same source while developing on a
branch referencing a ticket [65], or applying consistent
patterns across multiple applications [31].

C07-Version control system, mentioned in 45 publica-
tions (E). Version control and automation are tightly inter-
twined [15], [78], [95], [102] enabling efficiency and pro-
ductivity [27], [37], [70]. Version control extends versioning
to all production artifacts [64], such as application code,
configurations, system settings, and scripts for automating
build and environment setup [8], [9].

C08-Support learning culture and experimentation, men-
tioned in 44 publications (E). Organizations that develop
a learning culture [103], [104], [105] and comprehend its
impact on organizational performance encourage engineers
to have the ability to work alone and experiment [78], [79] to
test business concepts and new ideas, to write and update
requirements during development [31], [101].

C09-Trust/empower teams to make decisions and changes,
mentioned in 42 publications (E). Trust is essential in every
relationship, but it is especially critical for DevOps [65] to
improve software delivery performance and job satisfaction,
empowering them with the ability to make educated deci-
sions about the tools and technologies they employ [28], [44],
[80], [90], [101], [103]. This helps to create greater results [61],
[96], [106].

C10-Focus on people, process and technology, mentioned
in 32 publications (E). People, process and technology are

the three pillars of a software development project. There
must be a feeling of community, sharing a common goal, and
contributing to the common cause [90]. Improving the culture
is an ongoing journey [75], [107]. DevOps unifies people,
processes, and technology: when all three are aligned toward
the same business goals, innovation can be implemented
more quickly [31], [62], [94], [108].

C11-Configuration management, mentioned in 30 publica-
tions (N). It is practiced in one form or another as part of
any software engineering project. A Software Configuration
Management (SCM) is a system for managing and controlling
the evolution of software products [109], [110] over the life
cycle, automating the configuration, monitoring, managing,
and maintenance of all entities of infrastructure and systems
like servers, applications, storage, networks, and all managed
services [89].

C12-Cloud infrastructure and cloud native, mentioned in
30 publications (E). The US National Institute of Standards
and Technologies (NIST) defines five essential character-
istics of cloud computing [111]: On demand self-service,
broad network access, resource pooling, rapid elasticity
and measured service [96], [112]. Each service may be
deployed individually [113], with flexibility, tool sets, and
scalability for applications. Serverless architectures on clouds
can dramatically reduce DevOps effort [95]. In a pipeline—for
example for worker nodes, deploying artifacts to test or even
production environments [92].

C13-Artifacts versioning and registry, mentioned in 28
publications (E). Enable organizations to centrally store
artifacts and build dependencies as part of the software
delivery process [15], [80], [114]. It is important to version
these artifacts in a repository manager [115], [116], [117],
either they are promoted containers along the pipeline,
bundles, charts, packages or any other kind to make the
changes visible, reliable and repeatable [7], [117] for all
production artifacts [10], [30], [105].

C14-Loosely coupled architecture/ microservices, mentioned in
27 publications (E). Microservices are an architecture design
for building a single application with smaller services that
run independently, usually communicating via Application
Program Interface (API) calls [118]. Improves agility and
helps organizations to easily grow their product at a cheaper
cost and in a shorter time [86]. Each service may be deployed
separately and decentralized. Produced and delivered using
automated tools and automated procedures [81]. This may be
achieved using cluster technology like Kubernetes, Apache
Mesos or Docker Swarm.

C15-Database change management/ release alignment, men-
tioned in 25 publications (E). Database change manage-
ment [11], [15] and release alignment change management
processes [67], [119], [120], when well implemented, help
developers and IT professionals to easily manage database
updates, system configurations, deploy new code quickly
and fix incidents faster. The Outcome is release reliability.

C16-Infrastructure as code, mentioned in 25 publications (E).
With infrastructure as code [35], [106], [121], [122], [123], it is
possible to express procedures in code [124] rather than setup
infrastructure or software manually. Using technologies like
Ansible, Chef, Puppet, Salt, or Terraform [125], [126]. That
way it is possible to use version control to keep track of
all infrastructure modifications in a repeatable and more

32

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

efficient manner [127].
C17-Emergency response/ proactive failure notification, men-

tioned in 24 publications (N). Proactive failure notifica-
tion [15] focus on actionable notifications based on the
values being monitored and that have known failure thresh-
olds, instead of a reactive system to alert when it has
already failed [20], [61], improving emergency response
efficiency [128] and reducing risk of customer impact [44].

C18-Containerization, mentioned in 24 publications (E).
Containers are efficient for app development and hosting [95].
They allow DevOps, developers, and system administrators
to swiftly, securely, and effectively test, build, deploy, and
manage applications [69]. This Capability has become a new
standard in DevOps pipelines, clusters, and applications [37],
[118] by using technologies like Docker, containerd, CRI-O
or rktlet.

C19-Open source software adoption, mentioned in 22 publi-
cations (E). Open source adoption correlates with DevOps
success [32], [76], [96], [129], and the knowledge of open
source solutions for testing and deployment is a must for
a DevOps engineer [95]. This model is well represented in
the DevOps tool set [70], [130] with impact in early DevOps
emergence [103]. Organizations assemble and contribute
open source parts, which has become a reliant software
supply chain [64], [101].

C20-Shift left on security, mentioned in 20 publications
(E). Integrating security into the design and testing phases
of the software development process is key to driving IT
performance with the Outcome of better security & compli-
ance. Including security reviews of applications, including
the infosec team [9], [78], [79]. Shift left on security is re-
lated to Developer(Dev), Security(Sec) and Operations(Ops)
(DevSecOps) [80] concept and emphasizes automating as
much as possible security policies in order to accelerate
processes, decrease human error and aiding in quality
improvement [131] and audits [26], [31].

C21-Transformational leadership, mentioned in 20 pub-
lications (E). It is a style in which leaders inspire and
encourage teams to attain better levels of performance [30],
[81]. Transformational leaders focus on the growth and
performance of their followers and organization [8], [64].
Effective leaders [31] impact software delivery performance
by pushing the use of technical and product management
Capabilities [77].

C22-Trunk based development, mentioned in 19 publications
(E). In trunk based development, each developer works in
small batches, merges that work into trunk at least once (and
potentially several times) a day [7], [120], consistent with
commonly accepted continuous integration Practices [16],
[17], [30].

C23-Monitor systems to inform business decisions, mentioned
in 19 publications (E). With the Outcome of informed busi-
ness decisions using visual dashboards [31], [61], [98], [102],
[132] allows the organization to track configuration changes
made to servers along with databases and deployments [62]
that have taken place, along with various metrics, logs,
and graphs [133], [134] to give a holistic view of changes
happening in the system.

C24-Performance/Westrum organizational culture, mentioned
in 19 publications (E). Ron Westrum developed a typology
of organizational cultures that includes three types of orga-

nizations [135]. Pathological organizations are characterized
by low cooperation across groups and a culture of blame.
Bureaucratic cultures are preoccupied with rules and positions,
and responsibilities are compartmentalized by department.
Generative organizations are performance oriented [79], with
good information flow, high cooperation and trust, bridging
between teams [29], [64], which should be the Outcome.

C25-Working in small batches, mentioned in 16 publications
(E). The concept comes from Lean manufacturing and is
also used in Agile [81]. Working in small batches with a
lightweight approval process helps ensure work can get
through the system quickly [98] with shorter lead times [15].
It enables fast flow through the development pipeline, fixing
errors as they are discovered vs. at the end [136] also allowing
to deliver of MVPs, features, and bug fixes sooner, which
also helps enable the customer feedback loop above [80].

C26-Centralized log management, mentioned in 15 publica-
tions (E). Centralized logs for applications with multiple
servers facilitate debugging [96], [137] when sent to a
common service that enables easy centralization, rotation,
and deletion [64], [87], [138].

C27-Lightweight/streamlining change approval, mentioned
in 15 publications (E). Replace heavyweight change-approval
systems with peer review [77]. Lead times, with the Outcome
of predictability and increased release frequency, improving
considerably [30] with negligible impact on system stability
[28], [77].

C28-Visibility of work in the value stream, mentioned in 14
publications (E). Is a Lean manufacturing or Lean enterprise
approach for documenting, analyzing, and improving the
flow of information or materials needed to create a product
or service for a client [81]. Understand and visualize the flow
of work [30], [32] from idea to customer Outcome in order
to drive higher performance. Make the value flow visible
for everyone to understand where their piece fits into the
whole flow [77], [98] from the business all the way through
to customers [29], [78].

C29-Work in progress (WIP) limits or Work in process limits,
mentioned in 14 publications (E). WIP is a type of inventory
in Lean manufacturing — the materials that are presently
being worked on. As a result, it is called “waste” since it ties
up value. Prioritize work, limit the number of things that
people are working on [1], [8], and focus on getting a few
high-priority tasks done [77]. These limits [98] are identified
and enforced. Flow is defined [80]. Overload is limited [81].

C30-Customer focus/feedback, mentioned in 13 publications
(N). Drive to better organizational Outcomes of customer sat-
isfaction and new products/features by gathering customer
feedback [29], [139] and incorporating it into roadmaps and
product design [98] for improving customer focus.

C31-Blameless postmortems/reduced fear of failure, mentioned
in 12 publications (E). By removing blame, fear is reduced,
and by reducing fear, teams are empowered to surface and
solve problems more efficiently. Mistakes occur. Holding
blameless postmortems [10], [28], [64], [96] is an effective
technique of learning from mistakes [77], [140].

C32-Data-driven approach for improvements, mentioned in
12 publications (E). Analyzing factual data [123] can help
an organization achieve performance. Sharing application
graphs [137], [141], usage patterns with team members

33

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

to get everyone aligned. Include scalability, testing, and
deployment to simplify the entire process [87].

C33-Job satisfaction, mentioned in 11 publications (E).
Job satisfaction is the top predictor of organizational per-
formance [28], [84]. DevOps adoption also help avert
burnout [8], a common reason why technical people leave
jobs [142]. Beecham et al. [143] identifies several motivators
for engineers that influence job satisfaction. The higher the
team motivation, the more likely DevOps will succeed. A
project manager with strong communication skills, a project
where risks were reviewed and controlled, a client who
trusted the PM and team, a good working environment,
good teamwork, and having a nice time working on a project
with low burnout as Outcomes are just a few examples [144].

C34-Test data management, mentioned in 10 publications
(E). Managing test data can be challenging [98]. Define the
right strategies for managing test data effectively along with
approaches to provide fast, secure data access for testing [131]
like adequate data to run a test suite, acquiring data on
demand, conditioning and limiting the amount of test data
needed in the pipeline [9].

C35-Chaos engineering, mentioned in 9 publications (E).
Contemporary and distributed software programs must be
capable of dealing with unexpectedly tumultuous environ-
ments [64], [86], [92], [98], [108]. As a result, such systems
must be built from the start to withstand unanticipated
problems and shortcomings in production contexts [145].

C36-Code maintainability, mentioned in 9 publications (E).
Code maintainability [15], [101] is essential for making it
simple for developers to identify, reuse, and alter code, as
well as keep dependencies up to date [146] leading to high-
quality code Outcome.

C37-Visual management Capabilities, mentioned in 9 publi-
cations (E). Improves a company’s capacity to communicate
progress and expectations toward goals, manage change and
improvements [14] visually, in a way that takes little or no
prior training to interpret. Visualizing work and pulling it
through the system [12] is a critical part of the First Way of
DevOps [64].

The list of the most studied and approached Capabilities
was collected as it was proposed. In extent, it is seen that the
Capabilities are, in fact, dynamic and have been changing
over the years.

6.3 RQ2 - How frequently are Practices or Capabilities
mentioned in gray literature compared to academic liter-
ature?
The second research question requires determining how
frequently are Practices or Capabilities mentioned in gray
literature compared to academic literature. This provides a
clearer understanding of the correlations between gray liter-
ature and academic literature concerning DevOps Practices
over Capabilities, since gray material is more practitioner
oriented while academic writing is seen from an academic
viewpoint. The goal is to increase academic and practitioner
awareness of these relationships in order to reach a consensus
or a balanced view and improve the usage of Practices and
Capabilities within the proposed framework.

The two terms are described across several types of formal
and gray literature, as seen in Figure 9.

Webpage

Techreport
Artic

le

Conference
Book

0

100

200

300

400

164

26

96

23
0

370

160

60

115

34

#
m

en
ti

on
s

Capabilities
Practices

Figure 9. Number of publications mentioning Capabilities and Practices
among sources.

Based on the extended research enabled by this MLR,
it is noticed that Capabilities have been mentioned inter-
changeably as Practices in 66 publications Table 9 and eight
publications even distinguish Practices from Capabilities [8],
[20], [61], [62], [67], [72], [107], [147].

It can be observed in Figure 9, that the webpages, over-
whelmingly created by practitioners, have the most mentions
as Practices, but also include about half of the number of
mentions as Capabilities. In Techreport, Conference and
Book, which are closer to the gray literature, we clearly
see a tendency to the term “Practice”.

On the other hand, the scientific articles make more
mentions as Capabilities, which becomes a very interesting
finding of this research, as it reveals that practitioners are
more focused on DevOps Practices, while the scientific
community tries to organize Capabilities in a way that
abstracts more generic concepts applicable to building skills
and enablers. Nevertheless, the concepts are interconnected
at different stages of the process, as shown in Figure 1.

A different example of this same interchangeability can
be observed on a seminal book, “Continuous Delivery” [7]
from 2010, that starts on mentioning the term Capabilities.
Despite not explicitly mentioning the word “DevOps” it
describes, however, in detail the deployment pipeline pattern,
which is usually central to DevOps Capabilities. In page 109
of the book, the Capability of deployment and production
release is described in detail, explaining how the process
is automated, with speed, repeatability and reliability in
mind. Jez Humble mentions that when the “Capability” of
automating the process as normal events is available, releases
are essentially without risk.

Some other books also talk about Capabilities and
are frequently cited in gray literature by researchers and
practitioners [67], [78], [80], [96], [103], [106], [137], [169]
like “The Phoenix Project” [12], “Accelerate: The Science of
Lean Software and DevOps” [9], “Lean enterprise: adopting
continuous delivery, DevOps, and Lean startup at scale” [77],
and “The DevOps Handbook” [64].

In Table 9 it is mentioned that one publication indicates
a DevOps Practice definition [62] to be a subset imple-
mentation of a Capability. Six publications indicate various
Capabilities definitions like a higher level categorization of

34

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

Table 9
Six publication properties identified from the MLR.

Property Publications Total

Interchangeably mentions
Capabilities and Practices

[10], [27], [28], [29], [30], [31],
[32], [37], [44], [56], [57], [63],
[64], [65], [66], [69], [70], [71],
[75], [76], [81], [84], [85], [86],
[87], [88], [89], [90], [91], [92],
[93], [94], [95], [96], [97], [100],
[102], [103], [104], [105], [108],
[112], [124], [132], [140], [148],
[149], [150], [151], [152], [153],
[154], [155], [156], [157], [158],
[159], [160], [161], [162], [163],
[164], [165], [166], [167], [168]

66

Mentions Capabilities directly

[8], [11], [20], [32], [35], [56],
[61], [62], [67], [72], [78], [79],
[80], [91], [101], [107], [129],
[147], [169]

19

Presents different or
reorganized Capabilities
compared to Senapathi et
al. [61]

[11], [20], [35], [56], [62], [67],
[78], [79], [80], [91], [101], [107],
[129], [147]

14

Relates Capabilities to Practices
or distinguish them

[8], [20], [61], [62], [67], [72],
[107], [147] 8

Indicates a definition for
Capability [8], [20], [30], [35], [61], [62] 6

Indicates a definition for
Practice [62] 1

Practices [35], are important to enhance software company’s
profitability, productivity and market share [8], Capabilities
are the core DevOps aspect which comprises Capabilities
such as “continuous planning, collaborative and continuous
deployment, continuous integration and testing, continuous
release and deployment, continuous infrastructure moni-
toring and optimization, continuous user behavior moni-
toring and feedback and service failure recovery without
delays” [20].

The previously mentioned research done by Senapathi
et al. [61] and 2017 State of DevOps report [30] defines
them as a combination set that can change over time, which
includes categories of Capabilities like “continuous delivery
as the combination of the Capabilities” to be “deployment
automation and automated testing, continuous integration
and trunk-based development, and version control for all
production artifacts”. These set of Capabilities have been
changing over the years.

It is also an important finding that both concepts and their
relations carry out an important role driving implementation
and adoption. Therefore, their interaction is later discussed
in a framework of analysis on Section 6.5.

6.4 RQ3 - Are authors aligned on the relation between
DevOps Capabilities and Practices?
Here, we pursue answering if authors have the same
alignment while relating DevOps Capabilities to Practices.
To better understand the relations and reach a consensus
where a framework can be broadly accepted, we must first
clarify how authors see each concept in order to approach
the analysis of Figure 1 and its instantiation in Figure 10 with
a more strengthened reasoning. It is largely observed that the
word “Capability” is used when the observation is external

or at a high-level overview. It is then a matter of perspective
or context. When talking about a Capability, we see a third-
party assessment of something that is being looked at from
the outside, while observing a group to see what they are
capable of doing. Whereas, a “Practice” is seen from the
standpoint of the internal team or group, realizing “I am
doing these things”. That ability converted to an action is
then mentioned with the term “Practice”. Therefore, authors
will speak about Capabilities from an evaluation standpoint,
and Practices from a hands-on approach perspective. The
Capability definition points to an organization’s “ability” to
perform or achieve a certain process, whereas a Practice
is referred to more at the level of DevOps practitioners
and thus more observed in the gray literature publications,
as discussed in Section 6.5. Clear examples of this more
formal research concept were presented earlier by Smeds et
al. [55], Senapathi et al. [61] and more recently in the book
Accelerate [9], in DORA [15], [56], [101] and in several journal
articles or proceedings [8], [20], [20], [35], [44], [62], [72], [81].

Organizations should target developing skills, knowl-
edge, and habits in their people [170] as an enabler for contin-
uous improvement. The number of publications mentioning
Capabilities or Practices is organized in ?? of Appendix ??.
Notably, there are some publications that mention it more as
a Capability like “Trunk based development”, “Lightweight
change approval”, “Working in progress limits”, “Customer
focus/feedback”, “Test data management” and “Visual
management Capabilities”, while the rest is more mentioned
as Practice and this confirms once more the lack of consensus.

It is now clear that there is still some confusion while
interchanging these two words as seen in Figure 9 and the
table in ?? of Appendix ??, hence the proposed conceptual
framework in Figure 1 tries to clarify the relationship of
concepts to help practitioners focus on the DevOps “how-to”
implementation sustained by a high-level view. The usage
of Capabilities or Practices is not consensual. Therefore, this
study proposes achieving some consensus, while mapping
the concepts related and proposing clearer definitions of
DevOps Capability and another for DevOps Practice, while
proposing a framework of analysis in the following Sec-
tion 6.5.

6.5 DevOps Capabilities Synthesis
Here the most important findings and contributions of this
research are summarized, given the purpose of this research
of a clearer conceptualization and organization of DevOps
Capabilities and Practices, as well as clarifying the definitions
of the terms and finally to recenter Figure 1 as a framework
of analysis based on the instantiation and relation of these
concepts in Figure 10.

6.5.1 Definitions of DevOps Capability and Practice
The definition of DevOps Capability is proposed in Table 10
and the definition of DevOps Capability is suggested in Ta-
ble 11.

As already mentioned in previous sections, since the
misusage of these labels could negatively impact researchers
and practitioners in their work, there is benefit of clarifying
these definitions, before analyzing their relationships, while
addressing DevOps adoption, implementation and research
around these topics.

35

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

Table 10
Definition of DevOps Capability.

A DevOps Capability, is here defined as the ability to do
something [171] in DevOps or by the quality, or state of being
capable [172]. It consists of the combined skills [81] accumulated
and developed by its members over time. As an example, Dev-
Ops technological Capabilities are the information and skills -
technical, managerial and institutional - that enable productive
enterprises [77], [170] to utilize equipment and technology effi-
ciently [173].

By this definition, “Capability” is the potential or ability
to perform something. A person’s Capability to use a
Practice is determined by their knowledge and skills. An
individual, team, organization, or other entity may improve
their Capabilities. The use of DevOps Practice or Capability
as labels is contextual, which differs depending on the
perspective, as can be seen from the definition of DevOps
Practice defined in Table 11.

Table 11
Definition of DevOps Practice.

A DevOps Practice, is here defined as the action taken rather
than thought or ideas [174] or by the act of carrying out [175] a
DevOps activity. It can also be see as an enabler [44], [55], [61] of
a mentioned Capability by an individual or a group such as the
engineering team. As a result, authors will discuss Capabilities
from the perspective of evaluation, like an assessment, but refer to
Practices from the perspective of a hands-on approach.

In SE, a “Practice” is a technique or methodology for
achieving desired goals. It generally includes steps, tools,
and a set of concepts and depending on the circumstances,
it may be done properly, poorly or regularly. A process is
a grouping of Practices. A Practice or group of Practices’
desired Outcomes are usually quantifiable deliverables, like
new products and features, high-quality code, predictable
faster releases or high customer satisfaction.

These proposed definitions can now be used to support
explaining the following conceptual relationship between a
Practice and a Capability in DevOps.

6.5.2 Instantiation of concepts

The Capabilities and Practices of DevOps are the focus of
this article. The proposed instantiation of the conceptual map
seen in Figure 1 purposes relating in a clear way the roles of
both concepts. Following a thorough literature study to cross-
check Capabilities and define each of these concepts, the
MLR findings are matched to the concept of Capabilities and
Practices. The connection between these ideas is instantiated
in Figure 10, while also mentioning the relation to Outcomes
or results.

The Practices originate from the research done in Sec-
tion 6.2 where the extracted text already suggest the Practices
implicitly used in each Capability. Literature was used to
elicit the Enablers of good Practice [61], [72], [83], Outcomes [18],
[30], [83] and Needed Capabilities for Practices [9], [56], also
contextualized within the same research extraction. It should
be noted that while there is a comprehensive list of the main

Capabilities, there are probably other Practices that were not
perceived as part of this MLR, and likewise there are more
inter Practice relations that could be drawn. However, the
purpose is to explore how the found concepts relate.

DevOps Capabilities are categorized into Cultural, Mea-
surement, Process and Technical groups and are enabling
DevOps Practices. This associates “Practice” with a portion
of a process and DevOps “Capability” as a part of skill
and knowledge of an individual or team. The team acquires
skills required by DevOps Capabilities, resulting in DevOps
Outcomes and results, from which we work backwards
in order to improve the DevOps assessment and targeted
Capabilities.

6.5.3 Framework of analysis
This research framework of analysis, is based on the MLR
findings, reflected in the research questions and leading to a
mapping of relations shown in Figure 10. Here it is analyzed
how the relation of the several Capabilities and Practices are
required by DevOps for generating Outcomes and results.

It is now important to understand the researched Capabil-
ities related to Practices that constitute DevOps as a process,
Outcomes, and the related skills needed to enable them. In
Figure 10 team Capabilities are mapped to Practices and team
Capabilities created as Outcomes (or results) of the DevOps
Process. This will be useful for practitioners to improve a
particular team Outcome Capability, like predictable faster
releases, since they could use (C27) lightweight change approval
Capability to influence this Outcome and try to improve
other team’s Capabilities in these Practices.

While providing a way for implementers of DevOps to
establish a plan for improving the Capabilities by specifying
the Practice associated, it will be easier to detect the miss-
ing skills that will lead to the expected Outcomes. These
Outcomes may be described at a higher level, for instance
from the organizational viewpoint like performance oriented,
or a more concrete level like release reliability using database
updates and automated system configuration.

Taking a more concrete visualization as reflected in
Figure 11 there is a clear relationship between Capabili-
ties, Practices, and Outcomes. This is in line with what
was already summarized in Figure 1 for supporting the
research framework of analysis in order for researchers and
practitioners to benefit from its insights.

The Capabilities, with implicit skills and knowledge,
enabling or needed for Practices already seen in Figure 10
offer direction for team members in training, upskilling and
defining which Practices are essential to DevOps and how
they can be done effectively. Here we can also observe Prac-
tices and combinations of Practices resulting in Capabilities
for the team or organization, which helps to understand the
expected results of Capabilities and which are required to
achieve them. Just like the capability to respond to consumer
feedback, certain Capabilities are high-level and abstract,
requiring the integration of practices, contextual factors,
culture and technology. It is also possible to create a new
Capability by applying groups of Practices or individually.

DevOps is a set of Practices (and principles) that demands
the team and its members to have specified Capabilities
and utilize specific Practices to accomplish the desired
Outcomes of the Practices, independently and collectively.

36

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

Figure 10. DevOps Capabilities and Practices instantiation.

Figure 11. Related Capabilities, Practices and Outcomes.

New organizational capabilities are one of the anticipated
results. Increase in DevOps maturity is a consequence of
enhancing Capabilities by improving Practices or Processes
to more consistently deliver certain idealized outcomes.

Some Capabilities may be thought of as Enablers to
effective Practice. For example, for DevOps to be successful,
the practice of upskilling Dev with Ops Capabilities, is
an enabler. Enablers will generally improve the DevOps
Capabilities in the various categories, setting the standards
of a well performed Practice.

Enablers of Cultural Capabilities require all teams and
engineers to be aware of the common objectives. People
should collaborate on diverse tasks, sharing responsibilities
and understanding the overall software development system
and common goal of all teams. Disrespecting colleagues
and emphasizing personal job success are all examples of
poor DevOps practices. The organization should encourage
experimenting and learning from errors with no fear of blame.
This contributes to growth, performance and creativity of
individuals.

Measurement Capabilities Enablers motivate teams to
take responsibility for monitoring and sharing the on-call
rotation, while performing observability, proactive monitor-
ing and autoscaling of systems improves the expectation on
reliability. A good Practice example is making sure there is
monitoring for all critical systems, but an opposite situation
would be too many alerts causing toil and burnout or even
no alerts at all. With proper measurement, the organization
could also explore failure forecast or event set limits to in
progress work with real-time dashboards.

Process Capabilities Enablers help to improve the pro-
cess of CI/CD, testing, workflows and monitoring access

37

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

is given to visualize where work fits in the flow of Lean
work management with real data usage for improvements.
It is possible to see where the task fits into the overall flow
using real-world data collection with the purpose of making
changes reliable. A lengthy and heavy change approval
process is an example of a bad practice where the Continuous
Delivery Capability would be affected leading to increased
technical debt, lack of timely security updates or attrition.
These Enablers also bringing together the focus of people,
processes, and technology.

Technical Capabilities Enablers have main purposes like
analyzing and evaluating software, automation of testing,
building, deployment using environments for software test-
ing and versioning of software. The use of bundles and
artifacts, including configuration management best practices,
enable distributing software faster. Also, guiding team self-
improvements, leading to many new practices based on
engineers creativity. An example of a good technical Practice
is using an artifact repository manager for versioning the
built artifacts from a pipeline, and a poor Practice would be
to not properly scan these artifacts for vulnerabilities or not
promoting them along the testing environments.

The intent of each Capability is not only to enable
Practices but also to drive Outcomes and results as seen
in Figure 12.

Figure 12. Capabilities generating Outcomes.

The exact combination of Practices and Capabilities that
lead to each Outcomes and results [9], [18] are very extensive
and not the particular subject of this research in detail.
In any case, it is seen from literature that there is a close
proximity to each category returned from Section 6.2 and
noted in Figure 10. Namely, Low Burnout, Performance oriented
culture and Engineers feel well doing their job is most positively
impacted by Cultural Capabilities, while business well
Informed decisions and Fast recovery (Mean time to restore), are
associated to Measurement Capabilities. On the other hand,
it is seen that Predictable faster delivery/releases (deployment
frequency and lead time to deploy), New products and features,
and Customer satisfaction is related to (but not only) Process
Capabilities. Finally, Better Security & Compliance, Release
reliability (Change failure rate), and High-quality code are more
inclined for improving from Technical Capabilities side.

The Capabilities needed for Practices towards the de-
sired outcomes takes a set of essential Capabilities for Dev-

Ops that were initially discussed by Smeds and Senapathi
et al. [55], [61] together with configuration management
[42], [176], seen in the relations of Figure 10. Namely,
(C01) Cross team collaboration and communication, (C02)
Continuous Integration, (C03) Continuous Delivery/Deploy-
ment automation, (C04) Proactive Monitoring, Observability
and autoscaling, (C06) Continuous Improvement of pro-
cesses/workflows, (C11) Configuration Management, (C17)
Emergency response/proactive failure notification and (C30)
Customer focus/feedback.

To employ a Practice or set of Practices, a person (or team)
may need certain knowledge as well as skills. This implies
they have the Capability to perform a certain Practice to
reach the desired Outcome with a high degree of certainty.
Any Practice implies a set of Capabilities that a person or
team must have in order to utilize that Practice. To utilize the
Practice of CI, for example, a team must grasp the process,
how to execute a collection of other Practices, and how to
use the needed tools recognizing the benefits. Given the
essential feedback loop and collaboration, the team will
create and enhance Capabilities progressively, bringing the
need of the assessment of the result and experimentation with
adjustments to their Practice execution, therefore enhancing
their Capability. DevOps “Capability” is a (developing)
quality of a person or team, whereas “Practice” is part of a
process.

These new insights from the presented research have
particular implications for practitioners and researchers in
this area that should be taken into consideration for a
general consensus on how to relate Capabilities and Practices
towards improved Outcomes.

7 CONCLUSION

This study has brought important contributions to both
academia and industry on the DevOps topic. A Multivocal
Literature Review was conducted, in order to identify
and sort and organize an updated list of 37 Capabilities
or Practices in Section 6.2, how frequently are Practices
or Capabilities mentioned in gray literature compared to
academic literature in Section 6.3 and how authors are
aligned on these relations in Section 6.4 leading to their
definitions, instantiation and analysis in Section 6.5.

Relevant research was done to understand and synthesize
the main DevOps Capabilities that are mentioned in publica-
tions and how they relate to DevOps Practices. Capabilities
were mapped and grouped in an organized taxonomy. A
research framework of analysis was used to analyze data in a
structured way, relating Capabilities and Practices findings. It
was analyzed how the relation of the several Capabilities and
Practices are required by DevOps for generating Outcomes
and results.

This study will help researchers and practitioners to
understand the background and relation of these concepts,
giving a clear picture of how to execute them as a description
of the Capabilities (skills and knowledge) required to do
these Practices well. It was also observed that the Capa-
bilities are dynamic and have been changing and growing
throughout time.

Therefore, the list of the most studied and approached
Capabilities was collected as it was proposed. Of which,

38

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

it is highlighted cross team collaboration and communication.
In this collaboration, developers have access to a self-
service platform that provides a foundation for automation,
standardization and team autonomy in order to enable
the other three most mentioned Capabilities: continuous
integration; continuous delivery and deployment automation;
proactive monitoring, observability and autoscaling.

At a time when DevOps is increasingly more adopted
by organizations and examined by researchers, this study
assumes a critical role in the consensus of relating the main
Capabilities to Practices and their definitions so that the topic
can continue to be applied and studied in a more solid and
grounded way.

7.1 Threats to validity

We considered types of validity pertaining to qualitative
research. Limitations of this study include the fact that it
is based on multivocal literature, therefore the majority of
the material has not gone through the critical peer-review
process that academic research is typically exposed to. To
mitigate the impact of this danger, it was chosen to design
the review procedure using the recommendations given by
Garousi et al. [38] and to conduct each step using this method.
Specifically, systematic procedures and logistics, such as clear
traceability links between collected data and primary sources,
were used throughout data extraction.

The validity from the external environment and the
generalization of the research results is threatened by our
overreliance on Google search, EBSCO and Web of Science
for our data sources, thus academic peer-reviewed literature
from IEEE, ACM and Scopus serves as a counterbalance for
good measure.

Another restriction is the inclusion of English-only
articles, which may exclude significant studies in other
languages.

7.2 Future work

In the future work that will be following this MLR, it is
intended to move forward with a design science research
using the information gathered in this article, in order to
create an artifact with relation to the Capabilities gathered
here and the main DevOps metrics for each one.

Mapping the possible Outcomes and the metrics for these
Outcomes that have most impact is also a targeted work for
the near future.

Answering in detail what practices and what combina-
tions of practices provide the team or organization with what
capabilities as an outcome.

After this, a formalized ontology could be compiled to
systematize the other concepts found.

REFERENCES

[1] N. Forsgren, M. C. Tremblay, D. VanderMeer, and J. Humble,
“DORA Platform: DevOps Assessment and Benchmarking,” in
Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer,
2017, pp. 436–440.

[2] J. P. L. . K. C. Laudon, Management Information Systems: Managing
the Digital Firm, Global Edition, 15th ed. Pearson Education, 2017.

[3] A. Dyck, R. Penners, H. Lichter, and IEEE, “Towards Definitions
for Release Engineering and DevOps,” in 2015 IEEE/ACM 3RD
INTERNATIONAL WORKSHOP ON RELEASE ENGINEERING,
no. 3rd International Workshop on Release Engineering. IEEE
Press, may 2015, p. 3.

[4] N. Forsgren and J. Humble, “The Role of Continuous
Delivery in it and Organizational Performance,” SSRN
Electronic Journal, pp. 1–15, 2015. [Online]. Available: http:
//www.ssrn.com/abstract=2681909

[5] D. N. Blank-edelman, Seeking SRE: Conversations About Running
Production Systems at Scale. O’Reilly Media, Inc., 2018.

[6] R. W. Macarthy and J. M. Bass, “An Empirical Taxonomy of
DevOps in Practice,” in Proceedings - 46th Euromicro Conference
on Software Engineering and Advanced Applications, SEAA 2020,
M. A., W. M., and S. A., Eds. University of Salford, School
of Science, Engineering and Environment, Manchester, United
Kingdom: Institute of Electrical and Electronics Engineers Inc.,
aug 2020, pp. 221–228.

[7] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-
Wesley Professional, dec 2010.

[8] K. Mikko, “DevOps Capability Assessment in a
Software Development Team,” Science, vol. 135,
pp. 408–415, 2018. [Online]. Available: https://www.
theseus.fi/bitstream/handle/10024/334710/MikkoKurkela_
DevOpsCapabilityAssessmentInASoftwareDevelopmentTeam.
pdf

[9] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of
Lean Software and Devops: Building and Scaling High Performing
Technology Organizations. IT Revolution, 2018.

[10] Puppet Labs, “2015 State of DevOps Report,” Puppet Labs, Tech.
Rep. 877, 2015. [Online]. Available: http://puppetlabs.com/2015-
devops-report

[11] M. E. Pasten, M. Siyam, and D. Academy, “Role-based DevOps
Capability Model,” pp. 1–12, 2020. [Online]. Available: https:
//devonacademy.com/enterprise-devops-capability-model/

[12] G. Kim, K. Behr, K. Spafford, and G. Spafford, The phoenix project: A
novel about IT, DevOps, and helping your business win. IT Revolution,
2014. [Online]. Available: https://books.google.pt/books?id=H6x-
DwAAQBA

[13] R. Pereira and J. Serrano, “A review of methods used on IT
maturity models development: A systematic literature review and
a critical analysis,” Journal of Information Technology, vol. 35, no. 2,
pp. 161–178, jun 2020.

[14] U. S. Bititci, P. Garengo, A. Ates, and S. S. Nudurupati, “Value
of maturity models in performance measurement,” International
Journal of Production Research, vol. 53, no. 10, pp. 3062–3085, may
2015.

[15] Google, “DevOps capabilities | DORA - Google Cloud,” 2020.
[Online]. Available: https://cloud.google.com/solutions/devops/
capabilities

[16] M. Shahin, M. Ali Babar, and L. Zhu, “Continuous
Integration, Delivery and Deployment: A Systematic Review
on Approaches, Tools, Challenges and Practices,” IEEE
Access, vol. 5, pp. 3909–3943, 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7884954/

[17] L. E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä,
J. Itkonen, P. Kuvaja, T. Mikkonen, M. Oivo, C. Lassenius,
V. Heikkila, J. Itkonen, P. Kuvaja, T. Mikkonen, M. Oivo, and
C. Lassenius, “DevOps in practice: A multiple case study of
five companies,” Information and Software Technology, vol. 114, no.
March 2017, pp. 217–230, Oct. 2019.

[18] J. Díaz, D. López-Fernández, J. Pérez, and Á. González-Prieto,
“Why are many businesses installing a DevOps culture into their
organization?” Empirical Software Engineering, vol. 26, no. 2, 2021.

[19] G. Adzic and M. Bisset, Impact Mapping: Making a big impact with
software products and projects. Provoking Thoughts Limited, 2012.

[20] S. Badshah, A. A. Khan, and B. Khan, “Towards Process Im-
provement in DevOps: A Systematic Literature Review,” in 24th
Evaluation and Assessment in Software Engineering Conference, EASE
2020, ser. EASE ’20. Comsats University Islamabad, Islamabad,
Pakistan: Association for Computing Machinery, apr 2020, pp.
427–433.

[21] F. M. A. Erich, C. Amrit, and M. Daneva, “A qualitative study
of DevOps usage in practice,” Journal of Software: Evolution and
Process, vol. 29, no. 6, p. e1885, 2017.

39

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

[22] M. Sánchez-Gordón and R. Colomo-Palacios, “A multivocal
literature review on the use of DevOps for e-learning systems,”
in Proceedings of the Sixth International Conference on Technological
Ecosystems for Enhancing Multiculturality, ser. TEEM’18. New
York, NY, USA: Association for Computing Machinery, 2018, pp.
883–888.

[23] B. B. N. de França, H. Jeronimo, and G. H. Travassos, “Charac-
terizing DevOps by Hearing Multiple Voices,” in Proceedings of
the 30th Brazilian Symposium on Software Engineering, ser. SBES ’16,
E. DeAlmeida, Ed., Unicesumar; Colivre; Espweb; Tasa Eventos.
New York, NY, USA: Association for Computing Machinery, 2016,
Proceedings Paper, pp. 53–62.

[24] L. Prates, J. Faustino, M. Silva, and R. Pereira, “DevSecOps
Metrics,” in Lecture Notes in Business Information Processing, M. J.
Wrycza S., Ed. Instituto Universitário de Lisboa (ISCTE-IUL),
Lisbon, Portugal: Springer, 2019, vol. 359, pp. 77–90.

[25] L. E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja, H. H. Olsson,
J. Bosch, and M. Oivo, “Towards DevOps in the embedded systems
domain: Why is it so hard?” in 49th Annual Hawaii International
Conference on System Sciences, HICSS 2016, S. R.H. and B. T.X., Eds.,
vol. 2016-March. University of Oulu, Finland: IEEE Computer
Society, 2016, pp. 5437–5446.

[26] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: A multivo-
cal literature review,” Communications in Computer and Information
Science, vol. 770, no. 1, pp. 17–29, 2017.

[27] Puppet Labs, “2013 State of DevOps Report,” Puppet Labs, Tech.
Rep., 2013.

[28] ——, “2014 State of DevOps Report,” Puppet Labs, Tech. Rep.,
2014. [Online]. Available: http://puppetlabs.com/2014-devops-
report

[29] ——, “2016 State of DevOps Report,” Puppet Labs, Tech. Rep. 7,
2016. [Online]. Available: https://puppetlabs.com/solutions/
devops/

[30] ——, “2017 State of DevOps Report,” Puppet Labs, Tech. Rep.,
2017. [Online]. Available: https://puppetlabs.com/solutions/
devops/

[31] ——, “2018 State of DevOps Report,” Pup-
pet Labs, Tech. Rep., 2018. [Online]. Avail-
able: https://media.webteam.puppet.com/uploads/2019/11/
Puppet-State-of-DevOps-Report-2018_update.pdf

[32] ——, “2020 State of DevOps Report,” Puppet Labs, Tech. Rep.,
2020. [Online]. Available: https://puppet.com/resources/report/
2020-state-of-devops-report/

[33] N. PR, “IT Revolution Announces Second Round of Speakers for
DevOps Enterprise Summit London 2019.” PR Newswire US, 2019.

[34] C. Cook and A. M. Fred, “DevOps Enterprise Summit
/ Metrics We Love / 24 June 2020 / © 2020 IBM
Corporation 1,” pp. 1–42, 2020. [Online]. Available: https:
//videolibrary.doesvirtual.com/?video=431640000

[35] D. Teixeira, R. Pereira, T. A. Henriques, M. Silva, and J. Faustino,
“A Systematic Literature Review on DevOps Capabilities and
Areas,” International Journal of Human Capital and Information
Technology Professionals, vol. 11, no. 2, pp. 1–22, apr 2020.

[36] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of DevOps concepts and challenges,” ACM Computing Surveys,
vol. 52, no. 6, pp. 1–35, nov 2019.

[37] G. B. Ghantous and A. Q. Gill, “DevOps: Concepts, practices,
tools, benefits and challenges,” in 21st Pacific Asia Conference on
Information Systems: Societal Transformation Through IS/IT, PACIS
2017. School of Software, University of Technology Sydney,
Ultimo, NSW 2007, Australia: Association for Information Systems,
2017, p. 12.

[38] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for includ-
ing grey literature and conducting multivocal literature reviews
in software engineering,” Information and Software Technology, vol.
106, no. September 2018, pp. 101–121, feb 2019.

[39] S. Mäkinen, M. Leppänen, T. Kilamo, A.-L. Mattila, E. Laukkanen,
M. Pagels, and T. Männistö, “Improving the delivery cycle: A
multiple-case study of the toolchains in Finnish software intensive
enterprises,” Information and Software Technology, vol. 80, pp. 175–
194, dec 2016.

[40] P. Debois, “Agile infrastructure and operations: How infra-gile
are you?” Proceedings - Agile 2008 Conference, pp. 202–207, 2008.

[41] J. Allspaw and P. Hammond, “10+ deploys per day: Dev and ops
cooperation at Flickr,” in Velocity: web performance and operations
conference, 2009. [Online]. Available: https://www.youtube.com/
watch?v=LdOe18KhtT4

[42] J. I. Olszewska, “IEEE Standard for DevOps: Building Reliable and
Secure Systems Including Application Build, Package, and De-
ployment: IEEE Standard 2675-2021,” IEEE Standards Association,
Tech. Rep. 16 Apr 2021, 2021.

[43] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What is
DevOps?” in Proceedings of the Scientific Workshop Proceedings of
XP2016, ser. XP ’16 Workshops. New York, NY, USA: ACM, may
2016, pp. 1–11.

[44] A. Mishra and Z. Otaiwi, “DevOps and software quality: A
systematic mapping,” Computer Science Review, vol. 38, no. 1,
p. 100308, nov 2020.

[45] J. Humble and J. Molesky, “Why enterprises must adopt devops
to enable continuous delivery,” Cutter IT Journal, vol. 24, no. 8, pp.
6–12, 2011.

[46] J. Willis, “DevOps Culture (Part 1) - IT Revolution,” 2012. [Online].
Available: https://itrevolution.com/devops-culture-part-1/

[47] Gene Kim, “The Three Ways: The Principles Underpinning
DevOps,” 2012. [Online]. Available: https://itrevolution.com/the-
three-ways-principles-underpinning-devops/

[48] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,”
IEEE Software, vol. 33, no. 3, pp. 94–100, may 2016.

[49] B. Tessem and J. Iden, “Cooperation between developers and oper-
ations in software engineering projects,” Proceedings - International
Conference on Software Engineering, pp. 105–108, 2008.

[50] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen,
and T. Männistö, “DevOps adoption benefits and challenges in
practice: A case study,” 17th International Conference on Product-
Focused Software Process Improvement, PROFES 2016, vol. 10027
LNCS, pp. 590–597, 2016.

[51] B. A. Kitchenham, “Systematic review in software engineering,” in
Proceedings of the 2nd international workshop on Evidential assessment
of software technologies - EAST ’12. New York, New York, USA:
ACM Press, 2012, p. 1.

[52] V. Garousi, M. Felderer, and M. V. Mäntylä, “The need for multi-
vocal literature reviews in software engineering,” in Proceedings
of the 20th International Conference on Evaluation and Assessment in
Software Engineering - EASE ’16. New York, New York, USA:
ACM Press, 2016, pp. 1–6.

[53] R. T. Ogawa and B. Malen, “Towards Rigor in Reviews of
Multivocal Literatures: Applying the Exploratory Case Study
Method,” Review of Educational Research, vol. 61, no. 3, pp. 265–286,
sep 1991.

[54] D. Budgen and P. Brereton, “Performing systematic literature
reviews in software engineering,” in Proceedings of the 28th
international conference on Software engineering, Keele University
and Durham University Joint Report. New York, NY, USA: ACM,
may 2006, pp. 1051–1052.

[55] J. Smeds, K. Nybom, and I. Porres, “DevOps: A Definition and
Perceived Adoption Impediments,” in Lecture Notes in Business
Information Processing. Springer, 2015, vol. 212, pp. 166–177.

[56] DORA, “DORA research program,” 2020. [Online]. Available:
https://www.devops-research.com/research.html

[57] BMC, “State of DevOps 2020: A Report Roundup,” BMC,
2020. [Online]. Available: https://www.bmc.com/blogs/state-of-
devops/

[58] J. Mitlöhner, S. Neumaier, J. Umbrich, and A. Polleres, “Character-
istics of open data CSV files,” in 2016 2nd International Conference
on Open and Big Data (OBD). IEEE, 2016, pp. 72–79.

[59] C. Wohlin, “Guidelines for snowballing in systematic literature
studies and a replication in software engineering,” ACM Interna-
tional Conference Proceeding Series, 2014.

[60] A. Novak, “Six Core Capabilities of a DevOps Practice – The New
Stack,” 2014. [Online]. Available: https://thenewstack.io/six-
core-capabilities-of-a-devops-practice/

[61] M. Senapathi, J. Buchan, and H. Osman, “DevOps Capabilities,
Practices, and Challenges,” in Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering
2018 - EASE’18, ser. EASE’18, no. June. New York, USA: ACM
Press, jun 2018, pp. 57–67.

[62] D. Teixeira, R. Pereira, T. Henriques, M. M. D. Silva, and
J. Faustino, “A maturity model for DevOps,” International Journal
of Agile Systems and Management, vol. 13, no. 4, p. 464, 2020.

[63] M. M. A. Ibrahim, S. M. Syed-Mohamad, and M. H. Husin,
“Managing Quality Assurance Challenges of DevOps through
Analytics,” in Proceedings of the 2019 8th International Conference on
Software and Computer Applications, ser. ICSCA ’19, vol. Part F1479.

40

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

New York, NY, USA: Association for Computing Machinery, feb
2019, pp. 194–198.

[64] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook
: How to Create World-Class Agility, Reliability, and Security in
Technology Organizations. IT Revolution Press, 2016.

[65] B. I. Staff, “10 DevOps Best Practices To Know | Built In,”
pp. 1–7, 2020. [Online]. Available: https://builtin.com/software-
engineering-perspectives/ devops-best-practices

[66] D. Linthicum, “DevOps tools best practices: A 7-step guide,”
2016. [Online]. Available: https://techbeacon.com/devops/7-
steps-choosing-right-devops-tools

[67] R. de Feijter, S. Overbeek, R. van Vliet, E. Jagroep, and S. Brinkkem-
per, “DevOps competences and maturity for software producing
organizations,” Lecture Notes in Business Information Processing, vol.
318, pp. 244–259, 2018.

[68] J. Groll, “What is a DevOps ’Best Practice’? - DevOps.com,” 2016.
[Online]. Available: https://devops.com/devops-best-practice/

[69] I. Karamitsos, S. Albarhami, and C. Apostolopoulos, “Applying
devops practices of continuous automation for machine learning,”
Information (Switzerland), vol. 11, no. 7, pp. 1–15, jul 2020.

[70] K. Eby, “The Tools and Technology of DevOps | Smartsheet,” pp.
1–26, 2017. [Online]. Available: https://www.smartsheet.com/
devops-tools

[71] K. Kuusinen, V. Balakumar, S. C. Jepsen, S. H. Larsen, T. A.
Lemqvist, A. Muric, A. Ø. O. Nielsen, and O. Vestergaard, “A large
agile organization on its journey towards DevOps,” in Proceedings
- 44th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2018, B. T. and A. L., Eds. University of
Southern Denmark, Odense, Denmark: Institute of Electrical and
Electronics Engineers Inc., aug 2018, pp. 60–63.

[72] R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen,
and K. Lu, “Preliminary Findings about DevSecOps from Grey
Literature,” in 20th IEEE International Conference on Software Quality,
Reliability, and Security, QRS 2020. Nanjing University, State
Key Laboratory for Novel Software Technology, Nanjing, China:
Institute of Electrical and Electronics Engineers Inc., dec 2020, pp.
450–457.

[73] M. D. Z. Imam, “What are the Best Practices For
Successful Implementation Of DevOps?” 2018. [Online].
Available: https://www.knowledgehut.com/blog/devops/best-
practices-for-successful-implementation-of-devops

[74] Netapp, “What Is DevOps? - Practices and Benefits Explained
| NetApp,” pp. 1–12, 2019. [Online]. Available: https:
//www.netapp.com/devops-solutions/what-is-devops/

[75] T. Hall, “DevOps Best Practices | Atlassian,” 2020. [Online].
Available: https://www.atlassian.com/devops/what-is-devops/
devops-best-practices

[76] L. Yin and V. Filkov, “Team Discussions and Dynamics during
DevOps Tool Adoptions in OSS Projects,” in Proceedings - 2020
35th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2020, ser. ASE ’20. New York, NY, USA:
Association for Computing Machinery, 2020, pp. 697–708.

[77] J. Humble and B. O’Reilly, Lean enterprise : adopting continouos
delivery, devops, and lean startup at scale. O’Reilly Media, Inc.,
2014.

[78] I. T. Revolution, “24 Key Capabilities to Drive Improvement
in Software Delivery - IT Revolution,” 2020. [Online].
Available: https://itrevolution.com/24-key-capabilities-to-drive-
improvement-in-software-delivery/

[79] H. T. C. G. Services, “24 DevOps Capabilities - DevOps Efficiency
Matrix,” 2020. [Online]. Available: https://devopsefficiency.com/
list.html

[80] E. DeBoer, “Accelerate: A Principle-based DevOps Framework,”
2019. [Online]. Available: https://blog.sonatype.com/principle-
based-devops-frameworks-accelerate

[81] P. Rodríguez, M. Mäntylä, M. Oivo, L. E. Lwakatare, P. Seppänen,
and P. Kuvaja, “Advances in Using Agile and Lean Processes for
Software Development,” in Advances in Computers, ser. Advances
in Computers, M. A.M., Ed. Faculty of Information Technology
and Electrical Engineering, University of Oulu, Finland: Academic
Press Inc., 2019, vol. 113, pp. 135–224.

[82] H. Ketterer, “Leaner, Faster, and Better with DevOps,” 2017.
[Online]. Available: https://www.bcg.com/publications/2017/
technology-digital-leaner-faster-better-devops

[83] W. P. Luz, G. Pinto, and R. Bonifácio, “Adopting DevOps in the
real world: A theory, a model, and a case study,” Journal of Systems
and Software, vol. 157, no. July, p. 110384, Nov. 2019.

[84] PuppetGuideCIOs, “The 5 Stages of DevOps Evo-
lution: A Guide for CIOs,” 2018. [Online]. Avail-
able: https://www.thinkahead.com/wp-content/uploads/2018/
12/puppet-5-stages-devops-evolution-cio-guide.pdf

[85] O. Mikhalchuk, “5 core DevOps principles for a painless
culture shift | Forte Group,” 2020. [Online]. Available:
https://fortegrp.com/what-are-the-core-devops-principles/

[86] Infopulse, “6 DevOps Best Practices to Launch Enterprise-
Wide Transformations | Continuous Delivery, Microservices
Architecture, Collaboration | Infopulse,” 2018. [Online].
Available: https://www.infopulse.com/blog/6-devops-best-
practices-to-launch-enterprise-wide-transformations/

[87] Puppet Labs, “2019 State of DevOps Report,” Puppet Labs, Tech.
Rep., 2019.

[88] S. Team, “Understanding 6 Essential DevOps Prin-
ciples - SKILLOGIC Official Blog,” 2018. [Online].
Available: https://skillogic.com/blog/understanding-6-essential-
devops-principles/

[89] J. Wade, “Devops Best Practices Checklist · GitHub,” pp.
1–8, 2017. [Online]. Available: https://gist.github.com/jpswade/
4135841363e72ece8086146bd7bb5d91

[90] Vilmate, “7 DevOps Best Practices for a Project Success | Vilmate,”
2020. [Online]. Available: https://vilmate.com/blog/devops-best-
practices/

[91] RedHat, “What is DevSecOps?” 2018. [Online]. Available: https:
//www.redhat.com/en/topics/devops/what-is-devsecops

[92] T. F. Düllmann, C. Paule, A. van Hoorn, T. F. Dullmann, C. Paule,
A. van Hoorn, and IEEE, “Exploiting devops practices for depend-
able and secure continuous delivery pipelines,” in Proceedings -
International Conference on Software Engineering, ser. RCoSE ’18, no.
4th ACM/IEEE International Workshop on Rapid Continuous
Software Engineering (RCoSE), IEEE Comp Soc; Assoc Comp
Machinery; SIGSOFT; IEEE Tech Council Software Engn. New
York, NY, USA: Association for Computing Machinery, 2018,
Proceedings Paper, pp. 27–30.

[93] C. S. Tov, “DevOps Best Practices: Take Your Pipeline
to the Next Level - Codemotion,” 2020. [Online].
Available: https://www.codemotion.com/magazine/dev-hub/
devops-engineer/devops-best-practices/

[94] M. Zulfahmi Toh, S. Sahibuddin, and M. N. Mahrin, “Adoption
issues in DevOps from the perspective of continuous delivery
pipeline,” in PervasiveHealth: Pervasive Computing Technologies for
Healthcare, ser. ICSCA ’19, vol. Part F1479. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 173–177.

[95] I. Pavlenko, “DevOps: Principles, Practices, and
DevOps Engineer Role,” 2021. [Online]. Avail-
able: https://www.altexsoft.com/blog/engineering/devops-
principles-practices-and-devops-engineer-role/

[96] L. Bass, Len; Weber, Ingo; Zhu, DevOps: A Software Architect’s
Perspective, 1st ed. Addison-Wesley Professional, 2015.

[97] J. Faustino, “DevOps Practices in Incident Management
Process,” Thesis, ISCTE-IUL, 2018. [Online]. Avail-
able: https://repositorio.iscte-iul.pt/bitstream/10071/18294/1/
Master_Joao_Carvalho_Faustino.pdf

[98] N. Ceresani, “The 4 Core Capabilities of DevOps,” 2017. [Online].
Available: https://dzone.com/articles/the-4-core-capabilities-
of- devops

[99] I. Sacolick, “15 KPIs to track devops transformation,”
2018. [Online]. Available: https://www.infoworld.com/article/
3297041/15-kpis-to-track-devops-transformation.html

[100] C. A. Technologies, “How Can DevOps Practices Help
You Increase - Broadcomdocs.broadcom.com,” 2017. [Online].
Available: https://docs.broadcom.com/doc/how-can-devops-
practices-help-you-increase-innovation-velocity-and-business-
agility-on-the-mainframe

[101] DevOps Research and Assessment (DORA), D. Research, and
A. (DORA), “State of DevOps 2019 - DORA,” DORA, Tech. Rep.,
2019. [Online]. Available: https://services.google.com/fh/files/
misc/state-of-devops-2019.pdf

[102] C. Us and StarAgile, “Top 7 DevOps practices for Successful
Implementation of DevOps,” pp. 1–8, 2020. [Online]. Available:
https://staragile.com/blog/devops-best-practices

[103] C. Crowley, L. McQuillan, and C. O’Brien, “Understanding
DevOps: Exploring the origins, composition, merits, and perils
of a DevOps Capability,” in Proceedings of the 4th International
Conference on Production Economics and Project Evaluation, ICOPEV
2018, Guimarães, Portugal, ser. ICOPEV International Conference

41

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

on Project Economic Evaluation, M. Araujo, Ed., Univ Minho, Sch
Engn, Ind Engn and Management, Algoritmi Res Ctr. Guimaraes:
Universade do Minho, 2018, Proceedings Paper, pp. 29–37.

[104] Scaledagile, “DevOps - Scaled Agile Framework,” 2021. [Online].
Available: https://www.scaledagileframework.com/devops/

[105] Wikipedia, “DevOps - Wikipedia,” 2021. [Online]. Available:
https://en.wikipedia.org/wiki/DevOps

[106] E. Mueller, “What Is DevOps? | the agile admin,” 2019. [Online].
Available: https://theagileadmin.com/what-is-devops/

[107] Veritis, “DevOps Capabilities: 6-point Principles
for Business Success,” 2018. [Online]. Avail-
able: https://www.veritis.com/blog/devops-capabilities-a-6-
point-principle-that-drives-business-success/

[108] A. Lichtenberger, “Blog: Agile: Dead End? Taking the
next step by applying DevOps Practices effectively -
impact matters Blog,” 2019. [Online]. Available: https:
//www.impactmatters.ch/blog/agiledevops-deadend/

[109] Department of Energy Quality Managers: Software Quality
Assurance Subcommittee, “Software Configuration Management
(SCM) A Practical Guide,” United States Department of Energy,
Tech. Rep., 2000. [Online]. Available: http://energy.gov/sites/
prod/files/cioprod/documents/ scmguide.pdf

[110] ANSI/IEEE, “IEEE Std 1042-1987 Guide to Software Configuration
Management,” American National Standards Institute, Tech. Rep.,
1987.

[111] P. M. Mell and T. Grance, “The NIST definition
of cloud computing,” National Institute of Standards
and Technology, Gaithersburg, MD, Tech. Rep., 2011.
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/Legacy/
SP/nistspecialpublication800-145.pdf

[112] D. Stahl, T. Martensson, J. Bosch, D. Ståhl, T. Mårtensson, J. Bosch,
D. Stahl, T. Martensson, and J. Bosch, “Continuous practices
and devops: beyond the buzz, what does it all mean?” in 2017
43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), F. M., O. H.H., and S. A., Eds., vol. 2017-
Janua. Ericsson AB, Linköping, Sweden: Institute of Electrical
and Electronics Engineers Inc., aug 2017, pp. 440–448.

[113] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices
Architecture Enables DevOps: Migration to a Cloud-Native
Architecture,” IEEE Software, vol. 33, no. 3, pp. 42–52, may 2016.

[114] ——, “Migrating to Cloud-Native Architectures Using Microser-
vices: An Experience Report,” Communications in Computer and
Information Science, vol. 567, pp. 201–215, jul 2015.

[115] M. Stillwell and J. G. F. Coutinho, “A DevOps approach to
integration of software components in an EU research project,”
in Proceedings of the 1st International Workshop on Quality-Aware
DevOps, Imperial College London United Kingdom. New York,
NY, USA: ACM, sep 2015, pp. 1–6.

[116] R. Souza, F. Silva, L. Rocha, I. Machado, F. Silva, and I. Machado,
“Investigating Agile Practices in Software Startups,” in Proceedings
of the XXXIII Brazilian Symposium on Software Engineering, ser. SBES
2019. New York, NY, USA: Association for Computing Machinery,
2019, pp. 317–321.

[117] A. Steffens, H. Lichter, and J. S. Döring, “Designing a next-
generation continuous software delivery system: Concepts and
architecture,” Proceedings - International Conference on Software
Engineering, pp. 1–7, 2018.

[118] BoxBoat, “What is DevOps? Exploring DevOps Principles
& Benefits | BoxBoat,” 2018. [Online]. Available: https:
//boxboat.com/2018/12/26/what-is-devops/

[119] C. Marnewick and J. Langerman, “DevOps and Organisational
Performance: The Fallacy of Chasing Maturity,” IEEE Software,
pp. 0–0, 2020. [Online]. Available: https://ieeexplore.ieee.org/
document/9190017/

[120] R. Feijter, R. Vliet, E. Jagroep, S. Overbeek, and S. Brinkkemper,
“Towards the adoption of DevOps in software product organi-
zations: A maturity model approach,” Technical Report Series, no.
UU-CS-2017-009, 2017.

[121] A. Valdes, “5 DevOps Metrics and KPIs that CTOs
Must Monitor,” pp. 1–9, 2020. [Online]. Available: https:
//www.clickittech.com/devops/devops-metrics-and-kpis/

[122] V. Fedak, “DevOps metrics: what to track, how
and why do it.” pp. 1–11, 2020. [Online]. Avail-
able: https://medium.com/@FedakV/devops-metrics-what-to-
track-how-and-why-do-it-e08dc6864eab

[123] E. Lock, “Measure DevOps Metrics That Matter,” 2020.

[Online]. Available: https://www.devopsdigest.com/measure-
devops-metrics-that-matter

[124] D. Sato, “Practices for DevOps and Continuous Delivery,”
2015. [Online]. Available: https://www.infoq.com/articles/book-
DevOps-continuous-delivery/

[125] Devopedia, “DevOps Metrics,” 2019. [Online]. Available:
https://devopedia.org/devops-metrics

[126] G. Motroc, “Key DevOps metrics that matter: How well does your
team sleep?” pp. 1–13, 2018. [Online]. Available: https://jaxenter.
com/devops-influencers-interview-series-4-142312.html

[127] AWS, “What is DevOps? - Amazon Web Services (AWS),” 2021.
[Online]. Available: https://aws.amazon.com/devops/what-is-
devops/

[128] CMMI Product Team, “CMMI for Development, Version 1.3,”
Software Engineering Process Management Program, 2010.

[129] N. Forsgren, J. Humble, G. Kim, A. Brown, and N. Kersten,
“Accelerate: State of DevOps 2018 Strategies for a New Economy,”
Report. DevOps Research & Assessment (DORA), p. 78, 2018.
[Online]. Available: https://cloudplatformonline.com/rs/248-
TPC-286/images/DORA-State of DevOps.pdf

[130] Intellipaat, “What is DevOps - Introduction to DevOps
Architecture & Benefits,” 2016. [Online]. Available: https:
//intellipaat.com/blog/what-is-devops/

[131] H. Packard, “Measuring DevOps success,” 2016. [Online].
Available: http://www.baldrover.com/wp-content/uploads/
Measuring-DevOps-Success.pdf

[132] A. R. Chowdhury, “DevOps Best Practices: A Complete Guide,”
2019. [Online]. Available: https://stackify.com/devops-best-
practices-a-complete-guide/

[133] K. Wakayama, “How to Ensure the Success of DevOps in
Your Organization,” pp. 1–10, 2020. [Online]. Available: https://
codersociety.com/blog/articles/devops-success-in-organization

[134] Ubiq, “Top DevOps Metrics and KPIs To Monitor Regularly -
Ubiq BI Blog,” pp. 1–12, 2020. [Online]. Available: http://ubiq.co/
analytics-blog/top-devops-metrics-kpis-to-monitor-regularly/

[135] R. Westrum, “A typology of organisational cultures,” Quality
and Safety in Health Care, vol. 13, no. SUPPL. 2, pp. 22–27, 2004.
[Online]. Available: www.qshc.com

[136] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald, and
H. Krcmar, “Research for practice: The Devops phenomenon,”
Communications of the ACM, vol. 62, no. 8, pp. 44–49, 2019.

[137] M. Outlaw, “The DevOps Handbook – The
Technical Practices of Flow,” 2020. [Online].
Available: https://www.codingblocks.net/podcast/the-devops-
handbook-the-technical-practices-of-feedback/

[138] D. Cukier, “DevOps patterns to scale web applications
using cloud services,” in SPLASH 2013 - Proceedings of the 2013
Companion Publication for Conference on Systems, Programming, and
Applications: Software for Humanity. New York, New York,
USA: ACM Press, 2013, pp. 143–152. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2508075.2508432

[139] Veritis, C. Services, and Services, “Measuring DevOps: Key
‘Metrics’ and ‘KPIs’ That Drive Success!” pp. 1–10, 2020.
[Online]. Available: https://www.veritis.com/blog/measuring-
devops-key-metrics-and-kpis-that-drive-success/

[140] N. Tomas, J. Li, and H. Huang, “An empirical study on culture,
automation, measurement, and sharing of DevSecOps,” in 5th
International Conference on Cyber Security and Protection of Digital
Services, Cyber Security 2019. Department of Computer Science,
Norwegian University of Science and Technology, Trondheim,
Norway: Institute of Electrical and Electronics Engineers Inc., jun
2019, pp. 1–8.

[141] S. I. Mohamed, “DevOps Maturity Calculator DOMC -Value
oriented approach,” International Journal of Engineering Research
and Science, vol. 2, no. 2, pp. 2395–6992, 2016.

[142] P. Waterhouse, “DevOps Practitioner Series -
Metrics That Matter,” 2015. [Online]. Available:
https://docs.broadcom.com/doc/devops-practitioner-series-
metrics-that-matter-developing-and-tracking-key-indicators

[143] S. Beecham, N. Baddoo, T. Hall, H. Robinson, and H. Sharp,
“Motivation in Software Engineering: A systematic literature
review,” Information and Software Technology, vol. 50, no. 9-10,
pp. 860–878, 2008.

[144] J. M. Verner, M. A. Babar, N. Cerpa, T. Hall, and S. Beecham,
“Factors that motivate software engineering teams: A four country
empirical study,” Journal of Systems and Software, vol. 92, no. 1, pp.
115–127, 2014.

42

©
20

22
IE

EE
.R

ep
ri

nt
ed

,w
it

h
pe

rm
is

si
on

,f
ro

m
A

m
ar

o,
R

.,
Pe

re
ir

a,
R

.a
nd

M
ir

a
da

Si
lv

a,
M

.,
"C

ap
ab

il
it

ie
s

an
d

Pr
ac

ti
ce

s
in

D
ev

O
ps

:A
M

ul
ti

vo
ca

l
Li

te
ra

tu
re

R
ev

ie
w

",
IE

EE
Tr

an
sa

ct
io

ns
on

So
ft

w
ar

e
En

gi
ne

er
in

g,
A

pr
il

20
22

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

[145] S. Smith, “High performing DevOps metrics,” pp. 1–11, 2020.
[Online]. Available: https://samlearnsazure.blog/2020/04/30/
high-performing-devops-metrics/

[146] V. Gupta, P. K. Kapur, and D. Kumar, “Modeling and measuring
attributes influencing DevOps implementation in an enterprise
using structural equation modeling,” Information and Software
Technology, vol. 92, no. 1, pp. 75–91, 2017.

[147] RDC Partner, “6 core capabilities of DevOps practice,” pp.
2–6, 2018. [Online]. Available: https://rdcpartner.nl/6-core-
capabilities-of-devops- practice/

[148] C. Rudder, “10 ways DevOps helps digital transformation
| The Enterprisers Project,” 2019. [Online]. Avail-
able: https://enterprisersproject.com/article/2019/8/devops-
role-digital-transformation

[149] S. Yusuf, “Ebbs and Flows Of DevOps Debugging PART 1 -
Security Boulevard,” pp. 1–32, 2021. [Online]. Available: https:
//securityboulevard.com/2021/02/ebbs-and-flows-of- devops-
debugging-part-1/

[150] Puppet, “5 Foundational DevOps Practices: How to Establish
& Build on Them | Puppet,” 2018. [Online]. Avail-
able: https://puppet.com/resources/whitepaper/5-foundational-
devops-practices-how-establish-build-them/

[151] T. Jachja, “CI/CD Patterns and Practices — DevOps Institute,”
2020. [Online]. Available: https://devopsinstitute.com/ci-cd-
patterns-and-practices/

[152] C. Patel, “DevOps Best Practices - DZone DevOpsdzone.com,”
2020. [Online]. Available: https://dzone.com/articles/devops-
best-practices

[153] R. Powell, “Essential DevOps Principles for 2021
| CircleCIcircleci.com,” 2020. [Online]. Available: https:
//circleci.com/blog/essential-devops-principles/

[154] M. Patil, “Maximizing DevOps ROI with Modern
Application Practices | HCL Blogs,” 2020. [Online].
Available: https://www.hcltech.com/blogs/maximizing-devops-
roi-modern-application-practices

[155] D. Online, “The Practice of DevOps,” 2020. [Online]. Available:
https://www.dqindia.com/the-practice-of-devops/

[156] C. Solutions, “8 Best Practices for Successful
Implementation of DevOps,” 2019. [Online]. Avail-
able: https://dev.to/credencys/8-best-practices-for-successful-
implementation-of-devops-in-your-enterprise-2k93

[157] G. Pousseo, “DevOps Practices: Agility without DevOps is
pointless,” 2019. [Online]. Available: https://www.pentalog.com/
blog/agility-without-devops-is-pointless

[158] A. D. Rayome, “5 foundational DevOps practices your
enterprise needs to succeed - TechRepublic,” 2018. [Online].
Available: https://www.techrepublic.com/article/5-foundational-
devops-practices-your-enterprise-needs-to-succeed/

[159] P. CIO, “Building a Strong DevOps Foundation | CIO,”
2018. [Online]. Available: https://www.cio.com/article/3319077/
building-a-strong-devops-foundation.html

[160] N. Stamenkovic, “DevOps - principles, practices and why should
you care? - Ingsoftware Blog,” pp. 1–11, 2018. [Online]. Available:
https://www.ingsoftware.com/devops-principles-and- practices

[161] Pinkelephant, “DevOps: Why The 15 Essential Prac-
tices Are Key To Your Organization’s Survival
| Pink Elephant Blog,” 2018. [Online]. Avail-
able: https://blog.pinkelephant.com/blog/devops-why-the-15-
essential-practices-are-key-to-your-organizations-surviva

[162] PuppetSplunk, “The 5 foundational devops practices,” 2018.
[Online]. Available: https://www.1sttechguide.com/wp-content/
uploads/2019/09/The-5-Foundational-DevOps-Practices.pdf

[163] A. Crouch, A. Gaspari, and A. Crouch, “6 Steps to
a Successful DevOps Adoption | AgileConnection,” 2017.
[Online]. Available: https://www.agileconnection.com/article/6-
steps-successful-devops-adoption

[164] C. Pang, A. Hindle, and IEEE, “Continuous Maintenance,” in Pro-
ceedings - 2016 IEEE International Conference on Software Maintenance
and Evolution, ICSME 2016, no. 32nd IEEE International Conference
on Software Maintenance and Evolution (ICSME). Department
of Computing Science, University of Alberta, Edmonton, AB,
Canada: Institute of Electrical and Electronics Engineers Inc., oct
2016, pp. 458–462.

[165] A. Wadhera, “10 Key DevOps Practices to Improve IT Efficiency,”
2016. [Online]. Available: https://www.tothenew.com/blog/10-
key-devops-practices-to-improve-it-efficiency/

[166] L. Zhu, L. Bass, and G. Champlin-Scharff, “DevOps and Its
Practices,” IEEE Software, vol. 33, no. 3, pp. 32–34, may 2016.

[167] K. Horvath, “DevOps Part 2: Methods, Practices and Tools,”
2015. [Online]. Available: https://content.intland.com/blog/
agile/devops/devops-part-2-methods-practices-and-tools

[168] M. Croker, “DevOps: innovative engineering practices
for continuous software delivery,” 2015. [Online].
Available: https://www.accenture.com/_acnmedia/PDF-18/
Accenture-DevOps-brochure-new.pdf

[169] M. A. Silva, J. P. Faustino, R. Pereira, M. M. da Silva, and M. Mira
da Silva, “Productivity gains of DevOps adoption in an IT team:
A case study,” in Proceedings of the 27th International Conference
on Information Systems Development: Designing Digitalization, ISD
2018, B. C. L. M. L. H. S. C. Andersson B. Johansson B., Ed.
Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal:
Association for Information Systems, jul 2018, p. 12. [Online].
Available: https://repositorio.iscte-iul.pt/handle/10071/16388

[170] M. Rother, Toyota Kata: Managing people for improvement, adaptive-
ness and superior results. MGH, New York, 2019.

[171] Cambridge, “CAPABILITY | meaning in the Cambridge
English Dictionary,” 2021. [Online]. Available: https://dictionary.
cambridge.org/dictionary/english/ capability

[172] Merriam-Webster, “Capability | Definition of Capability by
Merriam-Webster,” 2021. [Online]. Available: https://www.
merriam-webster.com/dictionary/capability

[173] T. Biggs, M. Shah, and P. Srivastava, Technological capabilities and
learning in African enterprises. The World Bank, 1995.

[174] Cambridge, “PRACTICE | meaning in the Cambridge
English Dictionary,” 2021. [Online]. Available: https://dictionary.
cambridge.org/dictionary/english/ practice

[175] “Practice | Definition of Practice by Merriam-Webster,”
2021. [Online]. Available: https://www.merriam-webster.com/
dictionary/practice

[176] IEEE Standards Association, “IEEE Standard for Configuration
Management in Systems and Software Engineering: IEEE Std
828™-2012 (Revision of IEEE Std 828-2005),” IEEE Standards
Association, Tech. Rep., 2012.

43

44

CHAPTER 3

Article #2

This article (A2) presents the second MLR, which led to finding and categorizing 22 main
DevOps metrics, providing definitions, importance, and practical implementation guidelines to
enhance DevOps adoption and performance in organizations [91]. The second analysis vector
of this thesis is related to DevOps metrics, which results in an informed approach to improving
DevOps adoption in a structured way. Therefore, it aims to assist researchers and practitioners
in understanding and implementing DevOps metrics.

As a result, the article provides relevant DevOps metrics organized in KPIs to facilitate the
efficiency of DevOps adoption and better assess DevOps performance in organizations. The
results also indicate that by conducting an extensive MLR on DevOps metrics, it resulted in
their definitions, importance, and categorization. The results also highlight the need for DevOps
metrics to improve software delivery, performance and discuss several aspects, like business
improvements and challenges. It guides how to implement DevOps metrics in organizations by
establishing a baseline, setting targets and goals, automating data collection, releasing changes,
using dashboards and reports, taking action, continuously monitoring, and using a feedback loop
for continuous improvements. The outcomes assist researchers and practitioners in understand-
ing and implementing DevOps metrics to improve profitability, productivity, quality, operational
efficiency, customer feedback, and achieving organizational goals.

Article details:

– Title: DevOps Metrics and KPIs: A Multivocal Literature Review

– Date: March 2024

– Journal: ACM Computing Surveys

– Scimago Journal Rank: Q1

– Publisher: Association for Computing Machinery (ACM)

45

DevOps Metrics and KPIs: A Multivocal Literature Review
RICARDO AMARO, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
RÚBEN PEREIRA, INOV INESC Inovação, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal
MIGUEL MIRA DA SILVA, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Context: Information Technology organizations are aiming to implement DevOps capabilities to fulfill mar-
ket, customer, and internal needs. While many are successful with DevOps implementation, others still have
difficulty measuring DevOps success in their organization. As a result, the effectiveness of assessing DevOps
remains erratic. This emphasizes the need to withstand management in measuring the implementation pro-
cess with suitable DevOps Metrics. But what are these metrics?

Objective: This research seeks to provide relevant DevOps Metrics to facilitate the efficiency of DevOps
adoption and better analyze DevOps performance in enterprises.

Method: A Multivocal Literature Review (MLR) is conducted, with 139 documents gathered and thor-
oughly examined from throughout the community, including books, scientific articles, white papers, confer-
ences, among others.

Results: This article conducts an extensive and rigorous MLR, contributing with a definition of DevOps
Metrics, 22 main metrics, their definitions, importance, and categorization in sets of Key Performance Indica-
tors, as well as exposing clear indicators on how to improve them. It is also discussed how metrics could be
put into practice and what constitutes a change in the context of DevOps Metrics. The study’s outcomes will
assist researchers and practitioners understand DevOps Metrics and how to better implement them.

CCS Concepts: • Software and its engineering → Software creation and management; Software development
process management; Programming teams; Software post-development issues;

Additional Key Words and Phrases: DevOps, metrics, performance, adoption, software development life cycle,
information system

ACM Reference Format:
Ricardo Amaro, Rúben Pereira, and Miguel Mira da Silva. 2024. DevOps Metrics and KPIs: A Multivocal
Literature Review. ACM Comput. Surv. 56, 9, Article 231 (April 2024), 41 pages. https://doi.org/10.1145/3652508

1 INTRODUCTION
Information technology (IT) organizations are constantly impacted by ever-changing consumer
expectations, industry regulations, competitors, and advanced external threats [58, 155]. Conse-
quently, in those organizations where software development is part of the core business, they seek
a competitive advantage [101], such as improving the user experience, increasing productivity, and
team collaboration [80, 93].

Authors’ addresses: R. Amaro and R. Pereira, Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal; e-mails:
ricardo_amaro@iscte-iul.pt, ruben.filipe.pereira@iscte-iul.pt; M. Mira da Silva, Instituto Superior Técnico, Universidade
de Lisboa, Portugal; e-mail: mms@tecnico.ulisboa.pt.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International
4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 0360-0300/2024/04-ART231
https://doi.org/10.1145/3652508

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

46

231:2 R. Amaro et al.

However, because of the silos that exist between development and operations [212], this ap-
proach produces complexity and inefficiency. The request for more frequent software delivery, in
the absence of sustained builds, adequate testing, and release automation [56], causes burnout and
toil in the engineers doing operations, deteriorating software delivery performance and reliability.

As a result of these challenges, we observe the rise of DevOps, an organizational model that
emphasizes empathy and fosters more cooperation among technical teams involved in software
delivery [80], to improve key performance indicators like development time, deployment rate, reli-
ability, mean time to recover and the overall cost of product implementation and deployment [146].
Furthermore, research has been specifically focusing on Mean Time To Recover (MTTR), Mean
Lead-time for Changes (MLT), Deployment Frequency (DF), and Change Failure Rate
(CFR), four key metrics [53].

But it is still common to observe inconsistent results in the adoption of DevOps practices and
capabilities [6, 172, 177], confirming the need to have a consensual improvement on expanding
the metrics being gathered and used to improve those results. It is agreed that DevOps, with the
right metrics, can help applications and teams perform at their best [84] and should also present
relevant data, clearly and understandably, showing where improvements can be made in the
deployment and change process [118].

Moreover, it is a pertinent approach to regulate and evaluate the level of success of DevOps
adoption by using precise DevOps Metrics that assess the success of DevOps capabilities adoption,
indicating, for instance, if a certain software delivery process within the pipeline [155] is at optimal
levels or might need enhancements. This information will support management’s decision-making
process to have a clear vision of the steps to take ahead based on information systems and metrics
to increase efficiency [101].

Therefore, it would be valuable to comprehend the DevOps Metrics that comprise the DevOps
assessment process, as well as the main key metrics required to carry out the adoption of DevOps
capabilities[5, 6]. From previous related work, it is understood that DevOps Metrics help drive out-
comes [38], generated by DevOps capabilities and controlled by the usage of a periodic DevOps
assessment [35]. Some authors already imply a few key concepts for arranging the DevOps Met-
rics like Organizational Culture [53, 84, 103, 118, 152], Operational Performance [23, 84, 109, 165],
Business Focus [73, 85, 87, 114, 135] and Incremental Change [76, 186, 217]. This study also proposes
discussing these concepts to categorize DevOps metrics in Section 5. This may be useful for prac-
titioners and organizations, since it will improve comprehension and subsequently improve the
success of DevOps implementation tightly connected with Outcomes [71, 93, 109, 148]. Especially
if it would be possible to extract the Key Performance Indicators out of all the discussed DevOps
Metrics in literature, that can help define the organization’s DevOps strategy and clear focus.

Hence, the success of DevOps could be improved if the main DevOps Metrics are known, target-
ing a successful implementation and operationalization of the complex [92] process of DevOps. Not
just during the implementation phase but also later in controlling the execution, since it demands a
rigorous systematization for self-assessment. This, in turn, should lead to increased performance
levels, according to Ravichandran et al. [155]. Unfortunately, there is a lack of a broader study,
joining practitioners and researchers knowledge, proposing an extended list of metrics, their clear
categorization, and relating them to outcomes for the effective use of DevOps in organizations.

Consequently, the research problem is the following: While there is important research done in
DevOps over the years around a few measures, the assessment of the desired success of DevOps
adoption is still unpredictable, because, despite the fact that metrics are being discussed in the
industry, there is still a need for more consensus regarding definitions and benefits, due to the lack
of a broader study that synthesizes and clarifies the main key metrics from both practitioners and
researchers.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

47

DevOps Metrics and KPIs: A Multivocal Literature Review 231:3

This article proposes to understand and synthesize the main DevOps Metrics that are mentioned
in publications and how they relate to each other. Because this subject has received more attention
and scrutiny from the industry than from the scientific community, with major technological or-
ganizations issuing frequent reports, this article suggests undertaking a MLR [63], to expand the
few academic papers and include voices from the industry, to research and elicit the main DevOps
Metrics that are mentioned in publications from both the practitioners and researchers communi-
ties. It is also intended to gather the definition and categorization of each of these DevOps Metrics.
Based on the primary objective of this research, a MLR is undertaken to look for scientific and
“gray” literature that discusses or examines the subject of DevOps Metrics, which may then be
translated into the following research questions:

— RQ1. What are the main DevOps Metrics, and where are they referenced?
— RQ2. What is the precise definition and importance of each main DevOps Metric?

This article also provides business leaders with a concise DevOps metrics definition in Sec-
tion 5.1, a categorization in Section 6 and a discussion of findings of the research, aiming to improve
the adoption of DevOps, facilitating an alignment strategy with business goals. Thus, helping on
data-driven decisions[5, 92], for enhancing change[76, 186, 217], operations [23, 84, 109, 165], and
promoting a culture of continuous improvement.

The remainder of this article is organized as follows: Section 2 presents a review of the core con-
cepts of DevOps, its collaborative culture, practices, and the importance of measuring its impact
on software delivery performance. Section 3 discusses MLR methodology to investigate DevOps
metrics from the academic and gray literature and analyze them. Section 4 outlines the steps in
the literature review process to identify and analyze relevant studies on DevOps Metrics and Key
Performance Indicators (KPIs), culminating in 139 publications for data extraction. Section 5
addresses the research questions and provides a detailed analysis of key DevOps metrics and KPIs,
their relevance, expected trends, and improvement strategies. Finally, the discussion of our find-
ings is located in Section 6, where we also provide a categorization of DevOps metrics, impact on
software delivery, and their practical implementation challenges. The article ends with the conclu-
sion, future work, and limitations in Section 7.

2 DEVOPS
This section provides a theoretical foundation for the study area of this research, namely, DevOps.

DevOps is an abbreviation for the Developer (Dev) and Operations (Ops) teams, which col-
laborate to eliminate the so-called engineering silos [162, 217]. There is no universal definition
of DevOps. Blog articles on the subject are widespread, although they usually vary on a specific
definition of the phrase. DevOps emerged as an evolution of the agile paradigm for IT service
management [32], which focused on developing new processes for the continuous deployment of
rapidly changing software. According to Jabbari et al. [85], DevOps is a development approach that
emphasizes communication and cooperation, continuous integration, quality assurance, and deliv-
ery with automated deployment through the use of a set of development techniques. It can also
be seen as a conceptual framework that is based on certain capabilities, focused on the acronym
CAMS (Culture, Automation, Measurement, and Sharing) [81]. Later, Jez Humble added to these
four pillars, the Lean (L) pillar, becoming the acronym Culture, Automation, Lean principles,
Measuring and Sharing (CALMS) [215].

DevOps uses a combination of cultural changes and technology-enabled strategies to achieve
higher levels of throughput and stability, even in the face of high unpredictability [81, 213]. Sousa
et al. [182], in his article on DevOps foundations and views, emphasizes the new approach to
software delivery that happens through cooperation between development teams and operations,

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

48

231:4 R. Amaro et al.

Fig. 1. The Three Ways: The principles underpinning DevOps (adapted) [65].

as demonstrated in Figure 1, rather than the conventional method that is isolated in organizational
silos. This trait of effective interaction between IT Development and IT Operations teams is critical
for ensuring successful IT system deployment and operation [193].

DevOps is also a culture, movement, or practice that stresses cooperation and communication
[13] with the objective of speeding up the software release cycle to production and automating the
creation of new software components while maintaining high quality, as mentioned by Lwakatare
et al. [110], where a literature review on the term DevOps indicates that DevOps is a mentality
shift backed by a set of automated procedures.

For Riungu-Kalliosaari et al. [159], DevOps is a collection of techniques aimed at reducing the
time it takes for a change made to a system to move into regular production, while guarantee-
ing high quality and the least friction and blame between teams rather than trust and empathy.
A comprehensive DevOps performance research book, “Accelerate” [53], investigates how most
modern organizations are using DevOps principles and practices, using statistical methods to as-
sess software delivery performance and providing a new understanding of software delivery and
organizational performance.

Finally, as mentioned by Forsgren et al. [56], There are two approaches for collecting met-
rics about DevOps performance: Survey data and System data. Both have advantages and dis-
advantages, but knowing what metrics to collect first has been described by several authors
[48, 53, 58, 141, 192] as a primary goal for determining the effectiveness of DevOps implemen-
tation within organizations [150, 155]. However, there has been minimal academic research on
measuring DevOps capabilities and practices [6, 103].

3 MULTIVOCAL LITERATURE REVIEW
A MLR is a type of Systematic Literature Review (SLR) [62], designed to include gray litera-
ture such as blogs, videos and websites, as well as white papers constantly produced by SE prac-
ticing professionals outside academic forums, despite publishing (peer-reviewed) writings such as
journals and conference papers. MLRs are therefore useful for research extension by integrating
material that would ordinarily not be collected because of its “gray” character [63], as shown in
the Figure 2.

While examining the specific subject of DevOps, a number of academics have already noticed
that “enlarging the scope” and including Gray Literature (GL) will add value and advantage to
the review study. There are already some successful MLR-based DevOps research examples in
the same area [59, 141]. Therefore, it confirms the practical application of this approach in the
research presented and increases the diversity of accessible sources in many ways, including the
representation of various goals and viewpoints [129].

The MLR has a few objectives for this study, including a thorough mapping of the main DevOps
Metrics from scientific and gray literature, as well as a summary of the definitions and references
of each metric.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

49

DevOps Metrics and KPIs: A Multivocal Literature Review 231:5

Fig. 2. Relationship of SLR, GLR, and MLR [63].

Fig. 3. MLR steps based on Garousi et al. [63].

There are several guidelines in the scientific literature for doing SLR research in Software En-
gineering [11, 95, 96]. MLRs, however, has multiple stages that are distinct from regular SLRs.
Specifically, the process of investigating and evaluating the source’s quality. Therefore, SLR guide-
lines are only partially useful for conducting MLR studies as seen in Figure Figure 3. This process
shows the planning, conducting, and reporting as proposed by Garousi et al. [63].

While this strategy is predicted to generate substantial information in some areas of DevOps
research, using such data will surely pose challenges, as the evidence provided is typically based on
experience and opinion. For that reason, systematic guidelines [62] will be used for performing
this MLR.

3.1 Planning
3.1.1 Motivation. Management in software development businesses that wish to adopt De-

vOps internally must have access to appropriate supporting information and metrics regard-
ing this implementation to assess the success and enhance the efficiency [101] of applying De-
vOps [13, 87, 109, 114, 135, 141, 155, 159].

To achieve targets and goals, organizations adopting DevOps can then quickly measure and
demonstrate the effectiveness of new DevOps processes like software development and contin-
uous delivery, align cross-functional teams around business value creation and continuous im-
provement [76], pinpoint capability gaps and initiate remediation strategies. It is hard to improve
DevOps without metrics [56, 141, 179]. An organization must constantly qualify its DevOps pro-
cesses, and achieving excellence requires measurement to remove subjectivity.

However, there exists a lack of systematization of the main DevOps Metrics being debated in
the DevOps community of scholars and practitioners. To provide systematization and clarity to the
current DevOps Metrics, a broader range of sources, including practitioners and industry perspec-
tives, must be collected. With the inclusion of gray literature to review, a comprehensive survey on

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

50

231:6 R. Amaro et al.

Fig. 4. Review protocol performed in this research.

not only what the scientific literature specifies about Metrics but also what the industry produces
dynamically and utilizes internally, can be undertaken. Combining both points of view will help
to improve the research topics given in Section 1.

3.1.2 Review Protocol. The first batch of papers has been procured as seen in Figure 4 following
the completion of the search and snowballing, inclusion and exclusion criteria will be used to refine
the search results in the first phase.

The review protocol used the workflow shown in Figure 4.
In January 2022, a publication search using various keywords was conducted, in an attempt to

locate further studies relevant to this research that may provide answers to the indicated research
questions. This section lists the search string used to get the most studies and datasets.

— Search String: (devops AND (metrics OR measures OR kpi OR indicator)).
— Datasets: The search engines used were, Google search, Scopus, Web of Science, IEEE, ACM

and EBSCO.
To make finding and gathering large amounts of gray literature easier, some code was written,

as shown in the source code in Appendix A (Python code for fetching Google search results), to
parse the data into CSV files [120]. This way, it is ensured that clean results are not specific to
the researcher, but rather reproducible for peer review. Thus, addresses the issue of consistency
in the returned results, since Google delivers customized results that are tailored differently for
different users based on their previous search history and preferences. Finally, it simplifies the job
of converting the results into spreadsheet files that are used in the MLR process.

In this MLR inclusion and exclusion criteria focused on both gray literature and quality peer
reviewed work reporting work found on DevOps Metrics. For this focus, it is developed the fol-
lowing inclusion criteria present in Table 1. Criteria 1 and 2 have the goal of ensuring focus
on relevant quality publications. Criteria 3 and 4 were also used to assess evidence of quality and
report on the area of this study. Exclusion criteria also reflect on the transparency of quality rel-
evant work that contributes to DevOps Metrics discussion. We excluded papers with the following
features. Criteria 1–3 exclude non-relevant work for this study. Criteria 4–8 exclude incomplete
publications, out of boundaries, are lacking identification or not written in English. The inclusion
and exclusion criteria used in Table 1 has been adapted from authors who already approached the
use of similar methods [62, 63, 126, 129, 161, 170].

Within this scope, abstracts are screened to determine their relevance to the investigation. After
which, the relevant articles are reviewed to arrive at the final study selection for the coding review.

4 CONDUCTING THE MLR
4.1 Selection of Studies
For reference, the complete summary of the review process is shown in the diagram in Figure 5
with a visual representation of the applied MLR selection process. This reflects all the selection
work done through the methodical process of MLR.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

51

DevOps Metrics and KPIs: A Multivocal Literature Review 231:7

Table 1. Inclusion and Exclusion Criteria Applied in This Research

Inclusion Criteria Exclusion Criteria

1. Full publications from databases and snowballing:
(a) Including full books, webpages, or papers.
(b) Related research (qualitative and quantitative).
(c) Practitioners or industry-relevant contributions.

2. Publications matching the search string and date:
(a) Title and abstract of peer-reviewed work.
(b) Full content of gray literature.
(c) Date between 2010 and January 2022.

3. Explicitly stated and described DevOps Metrics sub-
ject.

4. Clearly described Metrics related to DevOps perfor-
mance.

1. Does not contribute to answering any research ques-
tions:

(a) Does not elicit, discuss and list DevOps Metrics.
(b) Not focused on DevOps.
(c) Only focused on Agile.
(d) Focused on IoT systems, not DevOps Metrics.
(e) Focused on monitoring systems, not DevOps Met-

rics.
(f) Focused on microservices, not DevOps Metrics.
(g) Focused on Quality Assurance, not DevOps Met-

rics.
2. Advertisement, Product promotion or Job Post.
3. Conference Announcement, Review or Summary.
4. Full-text not accessible.
5. Published before 2010.
6. No publication date.
7. Unidentified author.
8. Not Written in English.

Fig. 5. Followed multivocal literature review process (adapted) [63].

In the first phase of the search, filter 1 (All fields; All documents) was combined with the search
term, both of which were found in Table 2. The difference between filter 1 and filter 2 is justified
by the fact that previously, keywords could be found throughout the retrieved material, and some
search engines return more literature than academic articles, such as newspapers or reports. In
the case of the Google search engine, however, this is not the case. Thus, the results stay the
same. In the second iteration of search results, filter 2 (Abstracts, All papers) was utilized and
therefore the number of articles that include an abstract mentioning the keywords was reduced to
539 publications in total. For gray literature, it is always considered the entire text, since there is
no abstract. The resulting articles were added to Zotero1 reference manager.

1https://www.zotero.org

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

52

231:8 R. Amaro et al.

Table 2. Filters Used in the MLR Protocol

Database Filter 1 Filter 2 Snowballing Filter 3 Filter 4 Filter 5 Filter 6

Google 206 206

+19

170 165 132 127
Scopus 764 140 87 69 11 2
Web Of Science 67 61 46 38 9 2
IEEE 49 38 35 25 8 3
ACM 782 28 19 17 7 3
EBSCO 101 66 21 19 8 2
Total 1,969 539 558 377 333 175 139

Filter 1 = Query All fields, All documents.
Filter 2 = Query Abstracts, All documents.
Snowballing = Applied over starting literature search [63].
Filter 3 = Relevant (inclusion/exclusion criteria).
Filter 4 = Remove duplicates.
Filter 5 = After Abstracts Screened.
Filter 6 = Full-text Document Assess.

In the following stage, forward and backwards snowballing [216] is performed, taking as seed all
relevant conference papers, scientific articles, and the 2019 State of DevOps Report, which appears
in Google search when using the search string. The motivation for snowballing was to increase
the number of relevant quality papers. This process resulted in an increase in the overall quantity
and quality of articles to 19 more relevant publications identified. These papers were added to the
first row in Table 2.

We remain with 377 publications after applying inclusion and exclusion criteria filter 3, present
in Table 1. This leads to filter 4, which is defined to eliminate duplicates from the list of results. Since
Zotero already detects duplicate documents, while keeping the tags of where the document came
from, the effort of counting the duplicates done from filter 3 to 4 is reduced due to this capability.
Nevertheless, during manual scanning, a few duplicates were still found, therefore the total number
of publications with no duplicates is only accounted for in filter 4 as a consolidated number in the
process. In filter 5 after abstracts are screened, 175 documents remain. Because there is no abstract
for instances pertaining to gray literature, the entire text was skimmed, allowing a better assertion
of the quality of the publications. After screening all full-text documents, 139 publications are left
for the extraction phase of the MLR.

4.2 Data Extraction Analysis
Following the selection of the final collection of publications, this section analyzes the various
components of the search results in connection to the final set of articles based on the source
data. This study is based on an evaluation of the whole text of 139 articles that are appropriate for
extracting significant data for this research. Additionally, a summary of the years and genres of
articles selected for thorough reading is included.

4.2.1 Gray and White Literature Number of Contributions. The relationship of the final docu-
ment set by database shows that 127 results originated from Google, with 91,37 percent of gray
literature. Six publications are contributed by Web of Science, Scopus, and EBSCO databases. ACM
and IEEE each provided three items, leading to a total of six publications of relevant research peer-
reviewed articles. This validates the expectation that the practitioner community will produce a
wider range of findings when contrasted with the scientific literature.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

53

DevOps Metrics and KPIs: A Multivocal Literature Review 231:9

Fig. 6. Distribution of publications per type over the years.

4.2.2 Distribution of Publications Over the Years. In Figure 6 it is reflected how publications
have been evolving over the years with the biggest amount of generated literature appearing in
webpages in the year 2020, where three of which include relevant video content. The rising num-
ber in 2020 and 2021 reflects the fact that this topic has been gaining more relevance. Another
interesting aspect to note is the early appearance in 2010 of the book “Continuous Delivery” [80]
mentions that metrics help improvements and efficiency in the continuous integration and deliv-
ery processes. According to Jezz Humble, a well-implemented deployment pipeline should make
determining the Cycle Time simple. It should also display how long it takes from check-in to each
stage of the procedure. This is an effective method for identifying bottlenecks in operations.

Since 2013, the same author has been consistently contributing to the topic, including in nu-
merous State of DevOps reports [35, 144–149, 151] and in other relevant books. These important
contributions to DevOps Metrics are also shared with Joanne Molesky and Barry O’Reilly in “Lean
enterprise : continuous delivery, DevOps, and lean startup at scale” [82] Gene Kim, Patrick De-
bois and John Willis in the “The DevOps Handbook” [93] and congregating efforts with Nicole
Forsgren in “Accelerate: The science of lean software and DevOps” [53] where important metrics
are discussed based on the investigation done in yearly State of DevOps Reports [144–148], which
have been consistent since 2013. In Figure 6 it is also observed an increasing interest in the sec-
tor in the last years, despite a relatively low amount of research work done on studying metrics,
demonstrating the potential appeal and utility of this research in the field.

The Tech reports from 2013 and 2014 had a special importance in ramping up the interest on
DevOps Metrics topic and raising awareness for the fact that measurements are visible and action-
able [144, 145], while only focusing on four top key metrics as seen in Section 5.1.1. Thus, mak-
ing this MLR research important to expand the main metrics to a list that is still useful, broader
and manageable. Finally, the number of gray literature articles increased considerably in 2020,
as demonstrated by the massive increase in web pages related content in that year, showing that
practitioner writings grew far faster than academic research. Later in 2021, we see a growth in con-
ference publications that address the DevOps Metrics and KPIs topic. The research in this survey
tries to contribute to this growth by congregating different voices in a MLR.

5 REPORTING THE MLR
The reporting is taken out from qualitative coding done with the selected publications using Qual-
coder2 OpenSource tool. Qualitative coding [167] is a process of organizing and categorizing data

2https://qualcoder.wordpress.com/

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

54

231:10 R. Amaro et al.

Table 3. Definition of DevOps Metric from Literature

A DevOps Metric is here defined as a quantifiable, business-relevant, trustworthy,
actionable and traceable [42, 49, 107, 118, 202] indicator that aids organizations in
making data-driven decisions to continuously improve their DevOps and software
delivery process [16, 33, 55, 72, 78, 89, 97, 98, 106, 119, 173, 180, 194].

collected in qualitative research. For this study, emerging codes were applied using repeating ideas
and metrics found from all selected publication texts to organize the data into meaningful cate-
gories. After that, the data was analyzed manually within Qualcoder. Using the resulting coded
data, and also taking into account the conceptual framework proposed in Section 1, patterns and
relationships were identified. In conclusion, qualitative coding, characterized by deep data scrutiny
and pattern recognition, is crucial in revealing the presented findings, all stemming from the anal-
ysis of qualitative data.

From the extensive Multivocal Literature Review done, it is understood that the main DevOps
Metrics should aim to quantify the right elements to understand if a DevOps process is work-
ing [72, 140, 204]. It was also seen in Section 5.2 that authors distinguish five qualities of good
DevOps key performance indicators to clearly define their usefulness. This is important to know
so that DevOps adoption can be measured toward success. While metrics and KPIs are frequently
used by authors interchangeably, the distinction is clear: In the context of DevOps [84], KPIs are
a set of the measures or indicators that have the greatest impact on an organization’s DevOps
progress [115, 116], thus the reason this study uses this concept. They articulate and provide in-
sight into the metrics and outcomes that the organization must track and achieve to accomplish
long-term goals. Key Performance Indicators (KPIs) are metrics that help understand how an en-
tity is doing against its objectives [46, 84, 118]. These kinds of metrics are fundamental to leverage
the rigor of measurement, not only in DevOps but also in Software Engineering and Information
Systems [101]. This MLR benefited from the fact that more than half the publications (88) mention
metrics and try to organize and explain each stated metric, as seen in Table 6. There are 49 pub-
lications that also try to define what are DevOps Metrics. Following those dispersed definitions,
this MLR can now propose a unified definition of DevOps Metrics in Table 3.

5.1 RQ1—What Are the Main DevOps Metrics and Where Are They Referenced?
5.1.1 Main Metrics Found Over the Years. In this study, 22 main DevOps Metrics seen in Fig-

ure 7 are set for discussion. These metrics are listed from M01 to M22, within the following figure,
in descending order, by the total number of references, from the publications accounted for in Sec-
tion 4.1.

It can also be observed in Figure 7 how the various metrics have grown in the literature over
the years.

Since this MLR found 10 years with relevant publications out of the 12 years, it was chosen
accordingly to use the metrics that are cited 10 or more times as the main DevOps metrics for this
research, present in Figure 7. Therefore, in Figure 7 are shown the top 22 metrics, from M01 to
M22. In this figure, a significant jump in 2020 can be perceived, namely, in MTTR, MLT, DF, and
CFR. These four metrics were the most frequently stated, indicating that practitioners have agreed
on their higher importance based on the articles reviewed. If we compare MTTR (114 mentions)
with CFR (82 mentions), there is only and a difference of 32 mentions, while if we compare MTTR
with Service Availability and Uptime (42 mentions), there is a notable difference of 72 mentions.
Therefore, while each of these 22 metrics have 10 or more mentions, there is a clear tendency
of increased interest in M01, M02, M03, and M04, widespread and driven largely by the research

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

55

DevOps Metrics and KPIs: A Multivocal Literature Review 231:11

Fig. 7. Top main metrics mentioned in publications over the years.

conducted in the various State of DevOps Reports over the years [1, 35, 144–151] and the work
published by Forsgren et al. [51, 52, 54, 55, 57, 58].

Looking at the reasons pointed out during the 2020’s jump in gray literature, it is found that
Mean Time To Recover (MTTR) (M01) is one of four most distinguished key metrics for DevOps
teams [67, 107, 178]. The average cost of downtime for companies rises year after year [189]. MTTR
emphasizes critical business outcomes that are directly related to customer experience, acquisition,
and retention [3]. Mean Lead-time for Changes (MLT) (M02) is fundamental, because it measures
the time it takes for a code change to reach production. It gives insight into the DevOps process’s
efficiency, complexity, and the team’s ability to meet customer needs [29, 50]. Short lead times sug-
gest immediate feedback, while long lead times indicate inefficiency. Deployment Frequency (DF)
(M03) approaches infinite in just-in-time manufacturing as batch size approaches zero, therefore
deployment frequency of software is a KPI for software delivery teams [7, 57, 64, 128, 130, 143]. A

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

56

231:12 R. Amaro et al.

team that deploys more than once per week can fix outages in production faster and deliver value
to customers more frequently [60, 91, 156]. Change Failure Rate (M04) represents changes in pro-
duction that require an immediate fix to resolve, thus a more complex metric [178]. An increasing
failure rate reveals processes problems in the delivery pipeline [70, 102, 154]. From the relation of
these and the other metrics over the years, it is shown that practitioners are championing these
metrics in their publications. Given that we are reporting the MLR in Section 5, the main metrics
will be further discussed and defined as part of that reporting.

5.1.2 Purpose and References for Each Main DevOps Metric. Following the research, there are
22 main DevOps Metrics found in this Multivocal Literature Review, gathered from all the publi-
cations, selected for review. It is observed that, alongside the pure academic work, there has been
a growing impact from the State of DevOps Reports, DORA, and the work of Forsgren et al. on
the data being collected over the years [53], which shows the importance of the primary sources
collected. The MLR intends to give voice to all, including academia, practitioners, and the DevOps
community in general.

In Section 4 the found list of the main DevOps Metrics is shown, along with their purpose,
mentions, and the total of references. A summarized description mentioning their purpose is also
listed, taken out from the qualitative coding already described. This list is a subset with the most
important metrics from all the metrics collected in Section 5.1.1, where we saw that most tend to
be “business as usual” measures that would still add value to the organization but are not a critical
measure needed to focus on. As a result, every KPI listed here is a metric, but not every metric that
has been found is a KPI.

For these 22 selected main DevOps Metrics, it was considered that they were referenced ten or
more times in relation to the others shown in Appendix B, and always keeping in mind how De-
vOps focuses on the impact of things such as profitability [22, 155], productivity [37, 59], quality
[13, 118], product or service improvements [103, 172], operational efficiency [6, 48], customer feed-
back [5, 191], and achievement of organizational goals [82, 158]. Therefore, this last stage in the
refinement process is based on organizing the metrics by the number of references, which gives
the reading in Section 4 based on the number of times the selected publications mention them.

5.2 RQ2—What Is the Precise Definition and Importance of Each Main DevOps Metric?
After having identified the main DevOps Metrics, some questions may remain as to their usefulness
and applicability for increasing DevOps performance. This research question intends to answer to
what is the precise definition of each key metric, why it matters, and discuss how a team can
improve the metrics and the expectations without confusion or ambiguity. To clarify these ques-
tions, the following definitions gathered from qualitative research aim to provide details about the
practicality of each metric, as well as its relevance to organizations. Table 4 shows the purpose
and references for each main DevOps Metric and Table 5 shows a summary of definitions for each
main DevOps Metric and their optimal trend.

M01. Mean Time To Recover (MTTR). Definition: How quickly can teams restore service in
case of a production outage? MTTR is an essential metric that indicates the ability to recover
appropriately from identified issues. It is measured as the time from when impairment occurs
until the time it is resolved, then the averaging of all those values [7, 26, 58, 74, 144, 145, 183].

Why it matters: For organizations and individuals, time is money, and wasting time on false
positives or difficult issues frustrates development teams and slows down the automation. MTTR
is a good way for a manager to assess the capabilities of their teams [4, 50, 199, 206]. This is
a good indicator of how well the team handles change and responds to problems. Failures are
unavoidable, but how we respond is a far more important indicator of our team’s agility. MTTR

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

57

DevOps Metrics and KPIs: A Multivocal Literature Review 231:13

Table 4. Purpose and References for Each Main DevOps Metric

ID Metric Purpose References Total
M01 Mean Time To

Recover (MTTR)
Measures the mean of the time required to
recover or restore service from a failure in
production.

[1–4, 7–10, 12, 14, 16, 19, 21, 24, 26–28, 30, 33–
36, 40–43, 45, 47, 49–55, 57, 58, 61, 66, 67, 70, 72,
74, 75, 77–80, 82, 86, 88–90, 93, 97, 98, 102, 106–
108, 117–119, 123, 124, 127, 128, 130, 132, 133,
137–140, 143–149, 151, 154, 156–158, 160, 163,
166, 168, 169, 171, 173, 175, 176, 178, 183–185,
187, 190, 194, 196, 198–202, 204–206, 208, 209]

114

M02 Mean Lead-time
for
Changes (MLT)

Indicates how long it takes for a change to
go from code committed to code
successfully running in production.

[1, 2, 4, 7, 8, 10, 12, 14, 16, 19–21, 24, 26–28, 30,
33–36, 39–43, 46, 47, 49–54, 57, 58, 64, 66–68,
70, 72, 74, 75, 77–80, 82, 83, 86, 88, 89, 91, 93,
97, 98, 100, 102, 106–108, 115, 117, 119, 123–
125, 127, 128, 130, 131, 137–139, 142, 144–149,
151, 154, 156–158, 160, 163, 166, 168, 169, 173,
176, 178, 183–185, 188, 190, 194, 198, 199, 201,
203–205, 207–210]

112

M03 Deployment
Frequency (DF)

Checks how often changes are deployed
to production.

[1, 2, 4, 7–10, 12, 14, 16, 19–21, 24, 26–28, 30,
33–36, 40–43, 45, 47, 49, 50, 52–54, 57, 58, 60, 61,
67, 70, 72, 74, 75, 78–80, 82, 83, 86, 88–90, 93, 97,
98, 100, 102, 106–108, 115, 117–119, 123, 125,
127, 128, 130, 132, 137, 139, 143–149, 151, 154,
156, 158, 160, 163, 166, 168, 169, 173, 175, 176,
178, 183, 184, 190, 196, 198, 200, 201, 203–209]

106

M04 Change Failure
Rate (CFR)

Informs how often a change in production
fails and must be immediately remedied.

[1, 4, 7, 9, 12, 16, 19, 21, 26–28, 30, 34–36, 40–
43, 45, 47, 50, 52–54, 58, 64, 67, 70, 72, 74, 75,
78, 79, 83, 86, 89, 93, 97, 98, 102, 106–108, 115,
117, 119, 123, 125, 127, 128, 130, 132, 137, 139,
143–149, 151, 154, 156, 158, 160, 163, 168, 169,
173, 175, 178, 183, 188, 190, 198–201, 206–210]

86

M05 Service
Availability and
Uptime

Shows the percentage a service is
available during a period of time.

[1, 4, 8, 19, 24, 30, 33–35, 40, 42, 49, 51, 53, 54,
60, 61, 77, 80, 82, 93, 116, 118, 122, 124, 125,
128, 138, 142, 150, 156, 157, 169, 173, 175, 176,
180, 185, 200, 201, 205, 207]

42

M06 Deployment
Duration Time

Informs on how long it takes to deploy a
set of changes.

[9, 14, 20, 28, 33, 40, 42, 45, 49, 51, 52, 66, 79,
83, 100, 115, 119, 123, 124, 128, 132, 134, 138,
142, 154, 156, 169, 175, 176, 183, 196, 198, 200,
201, 205, 206]

36

M07 Mean Time To
Detection
(MTTD)

Measures the mean of the time required to
detect a failure in production.

[3, 4, 19, 30, 33, 34, 40, 42, 49, 51, 61, 78, 88–90,
93, 115, 119, 123, 128, 143, 156, 157, 160, 166,
176, 200, 201, 205, 210]

30

M08 Application
Response Time

How an application responds to increases
or decreases in user traffic and activity.

[4, 24, 26, 30, 33, 40, 49, 53, 61, 93, 119, 123,
128, 133, 138, 142, 151, 157, 160, 173, 176, 185,
190, 194, 196, 200, 203–205, 207]

30

M09 Defect Escape
Rate

Indicates the number of defects discovered
in production versus the number of
defects found during development.

[7, 9, 10, 33, 40, 42, 46, 49, 78, 119, 128, 132,
154, 156, 160, 163, 166, 171, 175, 176, 188, 196,
200, 203, 205]

26

M10 Cycle Time
Value (CTV)

Provides information on the full Cycle
Time Value, beginning with deciding to
make a change and finishing with
delivering to the end user.

[10, 14, 28, 39, 42, 53, 66, 74, 80, 82, 91, 93, 108,
118, 121, 132, 143, 144, 171, 175, 187, 201, 202,
204, 208, 209]

26

M11 Service Level
Agreements
(SLAs) and
Objectives (SLOs)

Sets customer expectations for service
availability with SLA and internal teams
with SLO.

[1, 4, 8, 19, 30, 33, 35, 42, 49, 51, 53, 80, 82, 83,
93, 100, 121, 150, 156, 157, 176, 201, 203, 205]

24

M12 Deployment Size Shows the number of changes
incorporated in each production release.

[7, 26, 33, 40, 42, 46, 49, 115, 119, 123, 124, 128,
131, 154, 168, 173, 175, 176, 201, 204, 205, 207]

22

(Continued)

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

58

231:14 R. Amaro et al.

Table 4. Continued

ID Metric Purpose References Total
M13 Production Error

and Incident Rate
Measures the frequency of faults and
incidents in production following a
deployment.

[10, 19, 33, 49, 77, 88, 90, 100, 107, 124, 128,
154, 157, 171, 175, 176, 194, 196, 200, 205, 210]

21

M14 Customer Tickets
Volume and
Feedback

Indicates the level of satisfaction of
customers using their feedback.

[7, 10, 33, 42, 46, 49, 78, 83, 89, 100, 117, 119,
124, 125, 128, 156, 173, 176, 201, 205]

21

M15 Mean time to
Failure (MTTF)

Exposes the average time a flawed
deployment into a system will manage to
run until it fails.

[2–4, 19, 33, 34, 42, 49, 60, 80, 88, 90, 117, 119,
123, 156, 176, 200, 201, 205]

20

M16 Customer Usage
and Traffic

Measures usage and traffic of
customer-facing applications when there
are defined business goals to increase.

[29, 33, 49, 66, 93, 132, 138, 142, 150, 156, 157,
160, 166, 173, 176, 190, 194, 205, 207]

19

M17 Pipeline
Automated Tests
Success Rate

Shows the rate of successful pipeline
automated test jobs.

[10, 14, 24, 33, 53, 66, 82, 93, 119, 128, 131, 138,
140, 154, 175, 176, 205, 207]

18

M18 Westrum
Organizational
Culture Measures

Result of the Westrum cultural
assessment [211]

[1, 11, 35, 51–55, 82, 93, 108, 116, 124, 125, 147,
150, 206, 208]

18

M19 Automated Test
Code Coverage

Measures how many lines, statements, or
blocks of code are tested using the suite of
automated tests.

[9, 14, 24, 49, 51, 60, 66, 80, 93, 131, 132, 156,
175, 180, 202]

15

M20 Work In
Progress (WIP)
/Load

Presents the number of open issues of
each type (story, defect, task).

[20, 29, 39, 51, 53, 60, 64, 66, 82, 91, 93, 125, 157] 13

M21 Unplanned
Work
Rate (UWR)

Indicates the amount of time spent on
tasks that were not in the initial plan.

[19, 42, 53, 82, 107, 117, 119, 125, 146, 148, 150,
210]

12

M22 Wait Time Measures the amount of time spent
waiting for the next step to add value.

[29, 39, 51, 64, 82, 91, 93, 117, 123, 125, 202] 11

should always be a focus for DevOps KPI monitoring, as improving MTTR contributes to better
customer satisfaction, faster application delivery, and better cost control [33, 35, 50, 57, 118, 151].

Metric expectations: This metric should trend down or remain stable over time [42, 77, 196].
How to improve: To reduce MTTR, it is imperative to use good alerting and monitoring tools to

identify an issue on time and promptly fix it. An effective collaboration between operations and
developers is needed, which can help teams find root causes and deploy solutions quickly [14, 140,
206].

M02. Mean Lead-time for Changes (MLT). Definition: The time it takes to go from code com-
mitted to code successfully running in production. MLT in DevOps, can be seen as CTV including
beginning development and time for delivering the finished product. Measuring MLT requires
starting the clock when there is code committed and stopping it when said code enters produc-
tion [30, 35, 75, 131, 144, 145, 149–151]. The book “Accelerate” attempts to clarify the confusion
around CTV and MLT terms, frequently used interchangeably, even though they measure different
things. “Lead Time” (time between code commit and deployable code) and “Cycle Time” (which
some define as the time from code starting to be worked on by development to code in a deployable
state) are two examples [53].

Why it matters: MLT offers valuable insight into the efficiency of the entire development process.
Projects that have not successfully implemented agile will frequently have lengthy lead times.
Tracking Mean Lead Time for Changes and the process’ subsequent components can assist the
team in identifying areas for improvement. Keeping track of the total time it takes from source
code commit to production release can help indicate the speed with which software is delivered [67,
70, 102, 106, 173, 183].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

59

DevOps Metrics and KPIs: A Multivocal Literature Review 231:15

Table 5. Summarized Definition for Each Main DevOps Metric and Their Optimal Trend

ID Metric Definition Trend
M01 Mean Time To

Recover (MTTR)
The time to recover appropriately from identified
issues in production.

down ↓

M02 Mean Lead-time for
Changes (MLT)

Average time for the code committed to be running
in production.

down ↓

M03 Deployment
Frequency (DF)

The number of software deployments to production
over a period of time.

up ↑

M04 Change Failure
Rate (CFR)

Percentage of deployments that result in impairment
or outage in production.

down ↓

M05 Service Availability and
Uptime

The percentage of continuous availability of service
over a period of time.

up ↑

M06 Deployment Duration Time Duration of deploying a previously built artifact into
environments and production.

down ↓

M07 Mean Time To
Detection (MTTD)

Time between the start of an issue and the detection
of the issue in production.

down ↓

M08 Application Response Time The duration for an application to respond to a user’s
request or input.

down ↓

M09 Defect Escape Rate The number of defects or issues discovered after
releasing to production.

down ↓

M10 Cycle Time Value (CTV) The time it takes from the decision to make a change
to having it in production.

down ↓

M11 Service Level
Agreements (SLAs) and
Objectives (SLOs)

Customer service quality agreements, and internal
performance objectives.

up ↑

M12 Deployment Size The number of changes incorporated in each
production release.

down ↓

M13 Production Error and
Incident Rate

The frequency at which errors or incidents occur in a
live production environment.

down ↓

M14 Customer Tickets Volume
and Feedback

The number of customer support tickets and
feedback to be addressed.

down ↓

M15 Mean time to
Failure (MTTF)

The average time a flawed, non-recoverable asset
will manage to run until it fails.

up ↑

M16 Customer Usage and Traffic The amount of traffic from active users in the system. up ↑
M17 Pipeline Automated Tests

Success Rate
The success rate of pipeline automated test jobs. up ↑

M18 Westrum Organizational
Culture Measures

Categorize organizations into three types:
Pathological, Bureaucratic, or Generative [211]

→ дenerative

M19 Automated Test Code
Coverage

The percentage of the relevant codebase that is tested
by automated test cases.

up ↑

M20 Work In Progress (WIP)
/Load

The number of tasks, projects, or items that have
been initiated but are not yet completed.

down ↓

M21 Unplanned Work
Rate (UWR)

The time spent on addressing unexpected tasks and
incidents.

down ↓

M22 Wait Time The delay experienced before work items progress
through the value stream.

down ↓

Metric expectations: This metric should trend down or remain stable over time. To calculate the
Lead Time, the time of the request and respective delivery need to be known [74, 144, 151, 158]. Elite
performers have a lead time for changes of less than 1 hour and Low performers have a lead time
for changes that is between 1 and 6 months according to various State of DevOps [1, 35, 149, 151].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

60

231:16 R. Amaro et al.

How to improve: Lower lead times indicate that the team is adaptable, responsive, and can re-
spond quickly to feedback. Version control and automated testing are highly correlated with lead
time. Working in small batches improves process efficiency, but to measure MLT the team needs
a clear start and end of work defined [106, 147, 148, 173, 205]. Shorter lead times indicate a team’s
agility, responsiveness, and ability to adapt to feedback.

M03. Deployment Frequency (DF). Definition: The number of software deployments to pro-
duction over a period of time. The number of times a piece of code/software is pushed (released)
to production [41, 74, 143]. It can be measured using various methods, such as automated de-
ployment pipelines and API calls. How often does the team deploy a new version of a specific
product or service? In other words, DF shows how often the organization deploys code into pro-
duction [16, 35, 58, 75, 147, 154, 180, 202].

Why it matters: The frequency with which a team deploys changes is critical to the success of
DevOps. Increasing the frequency of deployments has been a powerful motivator for changes in
development practices [30, 140, 166]. Frequent deployments can help resolve production outages
faster, because they have the automation to quickly and easily deploy changes. The quicker teams
can deploy, the sooner they can provide value to end users. [66, 150, 183, 194, 198, 205, 205].

Metric expectations: Every time a deployment occurs, a counter will increase. The frequency
can be measured daily or weekly. One approach to quantify DevOps value is to track deployment
frequency over time. It could be measured via an automated deployment pipeline, API requests, or
manual scripts. Many organizations choose daily tracking to increase productivity [16, 35, 39, 46,
67, 72, 89, 106, 107, 147, 173, 199].

How to improve: A well-designed CI/CD pipeline enhances deployment frequency. Engineer-
ing teams may deliver products and minor enhancements faster by segmenting deployments.
We want to perform as many smaller deployments as feasible. Smaller deployments make
testing and releasing easier. These pipelines assist remove errors and increase product confi-
dence [9, 16, 28, 34, 35, 70, 100, 117, 127, 150, 202].

M04. Change Failure Rate (CFR). Definition: The percentage of deployments that result in
service impairment or an outage in production. If KPIs show an increasing rate of failure as de-
ployments increase, then it is time to slow down and investigate problems in the development
and deployment pipeline. The change fail percentage is the ratio of failed to successful changes.
How frequently we fail over time can measure both production failures and failures in our testing,
deployment, or the DevOps pipeline [27, 41, 47, 51, 53, 132, 133, 176, 180].

Why it matters: This metric should reveal the flaws in the deployment strategy and not the
outside world. Failed deployments can take services down, resulting in lost revenue and frustrated
customers. Well-implemented DevOps capabilities can make a big difference in failure rate. A high
change failure rate suggests poor application stability, which can lead to negative end-user out-
comes. Failed deployments cause revenue losses and unsatisfied customers [19, 21, 27, 61, 74, 82,
147, 176].

Metric expectations: This metric should be as low as possible or remain stable over time. The
Change Failure Rate is a measure of the quality of the release process. It is calculated by dividing
the total number of failed deployments and the number of deployments that resulted in production
failures [30, 42, 106].

How to improve: If we want to reduce deployment failures, then we need to add more automated
tests. If the change failure rate is increasing, then teams should consider reducing the deployment
frequency. Automation should be used for security testing, unit testing, and integration testing. A
low failure rate for changes indicates rapid and frequent deployment, whereas a high failure rate
indicates an unstable DevOps practice and process [36, 102, 127, 130, 183]. While a failure rate of

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

61

DevOps Metrics and KPIs: A Multivocal Literature Review 231:17

0 would be ideal, a failure rate of less than 5% is considered workable by most authors [88, 128].
Fixing five issues in 100 deployments is far easier than fixing 50 issues in 1,000 deployments in the
same amount of time [67, 190].

M05. Service Availability and Uptime. Definition: Uptime (or Availability) is the percentage
of continuous availability of service over a period of time. The uptime percentage is straightfor-
ward to quantify and track. It can be calculated from the data center or cloud service downtime
and availability data [61, 175]. The amount of downtime the service experiences, as well as the
level of service availability for end users, demonstrates the dependability of the applications and
infrastructure [30, 54, 61, 77, 156, 205].

Why it matters: As DevOps capabilities are adopted, availability should increase and downtime
should reduce. This is a critical component to monitor for software as a service businesses. The
availability of a service is critical for sustaining customer satisfaction [61, 207]. It also serves as
a significant statistic for determining the success of changes, the reacting speed on infrastructure
issues and the overall success of projects [30, 33, 49, 77, 118, 128, 156].

Metric expectations: This metric should trend upward or remain stable over time. A team calcu-
lates availability by adding up all reported outages by our primary production monitor for each ser-
vice, subtracting them from the total time, and then dividing by the total time [34, 169, 175, 176, 207].
A Hundred percent availability is unlikely, as scheduled maintenance would require planned down-
time. The team calculates availability by adding up all reported outages and dividing them by the
total downtime. [33, 51, 80, 82, 93, 128, 173, 180].

How to improve: DevOps delivery value can be tracked by measuring downtime and availabil-
ity as KPIs, which are somewhat related to the total number of incidents. With less downtime
and greater availability, DevOps organizations can likely promise more enticing Service-level
Agreements (SLAs), Service-level Indicators (SLIs), and Service-level Objectives (SLOs) to
customers [77, 123, 201].

M06. Deployment Duration Time. Definition: The total time it takes to deploy a previously
built artifact in infrastructure environments and production [45, 119, 206]. This metric quantifies
the time required to promote an application or service from one environment to another [57, 100,
128, 196]. Specifically, after the change is approved or automated deployment of the artifact starts.

Why it matters: Given that the goal of DevOps is to accelerate software delivery, tracking the
time to deploy that software is a useful metric. Monitoring deployment time can reveal delivery
challenges. Increasing error rates may indicate badly planned releases [49, 100, 156]. It can help
identify potential problems and allow a dramatic increase in revenue by using that extra time to
develop more value-added services [123, 205, 206].

Metric expectations: This metric should trend down or remain stable over time. When measuring
this metric, it is vital to pay attention to any sudden and dramatic rise in deployment time [52, 58,
80, 83, 119, 124, 205, 206].

How to improve: Measure the time taken to roll out deployments after they are approved. Track
how long it takes to do an actual deployment and investigate bottlenecks [80]. Dramatic increases
in deployment time warrant further investigation, especially if they are accompanied by reduced
deployment volume [42, 49, 128, 183].

M07. Mean Time To Detection (MTTD). Definition: The amount of time between the start of
an issue and the detection of the issue in a production environment, ideally at which point some
action is taken [61, 90, 166]. It’s an indication of how effective are incident management tools and
processes [30, 34, 34, 42, 88, 88, 176].

Why it matters: While the ideal solution is to minimize or even eradicate failed changes, it’s
essential to catch failures quickly if they do occur [30, 166]. Time to detection can determine

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

62

231:18 R. Amaro et al.

whether current response efforts are adequate. A High MTTD could raise bottlenecks capable of
interrupting the entire workflow [42, 51, 93].

Metric expectations: This metric should trend down or remain stable over time. Teams should
work to keep their MTTD as short as possible. With proper instrumentation, alerting, and notifi-
cation channels, teams will be able to more quickly respond to any error detection [42, 49, 78].

How to improve: In addition to MTTR, the team needs to track how long their average incident
response is. At what stage of the incident lifecycle is the most time spent [77]? Having robust
application monitoring and good coverage will help detect issues quickly. Once a team detects
them, they also have to fix them quickly [119, 128, 205]. In contrast, a more mature team that has
monitoring implemented can detect issues faster through the data that team members capture,
such as logs or performance data [90, 90, 128, 143, 156].

M08. Application Response Time. Definition: The response time and performance of an ap-
plication in production. It is a good practice to look for performance issues before deploying an
application [123, 203, 207]. However, it is equally important to track application performance dur-
ing and after deployment. This is crucial for DevOps success, since the performance of parameters
such as web service calls, queries, and other dependencies can change after application deploy-
ment [119, 205].

Why it matters: It is vital to maintain a good user experience. Before deploying, the team should
run a tool to check for performance and hidden errors [26, 203]. The functionality of an application
is examined more frequently. Optimizing services benefits customers and the organization as a
whole [49, 61, 207]. Application performance may be included in a SLA [133, 203].

Metric expectations: This metric should trend down or remain stable over time. Time to first byte,
error rates, and response time are common performance metrics for web applications [40, 119, 151].
The user experience that a service or application provides can be easily quantified. It shows that
the software/application is working properly within the defined parameters [33, 196].

How to improve: It is difficult to simulate all the different network paths and hardware configura-
tions that a client might use during a session. Therefore, techniques like blackbox monitoring [203]
can be effective in helping get a good measurement, since it has no knowledge of the interior met-
rics or design. Before performing the deployment, a team should check for performance faults,
unknown bugs, and other problems [119, 201].

M09. Defect Escape Rate. Definition: The percentage of defects that are not caught during
testing and are discovered in production. This can be reviewed by time period or as a ratio to the
number of deployments. Less than one percent of customers or users find defects in production,
while QA finds most bugs in pre-production [166, 203]. Bug tickets or support tickets are typically
used to track these defects [78, 157, 205].

Why it matters: It shows how many defects were found in production, during, and after de-
ployment. Preventing a bug from reaching production is easier if it is discovered during pipeline
development or testing. They may, however, not be detected and pass tests so deployments can
still introduce bug fixes [42, 113, 113, 171].

Metric expectations: This metric should trend down or remain stable over time. Trying to achieve
a defect-free operation can lead to DevOps anti-patterns like change reluctance or feature upgrade
delays. Make SLAs sane error budgets. Abnormally high defect rates could be the first sign of
problems in testing, qualification, or in team performance [33, 156, 176].

How to improve: The Defect Escape Rate is a useful DevOps Metric that counts software bugs
found in production during and after deployment. This indicates when the quality process needs
to be improved. To ship code quickly, a team must be confident in its software defect detection
ability [7, 49, 119, 128, 175].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

63

DevOps Metrics and KPIs: A Multivocal Literature Review 231:19

M10. Cycle Time Value (CTV). Definition: The time it takes from deciding to make a change
to have it in production [10, 28, 171]. How long does it take to deploy a change that only involves
one line of code? In software development, typically it is the time from code starting to be worked
to code in a delivered state [35, 53]. The CTV metric provides a broad overview of application
deployment.

Why it matters: In many organizations, Cycle Time is measured in weeks or months, and the
release process is manual. Teams must be able to achieve a Cycle Time of hours or even minutes
for any critical fix. This is possible using a fully automated, repeatable, reliable process for taking
changes through the various stages of the build, deploy, test, and release process [26, 42, 201]. It is
manual and often requires a team of people to deploy the software even into a testing or staging
environment, let alone into production [80].

Metric expectations: This metric should trend down or remain stable over time. This process
should be managed using a single ticketing system that everybody can log into and that generates
useful metrics such as average cycle time per change [80, 131, 171].

How to improve: The end-of-cycle security testing and assessments frustrate developers and
business owners. The earlier automated testing is the better. Avoid manual security testing of new
code and builds to reduce CTV [91, 143, 175]. Cycle Time is a key process efficiency indicator. Value
stream mapping aids in identifying waste removal and automation requirements. Defect detection
and SLA adherence are prioritized over Cycle Time reduction [42, 171].

M11. Service Level Agreements (SLAs) and Objectives (SLOs). Definition: SLOs are specific
measurable characteristics of the SLA such as response time, throughput, availability, frequency,
or quality indicators. The SLA is the entire agreement that specifies a provided service, how it
is supported, times, locations, costs, performance, and responsibilities of the parties involved [49,
80, 157]. There are two types of SLAs: soft (ideal goal) and legal (contractual obligation) [203].
Based on technical reality, a SLO target should reflect what the team or organization actually can
support [100].

Why it matters: To increase transparency, most companies operate according to SLAs and SLOs.
Often, teams have customer facing service-level metrics, based on SLIs [15, 18, 35, 42, 121, 201],
they are accountable for, thus aligning expectations between providers, clients or internally[15, 18,
42, 157]. This is a fundamental aspect, since it enables DevOps teams to release and experiment
improvements [35, 53] within defined boundaries and without fear, contributing to a culture of
psychological safety [98, 158, 211].

Metric expectations: These metrics are defined to set stakeholders expectations and should re-
main within boundaries. Service levels can change over time. For example, if a system is immature,
then initial modest SLOs [157] can be increased over time [42, 201, 203, 205].

How to improve: Ensure to be compliant with SLOs and SLAs [146, 149, 201]. Any disagreement
with SLAs causes issues at a later stage, hampering the workflow. It is important to operate within
defined service levels, therefore keeping track of Service Level Indicators (SLIs) and error bud-
gets [15, 18] is key. A good starting point for SLOs is using an open specification like OpenSLO.3

M12. Deployment Size. Definition: Total new user stories and new lines of code that are shipped
in each deployment in production. Volume of code changes focus on the new lines of code deployed
per build. Change Volume refers to the lines of code are pushed to production per deployment [119,
207]. Measuring this is crucial to measuring the success of deployment in terms of value, time and
frequency. This DevOps Metric is critically comparing the static code and ratio changes within the
organization [7, 119, 175].

3OpenSLO uses YAML to define reliability and performance targets. https://openslo.com/

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

64

231:20 R. Amaro et al.

Why it matters: This DevOps KPI determines the extent to which code is changed versus remain-
ing static. Improvements in deployment frequency should not have a significant impact on change
volume [7, 42, 119]. Tracking how many stories, feature requests, and bug fixes are being deployed
is another good DevOps Metric. A team could also track how many story points or days’ worth
of development work is being deployed. Some companies use this metric to find out the total new
stories and new lines of code they ship for each deployment [123, 173, 201, 205].

Metric expectations: This metric should trend down or remain stable over time. The end goal
shouldn’t be a constant stream of minor but insubstantial changes; instead, focus on impactful up-
dates that provide a better experience with less disruption [49, 173]. Tracking the amount of change
with each deployment allows for a more accurate representation of progress [42, 123, 201, 205].

How to improve: In DevOps, changes should come often and be in small batches. But the sizes of
those pieces can vary. For each deployment, monitoring the volume of change makes for a more
precise depiction of development. Finding a good average of frequent and impactful changes leads
to success rates [42, 119, 207]. Keep track of the number of bug fixes and feature requests delivered
in each release’s deployment artifacts [42, 49, 176].

M13. Production Error and Incident Rate. Definition: Rate percentage of production inci-
dents and errors. The error rate tells the team how often new problems appear in running applica-
tions [90, 205]. Bugs after a new release, database connection issues, query timeouts, other issues all
contribute to the uptime and system performance metrics of operations [77, 90, 128, 130, 133, 196].

Why it matters: It is vital to track application error rates. They indicate not only quality issues
but also performance and uptime issues. Less time between deployments means more production
incidents [49, 100, 205]. Constant testing policies, release management processes, and monitoring
and alerting improvements are all common. The goal is to keep production incidents below the
value delivered to customers [77, 88]. Not all errors are equally impactful for customer’s trust [33,
90, 194].

Metric expectations: This metric should trend down or remain stable over time. The error rate
is calculated as a function of the transactions that result in an error during a particular time win-
dow [88, 128]. A few intermittent errors throughout the application life cycle is a normal occur-
rence, but any unusual spikes that occur need to be looked out for [90, 205].

How to improve: Errors are common in most applications. Apply good exception handling. Errors
are part of a busy system’s noise [205]. Keep an eye on the error rates and look for spikes via log
analysis [88, 90]. Error rate spikes must be captured, because they can indicate a problem. The raw
incident count can also help compare the team’s incident load to the organization’s average [130,
133, 196].

M14. Customer Tickets Volume and Feedback. Definition: Amount of customer support tick-
ets and feedback on how many problems are filed as support tickets. This metric is a measure of
end user satisfaction and a good indicator of production problems [100, 113, 173, 205]. Bugs and
errors can frequently pass through the testing phase and only be detected by the end user. As a
result, the number of customer tickets labeled as problems or bugs is a key indicator of application
reliability [49, 78, 119, 128].

Why it matters: This reflects how many problems users find and how they are solved, which
surfaces quality and performance issues. Ideally, customers should not be finding problems [26, 49,
78]. Most companies track user ticket generation to assess performance, since customer satisfaction
is vital to product survival. Satisfied clients increase sales. So, customer support tickets reflect
DevOps improvements needed [78, 100, 119, 128].

Metric expectations: This metric should trend down or remain stable over time. It is important
to note that not all defects are disastrous, but they should be caught early. Customer satisfaction
leads to a competitive advantage [33, 49, 78, 172].
ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

65

DevOps Metrics and KPIs: A Multivocal Literature Review 231:21

How to improve: Keep track of customers happiness and prioritize improvements. Happy cus-
tomers translate into business growth and fewer expenses on addressing issues [78]. Use a produc-
tion debugger to prevent issues from getting to production, and fix them as quickly as possible if
they do. While organizations should qualify which customer tickets to include in this metric, it
can be a good overall measure of DevOps success [7, 42, 113].

M15. Mean time to Failure (MTTF). Definition: MTTF is the average time a flawed, non-
recoverable asset will manage to run until it fails. The duration starts when a major flaw occurs in
the system and ends when the mechanism fails [90, 119]. This may reveal how often system com-
ponents generate flaws leading to failures, which may imply routine maintenance. This metric
relates to improving system uptime [34, 49]. Since this failure is non-recoverable, the asset or com-
ponent needs to be replaced. Examples are a hard disk, a microservice Kubernetes pod or a flawed
virtual machine. MTTF is associated with costs, capacity planning and risk management [15, 84,
195, 197]

Why it matters: MTTF is used to monitor non-repairable, disposable system assets or compo-
nents and determine their lifespan, allowing a team to monitor the health of mission-critical
components [60, 119] and forecast automated replacement. A high MTTF rate can also indicate
software quality issues. For example, tests may not be covering all possible scenarios [90, 201].
Reliability is a function of MTTF and MTTR [15].

Metric expectations: This metric should trend upward or remain stable over time. It is an indica-
tion of how long on average the system or a component can run before failing [34, 88, 90, 205].

How to improve: Based on the available data, forecast the eventual failure of the asset or com-
ponent. Compare different versions and perform a preventive maintenance [34]. Improve the time
elapsed between installation and the first failure [49] and aim for continuous service availability
and correct system behavior even if a failure of some kind occurs [42, 49].

M16. Customer Usage and Traffic. Definition: The amount of traffic from active users in the
system. Following a deployment, teams should check to see if the number of transactions or users
accessing the system appears to be normal [205]. Something could be wrong if teams suddenly see
a massive spike or no traffic [49, 194, 201, 207].

Why it matters: A good way to ensure the deployments are successful in the eyes of users and cus-
tomers is to track changes in usage across services. If usage drops after a change, then something
is wrong or the changes are not working for customers [49, 205]. Teams should constantly monitor
usage and traffic to identify general trends and sudden deviations that may be controlled [173, 207].

Metric expectations: This metric should trend upward or remain stable over time. Increase
usage metrics, for customer-facing applications, when there are defined business goals for
it [49, 176, 205].

How to improve: Teams want to see normal service usage after a new version is released. This
measure affects system uptime. It is important to get new or improved features into production
quickly, but that does not mean customers will use them [46, 166]. After we announce a feature’s
availability, teams can compare its actual popularity to previous predictions. Use hypothesis-driven
development [82, 94, 181, 194] to influence feature prioritization via experimentation.

M17. Pipeline Automated Tests Success Rate. Definition: The percentage of successful tests
per build. Test pass rate will combine the percent success of the unit tests, functional tests, per-
formance tests, and security tests [128, 207]. This entails effectively utilizing unit and functional
testing to determine how frequently changes in code result in test failures [175].

Why it matters: To maximize velocity, it is advised that the team make effective use of unit and
other automated testing. Because DevOps is heavily reliant on automation, measuring how well
automated tests perform is a useful DevOps Metric [201]. It is useful to know how many code

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

66

231:22 R. Amaro et al.

changes cause the tests to fail. Because DevOps is a highly automated process, keeping track of
the automated test pass percentage is critical for maintaining an upward trend in deployment
velocity [82, 128, 207].

Metric expectations: The success viewpoint of this metric should trend upward or remain stable
over time. A team can get this data from an orchestration tool such as Jenkins or the respective
test tool such as Selenium, JMeter, JUnit, and others [33, 175, 176, 205].

How to improve: Automation is an important DevOps practice that should be used extensively
to avoid repetitive tasks. Controlling automated test performance indicators helps focus on key
results. Measuring the results of automation tests can also help ensure that ongoing efforts are
paying off. Automated test cases must be fully utilized to achieve superior performance in DevOps.
Keep an eye on code changes that affect test cases [119, 128, 207].

M18. Westrum Organizational Culture Measures. Definition: Measures the performance in-
dicators of the organization. In contrast to other broad measures of culture, such as national culture,
an organization’s culture can be seen and observed in both its formal and informal states, such as
mission statements, goals, shared values, and social norms. Westrum et al. [211] proposed a model
of organizational culture evaluation that emphasized the importance of information flow in com-
plex, high-risk work environments. For this reason, the State of DevOps related studies selected
this framework for inclusion in their research, and adapted it for use in research to assess DevOps
capabilities [51, 54, 98].

Why it matters: Culture measurements must be an integral part of any DevOps process. It
shows that elite performers are more likely to meet or exceed their goals for organizational perfor-
mance [35]. These outcomes are measured by many factors, including productivity, profitability,
and market share as well as non-commercial measures such as effectiveness (value addition), effi-
ciency (faster cadence), and customer satisfaction [54, 91]. To thrive within a DevOps ecosystem,
the team must be encouraged in innovation and focuses on integrating lean principles and shorter
implementation cycles [98, 166, 206].

Metric expectations: This metric can position the organization in one of three types—pathological,
bureaucratic, and generative. The output should trend toward generative type over time. These
measurements are of particular interest to software developers, operations engineers, project man-
agers, and engineering leadership in DevOps [54, 147, 206].

How to improve: Leaders can help their teams gain a culture of high mutual trust with autonomy
in their work by establishing and communicating goals, but letting the team decide how the work
will be done. Allowing the team to remove obstacles for achieving the goals and letting the team
prioritize good outcomes for customers [82]. Research finds that more autonomy fosters trust
in the leader—that is, the team believes its leader is fair, honest, and trustworthy. This trust in
transformational leadership contributes to a stronger organizational culture [53, 54, 150]. Other
key improvements are the culture of psychological safety, dependability, sense of meaningful work,
impact and climate of learning in the company[18, 35, 53].

M19. Automated Test Code Coverage. Definition: The percentage of code associated with au-
tomated test scripts. Code Coverage indicates the number of lines of code that are executed while
the automated tests are running [9]. It can be further broken down into Unit Test Coverage or
Automated Test Coverage. The faster the automation, the more tests that can be incorporated as
continuous testing in the CI/CD pipeline [131, 166, 205].

Why it matters: To increase velocity, it is highly recommended that a team makes extensive
usage of unit and functional testing [205]. Since DevOps relies heavily on automation, tracking
how well the automated tests work is a good DevOps Metrics, and it is good to know how often
code changes are causing tests to break [9, 175].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

67

DevOps Metrics and KPIs: A Multivocal Literature Review 231:23

Metric expectations: This metric should trend upward or remain stable over time. The higher
the percentage, the lower the risk of performing refactoring exercises. Three metrics also worth
tracking are the number of test cases that have been developed, the percent of these that are
automated, and the duration it takes to run different tests [49, 175].

How to improve: It is critical to track the Code Coverage percentage while transitioning from
time-consuming peer review processes to automated ones [9]. Every new batch of code should
be tested against the automated unit and integrity tests, and the percent of coverage should be
tracked [49, 131].

M20. Work In Progress (WIP) /Load. Definition: The amount of work that has been started
but not yet completed. A similar number of incoming and outgoing work requests allows teams
to balance their workloads [60, 64, 91].

Why it matters: The team can simply count the number of open issues of each type with the
work-in-progress metric added to a dashboard (story, defect, task). When the number exceeds a
certain threshold, it is time to stop taking on new projects and concentrate on those that have
already begun. This improves the team’s overall velocity [51, 82, 91, 93].

Metric expectations: This metric should have a ceiling and remain within normal levels over time.
The load is the number of active or waiting work items in a value stream at any given time. Load
is a metric that measures the utilization capabilities of value streams in relation to productivity in
the process flow. This increases total velocity [29, 60, 64].

How to improve: The Toyota Production System of Lean Manufacturing [164] taught us that
limiting work in progress (batch sizes) helps teams improve overall throughput. In other words, it
is preferable to complete one project today rather than to work on ten projects and not complete
any of them [20, 53, 60, 91, 93].

M21. Unplanned Work Rate (UWR). Definition: The unplanned work rate tracks unexpected
efforts in relation to time spent on planned work. This exposes how much time is dedicated to
unexpected efforts. Ideally, the unplanned work rate (UWR) should not exceed 25 percent [42,
119, 201].

Why it matters: A high UWR may reveal wasted efforts on unexpected errors that were likely
not detected early in the workfloow. The UWR is sometimes examined alongside the rework rate
(RWR), which relates to the effort to address issues brought up in tickets [53, 119, 150, 201].

Metric expectations: This metric should trend down or remain stable over time. This is another
crucial DevOps Metric that speaks the effective utilization of efforts. This calculates tracks the time
spent on an unplanned work to that spent on a planned one. Most authors see it as the difference
between acting on warning signs or having an unexpected outage [42, 146].

How to improve: This is the amount of time spent on tasks that were not originally planned.
The UWR in standard projects should not exceed one-quarter of the work. A high UWR could
reveal efforts that were squandered on unanticipated errors that were obviously missed early in
the workflow. In addition to the RWR, which refers to the attempt to resolve issues raised in tickets,
the UWR is an important indicator [42, 82, 107, 119, 146].

M22. Wait Time. Definition: Wait Time is a “non-value-adding” process time, wherein the pro-
cess is idle and waits for the next step. Also mentioned as queuing or waste, it is an estimate of the
time that the work item spends idle in a non-productive state during its processing by the value
stream. Wait time is in opposition to touch time when value is created [64, 91, 93, 123].

Why it matters: The goal is increasing efficiency, equivalent to touch time and opposed to wait
time. These two metrics are related to time to develop a feature and time waiting until deploying
it in production [25, 82, 93, 181]. It usually occurs when one stakeholder is waiting for another
stakeholder to perform an action or hand over an artifact [174].

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

68

231:24 R. Amaro et al.

Metric expectations: This metric should trend down or remain stable over time. Code reviews,
QA testing, security testing, and release cycles are examples of waiting time that value stream
managers must reduce or eliminate to maximize customer and product value.[39, 82, 93, 123, 202]

How to improve: The wait time spent in “review” or “ready for release” delays delivery, because
the development team might be unable to obtain feedback on the waiting stories [25]. There is a
need to improve by using non-bottleneck resources, processing, triaging and limiting rework [15,
53, 82].

Finally, while answering this research question, it was found that some authors mention a set of
important characteristics, in which the above listed main DevOps Metrics are considered useful [34,
49, 113], namely: (1) Measurable—metrics must have consistent and standardized values over time.
(2) Relevant—should measure aspects that are important to the business. (3) Actionable—analysis
should provide data for possible improvements. (4) Reliable—should be free of the influence of
teams and team members. (5) Traceable—should point to a root cause rather than a general issue.

By further cross-checking these five qualities of good DevOps key performance indicators, it
was found that they are based on the concepts of SMART [17], which technically provides some in-
creased validity and guidelines to metrics for DevOps adoption success. But, organizations should
also consider time, context, and resources when tracking these metrics. As well as using them
per service and team to identify strengths and weaknesses [72]. Last, using a broader set of met-
rics allows organizations to quickly assess the effectiveness of DevOps capabilities. Focusing on
business value creation via continuous improvement, identifying capability gaps toward achieving
goals and objectives, and eliminating existing practices that undermine a strong DevOps culture
and impede value flow to businesses and customers [204].

6 DISCUSSION AND FINDINGS
This article presents survey results, highlighting the need for DevOps metrics to enhance software
delivery performance. It discusses aspects of metrics like categorization and competition, and in-
troduces new topics on implementing these metrics and understanding changes in the context of
DevOps metrics.

6.1 DevOps Metrics Categorization
It was found that DevOps Metrics categorization is still dispersed and only a few authors try to
categorize metrics (39), represented in Table 6, therefore our categorization proposal shown in Sec-
tion 1 could help achieve consensus. The same is observed while trying to understand what metrics
are associated with each practice, capability, or principles of DevOps (25). This other missing piece
of structured knowledge is intriguing and a possible source of investigation in forthcoming studies.

In Table 6 it is also shown a few highly relevant properties that this MLR has identified from
the publications. The most important factor is that almost all authors state DevOps Metrics help
improvements and efficiency (124) and a high number (93) associate the need for metrics with
having pipeline automation in place. Like in the case of “value stream mapping” [74, 105], orga-
nizations have begun to adopt measurement techniques that will help identify areas that need
improvement [80] and ensure produced software offers continuous improvements to the customer
experience. To assess if DevOps efforts are successful, managers need consumable information
based on a clear list of DevOps Metrics comparing similar value streams across a common set of
KPIs [64, 82, 206].

Authors mention that selecting a categorization for DevOps Metrics is challenging [117, 166,
175, 206]. A fundamental issue with DevOps Metrics is that their significance is relative to a stake-
holder’s perspective. What the senior manager considers critical is likely to be somewhat different
from what the software engineer producing the code considers important. Indeed, occasionally, the

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

69

DevOps Metrics and KPIs: A Multivocal Literature Review 231:25

Table 6. Six Publication Properties Identified from the MLR

Property Publications Total
Mentions that metrics help improvements
and efficiency

[1–4, 7–11, 16, 19–21, 24, 26, 27, 29–31, 33–
36, 39–43, 45–47, 49–55, 57, 58, 60, 61, 64,
67, 68, 70, 72, 74, 77, 79, 80, 82, 83, 88–91, 93,
97, 98, 100, 106–108, 113, 115, 116, 118, 119,
121–125, 128, 130, 132, 133, 137–140, 142–
151, 154, 156–158, 160, 166, 168, 169, 171,
173, 175, 176, 178, 180, 183, 184, 190, 194,
196, 198–201, 204–210]

124

Relates Pipeline Automation to Metrics [1–3, 9, 12, 14, 16, 29, 34–36, 39, 40, 42, 43,
46, 47, 49–51, 53–55, 57, 58, 60, 61, 64, 66–68,
70, 72, 74, 75, 77–80, 82, 83, 86, 88, 90, 93, 97,
100, 102, 107, 108, 113, 116, 118, 121, 123, 125,
127, 128, 131–133, 137, 139, 140, 144–151,
154, 158, 166, 168, 169, 171, 173, 175, 176, 178,
180, 183, 190, 196, 198, 201–204, 207, 208]

93

Organizes and Explains each Metric [1, 2, 4, 7–10, 16, 21, 26–28, 30, 31, 33–36, 40,
42, 43, 45, 46, 49, 53, 54, 57, 58, 61, 64, 70, 72,
74, 75, 77, 78, 83, 86, 88–91, 98, 100, 102, 106,
107, 113, 119, 123, 128, 131, 132, 138–140, 142,
144–149, 151, 156, 157, 160, 163, 166, 173, 175,
180, 183–185, 188, 190, 198–200, 204–210]

87

Defines what are DevOps Metrics [1, 3, 12, 14, 16, 24, 33, 35, 42, 46, 49, 51–55,
58, 67, 72, 74, 77, 78, 82, 89–91, 93, 97, 98,
100, 102, 106, 107, 118, 119, 123, 132, 139,
143, 145–149, 151, 171, 173, 176, 178, 180,
184, 194, 199, 200, 202, 208]

56

Mentions or Groups KPIs in DevOps
context

[2, 3, 7, 10, 19, 24, 26, 29, 30, 34, 42, 45, 46,
49, 57, 77–79, 89, 90, 98, 100, 108, 113, 115,
116, 119, 121–124, 128, 132, 143, 156, 160,
163, 166, 173, 184, 187, 188, 196, 198, 200–
203, 206–208, 210]

52

Tries to categorize metrics [1, 8, 21, 24, 31, 33–36, 49, 51, 53, 54, 57, 98,
115–118, 125, 128, 132, 144–149, 151, 156,
157, 163, 166, 168, 175, 187, 188, 206, 210]

39

Mentions associated Practice, Capability or
Principles

[1, 4, 11, 24, 35, 42, 51, 53, 54, 58, 72, 74, 77,
115, 121, 125, 144–149, 151, 166, 168]

25

importance of one measure is contingent on the values of other metrics: The metrics that matter
are relevant to the observer’s orientation and even to the values of other metrics.

Gathering metrics effectively is also another debated problem. Forsgren et al. [55] mention that
it is best to start by capturing a system baseline with survey measures while continuing to build
out system-based metrics, which should normally use data that comes from the various systems
of record in the software delivery value stream. Both metrics have their limitations, but if used
in complement, organizations can gain a superior view of their software delivery value chain and
DevOps transformation work. In the various State of DevOps Reports [35, 144–149, 151] a few

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

70

231:26 R. Amaro et al.

grouped important metrics have already been used over the years, namely, some IT performance
metrics. DevOps metrics typically measure throughput, stability, or quality [107], while quanti-
fying a faster cadence (efficiency) and value addition (effectiveness) [51, 91]. Metrics also enable
DevOps teams to monitor and analyze collaborative workflows, as well as track progress toward
high-level goals such as higher quality, quicker release cycles, and improved application perfor-
mance [74]. Specifically, in the State of DevOps 2019 report[35], metrics are mentioned to mirror
the effectiveness of the development and delivery process, and they can be grouped in terms of
throughput and stability. The throughput of the software delivery process is measured using lead
time for code changes from check-in to release, along with deployment frequency. As for stability, it
can be measured using mean time to restore a system and change fail rate, a measure of the quality
of the release process. They provide a solid basis for an organization’s metrics activities [67].

However, these high-level metrics can be drilled down into a more refined state or expanded
to include others like Service Availability and Uptime—the time an application is available, Defect
Escape Rate—the number of defects that are found during a given unit of time, or Mean Time To
Detection—the average time between when a problem arises in production and when it is detected.
As part of this research, the main metrics are being expanded, listed, and defined in Sections 5.1
and 5.2, as mentioned in the objectives.

As seen in Section 1 there are a few organizational concepts in literature structuring DevOps
Metrics into the categories of Organizational Culture [38, 53, 84, 103, 118, 152], Operational Perfor-
mance [23, 84, 109, 165], Business Focus [73, 85, 87, 114, 135], and Incremental Change [76, 186, 217].
In the literature review’s coding done over the found publications, shown in Table 6 it was ob-
served that each of the main DevOps metrics found in Section 5.1 are being mentioned or grouped
into key indicators matching the category proposal.

Nevertheless, it is known that structuring key indicators is an art to determine which are most
relevant for the organization with DevOps objectives [24, 121, 166] in mind. Therefore, in Figure 8
this study summarizes and organizes DevOps Metrics into the four KPIs categories: (1) Business
KPIs, that have a direct impact on business goals. (2) Change KPIs, that reflect engineering’s
capacity to improve applications, infrastructure, or services. (3) Operational KPIs, that reflect a
team’s operational excellence. (4) Cultural KPIs, which are used to assess an organization based
on Westrum’s Organizational Culture Measures.

As a result, there are ten Change KPIs focused on measuring the different aspects of development
and delivery, while there are nine Operational KPIs focused on reliability, stability, and supporting
applications running in production. These dimensions seek to collect data about service delivery
and operationality [24, 166]. Some of these indications may be high level for new DevOps initia-
tives. This could be due to the extra time required to adopt and implement new processes, as well
as exposing and resolving current technological debt and waste [53, 204]. The Business KPIs are fo-
cused on providing customers the created value, getting feedback and making sure there is traffic
and users for the system. These measurements help quantify the impact of DevOps on business
objectives like increased customer loyalty and time to market [48, 115, 186, 206].

DevOps Cultural KPIs measures the cultural impact of DevOps implementation to address the
cultural gaps that have traditionally existed between developers, operational administrators, and
other engineers. This can be measured using employee surveys and other employee engagement
metrics. Team happiness, meeting efficiency, and learning opportunities are examples of enablers
for this category aiming to capture the organizational culture and its impacts [146, 195, 204]. Au-
thors largely agree that culture is an important ingredient of DevOps. The challenge for most IT
leaders is defining and communicating a vision of beneficial culture for their organizations, and
then facilitating the changes needed to achieve that.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

71

DevOps Metrics and KPIs: A Multivocal Literature Review 231:27

Fig. 8. DevOps metrics categorization and relation of concepts.

The State of DevOps report 2015, an annual survey based on the responses from more than
20,000 technical professionals, mentions that many companies claim to be data-driven, in the sense
of gathering a lot of data, but relatively few can really use that data to make educated choices [146].
Thus, posing the questions if DevOps analytics is being done correctly and regularly and if any
action is being taken on them. This MLR proposes to improve performance clarity by linking mea-
surements to systematic actionable goals and to turn measurement data into meaningful, visible
information that provides feedback to leadership and teams on important quality, performance,
and productivity criteria.

6.2 Competition and Vanity Metrics
Following the reporting process in Section 5.1, it is noticed that metrics among the not strongly
mentioned, therefore not included in the final list of 22 metrics, are those that could lead to inter-
nal competition. Because if the top performers are the “winners” and everyone else “loses,” then
communication or collaboration within and between teams is difficult to expect, which should be
a top DevOps capability [51, 53, 80, 82, 118, 145, 148, 149]. Metrics that are based on competition
among team members or between teams go against DevOps values [13, 217]. Teams will become
obsessed with improving metrics rather than identifying and resolving real problems. Examples
are builds per day, number of code commits, or features released per quarter seen in Appendix B.

Finally, there could also be some vanity metrics [34, 46, 49, 53, 82, 113, 146, 156, 204]. These
metrics may even indicate some ability, but they do not accurately reflect business effectiveness.
For example, the number of lines of code written each week is meaningless, because code can
vanish completely during refactoring, and less code is sometimes better for the organization. The
number of builds per day is irrelevant unless each build adds value to the end-user experience
[34, 49, 113].

6.3 Implementing DevOps Metrics in Organizations
A more involved, emerging question not yet fully answered by the literature is how an organiza-
tion could put these DevOps metrics into practice. It seems the results are incomplete and even

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

72

231:28 R. Amaro et al.

Fig. 9. DevOps metrics in practice infinity loop.

dispersed on this matter. However, it can be discussed within the scope of a few related studies
that have already touched on this topic. Forsgren et al. [56] states that measurement is the most im-
portant part of making a software value stream that works, while Snyder et al. [179] recommends
eliminating measurement silos and aligning analytics from all enterprise tools, to have a complete
picture of ongoing transformation. Therefore, in measuring and improving software delivery per-
formance, both the measurement method and the results are important to be exposed [53]. Sallin
et al. [168] analyzed how DevOps metrics could be used to measure software delivery by having
the metrics automatically calculated and shown to a team of practitioners in production.

Given this context, it is intended in Figure 9 to contribute more to the discussion by suggesting
a practical process based on the DevOps infinity loop [80]. This is a conceptual representation
of the continuous feedback and improvement process that is central to the DevOps philosophy
[6, 118, 125]. It is proposed that the steps for putting the main DevOps metrics into practice can
be represented as a series of nodes or stages, with each stage connected to the next, forming a
feedback loop.

The proposed steps to put DevOps metrics into practice are described as follows:
1. Establish a baseline: Organizations should start by setting a baseline for each metric by

collecting data over a period of time to gain a clear understanding of current performance and
identify areas for improvement [19, 80, 140]. Set a starting point by measuring the current state
of processes and systems, providing a basis for comparison and progress tracking [41, 75, 178].
Identify which metrics are most important and establish a baseline for future improvements [57,
140]. This step is the first in the DevOps infinity loop, establishing the current state of the system.

2. Set targets and goals: Governance should set clear goals and targets for each DevOps metric
based on their desired outcomes, such as reducing downtime, increasing efficiency, or improving
customer satisfaction [2, 35, 56]. These goals should align with the organization’s business objec-
tives and be focused on improving business outcomes [80, 92, 168]. This aligns with the second
step in the loop, where the goals for improvement are set.

3. Automate data collection: The data collection process should be automated by using tools
such as monitoring, logging, observability platforms, and online surveys to ensure accurate and up-
to-date data [44, 55, 144]. Automating the data collection, analysis, and monitoring process saves
time, reduces human error, and improves the accuracy of metrics [14, 57]. Survey data can show
important cultural, perceptual and whole-person information that cannot be collected through
system measurement[56, 186]. This step aligns with the third step in the DevOps infinity loop,
where automation is prepared to collect data and gather feedback.

4. Release: The release stage of the DevOps infinity loop involves making new code or up-
dates available to customers and stakeholders [50, 51, 115, 116]. For this specific process, the
data collected is used to improve and release new features, updates, and improvements to sys-
tems and processes to maintain continuous feedback [11, 118, 121]. The book “Continuous Deliv-
ery: Reliable Software Releases through Build, Test, and Deployment Automation” [80] highlights

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

73

DevOps Metrics and KPIs: A Multivocal Literature Review 231:29

the importance of frequent software releases and how it can be done in a reliable and efficient
manner.

5. Use dashboards and reports: Utilize dashboards and reports to visualize DevOps metrics,
identify trends and patterns, track progress toward targets and goals, and assess performance
[106, 196, 197, 208]. The book “Continuous Delivery and DevOps: A Quickstart guide” [186] ex-
plains how dashboards and reports can be used to track and improve the performance of a DevOps
organization. There are also academic experiments on using visual aids such as dashboards and
reports [24] and authors [13, 69, 112] recommend using visualizations to communicate metrics to
team members and stakeholders [52]. This step aligns with the fifth step in the DevOps infinity
loop, where data visualization is used to make sense of the data and identify areas for improvement.

6. Take action: Leverage the insights from the metrics to pinpoint opportunities for improve-
ment and take action [53, 58, 149], such as process changes, tooling changes, or adding team mem-
bers [179]. Use data to make informed decisions about process and technology improvements for
systems, processes, and customer experience [44, 80]. In the book “The Phoenix Project,” Kim et al.
[92] provide a view of how an organization can take action to improve its IT performance through
the implementation of DevOps capabilities. This step aligns with the sixth step in the DevOps
infinity loop, where you act based on the insights gained from the data.

7. Continuously monitor: Continuously monitor metrics and make adjustments to improve
DevOps processes, practices, and collaboration [18]. Regular monitoring helps identify potential
issues and track progress against established objectives [10, 44]. Use insights from metrics to im-
prove systems, processes, and customer experience by continuously monitoring customer feed-
back [74, 104, 109, 151]. This step aligns with the seventh step in the DevOps infinity loop, where
you continuously monitor the system to ensure that improvements are sustained.

8. Feedback and Communicate: Share metric data and insights with all involved to promote
transparency and collaboration toward common goals [14, 78, 94]. Encourage feedback and com-
munication between teams, stakeholders, and customers to identify new improvement opportuni-
ties and foster a data-driven, continuous improvement culture [69, 88]. Share results with relevant
stakeholders to use data to drive continuous improvement [80]. This aligns with the eighth step
in the loop, where feedback is gathered and results are communicated to stakeholders.

These guidelines propose a structured and comprehensive approach to DevOps metrics imple-
mentation. The stages in Figure 9 are in a specific order to ensure that each step builds upon the
previous one and provides the necessary foundation for the next step.

6.4 Change in the Context of DevOps Metrics
Change is a concept that has a few different interpretations depending on the DevOps metric
being evaluated and the context being observed. During this research, it was noticed that what
constitutes change can vary for some metrics like M02. MLT is a metric that shows how much time
is needed to implement a change in the full development cycle process [198]. But it can also be
how long it takes to go from code committed to code running successfully in production [98, 198].
Which also raises the discussion: does the variation of change across different contexts matter?

Expanding from the current study to a wider state of the art, there are a few papers that, despite
not explicitly, address the question of what constitutes a change in the context of DevOps metrics.
They provide some relevant information. Gupta et al. 2017 refers to Continuous Delivery as the
ability of the system to release changes or fixes to the production environment, also suggesting
that a framework can be used to assess this and other aspects of DevOps implementation [71].
Lwakatare et al. 2015 suggests that measurement in DevOps is achieved by measuring the effort of
the software process beyond QA using real-time performance [111]. Forsgren et al. 2017 implies
that it is challenging for teams to understand the wider dynamic context in which they operate

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

74

231:30 R. Amaro et al.

Fig. 10. DevOps metrics and incremental changes in the DevOps context.

due to their inability to measure change over time in relation to changes in the rest of the industry
[58].

To better organize this discussion, it is proposed that changes in DevOps, gathered from litera-
ture, can be broadly divided into these categories: (1) Code changes: These are modifications to the
source code of a software application [18, 80, 92, 99, 103, 174]. (2) Configuration changes: These
are modifications to the configuration files, settings, or environment variables that govern how a
software application operates [18, 41, 82, 84, 92, 149]. (3) Infrastructure changes: These are mod-
ifications to the underlying infrastructure that supports a software application, including servers,
databases, and network components [13, 82, 99, 104, 186]. (4) Process changes: These are modifi-
cations to the development and delivery processes that support a software application, including
changes to continuous integration, testing, and deployment workflows [53, 82, 84, 151, 155, 197].
(5) Data changes: These are modifications to the data that is stored, processed, or used by a soft-
ware application, including changes to database schema and data structures [1, 80, 121, 174, 186].
(6) Security changes: These are modifications to the security measures that protect a software
application and its underlying infrastructure, including changes to access controls, encryption al-
gorithms, and network security settings [53, 93, 149, 150, 174].

Each of these types of changes can impact the stability, reliability, and security of a software ap-
plication, and it is important to manage them carefully to ensure a high-quality software delivery
process [18, 93]. In DevOps, the emphasis is on automating and streamlining changes to minimize
the risk of errors and improve the speed and efficiency of software delivery [35, 53, 168]. To contex-
tualize change from multiple perspectives, Petersen et al. proposed a checklist, given that context
is critical in software engineering [136]. The context of incremental change seen in Figure 10 is also
not often discussed or considered when approaching DevOps metrics. For instance, in the change
category items mentioned in Section 6.1, does the variation of change across different contexts
matter?

DevOps performance includes measuring incremental change, introduced in Section 1, which
can be placed within context facets [136]. Namely, product, processes, practices and techniques,
people, organization, and market facets. The product context considers the size and complexity
of changes and requirements for integration [15, 84]. The process context involves the DevOps
pipeline and procedures in place for measurement [80, 174]. The practices and techniques context
covers tools and methodologies used in DevOps [103, 118]. The people context refers to team mem-
bers’ roles, responsibilities, and skills [115, 214]. The organizational context covers the company’s
structure and culture [153, 177, 186], and the market context refers to competitive pressures and
customer demands [101, 155]. These domains impact the efficiency of a pipeline, use of automa-
tion, quality of collaboration and communication, availability of resources, level of organizational
support, and ability to respond to market conditions and customer requirements.

Therefore, variation of change across different contexts matters, since the success of organiza-
tional change depends on the specific change context or the environment in which it is imple-
mented. Assessing internal and external factors can help identify DevOps enablers and challenges,

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

75

DevOps Metrics and KPIs: A Multivocal Literature Review 231:31

leading to specific actions [111, 114]. Analysis of change context involves gathering diverse per-
spectives and acting on the findings [118]. The context of change in DevOps is related to the
change management capability and to how well an organization handles these contexts to success-
fully manage change [13, 151]. Every time the business wants a change, there is an investment
in the development process to deliver that change [186, 199]. Therefore, for the example of Mean
Lead-time for Changes it is indeed dependent on what the context is and to what we are changing,
code, configurations, and infrastructure.

Furthermore, in the context of the organizational process, MLT will be influenced by the need to
respond quickly to changing market conditions and customer requirements. Leading to measure
the throughput of the software delivery process using lead time of code changes from check-in to
release, along with deployment frequency [1, 35]. Last, in the context of DevOps metrics, change
refers to the modifications made to systems, processes, or practices based on the data and insights
gained from the metrics [111]. These changes aim to improve the performance, efficiency, and
customer satisfaction of the systems and processes being monitored. Change may involve fixing
issues, implementing new tools, or making process changes to address any challenges or areas for
improvement identified through the metrics. The goal of these changes is to continuously improve
the overall DevOps process and capabilities [116].

7 CONCLUSION
This study has brought important contributions to both academia and industry on the DevOps
topic. In summary, an MLR was run on DevOps Metrics. To find literature, Google search, Scopus,
Web of Science, IEEE, ACM, and EBSCO were utilized, and 139 publications were recognized as
relevant to this research area: (1) In this literature review, a definition of DevOps Metric is proposed.
(2) Moreover, 22 main DevOps Metrics were identified and categorized. (3) DevOps Metrics were
discussed and categorized into Business, Change, Operational, and Cultural KPIs. (4) It is discussed
why, how to improve, and expectations for each metric. (5) Benefit characteristics of main DevOps
Metrics are exposed. (6) Identified four top metrics MTTR, MLT, DF and CFR. (7) It was found
that the community agrees on the top four metrics and is focusing on them. (8) Discussed how
organizations could put the main DevOps metrics into practice. (9) Discussed what constitutes a
change in the context of DevOps Metrics.

It has been researched that these top four key metrics have expected improvement outcomes
from DevOps adoption. MTTR determines the mean of the time required to recover or restore
service from a failure in production. MLT indicates how long it takes for a change to go from
code committed to code successfully running in production. DF ascertains how often changes
are deployed to production. CFR measures how often a change in production fails and must
be immediately remedied. According to this MLR, academic studies still demonstrate limited
research in this area. However, the industry shows a rising interest in the usage of DevOps
Metrics. As a result, the employment of DevOps Metrics should be thoroughly explored due to
the possible influence on businesses. In this regard, it would be worthwhile to perform a study
not only on DevOps Metrics but also on their relationship to DevOps capabilities, practices, and
outcomes.

For some of the most referenced metrics, M02, M03, M04, M06, and M12, there appears to be
a relation to the continuous delivery DevOps capability in References [35, 72, 80, 108, 118, 154],
which could be of interest to conduct more investigation in future research toward exploring the
relations to delivery practices. As research synthesis, the goal was to look into DevOps Metrics,
their definition, importance and categorization, without debating in depth how they are imple-
mented. However, as it can be seen, there are obvious indicators that more study may be done
from here on than take advantage of eliciting measurements into an organized format.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

76

231:32 R. Amaro et al.

7.1 Future Work
What was discovered will help further research so that future studies can determine if these met-
rics remain the most prevalent and may be researched further. An example of this are the following
questions: How do DevOps practices and capabilities relate to metrics? When these metrics are
put into action, how will the results vary? Which ones will have the most impact in which kind
of organizations? Attempts to understand what metrics are associated with each practice, capabil-
ity, or principles of DevOps were identified in 26 publications seen in Table 6, but this relation is
still unclear, and no consensual link was found, leading to an opening of upcoming work in this
area. There is space for exploring the practical aspects of implementing the identified metrics and
their impact on DevOps capabilities. Also, on the organizational front, we still miss knowing what
metrics are already used by which industries? What organizational aspects have more effect on
each of the main key metrics? Can we control these aspects? How? Would it be possible to expose
the metrics, capabilities, and their influencing factors in information systems to support manage-
ment decisions [101]? However, there is still debate going on [29, 47, 50, 151] regarding: Should all
of these metrics be measured proactively? Which metrics can be measured automatically? What
metrics may only be measured using surveys? Which are valuable questions to explore. Finally,
improving measuring the software delivery process is relevant and pursued as seen in Section 5.
DevOps Metrics should aim to quantify the right elements to understand if DevOps is working.

7.2 Limitations
Regarding Limitations, this study is based on multivocal literature, and the majority of the mate-
rial has not been subjected to the rigorous peer-review process that academic research is normally
subjected to. Instead, the literature has included blogs, white papers, and reports. To mitigate the
impact of this danger, it was chosen to design the review procedure using the recommendations
given by Garousi et al. [63] and to conduct each step using this method. It is also acknowledged
that sources can change, which is why, during the peer-review process, any inaccessible sources
were replaced with alternative URLs for the same content. Over time, industry reports influence
other sources. But, even in academic literature, multiple voices risk influence. The MLR aims to rep-
resent academia, practitioners, and the DevOps community. To mitigate validity threats of sources
published in software companies’ blogs, metrics with less than 10 references were excluded, and
information is cross-verified with independent sources, as shown in Figure 7 and Section 4, as
elaborated upon in later sections. Similarly, to address limitations of basic metrics information,
a more in-depth analysis, using peer-reviewed sources, was done for a more comprehensive un-
derstanding of the metrics. Search keywords and search engines used might lead to an incomplete
selection of primary sources. Formal searching utilizing specific keywords was carried out and spe-
cific source code was used to reduce the risk of not discovering all relevant studies and increasing
the reliability of replicating this research. Last, also a restriction was the inclusion of English-only
articles, which may exclude significant studies in other languages.

REFERENCES
[1] Google Accelerate. 2021. 2021 State of DevOps Report. Technical Report GC2021. Google Cloud. Retrieved from https:

//services.google.com/fh/files/misc/state-of-devops-2021.pdf
[2] Khalil Ahmad. 2020. DevOps KPIs and “Design for Failure.” Retrieved from https://www.linkedin.com/pulse/devops-

kpis-design-failure-khalil-ahmad. Accessed on 2022-01-22.
[3] AlertOps. 2018. MTTD vs MTTF vs MTBF vs MTTR - Resolve Major IT Incidents Quickly. (2018). Retrieved from

https://alertops.com/mttd-vs-mttf-vs-mtbf-vs-mttr/. Accessed on 2022-01-22.
[4] Altexsoft. 2021. DevOps Metrics: Mean Time to Failure, Server Uptime, Mean Time Between Failures, Mean Time to

Recovery, and More. Retrieved from https://www.altexsoft.com/blog/devops-metrics/. Accessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

77

DevOps Metrics and KPIs: A Multivocal Literature Review 231:33

[5] Ricardo Amaro. 2021. DevOps Capabilities and Metrics. Ph.D. Dissertation. IST - Information and Enterprise Systems
(MISE). Retrieved from https://fenix.tecnico.ulisboa.pt/cursos/mise/dissertacao/283828618790759

[6] Ricardo Amaro, Ruben Pereira, and Miguel Mira da Silva. 2022. Capabilities and practices in DevOps: A multivocal
literature review. IEEE Trans. Softw. Eng. 1 (2022), 20. https://doi.org/10.1109/TSE.2022.3166626

[7] Appdynamics. 2020. DevOps Metrics and KPIs: How To Measure DevOps? Retrieved from https://www.appdynamics.
com/topics/devops-metrics-and-kpis. Accessed on 2022-01-22.

[8] Emily Arnott. 2021. DevOps Metrics | How to Measure What Matters. Retrieved from https://www.blameless.com/
devops/devops-metrics. Accessed on 2022-01-22.

[9] Prashant Arora. 2015. Measuring the Success of DevOps—Prashant Arora’s Blog. Retrieved from https://
aroraprashant.wordpress.com/2015/04/14/measuring-the-success-of-devops/. Accessed on 2022-01-22.

[10] Rashed Azzam. 2021. 8 Proven DevOps Metrics: Effectively Measure and Optimize Your DevOps Success. Retrieved
from https://www.vardot.com/en-us/ideas/blog/8-proven-devops-metrics-effectively-measure-and-optimize-your-
devops-success. Accessed on 2022-01-22.

[11] Sher Badshah, Arif Ali Khan, and Bilal Khan. 2020. Towards process improvement in DevOps: A systematic literature
review. In Proceedings of the 24th Evaluation and Assessment in Software Engineering Conference (EASE’20). ACM,
427–433. https://doi.org/10.1145/3383219.3383280

[12] Michael Baldani. 2019. DORA Metrics—Getting on the Bandwagon. Retrieved from https://www.cloudbees.com/blog/
dora-metrics-getting-bandwagon. Accessed on 2022-01-22.

[13] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A Software Architect’s Perspective. Addison-Wesley, New York.
Retrieved from http://my.safaribooksonline.com/9780134049847

[14] Mary “Lisa” Williams Bates and Enrique I. Oviedo. 2021. Software reliability in a DevOps continuous integration
environment. In Proceedings of the Annual Reliability and Maintainability Symposium (RAMS’21). IEEE, 4. https://doi.
org/10.1109/RAMS48097.2021.9605768

[15] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. 2016. Site Reliability Engineering: How Google
Runs Production Systems. O’Reilly Media, Inc., Google. Retrieved from https://landing.google.com/sre/sre-book/toc/

[16] Marco Bizzantino. 2019. 4 Fundamental Metrics to Measure DevOps Performances. (2019). Retrieved from https:
//www.kiratech.it/en/blog/4-fundamental-metrics-to-measure-devops-performances. Accessed on 2022-01-22.

[17] May Britt Bjerke and Ralph Renger. 2017. Being smart about writing SMART objectives. Eval. Program Plan. 61 (Apr.
2017), 125–127. https://doi.org/10.1016/j.evalprogplan.2016.12.009

[18] David N . Blank-Edelman. 2018. Seeking SRE: Conversations About Running Production Systems at Scale. O’Reilly
Media, Inc..

[19] Robert Bobbett. 2018. DevOps Value: How to Measure the Success of DevOps. Retrieved from https://www.
fpcomplete.com/blog/devops-value-how-to-measure-the-success-of-devops/. Accessed on 2022-01-22.

[20] Kasper de Boer. 2016. 2 Most Important DevOps Metrics Tools. Retrieved from https://labs.sogeti.com/the-two-most-
important-metrics-for-devops/. Accessed on 2022-01-22.

[21] Dnyaneshwar Borase. 2021. What You Need to Know About DevOps Metrics in Jira? | Addteq Blog. Retrieved from
https://web.archive.org/web/20220401230729/https://addteq.co.in/blog/what-you-need-to-know-about-devops-
metrics-in-jira/. Accessed on 2022-01-22.

[22] Charles Border. 2019. Development of a configuration management course for operations students. In Proceedings of
the 20th Annual SIG Conference on Information Technology Education. ACM, New York, NY, 41–41. https://doi.org/10.
1145/3349266.3351360

[23] Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wilhelm Hasselbring, Christoph Heger,
Nikolas Herbst, Pooyan Jamshidi, Reiner Jung, Joakim von Kistowski, Anne Koziolek, Johannes Kroß, Simon Spin-
ner, Christian Vögele, Jürgen Walter, and Alexander Wert. 2015. Performance-oriented DevOps: A research agenda.
Retrieved from https://arxiv.org/abs/1508.04752. https://doi.org/10.48550/ARXIV.1508.04752

[24] Francisco João Lúcio Bruno. 2021. DevOps Dashboard. Ph.D. Dissertation. ISCTE-IUL. Retrieved from https://
repositorio.iscte-iul.pt/handle/10071/24112

[25] Lianping Chen. 2017. Continuous delivery: Overcoming adoption challenges. J. Syst. Softw. 128 (June 2017), 72–86.
https://doi.org/10.1016/j.jss.2017.02.013

[26] Cigniti. 2016. Top 6 DevOps Metrics That Enterprise Dashboards Should Capture. (2016). Retrieved from https://
www.cigniti.com/blog/6-devops-metrics-for-enterprise-dashboards/. Accessed on 2022-01-22.

[27] Lauma Cīrule. 2019. Analyze DevOps Metrics With eazyBI. Retrieved from https://eazybi.com/blog/analyze-devops-
metrics-with-eazybi. Accessed on 2022-01-22.

[28] CloudNative. 2021. DevOps Metrics: How to Monitor Performances Optimally. Retrieved from https://blog.mia-
platform.eu/en/devops-metrics-how-to-monitor-performances-optimally. Accessed on 2022-01-22.

[29] Cprime. 2021. DevOps Metrics to Monitor Software Development—Cprime. Retrieved from https://www.cprime.com/
resources/blog/devops-metrics-to-monitor-software-development/. Accessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

78

231:34 R. Amaro et al.

[30] Royal Cyber. 2019. DevOps KPIs to Measure Success. Retrieved from https://www.royalcyber.com/blog/devops/
devops-kpis-to-measure-success/. Accessed on 2022-01-22.

[31] Matthew David. 2021. DevOps Metrics: How to Measure Metrics for Your Devops Team. Retrieved from https://www.
simplilearn.com/devops-metrics-used-to-measure-devops-team-article. Accessed on 2022-01-22.

[32] Patrick Debois. 2011. DevOps from a sysadmin perspective. Login—Usenix Mag. 36, 6 (2011), 3.
[33] Tiempo Development. 2020. A Guide To Measuring DevOps Success and Proving ROI. Retrieved from https://www.

tiempodev.com/blog/measuring-devops/. Accessed on 2022-01-22.
[34] Devopedia. 2019. DevOps Metrics. Retrieved from https://devopedia.org/devops-metrics. Accessed on 2022-01-22.
[35] DevOps Research and Assessment (DORA). 2019. State of DevOps 2019—DORA. Technical Report DORA2019. DORA.

Retrieved from https://services.google.com/fh/files/misc/state-of-devops-2019.pdf.
[36] DevOpsEnterpriseSummit. 2017. Featured Resource: Metrics for DevOps Initiatives—IT Revolution. Retrieved from

https://itrevolution.com/devops-resource-metrics/. Accessed on 2022-01-22.
[37] Jessica Díaz, Rubén Almaraz, Jennifer Pérez, and Juan Garbajosa. 2018. DevOps in practice—An exploratory case

study. In Proceedings of the 19th International Conference on Agile Software Development. 3. https://doi.org/10.1145/
3234152.3234199

[38] Jessica Díaz, Daniel López-Fernández, Jorge Pérez, and Ángel González-Prieto. 2021. Why are many businesses in-
stalling a DevOps culture into their organization? Empir. Softw. Eng. 26, 2 (2021), 50. https://doi.org/10.1007/s10664-
020-09919-3

[39] Digital.ai. 2019. 4 DevOps Metrics to Improve Delivery Performance on Vimeo. Retrieved from https://vimeo.com/
331032185. Accessed on 2022-01-22.

[40] digital.ai. 2021. 10 DevOps Metrics You Should Know. Retrieved from https://digital.ai/resources/infographic/10-
devops-metrics-you-should-know. Accessed on 2022-01-22.

[41] Damian Dingley. 2019. 4 Key Metrics for DevOps Success Video. Retrieved from https://www.veracitysolutions.com/
4-key-metrics-for-devops-success. Accessed on 2022-01-22.

[42] Bojana Dobran. 2019. 15 DevOps Metrics and Key Performance Indicators (KPIs) To Track. Retrieved from https:
//phoenixnap.com/blog/devops-metrics-kpis. Accessed on 2022-01-22.

[43] Paul Duvall. 2018. Measuring DevOps Success with Four Key Metrics | Stelligent. Retrieved from https://stelligent.
com/2018/12/21/measuring-devops-success-with-four-key-metrics/. Accessed on 2022-01-22.

[44] Paul M. Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous Integration: Improving Software Quality and
Reducing Risk (1st ed.). Addison-Wesley Professional, Upper Saddle River, NJ.

[45] Aliza Earnshaw and Puppet. 2013. 5 KPIs That Make the Case for DevOps. Retrieved from https://puppet.com/blog/5-
kpis-make-case-for-devops/. Accessed on 2022-01-22.

[46] Mark Edwards. 2019. Measuring for Success—Change or Hold—DevOps. Retrieved from https://web.archive.
org/web/20210415075956/https://www.tesm.com/resources-blog-measuring-for-success-should-you-change-or-
should-you-hold-devops-pt-5/. Accessed on 2022-01-22.

[47] Roy Edwards. 2021. Research Highlights Challenges of Salesforce DevOps in 2020. Retrieved from https://www.
enterprisetimes.co.uk/2021/02/16/research-highlights-challenges-of-salesforce-devops-in-2020/. Accessed on 2022-
01-22.

[48] João Faustino, Daniel Adriano, Ricardo Amaro, Rubén Pereira, and Miguel Mira da Silva. 2022. DevOps Benefits: A
systematic literature review. Softw.: Pract. Exper. 52, 9 (2022), 1905–1926. https://doi.org/10.1002/spe.3096

[49] Vladimir Fedak. 2020. DevOps Metrics: What to Track, How and Why Do It. Retrieved from https://medium.com/
@FedakV/devops-metrics-what-to-track-how-and-why-do-it-e08dc6864eab. Accessed on 2022-01-22.

[50] Flosum. 2021. Keys to Improve Salesforce DevOps Efficiency - Flosum - Continuous Integration, Release Management.
Retrieved from https://flosum.com/keys-to-improve-salesforce-devops-efficiency/. Accessed on 2022-01-22.

[51] Nicole Forsgren. 2015. Metrics for DevOps Initiatives. Retrieved from https://itrevolution.com/articles/devops-
resource-metrics/. Accessed on 2022-01-22.

[52] Nicole Forsgren. 2017. How to Use Metrics, Measurement to Drive DevOps. Retrieved from https://techbeacon.com/
devops/how-use-metrics-measurement-drive-devops. Accessed on 2022-01-22.

[53] Nicole Forsgren, Jez Humble, and Gene Kim. 2018. Accelerate: The Science of Lean Software and Devops: Building and
Scaling High Performing Technology Organizations. IT Revolution. Retrieved from https://itrevolution.com/accelerate-
book/.

[54] Nicole Forsgren, Jez Humble, Gene Kim, A Brown, and N Kersten. 2018. Accelerate state of DevOps 2018 strategies
for a new economy. Report. DevOps Res. Assess. (DORA) 1 (2018), 78.

[55] Nicole Forsgren and Mik Kersten. 2017. DevOps Metrics: Your Biggest Mistake Might Be Collecting the Wrong Data.
Queue 15, 6 (Dec. 2017), 19–34. https://doi.org/10.1145/3178368.3182626

[56] Nicole Forsgren and Mik Kersten. 2018. DevOps Metrics. Commun. ACM 61, 4 (Dec. 2018), 44–48. https://doi.org/10.
1145/3159169

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

79

DevOps Metrics and KPIs: A Multivocal Literature Review 231:35

[57] Nicole Forsgren, Marcus Rothenberger, Jez Humble, Jason Thatcher, and Dustin Smith. 2020. A taxonomy of soft-
ware delivery performance profiles: Investigating the effects of devops practices. In Proceedings of the 26th Americas
Conference on Information Systems (AMCIS’20). 5.

[58] Nicole Forsgren, Monica Chiarini Tremblay, Debra VanderMeer, and Jez Humble. 2017. DORA Platform: DevOps
assessment and benchmarking. In Designing the Digital Transformation, Alexander Maedche, Jan vom Brocke, and
Alan Hevner (Eds.). Springer International Publishing, Cham, 436–440. https://doi.org/10.1007/978-3-319-59144-5_
27

[59] Breno B Nicolau de França, Helvio Jeronimo, Guilherme Horta Travassos, Breno B. Nicolau de França, Helvio Jeron-
imo, and Guilherme Horta Travassos. 2016. Characterizing DevOps by hearing multiple voices. In Proceedings of
the 30th Brazilian Symposium on Software Engineering, E. S. DeAlmeida (Ed.). Unicesumar; Colivre; Espweb; Tasa
Eventos, New York, NY, 53–62. https://doi.org/10.1145/2973839.2973845

[60] Ann Marie Fred and Craig Cook. 2021. 6 Proven Metrics for DevOps Success | TechBeacon. Retrieved from https:
//techbeacon.com/devops/6-proven-metrics-devops-success. Accessed on 2022-01-22.

[61] Philip Gallagher. 2020. Tracking Success in DevOps Pipelines. Retrieved from https://blog.goodelearning.com/
subject-areas/devops/how-to-measure-success-in-devops/. Accessed on 2022-01-22.

[62] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2016. The need for multivocal literature reviews in software
engineering. In Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering
(EASE’16). ACM Press, New York, NY, 6. https://doi.org/10.1145/2915970.2916008

[63] Vahid Garousi, Michael Felderer, and Mika V. Mäntylä. 2019. Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Info. Softw. Technol. 106 (Feb. 2019), 101–121. https://doi.org/
10.1016/j.infsof.2018.09.006

[64] John Gelo. 2020. DevOps Metrics Matter: Why, Which Ones, and How - HCL SW Blogs. Retrieved from https://blog.
hcltechsw.com/accelerate/devops-metrics-matter-why-which-ones-and-how-2/. Accessed on 2022-01-22.

[65] Gene Kim and IT Revolution. 2012. The Three Ways: The Principles Underpinning DevOps. Retrieved from https:
//itrevolution.com/the-three-ways-principles-underpinning-devops/. Accessed on 2022-01-22.

[66] Tom Gilmore. 2018. DevOps Metrics—ADAPT Model Community. Retrieved from http://www.adapttransformation.
com/devops-toolchain/monitor/devops-metrics/. Accessed on 2022-01-22.

[67] Gitlab. 2020. Getting Started with Agile/DevOps Metrics | GitLab. Retrieved from https://web.archive.org/web/
20211016034045/https://about.gitlab.com/handbook/marketing/strategic-marketing/devops-metrics/. Accessed on
2022-01-22.

[68] Brian Gracely. 2017. The Most Important DevOps Metric to Measure. Retrieved from https://www.openshift.com/
blog/important-devops-metric-measure. Accessed on 2022-01-22.

[69] Gary Gruver, Tommy Mouser, and Gene Kim. 2015. Leading the Transformation: Applying Agile and DevOps Principles
at Scale. IT Revolution Press, Portland, OR.

[70] George Guimarães. 2020. On the Four Key DevOps Metrics, and Why I Measure Them Differently—SourceLevel. Re-
trieved from https://sourcelevel.io/blog/on-the-four-key-devops-metrics-and-why-i-measure-them-differently. Ac-
cessed on 2022-01-22.

[71] Viral Gupta, P. K. Kapur, and Deepak Kumar. 2017. Modeling and measuring attributes influencing devops im-
plementation in an enterprise using structural equation modeling. Info. Softw. Technol. 92, 1 (2017), 75–91. https:
//doi.org/10.1016/j.infsof.2017.07.010

[72] Omed Habib. 2019. DevOps Accelerate Metrics | Harness Platform-as-a-Service. Retrieved from https://www.harness.
io/blog/dora-metrics. Accessed on 2022-01-22.

[73] Philipp Haindl and Reinhold Plosch. 2020. Focus areas, themes, and objectives of non-functional requirements in
DevOps: A systematic mapping study. In Proceedings of the 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA’20), Martini A., Wimmer M., and Skavhaug A. (Eds.). Institute of Electrical and Elec-
tronics Engineers Inc., Johannes Kepler University Linz, Institute of Business Informatics–Software Engineering,
Linz, Austria, 394–403. https://doi.org/10.1109/SEAA51224.2020.00071

[74] Tom Hall. 2016. DevOps Metrics | Atlassian. Retrieved from https://www.atlassian.com/devops/frameworks/devops-
metrics. Accessed on 2022-01-22.

[75] Adam Hawkins. 2019. Measuring DevOps Success: What, Where, and How - Cloud Academy. Retrieved from https:
//cloudacademy.com/blog/measuring-devops-success-what-where-and-how/. Accessed on 2022-01-22.

[76] Aymeric Hemon-Hildgen, Frantz Rowe, and Laetitia Monnier-Senicourt. 2020. Orchestrating automation and sharing
in DevOps teams: A revelatory case of job satisfaction factors, risk and work conditions. Eur. J. Info. Syst. 29, 5 (Sept.
2020), 474–499. https://doi.org/10.1080/0960085X.2020.1782276

[77] Dan Holloran. 2019. Top Metrics for Measuring DevOps Delivery Value. Retrieved from https://web.archive.org/web/
20210928103412/https://victorops.com/blog/top-metrics-for-measuring-devops-delivery-value. Accessed on 2022-
01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

80

231:36 R. Amaro et al.

[78] Rami Honig. 2020. Bridge the DevOps Development Chasm to Boost DevOps KPIs—Ozcode. Retrieved from https://
oz-code.com/blog/devops/bridging-the-devops-development-observability-chasm-to-boost-devops-kpis. Accessed
on 2022-01-22.

[79] Maruf Hossain. 2020. What Key Performance Indicators (KPIs) Are Used to Measure DevOps? Retrieved from https:
//www.quora.com/What-key-performance-indicators-KPIs-are-used-to-measure-DevOps. Accessed on 2022-01-22.

[80] Jez Humble and David Farley. 2010. Continuous Delivery: Reliable Software Releases Through Build, Test, and Deploy-
ment Automation. Addison-Wesley Professional.

[81] Jez Humble and Joanne Molesky. 2011. Why enterprises must adopt devops to enable continuous delivery. Cutter IT
J. 24, 8 (2011), 6–12.

[82] Jez Humble and Barry O’Reilly. 2014. Lean Enterprise: How High Performance Organizations Innovate at Scale. O’Reilly
Media, Inc.

[83] Henn Idan. 2018. The Must Have Metrics Any DevOps and SRE Manager Should Measure. Retrieved from https://
www.overops.com/blog/the-must-have-metrics-any-devops-and-sre-manager-should-measure/. Accessed on 2022-
01-22.

[84] IEEE. 2021. IEEE standard for DevOps: Building reliable and secure systems including application build, Package, and
Deployment: IEEE Standard 2675-2021. IEEE Std 2675-2021 1, 16 (Apr. 2021), 91. https://doi.org/10.1109/IEEESTD.2021.
9415476

[85] Ramtin Jabbari, Nauman bin Ali, Kai Petersen, and Binish Tanveer. 2018. Towards a benefits dependency network
for DevOps based on a systematic literature review. J. Softw.: Evol. Process 30, 11 (Nov. 2018), 26. https://doi.org/10.
1002/smr.1957

[86] Jellyfish. 2021. Jellyfish Adds DevOps Metrics to Its Engineering Management Platform. Retrieved from
https://www.prnewswire.com/news-releases/jellyfish-adds-devops-metrics-to-its-engineering-management-
platform-301404849.html. Accessed on 2022-01-22.

[87] Stephen Jones, Joost Noppen, and Fiona Lettice. 2016. Management challenges for DevOps adoption within UK
SMEs. In Proceedings of the 2nd International Workshop on Quality-Aware DevOps. ACM, Saarbrücken Germany, 7–
11. https://doi.org/10.1145/2945408.2945410

[88] Vinati Kamani. 2019. 7 Crucial DevOps Metrics That You Need to Track. Retrieved from https://hub.packtpub.com/7-
crucial-devops-metrics-that-you-need-to-track/. Accessed on 2022-01-22.

[89] Lea Karam. 2017. DevOps Metrics You Must Take into Account. Retrieved from https://apiumhub.com/tech-blog-
barcelona/devops-metrics/. Accessed on 2022-01-22.

[90] Jane Kernel. 2020. DevOps Metrics: 7 KPIs to Evaluate Your Team’s Maturity. Retrieved from https://www.xplg.com/
devops-metrics-7-kpis/. Accessed on 2022-01-22.

[91] Aditya Khanduri. 2020. DevOps Metrics: Measuring What Matters. Retrieved from https://blog.sonatype.com/
devops-metrics-measuring-what-matters. Accessed on 2022-01-22.

[92] Gene Kim, Kevin Behr, Kim Spafford, and George Spafford. 2014. The Phoenix Project: A Novel about IT, DevOps, and
Helping Your Business Win. IT Revolution. Retrieved from https://books.google.pt/books?id=H6x-DwAAQBA.

[93] Gene Kim, Jez Humble, Patrick Debois, and John Willis. 2016. The DevOps Handbook : How to Create World-Class
Agility, Reliability, and Security in Technology Organizations. IT Revolution Press. Retrieved from https://www.
amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002.

[94] Gene Kim, Jez Humble, Patrick Debois, John Willis, and Nicole Forsgren. 2021. The DevOps Handbook: How to Create
World-Class Agility, Reliability, & Security in Technology Organizations, 2nd ed. IT Revolution.

[95] Barbara Kitchenham, O. Pearl Brereton, David Budgen, Mark Turner, John Bailey, and Stephen Linkman. 2009. Sys-
tematic literature reviews in software engineering—A systematic literature review. Info. Softw. Technol. 51, 1 (2009),
7–15. https://doi.org/10.1016/j.infsof.2008.09.009

[96] Barbara A. Kitchenham. 2012. Systematic review in software engineering. In Proceedings of the 2nd International
Workshop on Evidential Assessment of Software Technologies (EAST’12). ACM Press, New York, NY, 1. https://doi.org/
10.1145/2372233.2372235

[97] KnowledgeHut. 2017. What Are the Metrics and Why Do They Matter for DevOps Success? Retrieved from https:
//www.knowledgehut.com/blog/agile/metrics-matters-devops-success. Accessed on 2022-01-22.

[98] Dilyana Kodjamanova. 2020. 4 DevOps Metrics To Maximize Success—MentorMate. Retrieved from https://
mentormate.com/blog/how-devops-metrics-pave-the-way-to-better-performance/. Accessed on 2022-01-22.

[99] Indika Kumara, Martín Garriga, Angel Urbano Romeu, Dario Di Nucci, Fabio Palomba, Damian Andrew Tamburri,
and Willem-Jan van den Heuvel. 2021. The do’s and don’ts of infrastructure code: A systematic gray literature review.
Info. Softw. Technol. 137 (Sept. 2021), 106593. https://doi.org/10.1016/j.infsof.2021.106593

[100] Performance Lab. 2021. Metrics for Successful DevOps? Retrieved from https://performancelabus.com/successful-
devops-metrics/. Accessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

81

DevOps Metrics and KPIs: A Multivocal Literature Review 231:37

[101] Jane P. Laudon & Kenneth C. Laudon. 2017. Management Information Systems: Managing the Digital Firm, Global
Edition. Pearson Education, USA.

[102] Cate Lawrence. 2020. The Four Key Metrics of DevOps. Retrieved from https://humanitec.com/blog/devops-key-
metrics. Accessed on 2022-01-22.

[103] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, and Paulo Meirelles. 2019. A survey of DevOps concepts
and challenges. Comput. Surveys 52, 6 (Nov. 2019), 35. https://doi.org/10.1145/3359981

[104] L.-N. Lévy, J. Bosom, G. Guerard, S. B. Amor, M. Bui, and H. Tran. 2022. DevOps model appproach for monitoring
smart energy systems. Energies 15, 15 (2022), 27. https://doi.org/10.3390/en15155516

[105] Alex Lichtenberger and Impactmatters. 2019. Blog: Agile: Dead End? Taking the next Step by Applying DevOps Prac-
tices Effectively—Impact Matters Blog. Retrieved from https://www.impactmatters.ch/blog/agiledevops-deadend/.
Accessed on 2022-01-22.

[106] Elysia Lock. 2020. Measure DevOps Metrics That Matter. Retrieved from https://www.devopsdigest.com/measure-
devops-metrics-that-matter. Accessed on 2022-01-22.

[107] Gorilla Logic. 2020. DevOps Success: What to Measure and Why—Gorilla Logic. Retrieved from https://gorillalogic.
com/blog/devops-success-what-to-measure-and-why/. Accessed on 2022-01-22.

[108] JAX London. 2017. Measuring DevOps: The Key Metrics That Matter—JAX London. Retrieved from https://jaxlondon.
com/blog/devops-continuous-delivery/measuring-devops-key-metrics-matter/. Accessed on 2022-01-22.

[109] Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifácio. 2019. Adopting DevOps in the real world: A theory, a
model, and a case study. J. Syst. Softw. 157, July (Nov. 2019), 110384. https://doi.org/10.1016/j.jss.2019.07.083

[110] Lucy Ellen Lwakatare, Terhi Kilamo, Teemu Karvonen, Tanja Sauvola, Ville Heikkilä, Juha Itkonen, Pasi Kuvaja,
Tommi Mikkonen, Markku Oivo, and Casper Lassenius. 2019. DevOps in practice: A multiple case study of five
companies. Info. Softw. Technol. 114 (2019), 217–230. https://doi.org/10.1016/j.infsof.2019.06.010

[111] Lucy Ellen Lwakatare, Pasi Kuvaja, Markku Oivo, C. Lassenius, T. Dingsoyr, and M. Paasivaara. 2015. Dimensions
of DevOps. In Agile Processes in Software Engineering and Extreme Programming, Vol. 212. Springer International
Publishing, Cham, 212–217. https://doi.org/10.1007/978-3-319-18612-2_19

[112] Lucy Ellen Lwakature. 2017. Devops Adoption and Implementation in Software Development Practice: Concept, Practices,
Benefits and Challenges. University of Oulu, Finland.

[113] Gilad David Maayan. 2021. 6 Great DevOps Metrics—And How to Choose the Right Metrics. Retrieved from https:
//www.codemotion.com/magazine/dev-hub/devops-engineer/best-devops-metrics/. Accessed on 2022-01-22.

[114] C. Marnewick and J. Langerman. 2020. DevOps and Organizational Performance: The Fallacy of Chasing Maturity.
IEEE Softw. 38, 5 (2020), 48–55. https://doi.org/10.1109/MS.2020.3023298

[115] Krikor Maroukian and Stephen R. Gulliver. 2021. Synthesis of a leadership model for DevOps adoption. In Proceedings
of the 2nd European Symposium on Software Engineering (ESSE’21). ACM, New York, NY, 58–66. https://doi.org/10.
1145/3501774.3501783

[116] Lilianny Marrero and Hernán Astudillo. 2021. DevOps-RAF: An assessment framework to measure DevOps readiness
in software organizations. In Proceedings of the 40th International Conference of the Chilean Computer Science Society
(SCCC’21). IEEE, Chile, 8. https://doi.org/10.1109/SCCC54552.2021.9650363

[117] Mark Michaelis. 2015. DevOps Metrics—IntelliTect. Retrieved from https://intellitect.com/devops-metrics/. Accessed
on 2022-01-22.

[118] Alok Mishra and Ziadoon Otaiwi. 2020. Devops and software quality: A systematic mapping. Comput. Sci. Rev. 38,
1 (Nov. 2020), 14. https://doi.org/10.1016/j.cosrev.2020.100308

[119] Sara Miteva. 2020. 13 DevOps Metrics for Increased Productivity. Retrieved from https://dev.to/microtica/13-devops-
metrics-for-increased-productivity-5084. Accessed on 2022-01-22.

[120] Johann Mitlohner, Sebastian Neumaier, Jurgen Umbrich, and Axel Polleres. 2016. Characteristics of open data CSV
files. In Proceedings of the 2nd International Conference on Open and Big Data (OBD’16). IEEE, 72–79. https://doi.org/
10.1109/OBD.2016.18

[121] Samer I. Mohamed. 2016. DevOps maturity calculator DOMC -Value Oriented Approach. Int. J. Eng. Res. Sci. 2,
2 (2016), 2395–6992.

[122] Luciano de Aguiar Monteiro. 2021. A proposal to systematize introducing devops into the software development
process. In Proceedings of the International Conference on Software Engineering. IEEE, 269–271. https://doi.org/10.
1109/ICSE-Companion52605.2021.00124

[123] Fabio Jose Moraes. 2018. DevOps KPI in Practice — Chapter 1 — Deployment Speed, Frequency and Failure.
Retrieved from https://medium.com/@fabiojose/devops-kpi-in-practice-chapter-1-deployment-speed-frequency-
and-failure-2fd0a9303249. Accessed on 2022-01-22.

[124] Gabriela Motroc. 2018. Key DevOps Metrics That Matter: How Well Does Your Team Sleep? Retrieved fromhttps://
web.archive.org/web/20220119200950/https://jaxenter.com/devops-influencers-interview-series-4-142312.html. Ac-
cessed on 2022-01-22.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

82

231:38 R. Amaro et al.

[125] Mirna Muñoz and Mario Negrete Rodríguez. 2021. A guidance to implement or reinforce a DevOps approach in
organizations: A case study. J. Softw.: Evol. Process 1 (2021), 21. https://doi.org/10.1002/smr.2342

[126] Håvard Myrbakken and Ricardo Colomo-Palacios. 2017. DevSecOps: A multivocal literature review. Commun. Com-
put. Info. Sci. 770, 1 (2017), 17–29. https://doi.org/10.1007/978-3-319-67383-7_2

[127] Omar Nasser. 2020. What Metrics Should DevOps Teams Be Tracking? Retrieved from https://cto.ai/blog/what-
metrics-should-devops-teams-be-tracking/. Accessed on 2022-01-22.

[128] Terence Nero. 2021. DevOps Metrics : 15 KPIs That Boost Results and RoI—Cuelogic Technologies Pvt. Ltd. Retrieved
from https://www.cuelogic.com/blog/devops-metrics. Accessed on 2022-01-22.

[129] Rodney T. Ogawa and Betty Malen. 1991. Towards rigor in reviews of multivocal literatures: Applying the exploratory
case study method. Rev. Edu. Res. 61, 3 (Sept. 1991), 265–286. https://doi.org/10.3102/00346543061003265

[130] Opsgenie. 2021. DevOps Metrics. Retrieved from https://docs.opsgenie.com/docs/devops-metrics-global. Accessed
on 2022-01-22.

[131] Roy Osherove. 2018. Ten Devops an Agility Metrics to Check at the Team Level—Pipeline Driven. Re-
trieved from https://pipelinedriven.org/article/ten-ideas-for-things-you-can-measure-as-a-team-on-your-devops-
journey. Accessed on 2022-01-22.

[132] Hewlett Packard. 2016. Measuring DevOps Success. Retrieved from http://www.baldrover.com/wp-content/uploads/
Measuring-DevOps-Success.pdf. Accessed on 2022-01-22.

[133] Pagerduty. 2015. The Best Metrics for Driving Cultural Change in DevOps Teams. Retrieved from https://www.
pagerduty.com/blog/best-metrics-devops-culture/. Accessed on 2022-01-22.

[134] Tim Palko. 2015. The Missing Metrics of DevOps. Retrieved from https://insights.sei.cmu.edu/devops/2015/05/the-
missing-metrics-of-devops.html. Accessed on 2022-01-22.

[135] Pulasthi Perera, Roshali Silva, and Indika Perera. 2017. Improve software quality through practicing DevOps. In
Proceedings of the 17th International Conference on Advances in ICT for Emerging Regions (ICTer’17). IEEE, 13–18.
https://doi.org/10.1109/ICTER.2017.8257807

[136] Kai Petersen and Claes Wohlin. 2009. Context in industrial software engineering research. In Proceedings of the 3rd
International Symposium on Empirical Software Engineering and Measurement. IEEE, 401–404. https://doi.org/10.1109/
ESEM.2009.5316010

[137] Plutora. 2020. DORA DevOps Metrics—Accelerate Your Value Stream—Plutora.Com. Retrieved from https://www.
plutora.com/resources/videos/devops-dora-metrics. Accessed on 2022-01-22.

[138] Plutora. 2021. The 10 Essential DevOps Metrics That Really Matter. Retrieved from https://www.plutora.com/blog/10-
essential-devops-metrics-that-really-matter. Accessed on 2022-01-22.

[139] Dina Graves Portman. 2020. Using the Four Keys to Measure Your DevOps Performance. Retrieved from https://
cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance. Accessed
on 2022-01-22.

[140] Ron Powell. 2020. How to Measure DevOps Success: 4 Key Metrics. Retrieved from https://circleci.com/blog/how-
to-measure-devops-success-4-key-metrics/. Accessed on 2022-01-22.

[141] Luís Prates, João Faustino, Miguel Silva, and Rúben Pereira. 2019. DevSecOps metrics. In Lecture Notes in Business In-
formation Processing, Maslankowski J. Wrycza S. (Ed.). Vol. 359. ISCTE-IUL, Instituto Universitário de Lisboa (ISCTE-
IUL), Lisbon, Portugal, 77–90. https://doi.org/10.1007/978-3-030-29608-7_7

[142] Alix Pressley. 2021. The Top 10 DevOps Metrics You Should Know About. Retrieved from https://www.intelligentcio.
com/eu/2021/04/16/the-top-10-devops-metrics-you-should-know-about/. Accessed on 2022-01-22.

[143] Rebecca Pruess. 2020. DevOps Best Practices: 5 Key Performance Indicators. Retrieved from https://flexagon.com/
devops-best-practices-5-key-performance-indicators/. Accessed on 2022-01-22.

[144] Puppet Labs. 2013. 2013 State of DevOps Report. Technical Report. Retrieved from http://puppetlabs.com/2013-devops-
report.

[145] Puppet Labs. 2014. 2014 State of DevOps Report. Technical Report. Retrieved from http://puppetlabs.com/2014-devops-
report.

[146] Puppet Labs. 2015. 2015 State of DevOps Report. Technical Report. Retrieved from http://puppetlabs.com/2015-devops-
report.

[147] Puppet Labs. 2016. 2016 State of DevOps Report. Technical Report. Retrieved from https://puppetlabs.com/solutions/
devops/.

[148] Puppet Labs. 2017. 2017 State of DevOps Report. Technical Report. Retrieved from https://puppetlabs.com/solutions/
devops/.

[149] Puppet Labs. 2018. 2018 State of DevOps Report. Technical Report. Retrieved from https://media.webteam.puppet.
com/uploads/2019/11/Puppet-State-of-DevOps-Report-2018_update.pdf.

[150] Puppet Labs. 2019. 2019 State of DevOps Report. Technical Report. Retrieved from https://puppet.com/resources/
report/2019-state-of-devops-report.

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

83

DevOps Metrics and KPIs: A Multivocal Literature Review 231:39

[151] Puppet Labs. 2020. 2020 State of DevOps Report. Technical Report. Retrieved from https://puppet.com/resources/
report/2020-state-of-devops-report/.

[152] Asif Qumer Gill, Abhishek Loumish, Isha Riyat, and Sungyoup Han. 2018. DevOps for information management
systems. VINE J. Info. Knowl. Manage. Syst. 48, 1 (Jan. 2018), 122–139. https://doi.org/10.1108/VJIKMS-02-2017-0007

[153] S. Rafi, W. Yu, M. A. Akbar, A. Alsanad, and A. Gumaei. 2020. Prioritization-based taxonomy of DevOps security
challenges using PROMETHEE. IEEE Access 8 (2020), 105426–105446. https://doi.org/10.1109/ACCESS.2020.2998819

[154] Anjana Ramesh. 2020. Ten Key DevOps Metrics to Accelerate Your Continuous Delivery Pipeline. Retrieved
from https://web.archive.org/web/20211205080155/https://www.go2group.com/resources/blog/devops-metrics-to-
accelerate-ci-cd/. Accessed on 2022-01-22.

[155] Aruna Ravichandran, Kieran Taylor, and Peter Waterhouse. 2016. DevOps for Digital Leaders: Reignite Business with
a Modern DevOps-Enabled Software Factory. Springer Nature. https://doi.org/10.1007/978-1-4842-1842-6

[156] ReleaseTEAM. 2021. DevOps Metrics Measure Your DevOps Results. Retrieved from https://www.releaseteam.com/
measure-your-devops-results/. Accessed on 2022-01-22.

[157] New Relic. 2018. Measuring DevOps. Retrieved from https://newrelic.com/devops/measuring-devops. Accessed on
2022-01-22.

[158] Jennifer Riggins. 2020. Google’s Formula for Elite DevOps Performance—The New Stack. Retrieved from https://
thenewstack.io/googles-formula-for-elite-devops-performance/. Accessed on 2022-01-22.

[159] Leah Riungu-Kalliosaari, Simo Mäkinen, Lucy Ellen Lwakatare, Juha Tiihonen, and Tomi Männistö. 2016. De-
vOps adoption benefits and challenges in practice: A case study. In Product-Focused Software Process Improvement,
Vol. 10027 LNCS. Springer International Publishing, Department of Computer Science, University of Helsinki, Fin-
land, 590–597. https://doi.org/10.1007/978-3-319-49094-6_44

[160] Stephen Roddewig. 2021. 8 DevOps Metrics to Measure Team Activity & Progress. Retrieved from https://blog.
hubspot.com/website/devops-metrics. Accessed on 2022-01-22.

[161] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Teppola, Tanja Suomalainen, Juho Eskeli,
Teemu Karvonen, Pasi Kuvaja, June M. Verner, and Markku Oivo. 2017. Continuous deployment of software intensive
products and services: A systematic mapping study. J. Syst. Softw. 123 (2017), 263–291. https://doi.org/10.1016/j.jss.
2015.12.015

[162] Pilar Rodríguez, Mika Mäntylä, Markku Oivo, Lucy Ellen Lwakatare, Pertti Seppänen, and Pasi Kuvaja. 2019. Ad-
vances in using agile and lean processes for software development. In Advances in Computers, Memon A. M. (Ed.).
Vol. 113. Academic Press Inc., Faculty of Information Technology and Electrical Engineering, University of Oulu,
Finland, 135–224. https://doi.org/10.1016/bs.adcom.2018.03.014

[163] Wiebe de Roos. 2021. Dealing with DevOps Metrics and KPIs. Retrieved from https://web.archive.org/web/
20210925173812/https://amazicworld.com/dealing-with-devops-metrics-and-kpis/. Accessed on 2022-01-22.

[164] Mike Rother. 2019. Toyota Kata: Managing People for Improvement, Adaptiveness and Superior Results. MGH, New
York.

[165] Martin Rütz. 2019. DEVOPS: A systematic literature review. Info. Softw. Technol. 86 (Aug. 2019), 87–100. https://www.
researchgate.net/publication/335243102

[166] Isaac Sacolick. 2018. 15 KPIs to Track Devops Transformation. Retrieved from https://www.infoworld.com/article/
3297041/15-kpis-to-track-devops-transformation.html. Accessed on 2022-01-22.

[167] Johnny Saldana. 2015. The Coding Manual for Qualitative Researchers Third Edition (3rd ed.). SAGE Publications Ltd,
Los Angeles, CA.

[168] Marc Sallin, Martin Kropp, Craig Anslow, James W. Quilty, and Andreas Meier. 2021. Measuring software deliv-
ery performance using the Four Key Metrics of DevOps. In Lecture Notes in Business Information Processing, Peggy
Gregory, Casper Lassenius, Xiaofeng Wang, and Philippe Kruchten (Eds.), Vol. 419 LNBIP. Springer International
Publishing, Cham, 103–119. https://doi.org/10.1007/978-3-030-78098-2_7

[169] Meshach Samuel. 2019. How to Successfully Scale Agile and DevOps – Part 3: Driving Success with Technology. Re-
trieved from https://web.archive.org/web/20211204052511/https://www.hcltech.com/blogs/how-successfully-scale-
agile-and-devops-part-3-driving-success-technology. Accessed on 2022-01-22.

[170] Mary Sánchez-Gordón, Ricardo Colomo-Palacios, Alex Sánchez, and Sandra Sanchez-Gordon. 2020. Integrating ap-
proaches in software development: A case analysis in a small software company. In Systems, Software and Services Pro-
cess Improvement (Communications in Computer and Information Science), Murat Yilmaz, Jörg Niemann, Paul Clarke,
and Richard Messnarz (Eds.). Springer International Publishing, Cham, 95–106. https://doi.org/10.1007/978-3-030-
56441-4_7

[171] Amy Schurr. 2019. Mobile App DevOps Metrics That Matter—NowSecure. Retrieved from https://www.nowsecure.
com/blog/2019/02/27/mobile-app-devops-metrics-that-matter/. Accessed on 2022-01-22.

[172] Mali Senapathi, Jim Buchan, and Hady Osman. 2018. DevOps capabilities, practices, and challenges: Insights from a
case study. In Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering
(EASE’18). ACM, New York, NY, 57–67. https://doi.org/10.1145/3210459.3210465

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

84

231:40 R. Amaro et al.

[173] Charlie Shabe. 2017. Understanding DevOps Metrics. Retrieved from https://betanews.com/2017/08/24/devops-
metrics/. Accessed on 2022-01-22.

[174] Sanjeev Sharma. 2017. The DevOps Adoption Playbook: A Guide to Adopting DevOps in a Multi-Speed IT Enterprise.
John Wiley & Sons, Inc., Indianapolis, Indiana. https://doi.org/10.1002/9781119310778

[175] Reshma Shinde. 2019. Is Your DevOps Successful? Retrieved from https://web.archive.org/web/20210729003128/
https://www.accenture.com/us-en/blogs/software-engineering-blog/reshma-shinde-devops-success-metrics.
Accessed on 2022-01-22.

[176] Gursimran Singh. 2019. Measuring DevOps Success with DevOps Metrics. Retrieved from https://www.xenonstack.
com/blog/devops-metrics/. Accessed on 2022-01-22.

[177] Jens Smeds, Kristian Nybom, and Ivan Porres. 2015. DevOps: A definition and perceived adoption impediments.
In Lecture Notes in Business Information Processing. Vol. 212. Springer, 166–177. https://doi.org/10.1007/978-3-319-
18612-2_14

[178] Sam Smith. 2020. High Performing DevOps Metrics. Retrieved from https://samlearnsazure.blog/2020/04/30/high-
performing-devops-metrics/. Accessed on 2022-01-22.

[179] Barry Snyder and Bill Curtis. 2017. Using analytics to guide improvement during an agile-DevOps transformation.
IEEE Softw. 35, 1 (Jan. 2017), 78–83. https://doi.org/10.1109/MS.2017.4541032

[180] Indium Software. 2017. 6 Metrics to Measure DevOps Test Automation. Retrieved from https://www.indiumsoftware.
com/blog/devops-test-automation-metrics/. Accessed on 2022-01-22.

[181] Damir Solajić and Anamarija Petrović. 2019. Devops and modern software delivery. In Proceedings of the International
Scientific Conference (Sinteza’19). Singidunum University, Novi Sad, Serbia, 360–368. https://doi.org/10.15308/Sinteza-
2019-360-368

[182] Leandro Sousa, António Trigo, and João Varajão. 2019. Devops—Foundations and perspectives. In Proceedings of
the 19th Portuguese Association of Information Systems Conference (CAPSI’19). Associacao Portuguesa de Sistemas de
Informacao, Instituto Politécnico de Coimbra, ISCAC, Quinta Agrícola, Bencanta, Coimbra, 3040-316, Portugal, 8.
Retrieved from https://aisel.aisnet.org/capsi2019/8/.

[183] Coveros Staff. 2016. Essential Quantitative DevOps Metrics—Coveros. Retrieved from https://www.coveros.com/
essential-quantitative-devops-metrics/. Accessed on 2022-01-22.

[184] Jonny Steiner. 2021. These Are the DevOps Metrics That Will Boost Your VSM. Retrieved from https://digital.ai/
catalyst-blog/these-are-the-devops-metrics-that-will-boost-your-vsm. Accessed on 2022-01-22.

[185] Sean Sullivan. 2021. Four Key DevOps Metrics for Success. Retrieved from https://www.dragonspears.com/blog/four-
key-devops-metrics-for-success. Accessed on 2022-01-22.

[186] Paul Swartout. 2014. Continuous Delivery and DevOps: A Quickstart Guide, 2nd ed. Packt Publishing Ltd, UK.
[187] Dave Swersky. 2017. What Key Performance Indicators (KPIs) Are Used to Measure DevOps? Retrieved from https:

//devops.stackexchange.com/questions/738/what-key-performance-indicators-kpis-are-used-to-measure-devops.
Accessed on 2022-01-22.

[188] Lalith Boovaragavan Marketing Manager at Aspire Systems. 2021. 7 Ways to Measure DevOps Success - Aspire
Systems. Retrieved from https://blog.aspiresys.com/infrastructure-managed-services/7-ways-to-measure-devops-
success/. Accessed on 2022-01-22.

[189] Information Technology and Intelligence Consulting. 2019. 2019 Global Server Hardware, Server OS Reliability Report.
Technical Report March. Information Technology Intelligence Consulting (ITIC) Corp.

[190] Riverbed Technology. 2017. Seven Metrics That Matter When Measuring DevOps Success. Retrieved from
https://web.archive.org/web/20210623152132/https://www.aternity.com/blogs/seven-metrics-matter-measuring-
devops-success/. Accessed on 2022-01-22.

[191] Daniel Teixeira, Rúben Pereira, Telmo Henriques, Miguel Mira Da Silva, and João Faustino. 2020. A maturity model
for DevOps. Int. J. Agile Syst. Manage. 13, 4 (2020), 464. https://doi.org/10.1504/IJASM.2020.112343

[192] Daniel Teixeira, Ruben Pereira, and Miguel Mira. 2019. A Maturity Model to Support DevOps Implementation A Ma-
turity Model to Support DevOps Implementation. Technical Report. Instituto Universitario de Lisboa (ISCTE-IUL).
Retrieved from http://hdl.handle.net/10071/20297.

[193] Bjørnar Tessem and Jon Iden. 2008. Cooperation between developers and operations in software engineering projects.
Proceedings of the International Conference on Software Engineering. 105–108. https://doi.org/10.1145/1370114.1370141

[194] TestEnvironmentManagement.com. 2019. Top 5 DevOps Metrics – Test Environment Management. Retrieved from
https://www.testenvironmentmanagement.com/top-5-devops-metrics/. Accessed on 2022-01-22.

[195] Nora Tomas, Jingyue Li, and Huang Huang. 2019. An empirical study on culture, automation, measurement, and
sharing of DevSecOps. In Proceedings of the 5th International Conference on Cyber Security and Protection of Digital
Services (Cyber Security’19). Institute of Electrical and Electronics Engineers Inc., Department of Computer Science,
Norwegian University of Science and Technology, Trondheim, Norway, 8. https://doi.org/10.1109/CyberSecPODS.
2019.8884935

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

85

DevOps Metrics and KPIs: A Multivocal Literature Review 231:41

[196] Ubiq. 2020. Top DevOps Metrics and KPIs To Monitor Regularly—Ubiq BI Blog. Retrieved from http://ubiq.co/
analytics-blog/top-devops-metrics-kpis-to-monitor-regularly/. Accessed on 2022-01-22.

[197] Sricharan Vadapalli. 2018. DevOps: Continuous Delivery, Integration, and Deployment with DevOps Dive into the Core
DevOps Strategies. Packt Publishing Ltd, UK.

[198] Alfonso Valdes. 2020. 5 DevOps Metrics and KPIs That CTOs Must Monitor. Retrieved from https://www.clickittech.
com/devops/devops-metrics-and-kpis/. Accessed on 2022-01-22.

[199] Valtech. 2015. 4 Metrics for Measuring DevOps Success. Retrieved from https://www.valtech.com/insights/4-metrics-
for-measuring-devops-success/. Accessed on 2022-01-22.

[200] Dmytro Vavilkin. 2021. DevOps Metrics and KPIs to Improve Your Team Efficiency. Retrieved from https://u-tor.
com/topic/devops-metrics-and-kpis. Accessed on 2022-01-22.

[201] Veritis. 2020. Measuring DevOps: Key ‘Metrics’ and ‘KPIs’ That Drive Success! Retrieved from https://www.veritis.
com/blog/measuring-devops-key-metrics-and-kpis-that-drive-success/. Accessed on 2022-01-22.

[202] Harshal Vora. 2018. Software Quality Metrics for Agile and DevOps Success—QMetry. Retrieved from https://www.
qmetry.com/blog/software-quality-metrics-for-agile-and-devops-success/. Accessed on 2022-01-22.

[203] Kentaro Wakayama. 2020. How to Ensure the Success of DevOps in Your Organization. Retrieved from https:
//codersociety.com/blog/articles/devops-success-in-organization. Accessed on 2022-01-22.

[204] Peter Waterhouse. 2015. DevOps Practitioner Series—Metrics That Matter. Retrieved from https://docs.broadcom.
com/doc/devops-practitioner-series-metrics-that-matter-developing-and-tracking-key-indicators. Accessed on
2022-01-22.

[205] Matt Watson. 2017. 15 Metrics for DevOps Success. Retrieved from https://stackify.com/15-metrics-for-devops-
success/. Accessed on 2022-01-22.

[206] Stephen Watts. 2017. DevOps: Metrics and Key Performance Indicators (KPIs). Retrieved from https://itchronicles.
com/devops/devops-metrics-kpis/. Accessed on 2022-01-22.

[207] Stephen Watts. 2019. DevOps Metrics and KPIs – BMC Blogs. Retrieved from https://www.bmc.com/blogs/devops-
kpi-metrics/. Accessed on 2022-01-22.

[208] Waydev. 2021. DORA Metrics: The 4 Key Metrics For Efficient DevOps Performance Tracking. Retrieved from https:
//waydev.co/dora-metrics/. Accessed on 2022-01-22.

[209] Jonathan Weinberg. 2021. Four Key DevOps Metrics and How To Measure Them. Retrieved from https://www.wwt.
com/article/four-key-devops-metrics-and-how-to-measure-them. Accessed on 2022-01-22.

[210] Anton Weiss. 2016. Measuring DevOps Flow by Otomato. Retrieved from https://devopsflowmetrics.org/. Accessed
on 2022-01-22.

[211] R. Westrum. 2004. A typology of organisational cultures. Qual. Safe. Health Care 13, 2 (2004), 22–27. https://doi.org/
10.1136/qshc.2003.009522

[212] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. 2014. DevOpSlang—Bridging the gap between devel-
opment and operations. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Vol. 8745 LNCS. IFIP, Stuttgart, 108–122. https://doi.org/10.1007/978-3-
662-44879-3_8

[213] Anna Wiedemann, Nicole Forsgren, Manuel Wiesche, Heiko Gewald, and Helmut Krcmar. 2019. Research for practice:
The devops phenomenon. Commun. ACM 62, 8 (2019), 44–49. https://doi.org/10.1145/3331138

[214] Anna Wiedemann, Manuel Wiesche, Heiko Gewald, and Helmut Krcmar. 2020. Understanding how DevOps aligns
development and operations: A tripartite model of intra-IT alignment. Eur. J. Info. Syst. 29, 5 (Oct. 2020), 458–473.
https://doi.org/10.1080/0960085X.2020.1782277

[215] John Willis and Itrevolution. 2012. DevOps Culture (Part 1) - IT Revolution. Retrieved from https://itrevolution.com/
devops-culture-part-1/. Accessed on 2022-01-22.

[216] Claes Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engi-
neering. In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering
(EASE’14). ACM, New York, NY, 10. https://doi.org/10.1145/2601248.2601268

[217] Liming Zhu, Len Bass, and George Champlin-Scharff. 2016. DevOps and its practices. IEEE Softw. 33, 3 (May 2016),
32–34. https://doi.org/10.1109/MS.2016.81

Received 11 April 2022; revised 31 January 2024; accepted 7 March 2024

ACM Comput. Surv., Vol. 56, No. 9, Article 231. Publication date: April 2024.

86

CHAPTER 4

Article #3

The article (A3) aims to promote DevOps adoption by identifying and validating 37 DevOps
capabilities and 24 metrics through Design Science Research (DSR), resulting in a Capability
Evaluation Matrix, presented in Table 4.17, with updated relations in blue [28]. As part of
the study objectives, it evaluates and tries to enhance organizational practices by creating an
improvement roadmap in the form of this artifact. This is done by finding relationships between
DevOps metrics and capabilities and identifying which DevOps capabilities have a positive
impact on which main metrics.

The primary contributions and findings comprise the validation of the 37 DevOps capabilities
and the inclusion of two additional primary metrics, derived from the interviews, to the 22 metrics
identified through previous literature reviews. The findings were validated using semi-structured
interviews with practitioners. This led to the development of a Capability Evaluation Matrix
artifact, which was proposed and validated by DevOps experts, confirming the usefulness to
promote DevOps implementation and adoption. It also discusses the significance of empowering
teams and establishing a robust organizational culture for the successful implementation of
DevOps.

Article details:

– Title: Capabilities and metrics in DevOps: A design science study

– Date: May 2023

– Journal: Information & Management

– Scimago Journal Rank: Q1

– Publisher: Elsevier B.V.

87

Information & Management 60 (2023) 103809

Available online 9 May 2023
0378-7206/© 2023 Elsevier B.V. All rights reserved.

Capabilities and metrics in DevOps: A design science study

Ricardo Amaro a,*, Rúben Pereira a,b, Miguel Mira da Silva c

a Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
b Instituto de Telecomunicações(IT), Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal
c Instituto Superior Técnico (IST), Lisbon, Portugal

A R T I C L E I N F O

Keywords:
DevOps
Capabilities
Practices
Metrics
Software delivery
IT operations

A B S T R A C T

Customer demands, competition, regulatory environments, and sophisticated external threats have all increased
the importance of DevOps in IT organizations. However, DevOps adoption is still uneven, emphasizing the need
to provide management with relevant IS data and insights. Regrettably, there is a measurement inefficiency
between these capabilities.

To sustain promoting DevOps adoption, Design Science Research (DSR) is done using two multivocal literature
reviews and semi-structured interviews to elicit key DevOps metrics and capabilities. Thirty-seven DevOps ca
pabilities and twenty-four metrics were defined, classified, and validated by conducting 31 interviews with
practitioners and experts leading to an outcome-based capability evaluation matrix, for promoting DevOps
implementation and adoption. Empowering teams and organizational culture have the greatest impact.

1. Introduction

In any Information Technology (IT) enabled organization [111]
where Software Engineering (SE) is part of the core business, having a
competitive advantage [58] by doing things better than competitors is a
requirement for success [25]. However, the need for frequent software
delivery, without sustained builds, proper testing and release automa
tion, generates burnout and pain in the engineers doing operations
[123], decaying software delivery performance and leading to poor
reliability [30].

In response to this faulty process, we see the emergence of Developer
(Dev) and Operations(Ops) (DevOps), an organizational approach that
emphasizes empathy and encourages greater collaboration between
engineering teams involved in software delivery [47], in order to reduce
development time, improve deployment rates, increase stability, opti
mize Mean Time to Recover, and lower deployment and implementation
costs [89].

Management needs to have a clear vision of the steps to take ahead
based on information and metrics in order to increase efficiency [58],
thus the success of applying DevOps capabilities should be measured
with existing DevOps metrics. But what are these metrics and capabil
ities? And what relation exists between them?

While DevOps adoption [102] success is irregular, as a few impedi
ments exist [27,105] and measuring its maturity can be hard, relating

different DevOps capabilities with existing DevOps metrics will support
the management decision process towards increasing performance in
the Software Development Life Cycle (SDLC) within the organization.
The main objective is to evaluate and improve the organization’s prac
tices by creating an improvement roadmap [79] and finding the relation
between DevOps metrics and DevOps capabilities or practices that will
facilitate adopting DevOps successfully.

However, since there exists a lack of systematization of the different
DevOps capabilities or practices and existing DevOps metrics, this
research intends to explore a relationship between the metrics and the
capabilities, in order to elicit the main DevOps metrics for each DevOps
capability, align the relations impacting positively each found metric
and create an evaluation matrix of the DevOps capabilities. Therefore,
the following research questions are proposed: RQ1. What are the main
DevOps capabilities or practices? RQ2. Where are capabilities or prac
tices mentioned? RQ3. How do authors distinguish capabilities from
practices? RQ4. What are the main DevOps metrics? RQ5. What is the
purpose of each metric? RQ6. Why is each metric important? RQ7. How
are DevOps capabilities categorized? RQ8. How are the main metrics
categorized? RQ9. What DevOps capabilities have a positive impact on
which main metrics?

The rationale for this research proposal is based on the lack of pre
vious work that has examined the relationship between capabilities and
metrics in DevOps in a single study. While there are studies that address

* Corresponding author.
E-mail addresses: ricardo_amaro@iscte-iul.pt (R. Amaro), ruben.filipe.pereira@iscte-iul.pt (R. Pereira), mms@tecnico.ulisboa.pt (M.M. da Silva).

Contents lists available at ScienceDirect

Information & Management

journal homepage: www.elsevier.com/locate/im

https://doi.org/10.1016/j.im.2023.103809
Received 17 February 2022; Received in revised form 15 April 2023; Accepted 25 April 2023

88

Information & Management 60 (2023) 103809

2

both topics separately, as evidenced in Section 2, our unique study takes
a more comprehensive approach by integrating insights from both
practitioners and academic sources into a single research framework,
utilizing the applied methodology of Design Science Research as dis
cussed in Section 3 in order to systematize the relationship between
DevOps metrics and DevOps capabilities.

2. Related work

This section offers a summary and critical analysis of previous
studies that are relevant to the current research, while establishing the
context for the study and highlighting the gaps or limitations in the
existing literature that the research aims to address.

The importance and uniqueness of the study are acknowledged
through a rigorous research-based approach using the Systematic
Literature Review (SLR) protocol. Systematic Literature Review (SLR) is
a commonly used method in Software Engineering and other scientific
areas for gathering evidence from relevant studies. The SLR process
typically consists of three phases: planning the review, conducting the
review, and documenting/reporting the review.

The original SLR process was proposed by Kitchenham et al. in their
seminal works [54,55] and has been widely adopted by the Software
Engineering community [77]. An SLR is designed to systematically
expose and analyze relevant literature to answer a set of research
questions, providing sustained evidence for the study at hand. In this
Systematic Literature Review (SLR) process, the planning phase is un
dertaken. This begins by providing the motivation for the study, fol
lowed by stating the objectives and research question that will guide the
research. Additionally, a review protocol is presented to guide the
literature review process.

The main motivation for the research is to improve DevOps adoption
by providing management, in software development organizations, with
relevant information and metrics to measure the success and efficiency
of implementing DevOps capabilities internally [58,105]. In order to
achieve this objective, the aim was to find a relationship between
DevOps metrics and capabilities and provide a systematization from
existing literature in this area. To accomplish the initial research pur
pose, a comprehensive investigation of scientific literature related to
DevOps metrics and capabilities was conducted. This led to the formu
lation of the following research question: Which studies relate DevOps
metrics to DevOps capabilities?.

To identify relevant studies related to the proposed research ques
tion, a comprehensive search was conducted in January 2021 using
carefully chosen keywords. These keywords were used to compose the
search string below, which enabled retrieving the maximum number of
studies from the selected scientific databases. The search string and
datasets are listed in this section for reference.

• Search String: (devops AND (metrics OR measures OR kpi OR
indicators) AND (practices OR capabilities)).

• Datasets: The search engines used were two brokers: Scopus1 and
Web of Science,2 in conjunction with IEEE,3 ACM.4 and EBSCO5

The complete review protocol is illustrated in Fig. 1. The first set of
papers was obtained. In a first phase, after the search was complete,
inclusion and exclusion criteria were applied for refining the search
results.

The inclusion criteria for the Systematic Literature Review (SLR) were
that the papers must be peer-reviewed and scientific, explicitly discuss
DevOps, and mention DevOps metrics and capabilities. The exclusion
criteria removed papers not written in English, non peer-reviewed or
inaccessible papers, vendor tool advertisements or duplicates, and pa
pers that do not mention DevOps metrics or capabilities. The abstracts
were carefully screened to assess their relevance to the research ques
tion. Subsequently, the relevant papers were thoroughly read to obtain
the final selection of studies that meet the full-text eligibility criteria for
the final document set, which will be used for the review.

The complete sequence of steps is summarized in Table 1, giving us a
summary of the articles found with the filters used. In step 1, the search
string was applied to all fields in all documents for each dataset,
resulting in 1167 documents. In step 2, the same search string was used
to filter in peer-reviewed publications with keywords either in titles or
abstracts, resulting in a total of 74 papers for screening. The discrepancy
from step 1 to step 2 is justified by the fact that initially the keywords
could be found anywhere within the returned item and some search
engines return more literature than just academic papers, like newspa
pers or reports.

After applying the inclusion and exclusion criteria in step 3, a total of
59 articles remained. This led to step 4, which involved removing du
plicates from the list of results to obtain a set of documents for abstract
screening. Following the screening, a full-text document assessment was
conducted, resulting in the identification of 17 eligible documents for
further analysis and extraction of relevant information for this research.
The distribution of the final document set by database reveals that the
majority, 29.4% of results originated from ACM. Scopus, Web of Science,
and IEEE each contributed with 23.5% relevant research documents.

To evaluate the suitability of the documents and ascertain their
relevance, four lists were created, as summarized in Fig. 2. However,
none of the publications found in the search systematically addressed
the relationship between DevOps metrics and DevOps capabilities to

Fig. 1. Review protocol planned and used for the literature review.

Table 1
Databases and steps used in the initial systematic literature review (SLR).

Database Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Scopus 443 31 31 25 14 4
Web Of Science 18 12 12 8 6 4
IEEE 11 7 7 7 7 4
ACM 667 7 7 7 7 5
EBSCO 28 17 2 2 2 0
Total 1167 74 59 49 36 17

Legend:Step 1 = Query All fields, All documents; Step 2 = Query Title and Ab
stract, Peer reviewed publications; Step 3 = Relevant (inclusion/exclusion
criteria); Step 4 = After Removing duplicates; Step 5 = After Abstracts Screened;
Step 6 = Full-text Document Assess.

1 https://www.scopus.com
2 https://apps.webofknowledge.com
3 https://ieeexplore.ieee.org
4 https://dl.acm.org
5 https://search.ebscohost.com

R. Amaro et al.

89

Information & Management 60 (2023) 103809

3

adequately answer the research question. Out of the 36 publications
initially screened in step 5, which mentioned DevOps metrics, only 22
mentioned capabilities or practices. However, only 17 publications
mentioned and enumerated both capabilities and metrics. Even though
the selection did not yield any conclusive results for the research ques
tion, it still highlights the significant interest in these topics within the
published literature. In summary, out of the 36 publications screened in
step 5, only 17 were considered the most relevant, as shown in Fig. 2.

The increase in selected papers over the years, as shown in Fig. 3, is
also noteworthy. This indicates a growing interest in the previous years
with an incrementing volume of research on DevOps metrics and ca
pabilities topic, affirming the relevance and potential impact of the
proposed research in the field. The first publication in this set [80] was a
conference paper, followed by a journal article and another paper in the
subsequent two years. However, the interest in this subject significantly
grew in 2018, including books, and in 2020 with 2 conference papers
and 3 journal articles, totaling 5 relevant publications in each of the last
2 years.

The given publications, were fully reviewed with a manual inspec
tion for similar research objectives in order to deeply understand if any
of the remaining articles were relating DevOps metrics with DevOps
capabilities.

Nagarajan et al. [73] focuses on creating artifacts to help financial
organizations implement DevOps, guided by a conceptual framework.
Forsegren et al. [33] aims to develop a taxonomy of Software Delivery
Performance Profiles for DevOps development settings, incorporating
attributes for throughput and stability. Abdelkebir et al. [1] presents a
holistic and practical strategic framework for improving ITSM service
management processes, incorporating Agility management based on
DevOps and an agility Process Maturity Framework. Bertolino et al. [7]
proposes DevOpRET, an approach for reliability testing as part of the
acceptance testing stage in DevOps, supporting continuous software
reliability testing. Mishra et al. [69] conducts a systematic mapping of
DevOps features and quality attributes, analyzing the implications of
DevOps features on software quality. Marijan et al. [63] presents an
approach for improving time-efficiency in DevOps, particularly in

continuous integration testing, using continuous test optimization.
Angara et al. [3] conducts a literature survey on various strategies
applied for continuous testing, proposes a continuous testing architec
ture, and presents the conceptual design of important testing metrics for
successful implementation of continuous testing in the context of
DevOps. Prates et al. [84] identifies and lists several monitoring metrics
for DevSecOps through a Multivocal Literature Review (MLR). Pour
majidi et al. [82] reports the experience of creating a prototype platform
for monitoring and analysis of logs emitted by components of IBM Cloud
services.

AhmadIbrahim et al. [49] reviews the challenges of quality assur
ance in DevOps and provides tentative recommendations to address
quality issues. Sun et al. [109] proposes an approach that uses log in
formation to select different classifiers trained with monitored metrics
data via public clouds during DevOps operations. Tamburri et al. [110]
elaborates a conjecture, illustrating a set of metrics to be used in the
DevOps scenario and overview challenges and future research di
rections. Diaz et al. [20] presents the formalization of the activity for
supporting feedback from Operations to Development of IoT systems.
Wang et al. [119] focuses on the improvement of the test automation
process, presenting an experience report on TAPI in a DevOps team at
F-Secure, a Finnish software company. Perez et al. [80] considers the
problem of designing a tool capable of providing feedback to the
developer on performance, reliability, and general quality characteris
tics of the application at runtime. Ding et al. [21] evaluates the per
formance of readily available tests in the release pipeline and examines
whether these tests can be used as performance tests to demonstrate
performance improvements from performance issue fixes, and Snyder
et al. [106] emphasizes the importance of using analytics during the
DevOps transformation improvement.

Notably, none of the publications share the same objective as this
study. Therefore, the research proposal addresses this existing gap in the
literature by aiming a study that takes a more comprehensive approach
to explore the relationship between capabilities and metrics in DevOps.
By integrating insights from both practitioners and academic sources
within a single research framework and applying Design Science
Research methodology, this study contributes to the advancement of
understanding and practice in the field of DevOps research and adop
tion. Through this approach, our study advances the understanding and
practice of capabilities and metrics in DevOps, and makes a significant
impact on the field.

3. Research methodology

In an initial report detailed in Section 2, a literature review was
conducted to identify the problem of this research. In this article, the
activities of Design Science Research (DSR) proposed by [45] in Infor
mation Systems (IS) research are used as the main investigation meth
odology. For the build phase [62], two Multivocal Literature Reviews
(MLRs) [38] are conducted as mentioned in Section 3.2 to help identify
the artifact. After having the initial artifact, it is conducted the evalua
tion phase [107] using semi-structured interviews mentioned in Section
3.3, in order to support the findings of the initial research and improve
the artifact.

3.1. Design science research

This Design Science Research (DSR) is divided into two processes
[44,45,62], build (the process of construction of an artifact) supported
by two MLR in Section 4, resulting in a proposal in Section 5 and eval
uation (to determine how well the artifact behaves) in Section 6.

Baskerville et al.[5] underline the dual mandate of the DSR, which is
to use acquired knowledge to solve problems, create changes, or
improve existing solutions; and at the same time to generate knowledge,
perceptions, and theoretical explanations. Hevner [44] calls attention to
the pragmatism of DSR in cycles of relevance and rigor, in the creation of

Fig. 2. Document relevance breakdown.

Fig. 3. Publication year of final documents per type.

R. Amaro et al.

90

Information & Management 60 (2023) 103809

4

artifacts. The DSR methodology process in the field of Information
Systems, as shown in Fig. 4, is based on Develop/build and justify/e
valuate [45].

1. Identification of the problem and motivation, defining the
research problem and justifying the value of a solution. The intro
duction identified the problem scope by being the lack of systema
tization of different DevOps metrics in existing DevOps capabilities,
and a purpose was defined.

2. Definition of objectives for a solution, inferring the objectives of a
solution from the problem definition and knowledge of the state of
the problem and possible solutions. The objectives can be quantita
tive or qualitative. For this purpose, an evaluation model for DevOps
capabilities work is proposed.

3. Design and development of the artifact’s desired functionality and
its architecture followed by its creation. Such artifacts can be, con
structs, models, methods, or instantiations [45]. This research targets
the development of an evaluation model of DevOps capabilities. For
this stage, two MLRs and semi-structured interviews are used, as
explained in Sections 3.2 and 3.3. The semi-structured interviews
done with experts, individually, to avoid bias, as given in Section

5.1.3, help refine the capabilities and metrics knowledge gathered
and are considered enough when data saturation in Section 5.1.4 is
reached and confirmed.

4. Evaluation of the solution, by comparing the objectives and results,
by doing iterative evaluations in Section 6.1.1 with another round of
experts, observing and measuring how well the artifact supports a
solution to the problem. The cases where a need was felt to consider
the interview feedback to improve the effectiveness of the artifact
went back to the design and development phase before continuing to
communication [78].

5. Communication of the problem, the artifact, its utility, novelty, and
effectiveness, as well as the rigor of its design to researchers and
other relevant audiences. In this case, communicating in papers and
a dissertation was done.

3.2. Multivocal literature review

An MLR is a type of Systematic Literature Review (SLR), which aims
to incorporate gray literature like blogs, videos, web pages, and white
papers, which are constantly produced by Software Engineering prac
titioners outside academic forums, notwithstanding the published (peer-

Fig. 4. Adapted phases of the DSR process model [45].

Fig. 5. DevOps capabilities Multivocal Literature Review (MLR) Steps [38].

R. Amaro et al.

91

Information & Management 60 (2023) 103809

5

reviewed) writing like journal articles and conference papers. There
fore, MLR is important for the expansion of the research by including
literature that normally wouldn’t be taken due to its “gray” nature [37,
38]. Some examples of successful DevOps research, in the same area,
using MLR already exist [34,84,98], thus corroborating the practical

usefulness of this method for the proposed research, expanding the di
versity of sources that are available in a variety of forms, reflecting
different purposes and perspectives [76].

Fig. 6. DevOps capabilities multivocal literature review process (adapted) [38].

Fig. 7. DevOps metrics multivocal literature review process (adapted) [38].

R. Amaro et al.

92

Information & Management 60 (2023) 103809

6

3.3. Semi-structured interviews

During these semi-structured interviews, an interview protocol is
used and participants are informed about the research goals while
asking for their consent to be interviewed. Interviews with a semi-
structured format are a common approach in development research. It
is common for people to give vital information that researcher had not
before [92]. These kinds of interviews are a common method for qual
itative research [2]. The researchers and participants engage in a formal
interview, using a developed “interview guide” with a list of questions
and topics. However, the interviewer can also follow other topics in the
conversation that can guide when he or she feels this is appropriate [12,
13]. The DevOps capabilities confirmed in the literature, together with
the related metrics to be found, are used to form an interview protocol in
which the targeted evaluation model acts as a guide to elicit metrics
from capabilities.

4. Capabilities and metrics multivocal literature reviews

This research was conducted in April 2021 using various keywords.
The search strings used to perform the search to retrieve the maximum
number of studies were: (devops AND (practices OR capabilities)) and
(devops AND (metrics OR measures OR KPI OR indicator)). Applied to the
datasets of Google search, Scopus, Web of Science, ACM, and EBSCO.
The full process shown in Fig. 5 exposes the planning, conducting, and
reporting as proposed by Garousi et al. [38].

In order to facilitate searching and collecting high volumes of gray
literature, code was developed as seen in Appendix B, Listing 1 (Python
code for consistent fetching of a large number of Google search results)
to parse the data into two CSV files [70]. This way, we can ensure
obtaining repeatable and clean results that are not specific to the
researcher. As part of the review protocol, after the search is completed
the first set of papers is obtained, and snowballing is done, while in
clusion and exclusion criteria are applied for refining the search results.
The accepted criteria were that the publication had to be written in
English, published in and after 2013 and 2010 respectively, with
full-text accessibility and discussion on the mentioned topics. Videos
with fully available spoken content were also taken into account [22,36,
81]. However, publications where the author is not identified; do not
have a publication date; or are an advertisement or a job post are
excluded. After that step, the abstracts are screened in order to evaluate
the relevance they have to the research. Finally, the relevant papers are
to obtain the final selection of studies to perform the review.

4.1. Conducting the MLRs

For reference, the complete summary of the review process is shown
in the diagram in Figs. 6 and 7 with a visual representation of the
applied MLR selection process. This reflects all the selection work done
through the methodical process of MLR.

In the initial search step filter 1 (All fields; All documents) was used
together with the search string, as part of the MLR protocol to find the

Table 2
Filters used in the capabilities MLR protocol.

Database Filter 1 Filter 2 Snowballing Filter 3 Filter 4 Filter 5 Filter 6

Google 243 243 +14 89 89 77 75
Scopus 1855 342 157 42 40 2
Web Of Science 224 174 91 29 24 1
IEEE 178 146 67 67 14 8
ACM 878 92 22 22 6 4
EBSCO 560 475 38 38 6 3
Total 3929 1463 1477 464 287 167 93

Legend:Filter 1 = Query All fields, All documents; Filter 2 = Query Abstracts, All documents; Snowballing = Applied over starting literature search [38] Filter 3 =
Relevant (inclusion/exclusion criteria); Filter 4 = Remove duplicates; Filter 5 = After Abstracts Screened; Filter 6 = Full-text Document Assess.

Fig. 8. Capabilities – distribution of publications per type over the years.

R. Amaro et al.

93

Information & Management 60 (2023) 103809

7

final set of articles, which gives us a relation of the articles found with
the filters used. In the MLR for DevOps capabilities or practices, the
search string was (devops AND (practices OR capabilities)) as
shown in Fig. 6 where the initial dataset was composed of 3929 publi
cations and by the end of this process, we remain with 93 publications
for full-text assessment. In the MLR for DevOps metrics, the search string
(devops AND (metrics OR measures OR kpi OR indicator)) is
shown in Fig. 7 where the initial dataset was composed of 1969 publi
cations and after all processes, we remain with 114 publications for full-
text assessment.

The initial screening of blogs and videos in particular, which do not
have abstracts, was done over the full content, since these tend to be
small when compared to academic literature, with a second, more in-
depth pass on the last full-text assessment.

The relation of Gray and white literature documents set per database
is reflected in Table 2 showing that 75 results came from Google search
gray literature. For the cases of Scopus, Web Of Science, IEEE, ACM, and
EBSCO they all contributed a total sum of 18 relevant research docu
ments for capabilities.

Relevant to note is the distribution and growth of the selected papers
shown over the years in relation to the publication shown in Fig. 8. This
shows a growing interest in the last three years with an increase in the
volume of research work related to researching capabilities, confirming
the potential interest and usefulness of this research might have in the
area.

First appearing the 2013 State of DevOps Report [87], the 2014 State
of DevOps Report [88], and a webpage on “Six Core Capabilities of a
DevOps Practice” [75]. In 2015, 2016, and 2017, the number of web

pages and conference papers increased. The huge increase in web pages
in 2018 indicates that practitioner publications have progressed sub
stantially faster than scientific research. Despite a little decline in 2019,
practitioners’ publications continued to expand in 2020, as shown in
Fig. 8. Because both searches generated from the databases occurred in
March 2021, the values for 2021 are lower.

The filtering protocol in the MLR and the relationship of the docu
ments per database, as represented in Table 3 show that the vast ma
jority of 109 results originated from Google search gray literature.

Only two publications are contributed by Web Of Science (1.75%).
ACM, EBSCO, and Scopus each provided one item, leading to a total of
three publications (2.63%) of relevant research articles.

This confirms the anticipation that practitioner findings will be more
diverse than scientific findings. Despite the modest amount of research
done on metrics, there has been an increase in interest in the area in
recent years shown in Fig. 9, suggesting the potential attractiveness and
utility of this research on the subject. Publications have evolved, with
the majority of generated literature appearing on websites by 2020.

The Techreports from 2013 and 2014 had special importance in
ramping up the interest in DevOps metrics topic and raising awareness
of the fact that measurements are visible and actionable [87,88]. Finally,
the number of gray literature articles increased considerably in 2020, as
demonstrated by the massive increase in web pages related content in
that year, showing that practitioner writings grew far faster than sci
entific research. In this study, 22 key metrics are found out of 58 DevOps
metrics discovered. These metrics are reduced to 22 because the MLR
found 10 years with relevant publications out of the 12 years, it was
accordingly chosen to use the metrics that are cited 10 or more times as

Table 3
Filters used in the metrics MLR protocol.

Database Filter 1 Filter 2 Snowballing Filter 3 Filter 4 Filter 5 Filter 6

Google 206 206 +20 170 165 132 127
Scopus 764 140 87 69 11 2
Web of science 67 61 46 38 9 2
IEEE 49 38 35 25 8 3
ACM 782 28 19 17 7 3
EBSCO 101 66 21 19 8 2
Total 1969 539 558 377 333 175 139

Legend:Filter 1 = Query All fields, All documents; Filter 2 = Query Abstracts, All documents; Snowballing = Applied over starting literature search [38] Filter 3 =
Relevant (inclusion/exclusion criteria); Filter 4 = Remove duplicates; Filter 5 = After Abstracts Screened; Filter 6 = Full-text Document Assess.

Fig. 9. Metrics - distribution of publications per type over the years.

R. Amaro et al.

94

Information & Management 60 (2023) 103809

8

the key DevOps measure for this research.
Finally, in our review of the literature, we have identified that no

previous studies have examined the relationship between capabilities
and metrics in DevOps within a single research endeavor. This highlights
a clear opportunity for our research to contribute to the field by
addressing this important gap and providing valuable insights into the
relationship between capabilities and metrics in the context of DevOps.

4.2. RQ1—What are the main DevOps capabilities or practices?

The MLR provides an answer to the first research question, by
revealing a list of 37 capabilities. This list is based on the literature re
view of the 93 publications, also considering the fact that some practi
tioners mention them as practices and others as capabilities, as shown in
Fig. 10. The capabilities and the relation of own, many publications
make a reference to each one are as follows: C01-Cross-team collabo
ration and communication, mentioned 81 times; C02-Continuous inte
gration, mentioned 80 times; C03-Continuous delivery and deployment
automation, mentioned 78 times; C04-Proactive monitoring, observ
ability, and autoscaling, mentioned 75 times; C05-Test automation and
environments, mentioned 62 times; C06-Continuous improvement of
processes and workflows, mentioned 46 times; C07-Version control
system, mentioned 45 times; C08-Support learning culture and experi
mentation, mentioned 44 times; C09-Trust/empower teams to make
decisions and changes, mentioned 42 times; C10-Focus on people, pro
cess, and technology, mentioned 32 times; C11-Configuration manage
ment, mentioned 30 times; C12-Cloud infrastructure and cloud-native,
mentioned 30 times; C13-Artifacts versioning and registry, mentioned
28 times; C14-Loosely coupled architecture/ microservices, mentioned
27 times; C15-Database change management/ release alignment,
mentioned 25 times; C16-Infrastructure as code, mentioned 25 times;
C17-Emergency response/ proactive failure notification, mentioned 24
times; C18-Containerization, mentioned 24 times; C19-Open source
software adoption, mentioned 22 times; C20-Shift left on security,
mentioned 20 times; C21-Transformational leadership, mentioned 20

times; C22-Trunk-based development, mentioned 19 times; C23-
Monitor systems to inform business decisions, mentioned 19 times;
C24-Performance/Westrum organizational culture, mentioned 19 times;
C25-Working in small batches, mentioned 16 times; C26-Centralized log
management, mentioned 15 times; C27-Lightweight/streamlining
change approval, mentioned 15 times; C28-Visibility of work in the
value stream, mentioned 14 times; C29-Work in progress limits,
mentioned 14 times; C30-Customer/user feedback, mentioned 13 times;
C31-Blameless postmortems/reduced fear of failure, mentioned 12
times; C32-Data-driven approach for improvements, mentioned 12
times; C33-Job satisfaction, mentioned 11 times; C34-Test data

Fig. 10. Number of publications mentioning capabilities or practices
among sources.

Table 4
Six publication properties identified from the MLR.

Property Total publications

Interchangeably mentions capabilities or practices 66
Mentions capabilities directly 19
Presents different or reorganized capabilities compared to

[101]
14

Distinguishes practices from capabilities 8
Indicates a definition for capability 6
Indicates a definition for practice 1

Table 5
Number of publications mentioning capabilities or practices.

ID Capability Mentioned as
practice

Mentioned as
capability

Total

C01 Cross-team collaboration and
communication

66 15 81

C02 Continuous integration 63 17 80
C03 Continuous delivery and

deployment automation
60 18 78

C04 Proactive monitoring,
observability and autoscaling

57 17 74

C05 Test automation and
environments

49 13 62

C06 Continuous improvement of
processes and workflows

35 11 46

C07 Version control system 33 12 45
C08 Support learning culture and

experimentation
32 12 44

C09 Trust/empower teams to
make decisions and changes

31 11 42

C10 Focus on people, process and
technology

25 7 32

C11 Configuration management 26 4 30
C12 Cloud infrastructure and

cloud-native
21 9 30

C13 Artifacts versioning and
registry

24 4 28

C14 Loosely coupled
architecture/ microservices

18 9 27

C15 Database change
management/ release
alignment

15 10 25

C16 Infrastructure as code 20 5 25
C17 Emergency response/

proactive failure notification
13 11 24

C18 Containerization 17 7 24
C19 Open source software

adoption
21 1 22

C20 Shift left on security 10 10 20
C21 Transformational leadership 10 10 20
C22 Trunk-based development 9 10 19
C23 Monitor systems to inform

business decisions
14 5 19

C24 Performance/Westrum
organizational culture

11 8 19

C25 Working in small batches 8 8 16
C26 Centralized log management 12 3 15
C27 Lightweight/streamlining

change approval
7 8 15

C28 Visibility of work in the value
stream

7 7 14

C29 Work in progress limits 6 8 14
C30 Customer/user feedback 5 8 13
C31 Blameless postmortems/

reduced fear of failure
8 4 12

C32 Data-driven approach for
improvements

11 1 12

C33 Job satisfaction 5 6 11
C34 Test data management 2 8 10
C35 Chaos engineering 8 1 9
C36 Code maintainability 5 4 9
C37 Visual management

capabilities
2 7 9

R. Amaro et al.

95

Information & Management 60 (2023) 103809

9

management, mentioned 10 times; C35-Chaos engineering, mentioned 9
times; C36-Code maintainability, mentioned 9 times; C37-Visual man
agement capabilities, mentioned 9 times.

4.3. RQ2—Where are capabilities or practices mentioned?

Based on the extended research enabled by this MLR, it is observed
that capabilities have been mentioned interchangeably as practices in 66
publications in Table 4 and eight publications even distinguish practices
from capabilities [4,61,68,101,112]. The two terms are described across
several types of white and gray literature, as seen in Fig. 10.

It can be observed in the figure, that the webpages, overwhelmingly
created by practitioners, have the most mentions as practices, but also
include a substantial number of mentions as capabilities. The same
happens in Techreport, Conference and Book, which are closer to the
gray literature. Table 4 shows that one publication indicates a DevOps
practice definition [112] to be a subset implementation of a capability.

On the other hand, the scientific articles make more mention of ca
pabilities, which becomes a very interesting finding of this research, as it
reveals that practitioners are focused more on DevOps practices, while
the scientific community tries to organize capabilities in a way that
abstracts more generic concepts applicable to building skills and en
ablers. Nevertheless, the concepts are the same, only at different stages
of the process. A different example of this same interchangeability can
be observed in a seminal book, “Continuous Delivery” [47] from 2010,
which starts by mentioning the term capabilities. Despite not explicitly
mentioning the word “DevOps” it describes, however, in detail the
deployment pipeline pattern, which is usually central to DevOps capa
bilities. On page 109 of the book, the capability of deployment and
production release is described in detail, explaining how the process is
automated, with speed, repeatability, and reliability in mind. The same
author mentions that when the “capability” of automating the process as
normal events are available, releases become practically without risk.

4.4. RQ3—How do authors distinguish capabilities from practices?

It is largely observed that the word “capability” is used when the
observation is external or at a high-level overview. It is then a matter of
perspective. When talking about a capability, we see a third-party
assessment of something that is being looked at from the outside,
while observing a group to see what they are capable of doing. Whereas,
a practice is seen from the standpoint of the internal team or group,
realizing “I am doing these things”. That ability converted to action is
then mentioned with the term “practice”. Therefore, the authors will
speak about capabilities from an evaluation standpoint, and practices
from a hands-on approach perspective. The number of publications
mentioning capabilities or practices is organized in Table 5.

The capability definition points to an organization’s “ability” to
perform or achieve a certain process, whereas practice is referred to
more at the level of DevOps practitioners and thus more observed in the
gray literature publications. Clear examples of this more formal research
concept were presented earlier by [101,105] and more recently in the
book Accelerate [31], in DORA (DevOps Research and Assessment) [19,
24,40] and in several journal articles or conferences [4,61,68,69,96,
112,113].

A capability is also mentioned as a “construct” [31,32] and there are
“capabilities we are building” [53] in order to enable the organization
for a certain practice. Organizations should target developing capabil
ities and habits in their people [97] as an enabler for continuous
improvement and functional skills. It is now clear that, despite some
confusion still existing while interchanging these two words, as seen in
Fig. 10 and Table 5, we are, in reality, talking about the same funda
mental concepts. The usage of capabilities or practices is not consensual,
and because this study is not about achieving that consensus, it is chosen
to use the term capabilities; nevertheless, others might also use prac
tices. A consensus between the two should be achieved, therefore a
definition of DevOps capabilities is purposed in Table 6 and DevOps
practices in Table 7.

The uses of DevOps practice or capability as labels are contextual,
and differ depending on the perspective, as can be seen from the defi
nition of capability defined in Table 7.

As a result, the authors will discuss capabilities from the perspective
of evaluation but refer to practices from the perspective of a hands-on
approach. Therefore, this research will use the term “capability” now,
since that is applicable to a more scientific evaluation of DevOps
adoption. Moreover, it is seen that the capabilities are, in fact, dynamic
and have been changing over the years. The list of the most studied and
approached capabilities was collected as it was proposed. Of which, it is
highlighted cross-team collaboration and communication. In this collabo
ration, developers have access to a self-service platform that provides a
foundation for automation, standardization, and team autonomy to
enable the other three most mentioned capabilities: continuous integra
tion; continuous delivery and deployment automation; proactive monitoring,
observability, and autoscaling.

These capabilities bring several types of advantages which can be
grouped into technical, cultural, and business benefits, Kim et al. [53].
The technical outcomes are mostly in the practices of Continuous Inte
gration, Delivery, and Reliability [9].

4.5. RQ4—What are the main DevOps metrics?

There are 22 main DevOps metrics found in the MLR, gathered from
all the publications, selected for review. The metrics are the following:
M01 - Mean Time To Recover/Restore (MTTR), with 96 mentions; M02 -
Mean Lead-time for Changes (MLT), with 91 mentions; M03 - Deploy
ment Frequency (DF), with 88 mentions; M04 - Change Failure Rate
(CFR), with 72 mentions; M05 - Service Availability and Uptime, with 31
mentions; M06 - Deployment duration time, with 30 mentions; M07 -
Mean Time To Detection (MTTD), with 26 mentions; M08 - Application
response time, with 23 mentions; M09 - Defect escape rate, with 21
mentions; M10 - Cycle Time Value (CTV), with 21 mentions; M11 -
Service Level Agreements (SLAs) and Service Level Objectives (SLOs),
with 21 mentions; M12 - Deployment size, with 20 mentions; M13 -
Production Error and Incident rate, with 19 mentions; M14 - Customer
tickets Volume and Feedback, with 19 mentions; M15 - Mean time to
failure (MTTF), with 17 mentions; M16 - Customer Usage and traffic,
with 16 mentions; M17 - Pipeline automated tests success/fail rate, with
14 men - ons; M18 - Westrum organizational culture measures, with 14
men - ons; M19 - Automated Test Code Coverage, with 13 mentions;
M20 - Work in Progress (WIP) /Load, with 12 mentions; M21 - Un
planned Work Rate (UWR), with 11 mentions; M22 - Wait Time, with 10
mentions;

Table 6
Definition of DevOps capability.

A DevOps capability, is here defined as the ability to do something [10] in DevOps or
by the quality, or state of being capable [66]. It consists of the combined skills [96]
accumulated and developed by its members over time. As an example, DevOps
technological capabilities are the information and skills - technical, managerial, and
institutional - that enable productive enterprises [48,97] to utilize equipment and
technology efficiently.

Table 7
Definition of DevOps practice.

A DevOps practice, is here defined as the action taken rather than thought or ideas
[11] or by the act of carrying out [67] a DevOps activity. It can also be seen as an
enabler [69,101,105] of a mentioned capability by an individual or a group such as
the engineering team. As a result, authors will discuss capabilities from the
perspective of evaluation, like an assessment, but refer to practices from the
perspective of a hands-on approach.

R. Amaro et al.

96

Information & Management 60 (2023) 103809

10

4.6. RQ5—What is the purpose of each metric?

From the investigation done in this MLR, Table 8 shows the list of the
main DevOps metrics including their ID, metric name, purpose
description, the references that mention each specific metric, and the
total of references discovered. The ID is used across the paper as a
reference.

The 22 key metrics presented here are among the initial 58 identified
in the MLR. They were referenced ten times or more and are relevant to
organizational and mission goals like operational efficiency, customer
happiness, profitability, productivity, and product or service quality
[95].

4.7. RQ6—Why is each metric important?

We now know what each metric is, but do not know why is it
necessary to measure each one? What is the significance or importance
of each metric? Here, the MLR goes over why these DevOps metrics are
important.

M01. Mean Time To Recover/Restore (MTTR) handling unexpected
outages should be as quick as possible and a focus for DevOps KPI
monitoring, as it contributes to greater customer satisfaction, faster
application delivery, and better cost control [17,29,33,69].

M02. Mean Lead-time for Changes (MLT) is the hardest to measure of
the top four key DevOps metrics. It is important to know how long it
takes to deploy a change, and understand delaying problems like tech
nical debt [43,87,91,95].

M03. Deployment Frequency (DF) happens many times per day for
elite industry performers [19,59], where there is continuous develop
ment, testing, and integration of small changes and continuously
improving applications. Important to respond quickly to business re
quests for new features and to critical issues [108,120].

M04. Change Failure Rate (CFR) should be as low as possible in
DevOps. It is a critical metric that businesses must monitor since un
successful deployments result in revenue losses and dissatisfied con
sumers [15,23].

M05. Service Availability and Uptime should be more than 99.999% of
the time for users of the system, with a ratio based on availability,
reliability, and uptime. Achieving 100% availability is unrealistic, once
planned downtime for maintenance is accounted for. Therefore, it is
important to track and distinguish from unplanned downtime [17,74].

M06. Deployment duration time allows tracking the progress of the
deployment. It can help identify potential problems and allow a dra
matic increase in revenue by using that extra time to develop more
value-added services [72,120,121].

M07. Mean Time To Detection (MTTD) demonstrates the effectiveness
of monitoring technologies and intelligent alerting techniques, assessing
whether current response efforts are appropriate. High detection times
may result in bottlenecks [23,28].

M08. Application response time that is long may indicate bottlenecks
that require attention, since it degrades user experience and satisfaction.
The cause might be code, data access, protocol problems, or a variety of
other factors [17,115].

M09. Defect escape rate is an important DevOps metric to track how
often defects make it to production. Abnormally high defect rates could
be the first sign of problems in testing, qualification, or in team per
formance [17,93,104].

M10. Cycle Time Value (CTV) is the time it takes to go from idea to
production, spanning all the steps of build, test, stage, and push to
production. Slowing down the cycle with manual testing or assessments
creates friction for developers and the business [23,100].

M11. Service Level Agreements (SLAs) and Objectives (SLOs) serve to
define external and internal availability goals as commitments between
providers, clients, and internal teams, defining how fast releasing is
possible while measuring that performance with Service Level Indicators
(SLIs) [8,9,19,23,71,118].

Table 8
Purpose and total references for each main DevOps metric.

ID Metric Purpose Total
References

M01 Mean Time To Recover/
Restore (MTTR)

Measures the mean of the time
required to recover or restore
service from a failure in
production.

96

M02 Mean Lead-time for
Changes (MLT)

Indicates how long it takes for a
change to go from code
committed to code successfully
running in production.

91

M03 Deployment Frequency
(DF)

Checks how often changes are
deployed to production.

88

M04 Change Failure Rate
(CFR)

Informs how often a change in
production fails and must be
immediately remedied.

72

M05 Service Availability and
Uptime

Shows the percentage of service
available during a period of
time.

31

M06 Deployment duration
time

Informs on how long it takes to
deploy a set of changes.

30

M07 Mean Time To Detection
(MTTD)

Measures the mean of the time
required to detect a failure in
production.

26

M08 Application response
time

How an application responds to
increases or decreases in user
traffic and activity.

23

M09 Defect escape rate Indicates the number of defects
discovered in production versus
the number of defects found
during development.

21

M10 Cycle Time Value (CTV) Provides information on the full
Cycle Time Value, beginning
with the idea and finishing with
user feedback..

21

M11 Service Level
Agreements (SLAs) and
Objectives (SLOs)

Sets customer expectations for
service availability with SLA
and internal teams with SLO.

21

M12 Deployment size Shows the number of changes
incorporated in each
production release.

20

M13 Production Error and
Incident rate

Measures the frequency of
faults and incidents in
production following a
deployment.

19

M14 Customer tickets Volume
and Feedback

Indicates the level of
satisfaction of customers using
their feedback.

19

M15 Mean time to failure
(MTTF)

Exposes the average time a
flawed deployment into a
system will manage to run until
it fails.

17

M16 Customer Usage and
traffic

Measures usage and traffic of
customer-facing applications
when there are defined business
goals to increase.

16

M17 Pipeline automated tests
success/fail rate

Shows the rate of success/
failure of Pipeline automated
test jobs.

14

M18 Westrum organizational
culture measures

Results of the Westrum cultural
assessment [122]

14

M19 Automated Test Code
Coverage

Measures how many lines,
statements, or blocks of code
are tested using the suite of
automated tests.

13

M20 Work in Progress (WIP)
/Load

Presents the number of open
issues of each type (story,
defect, task).

12

M21 Unplanned Work Rate
(UWR)

Indicates the amount of time
spent on tasks that weren’t in
the initial plan. Shouldn’t be
over 25%.

11

M22 Wait Time Measures the amount of time
spent waiting for the next step
to add value.

10

R. Amaro et al.

97

Information & Management 60 (2023) 103809

11

M12. Deployment size is important to keep an eye on the deployment
artifacts that are shipped to production with each release and track the
number of bug fixes and feature requests delivered [23,28,104].

M13. Production Error and Incident rate tells the DevOps team how
often new bugs appear in running applications. It is important to capture
spikes in the error rate because these can indicate that something is not
right. Not all errors are equally impactful on customers’ trust [17,52,
114].

M14. Customer tickets Volume and Feedback is a good assessment of a
successful DevOps adoption. Reduce customer tickets by preventing
bugs from reaching production, and repairing them as fast as possible if
they do, improving quality. Customer satisfaction leads to a competitive

advantage [17,28,46,101].
M15. Mean time to failure (MTTF) is an indication of how long on

average the system or a component can run before failing after
deployment. It can indicate problems with the deployment or quality of
the software. For example, there may not be enough tests covering
different scenarios that might contain bugs [18,50,52].

M16. Customer Usage and traffic metrics allow tracking user
engagement with application features. Increased engagement after an
update may indicate users are pleased with the updates. If traffic reports
indicate too much or no activity, there might be an issue, suggesting a
malfunctioning component is generating the anomaly [28,104,120].

M17. Pipeline automated tests success/fail rate is another contributor to

Table 9
First batch of interviews with practitioners’ details.

ID Interview date Current position Company Years of DevOps practice Age (years) Country

I01 2021-05-07 Principal Architect Google More than 3 years 45–54 United States
I02 2021-05-14 Indvidual contributor Noesis Between 1 year and 3 years 25–34 Portugal
I03 2021-05-14 Team Lead Freelance Between 1 year and 3 years 35–44 Portugal
I04 2021-05-17 Indvidual contributor Newdecision More than 3 years 45–54 Portugal
I05 2021-05-18 Team Lead Siemens Between 1 year and 3 years 25–34 Portugal
I06 2021-05-18 Indvidual contributor Azores Government Between 1 year and 3 years 45–54 Portugal
I07 2021-05-19 Principal Inuits.eu More than 3 years 45–54 Belgium
I08 2021-05-19 Team Lead IBM More than 3 years 45–54 United States
I09 2021-05-21 Team Lead amazee.io Between 1 year and 3 years 25–34 Switzerland
I10 2021-05-22 Indvidual contributor Acquia Less than 1 year 45–54 UK
I11 2021-05-24 Software Infrastructure Engineer Freelance Between 1 year and 3 years 45–54 Spain
I12 2021-05-26 Team Lead Siemens More than 3 years 35–44 Portugal
I13 2021-05-27 Indvidual contributor Drupal Association More than 3 years 35–44 United States
I14 2021-05-27 Manager Manifold More than 3 years 25–34 United States
I15 2021-05-31 Director Bloomidea More than 3 years 35–44 Portugal
I16 2021-06-01 Director Deeper Insights More than 3 years 35–44 Portugal
I17 2021-06-07 Team Lead Facebook More than 3 years 35–44 United States
I18 2021-06-09 VP Acquia More than 3 years > 55 United States
I19 2021-06-10 Senior Security Engineer Acquia Between 1 year and 3 years 25–34 India
I20 2021-06-15 Director Dropsolid More than 3 years 35–44 Belgium
I21 2021-06-18 Indvidual contributor Acquia Between 1 year and 3 years 25–34 India

Table 10
Total contributions from participants during the build phase.

R. Amaro et al.

98

Information & Management 60 (2023) 103809

12

the speed of the DevOps process. Automated tests are faster than
humans, but they should deliver the right results. To increase velocity,
the team needs to make extensive usage of unit and functional testing. It
is important to know how often changes are causing tests to break [17,
104,120].

M18. Westrum organizational culture measures results are key to
fostering a performance-oriented organizational environment, stating
[122]. DevOps teams must be supported by transformational leadership
[16,57] to enable this culture, thus empowering strategic alignment and
reducing conflict [32,51,90,121].

M19. Automated Test Code Coverage is a DevOps best practice for
measuring the percentage of the unit or integrity test coverage [28,103].

M20. Work in Progress (WIP) /Load is a lean manufacturing principle
shown in the Toyota Production System [97] that enhances teams
overall throughput by limiting work in progress (partially completed
work). This increases the total velocity [14,35,39].

M21. Unplanned Work Rate (UWR) tracks the amount of time spent
on unplanned work. A high Unplanned Work Rate (UWR) indicates that
efforts are wasted on unexpected errors that were not identified early in
the workflow. The difference between acting on warning signs or having
an unexpected outage [6] is defined as unplanned work [23,89].

M22. Wait Time (queuing or waste) is an estimate of the time that the
work item spends idle in a non-productive state during its processing by
the value stream. Wait time is in opposition to touch time when value is
created [39,53,72].

5. Research proposal

In research development, semi-structured interviews are a popular
method. Unlike formal interviews, which follow a strict set of predefined
questions, they are more conversational and focused on specific themes
[92].

5.1. Interviews with practitioners

For the construction of the proposed artifact, this research used the
results from the two MLR done in Section 4 and the first set of 21 semi-
structured interviews out of the total of 31 Interviews done to DevOps
practitioners seen in Tables 9 and 15. Semi-structured interviews were
held online using Zoom (https://zoom.us) or Jitsi videoconferences
(https://jitsi.org) to broaden the possibility of reaching out to more
practitioners worldwide. Invites were sent to major private and public
companies in the IT sector, specialized conference attendees, and Link
edIn professionals. But we only agreed to interview people with a
minimum experience in the sector of at least one year.

Slots of 45 min were made available via a webpage created for
practitioners to signup for interviews at their preferred time and date,
between May and July 2021. The page informed participants of the
research interview confidentiality and aimed to increase our under
standing of how DevOps Capabilities can be further measured with their
valuable opinion. The page also mentioned the research questions
involved. A link to a spreadsheet was shared with participants before the
interview showing the resulting lists of DevOps capabilities in Section
4.2 and metrics in Section 4.5 from the MLR. In this process, a form was
used to collect the characterization presented in Table 9. The first set
with 21 interviews aimed to respond to the research questions present in
this section, leading to a proposed artifact seen in Section 5.2. The
second set aimed to evaluate the artifact in Section 6 by using 10 iter
ations of interviews.

5.1.1. Preparation
Preparation was done considering each practitioner’s specific session

to expedite and facilitate the interview process. After the participants
gave their consent to start the interview, a spreadsheet with capabilities
and metrics resulting from the MLR, which was empty at first, was
screen-shared, and subsequently got populated and refined with

answers, and the interviews followed a semi-structured framework
(shown in Appendix A, Table A.19), aimed to focus on the research
problem present in Section 1. Before conducting each following semi-
structured interview, close observation was done of the previous inter
view results to have a thorough grasp of the issue and to reformulate
appropriate semi-structured questions if needed [12]. As a result, better
open-ended questions relating to the problem were included, to give the
possibility for discovering new approaches to challenge and compre
hend the artifact’s evolution.

5.1.2. Practitioners characterization
A total of 21 interviews were conducted in this section to build the

research proposal. The practitioners interviewed and shown in Table 9
are: three individual contributors, six team leads and two principal en
gineers. The companies they work for are very diversified: Google,
Noesis, Newdecision, Siemens, Azores Government, Inuits.eu, IBM,
amazee.io, Acquia, Drupal Association, Manifold, Bloomidea, Deeper
Insights, Facebook, Dropsolid and some freelancers. Twelve practi
tioners have more than 3 years of experience in DevOps, while eight
practitioners have between 1 year and 3 years of experience and only
one has less than 1-year of experience. Of all the 21 practitioners, eight
are individual contributors with diverse roles, six are Team Leads, two
are Principals and the other five are at the management level or above.

The majority of the seven practitionersares between 35and 44 years
of age, six are between 25 and 34 years of age, seven are between 45 and
54 years and one has more than 55 years of age. Their locations are
Belgium, India, Portugal, Spain, Switzerland, the USA, and the United
Kingdom.

5.1.3. Conducting
The same research questions, including “What are the main DevOps

Capabilities or practices?” from Section 4.2 and “What are the main
DevOps Metrics?” from Section 4.5, were asked to practitioners during
the semi-structured interviews to confirm the findings in the two MLRs,
with the addition of Section 5.1.5 “What are the main metrics for each
DevOps capability?”, present in this section. Interviewees validated the
suggested set of capabilities and metrics, with one deeper validation
occurring through a follow-up interview from I12. For each participant,
a digestible classification of capabilities and measurements emerged, as
well as the basic relationships of the capabilities that have an influence
on which metrics. In other cases, validation resulted in the capabilities
and metrics being adjusted or increased to align with the interviewee’s
ideas.

The first interviewed practitioner (I01) accorded substantial impor
tance to the cultural aspects, starting with team collaboration capability
(C01) first and then other capabilities, always focusing more on the
culture measures, which are reflected in Table 13 and also reinforcing
that it was his personal opinion that organizations need to come up with
a process that makes sure that people are being included despite their
diversity, culture, religion, or the fact of being remote. All that can be
reflected in two new added cultural KPIs, suggested being team
happiness and talent retention, which are part of the Westrum orga
nizational culture (C24). Therefore, with the evolution of the research
with other interviews, the previously defined metric team happiness
(M42) was pulled in from the MLR and a new outcome, talent retention
(M59) was added as a valuable metric. When talent is leaving the or
ganization in large numbers, it should raise a flag to management to
review the related capabilities’ status. This was also confirmed by all the
practitioners in this first phase of interviews when asked. Talent retention
should be measured monthly and can be simply expressed as seen in Eq.
(1).

Talent retention =
Employees number − Employees departed

Employees number
(1)

The goal must be to decrease manual work and the delivery time as

R. Amaro et al.

99

Information & Management 60 (2023) 103809

13

much as possible, while still explaining why we do what we do. Another
important point brought up is that automation is not only in the code
pipeline, it is end-to-end; automation will be part of almost everything in
DevOps.

The second interview (I02) brought new knowledge about the

definitions and categories of capabilities, giving a good basis for the
result worked on throughout all the interviews, as seen in Table 11. In
this interview, there was more focus on the top four metrics, giving
examples that suggest high relevance of these outcomes for
organizations.

In interview three (I03) practitioners emphasized the importance of
team style and the various approaches used in each organization, as well
as a considerable number of metrics, reflected in Table 12. Good auto
mated security systems are rare, expensive, and complex, with security
ending up being handled to the left of the process but usually in a
manual form. It should also be common for the security team to examine
a release as an all rather than a single code review. There Shift left on
security (C20), which could positively interfere with (C23) monitor
systems to inform the business decision, when fully automated. In turn,
job satisfaction (C33) is essential for a well-functioning company to run
a business. Finally, organizations, where the measures to be reviewed
are well-defined, perform best since there are fewer inconsistencies
between data providers and data consumers.

The fourth interview (I04) focused on reconciling the relationships
between the capabilities that influence each metric and cementing the
categorization of each one. It was mentioned that by experience, the
transformation driven by DevOps capabilities does have an impact on
several of the metrics leading to a better work-life balance and positive
business outcomes, like in the case of Mean Lead-time for Changes
(MLT) (M01), Mean Time To Recover/Restore (MTTR) (M02), Change
Failure Rate (CFR) (M04) and several others with a special focus on the
Emergency response (C17) in order automate response to failures. Cross-
team collaboration (C01), Continuous Integration (CI) (C02) and Contin
uous Delivery or Deployment (CD) (C03) were again mentioned to have
sustained relevance in the practitioner’s company, giving several ex
amples where the metrics impact was witnessed internally.

The concept of DevOps capability defined in Section 4 was also
confirmed in the fifth interview (I05) practitioner. There’s also value in
pushing the capability Shift left on security (C20) earlier in the process
to automate and optimize delivery while reducing the number of major
security issues in production. Due to their engagement in operational
operations, the Work in Progress (WIP)/Load (M20) metric was high
lighted as having a much higher weight.

In the sixth interview (I06), the practitioner expressed an interest in
implementing the study’s findings in the current role, even though many
of the capabilities had yet to be implemented in the organization. Many
questions were placed relative to the connection of the version control
system (C07) to continuous integration (C02), the centralization of logs
(C26), Trunk-based development (C22), and user feedback (C30)
because it passes through a formal internal hierarchical structure. Other
valuable experiences were given, focusing on the visibility of the work in
the value stream (C28), Code maintainability (C36) and the importance
of feedback in determining whether the implementation is effective in
production.

For interview seven (I07), the practitioner showed a high level of
experience in giving refreshed directions to the capabilities relating to
metrics. Capabilities needed to be grown from the team level up and
supported by Transformational leadership (C21). Team happiness (M42)
and talent retention (M59) were pointed out as critical, but it is really
hard to measure the path to get there. Most failures in DevOps adoption
reside in the team happiness factor. Capability (C10) stated that new
tooling impacts the process and ultimately the people’s culture. But
changing individuals will only work for some, while others will remain
apathetic. Many businesses can improve their configuration manage
ment (C11) and don’t need all the cloud or cloud-native benefits (C12)
because their demands are minimal, and their load is predictable. Arti
facts (C13) are a must, and (C18) Containerization is great when done
well. Early DevOps conferences advocated for an open-source attitude
(C19), claiming ownership in-house, and avoiding vendor lock-in. More
recently, in March 2021, when a large data center (OVH) burned down
[56], his customers were able to withstand the outage due to the

Table 11
Categorization of DevOps capabilities.

Category ID DevOps capability

Cultural C01 Cross-team collaboration and communication
Technical C02 Continuous Integration
Technical C03 Continuous Delivery and Deployment automation
Measurement C04 Proactive Monitoring, Observability and autoscaling
Technical C05 Test Automation and environments (Continuous testing)
Process C06 Continuous Improvement of processes and workflows
Technical C07 Version Control System
Cultural C08 Support learning culture and experimentation
Technical C09 Trust/empower teams to make decisions and changes
Process C10 Focus on people, process and technology
Technical C11 Configuration Management
Technical C12 Cloud infrastructure and cloud-native
Technical C13 Artifacts versioning and registry
Technical C14 Loosely coupled architecture/ microservices
Technical C15 Database change management/ release alignment
Technical C16 Infrastructure as Code
Measurement C17 Emergency response/ proactive failure notification
Technical C18 Containerization
Cultural C19 Open source software adoption
Technical C20 Shift left on security
Cultural C21 Transformational leadership
Technical C22 Trunk-based development
Measurement C23 Monitor systems to inform business decisions
Cultural C24 Performance/Westrum organizational culture
Process C25 Working in small batches
Technical C26 Centralized log management
Process C27 Lightweight/streamlining change approval
Process C28 Visibility of work in the value stream
Measurement C29 Working in progress limits
Process C30 Customer/user feedback
Cultural C31 Blameless Postmortems/reduced fear of failure
Process C32 Data-driven approach for improvements
Cultural C33 Job satisfaction
Technical C34 Test data management
Technical C35 Chaos Engineering
Technical C36 Code maintainability
Measurement C37 Visual management capabilities

Table 12
Categorization of main DevOps metrics.

Proposed category ID Main metric

Operating KPI M01 Mean Time To Recover/Restore (MTTR)
Change KPI M02 Mean Lead-time for Changes (MLT)
Change KPI M03 Deployment Frequency (DF)
Change KPI M04 Change Failure Rate (CFR)
Operating KPI M05 Service Availability and Uptime
Change KPI M06 Deployment duration time
Operating KPI M07 Mean Time To Detection (MTTD)
Operating KPI M08 Application response time
Change KPI M09 Defect escape rate
Change KPI M10 Cycle Time Value (CTV)
Operating KPI M11 SLAs and SLOs
Change KPI M12 Deployment size
Operating KPI M13 Production Error and Incident rate
Business KPI M14 Customer tickets Volume and Feedback
Change KPI M15 Mean time to failure (MTTF)
Business KPI M16 Customer Usage and traffic
Change KPI M17 Pipeline automated tests success/fail rate
Cultural KPI M18 Westrum organizational culture measures
Change KPI M19 Automated Test Code Coverage
Operating KPI M20 Work in Progress (WIP) /Load
Operating KPI M21 Unplanned Work Rate (UWR)
Operating KPI M22 Wait Time
Cultural KPI M42 Team Happiness
Cultural KPI M59 Talent retention

R. Amaro et al.

100

Information&
Management60(2023)103809

14

Table 13
DevOps capabilities influencing main metrics.

ID M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M42 M59

C01 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C02 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C03 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C04 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C05 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C06 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C07 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C08 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C09 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C10 ✓ ✓ ✓ ✓ ✓ ✓
C11 ✓ ✓ ✓ ✓ ✓
C12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C13 ✓ ✓ ✓ ✓ ✓ ✓
C14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C19 ✓ ✓ ✓ ✓ ✓ ✓ ✓
C20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C23 ✓ ✓ ✓ ✓ ✓ ✓
C24 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C26 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C27 ✓ ✓ ✓ ✓ ✓ ✓
C28 ✓ ✓ ✓ ✓ ✓ ✓ ✓
C29 ✓ ✓ ✓ ✓ ✓ ✓ ✓
C30 ✓ ✓ ✓ ✓ ✓ ✓
C31 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C32 ✓ ✓ ✓ ✓ ✓ ✓
C33 ✓ ✓ ✓ ✓ ✓ ✓
C34 ✓ ✓ ✓ ✓
C35 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C36 ✓ ✓ ✓ ✓
C37 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Legend:M01 - Mean Time To Recover; M02 - Mean Lead-time for Changes; M03 - Deployment Frequency; M04 - Change Failure Rate; M05 - Service Availability and Uptime; M06 - Deployment duration time; M07 - Mean
Time To Detection; M08 - Application response time; M09 - Defect escape rate; M10 - Cycle Time Value; M11 - SLAs and SLOs; M12 - Deployment size; M13 - Production Error and Incident rate; M14 - Customer tickets
Volume and Feedback; M15 - Mean time to failure; M16 - Customer Usage and traffic; M17 - Pipeline automated tests success/fail rate; M18 - Westrum organizational culture measures; M19 - Automated Test Code
Coverage; M20 - Work in Progress/Load; M21 - Unplanned Work Rate; M22 - Wait Time; M42 - Team Happiness; M59 - Talent retention. C01 - Cross-team collaboration and communication; C02 - Continuous Integration;
C03 - Continuous Delivery and Deployment automation; C04 - Proactive Monitoring; Observability and autoscaling; C05 - Test Automation and environments; C06 - Continuous Improvement of processes and workflows;
C07 - Version Control System; C08 - Support learning culture and experimentation; C09 - Empower teams to make decisions and changes; C10 - Focus on people; process and technology; C11 - Configuration Management;
C12 - Cloud infrastructure and cloud-native; C13 - Artifacts versioning and registry; C14 - Loosely coupled architecture; C15 - Database change management; C16 - Infrastructure as Code; C17 - Emergency response; C18 -
Containerization; C19 - Open source software adoption; C20 - Shift left on security; C21 - Transformational leadership; C22 - Trunk-based development; C23 - Monitor systems to inform business decisions; C24 - Westrum
organizational culture; C25 - Working in small batches; C26 - Centralized log management; C27 - Lightweight change approval; C28 - Visibility of work in the value stream; C29 - Working in progress limits; C30 - Customer
feedback; C31 - Blameless Postmortems; C32 - Data-driven approach for improvements; C33 - Job satisfaction; C34 - Test data management; C35 - Chaos Engineering; C36 - Code maintainability; C37 - Visual management
capabilities.

R. A
m

aro et al.

101

Information&
Management60(2023)103809

15

Table 14
Proposed artifact showing categorized DevOps capabilities influencing main metrics.

Change KPI Operating KPI Cultural KPI Business KPI

M02 M03 M04 M06 M09 M10 M12 M15 M17 M19 M01 M05 M07 M08 M11 M13 M20 M21 M22 M18 M42 M59 M14 M16

Cultural C01 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C08 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C19 ✓ ✓ ✓ ✓ ✓ ✓ ✓
C21 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C24 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C31 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C33 ✓ ✓ ✓ ✓ ✓ ✓

Technical C02 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C03 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C05 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C07 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C09 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C11 ✓ ✓ ✓ ✓ ✓
C12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C13 ✓ ✓ ✓ ✓ ✓ ✓
C14 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C15 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C16 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C18 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C20 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C22 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C26 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C34 ✓ ✓ ✓ ✓
C35 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C36 ✓ ✓ ✓ ✓

Measurement C04 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C17 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C23 ✓ ✓ ✓ ✓ ✓ ✓
C29 ✓ ✓ ✓ ✓ ✓ ✓ ✓
C37 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Process C06 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C10 ✓ ✓ ✓ ✓ ✓ ✓
C25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
C27 ✓ ✓ ✓ ✓ ✓ ✓
C28 ✓ ✓ ✓ ✓ ✓ ✓ ✓
C30 ✓ ✓ ✓ ✓ ✓ ✓
C32 ✓ ✓ ✓ ✓ ✓ ✓

Legend:M01-M59, C01-C37: Same Capabilities and Metrics already listed in Table 13.

R. A
m

aro et al.

102

Information & Management 60 (2023) 103809

16

resilience gained from DevOps culture, open-source tooling, and
automation.

In interview eight (I08), the practitioner stated that if a team col
laborates well (C01), it indicates that they are providing high-quality
service, and a team that knows their flow is probably highly perform
ant. In production, this would imply that it would have extremely low
numbers for the time it takes to recover (M01) and very low numbers for
lead time (M02) or wait time (M22). The interviewee mentioned that his
favorite capability was (C31) Blameless Postmortems, a learning capa
bility that should affect positively several metrics that were taken note
of. It raised a concern that Mean time to failure (MTTF) (M15) is a metric
that is hard to track and should be more related to how long is the build
broken for in the cases of deployment. Of the other capabilities that were
discussed in this interview, the one that also had more relevancy was
(C09) Trust/empower teams to make decisions and changes, which
correlated to having a lightweight/streamlining change approval (C27).

It was noted in the ninth Interview (I09) that some organizations are
presently focusing on embracing all the new technology, and that seems
like a knowledge reset. Cross-team collaboration (C01) and encouraging
a learning culture while experimenting (C08) are essential parts of
DevOps adoption. Continuous improvement processes and workflows
(C06) were also mentioned as essential to answer the need of looking at
the work that interrupts from the outside, unplanned work rate (M21)
also called toil. Lastly, the open-source mindset (C19) was also
mentioned to be vitally connected to important metrics like team
happiness and talent retention and that it is vital to communicate
changes properly and that is where lightweight change approval (C31)
should fit most.

Practician in the tenth videoconference (I10) is a seasoned Ops
person who tends to give importance to learning more by experimenting
(C08), knowing that experimenting is learning, so when someone else
wants to learn something, a server is set up to do this. Other Operational
people will also know how to install this and that is a kind of training,
which is also experimenting. It is good if the organization can say -
“Okay, here is some time for learning, and part of the learning is you’re
going to exercise and do something.” - for instance, improving Proactive
Monitoring, Observability, and autoscaling (C04). Today, cultural atti
tude is crucial for team cooperation and communication (C01), and the
interviewee mentions achieving exception results in OPS, but that would
be something to consider.

In interview eleven (I11) is a Drupal (https://drupal.org) developer
that started by mentioning that he had looked at the shared spreadsheet
and that he found this to be interesting research since in his experience
there are organizations that still struggle with version control systems
(C07) and that should evolve. Trusting the team to make decisions and
adjustments (C09) is essential. There is a significant difference between
trying to avoid performing tasks like Database change management
(C15) or recognizing the hazard and attempting to perform them
themselves. Continuous process and workflow improvement (C06) have
led to, properly planned things, and we are now aiming for a release
every three to four weeks. However, we used to have no schedule and
would just keep adding items until we thought they were ready, like a
security update on Thursday. This impacted Mean Lead-time for
Changes (MLT).

The twelfth practitioner started by mentioning that regarding team
happiness (M42) and talent retention (M59), his organization gives
importance to the level of inclusion and diversity, so much so that the
current job offers all mention this fact. On the operational side, the team
must focus on production issues as well as upstream issues, as technical
debt can dramatically increase the team’s unplanned work (M21). In
centives are given to contributors to improve the process to reduce
production errors rate and incidents (M13). On the other hand, having
visual management capabilities (C37) helps to reduce Work in Progress
(WIP)/Load. Finally, the practitioner also mentioned that the team
performance is measured through a survey every 6 months, in which all
team members and leadership are invited to participate. This leads to the

fact that transformational leadership (C21) has a great impact on the
outcome of the Westrum model assessment (M18).

Practitioner (I13) mentioned that in the current organization, there
was a focus on key performance indicators (KPIs) and on measuring
many things that were brainstormed during meetings, where the team
came up with ways to measure it, but having the research artifact in
Table 14 would make things easier. It was noted that open-source (C19)
is sometimes used for things that are not just software adoption, such as
open-source data could be used in Test data management (C34), and so
we are looking at how this open-source adoption may be evaluated by
these KPIs, as well as how and which ones it influences. Consider
working in small batches (C25) so that engineers are in a position where
there is time to contribute back to an open-source project. Centralized
Log Management (C26) was done on their systems recently, which had a
very visible and positive impact.

Interviewee (I14) focused for the most part on Containerization
(C18), stating that it helps the testing cycle to go faster and also impacts
positively release deployment frequency. In his last organization, when
they switched to containers, the deployment went about five times more
frequently. This was not only related to switching to containers, but also
because of switching to a continuous deployment strategy. It is unknown
what capability had more influence there, but the failure rate, i.e. the
difficulty or possibility of a deployment succeeding.

The following participant (I15) made an important contribution to
this research by focusing on capabilities such as Test Automation and
environments (Continuous testing) (C05), Version Control System
(C07), Customer/User Feedback (C30), and Data-driven Approach for
Improvements (C32), highlighting their relationships to specific metrics
and solidly improving the artifact. Manual testing wastes time, slows
release frequency and decreases team happiness. So, a practitioner’s
company’s challenge is to fully automate those tests and make them part
of releasing.

The sixteenth practitioner (I16) has shown a lot of interest in this
research, diving first into the Focus on people, processes, and technol
ogies (C10) capability, mentioning evaluation in their company is based
on the number of changes proposed by individuals and determining
which ones were implemented. In this well-known business strategy
(C10), people employ processes and technology to perform tasks for the
companies they work for, but organizations might become immersed in
new technology at times. Finally, lightweight/streamlining change
approval (C27) was mentioned to be associated with the peer review
approval process to optimize and expedite the time for commits and
releases to be accepted.

The practitioner in interview seventeen (I17) was very proactive in
going through the capabilities and metrics. It was mentioned that there
is a perspective shift when it comes to practices versus capabilities. In
talking about a capability, it is a third-party assessment of something
you are looking at from the outside. Where a practice is more internal,
we say about doing practice of these things. It was approached in detail
that the Artifacts versioning and registry (C13) mentioned having a high
impact on several of the metrics pointed out in Table 13. On the other
hand, for transformational leadership (C21) to happen there needs to be
a coalition of leaders, and they are deliberately cross-functional (C01),
to bridge the gap so that actions are aligned with the central goal or
premise. Identifying your challenge, creating a strategy around that
challenge, communicating that to people, and supporting that culture
(C08).

Cross-team collaboration and communication (C01) is a historical
challenge in the engineering of many organizations. It is siloed from the
rest of the organization and even within the engineering organization.
When you have multiple teams working on the same software, some
times things don’t line up. This is because one team is reliant on another
team, and the other team is unaware that there is a deadline for them to
release their software. One of the ways we could help solve this is by
monitoring systems to inform business decisions (C23), but that will still
need to have the cross-collaboration necessary for it to work.

R. Amaro et al.

103

Information & Management 60 (2023) 103809

17

Chaos engineering (C35), for the next practitioner (I19) began when
designing a risk management framework for a DevOps pipeline, with the
question: how do we reduce infrastructure and security incidents? It
involves automation and machine learning so that anomalies are auto
matically detected, tries to correct them, and brings the system back to
normal, thus reducing Mean Time To Recover/Restore (MTTR) to a
minimum if done right. It is an approach to keeping the system, stable
and consistently normal. Shift left on security (C20) entails including
security checks and activities in the pipeline in the development stage.
The objective is to guarantee that the codebase is intended to be secure
from the start using automation.

During the twentieth interview (I20), the practitioner mostly focused
on Configuration Management (C11) and when comparing it to infra
structure as code (C16) the first is acceptable for the application on its
own while infrastructure as code is valid for controlling a full platform.
Configuration Management has a direct positive impact on Mean Lead-
time for Changes (MLT), Change Failure Rate (CFR) and several other
metrics seen in Table 13.

The last interview done for the research proposal (I21) touched on
several capabilities as well but focused more on loosely coupled archi
tecture (C14), which means that any modification to one service will
have no impact on the others. It also allows you to test and verify each
service against a standalone environment without requiring an inte
grated environment. On the other hand, Infrastructure as Code (C16)
maintains services available at all times. Defined systems and processes
enable continuous testing and publication of minor changes rather than
batch updates.

5.1.4. Data saturation
In this study, data saturation is observed in order to determine the

state of the artifact and prepare it for the evaluation phase, as seen in
Table 10. In qualitative research, saturation has gained wide support as
a methodological concept, with the purpose of understanding when
more data gathering and/or analysis is unnecessary based on the data
that has already been gathered and analyzed [42,64,99]. When satura
tion was reached, five more interviews were still conducted, since there
is always some probability that one of the subsequent interviewees or
more will disagree, and so there is more certainty of the results obtained.

This is observed at the point that new data tends to be residual when
compared to that already collected. In interviews, for instance, when the
researcher starts hearing the same remarks again and over, data satu
ration is achieved [83, p. 372]. Then it is time to stop gathering data and
start evaluating what has been gathered [41, p. 26]. Although the per
centage values are not zero, there is a clear pattern where the last five
contributions are below 1% of the total accessible relations in the ma
trix. A decrease in the percentage of participant-suggested adjustments
relative to the total number of feasible relations is the cause of satura
tion. As a result, we chose to stop after 21 interviews in order to move on
to the next step of the Design Science Research (DSR), which is the
evaluation process in Section 6. Table 10 shows the number of
contributed relations, the total growth since interview I01 and the
percentage of relations added, relative to the total possible relations,

where from 37 capabilities times 24 metrics it is possible to have 888,
relations. For instance, in the case of I07, where 3.94% = 100× 35/888.
As described in Section 5.1.3, there were cases where there were sug
gestions for improvements in capabilities, metrics, and categories, and
those numbers are also captured in Table 10. For instance, in I01 it was
suggested and later confirmed by other practitioners to add a new metric
called talent retention and to update the list with the existing metric of
team happiness.

5.1.5. RQ7—How are DevOps capabilities categorized?
During the interviews, the alignment of capabilities into categories

found in the literature reviews in Section 4 [24,31,40,94,101] as well as
their relevance and classification leading to a more refined list was
discussed in interviews as displayed in Table 11.

With this resulting table, a matrix for DevOps capabilities and met
rics was obtained that includes Cultural, Measurement, Process, and
Technical categories to be used in Section 5.2.

5.1.6. RQ8—How are the main metrics categorized?
With the objective of categorizing the main metrics Table 12 was

elicited. The interview discussion was based on Section 4 (literature
review findings). They show Business, Change, Cultural, and Operating
types of Key Performance Indicators (KPIs).

Interviewees also mentioned that it is difficult for organizations to
track these metrics and capabilities, it requires a lot of effort and
expertise to get this data (I03,I09). Thus, if a company switches from
traditional systems with already figured out monitoring and metrics,
they lose a lot of what was implemented, therefore if the migrations of
these metrics are not timely considered, there is a loss of what was
experimented with and learned over time, which could have a negative
impact on the DevOps adoption.

5.1.7. RQ9—What DevOps capabilities have a positive impact on which
main metrics?

Given the proposed objective in Section 1 of eliciting metrics that are
impacted positively by capabilities. Table 13 shows a summary of these
relations. Each column represents a metric and each row represents a
capability. The intersections with a check mark symbolize a positive
impact in a specific metric by a specific capability. The empty in
tersections denote no positive relation was found during the research.

This set of relations has significantly contributed to our proposed
capability evaluation matrix, which is shown in the next section, ac
counting also for the categorization of metrics done in Sections 5.1.5 and
5.1.6.

5.2. Proposed capability evaluation matrix

The proposed DevOps capability evaluation matrix is an artifact that
aims to be used for future strategic planning, keeping in mind the
importance to focus first on essential metrics to the business.

Table 15
Semi-structured interview iterations for evaluation with practitioners’ details.

ID Interview date Current position Company Years of DevOps practice Age (years) Country

IT01 2021-06-18 Individual contributor Acquia More than 3 years 35–44 Romania
IT02 2021-06-18 Associate DevOps Engineer Acquia Less than 1 year 24 =< India
IT03 2021-06-21 Associate DevOps Engineer Acquia Less than 1 year 24 =< India
IT04 2021-06-21 Associate Engineer Acquia Between 1 year and 3 years 24 =< India
IT05 2021-06-21 Individual contributor Boxboat More than 3 years 25–34 United States
IT06 2021-06-22 Architect Acquia More than 3 years 25–34 United States
IT07 2021-06-24 Individual contributor Acquia India Pvt. Ltd. More than 3 years 25–34 India
IT08 2021-06-24 Individual contributor Acquia Between 1 year and 3 years 35–44 United States
IT09 2021-06-29 VP Acquia Between 1 year and 3 years 35–44 United States
IT10 2021-07-02 Product Owner, Drupalista Liip More than 3 years 35–44 Switzerland

R. Amaro et al.

104

Information & Management 60 (2023) 103809

18

6. Evaluation

The evaluation of the artifact follows the evaluation process in the
design cycle mentioned in Section 3.1, based on the framework for
evaluation in design science (FEDS) [117] driven by the work of
Pries-Heje, Baskerville and Venable who published several related arti
cles [85,86,116]. Per the authors, the evaluation of an Information
System’s artifact can be conducted before the production of the pro
posal, known as the “ex-ante” viewpoint, or after the artifact’s con
struction, known as the “ex-post” perspective. Semi-structured interview
iterations are conducted, results are summarized, and a validated arti
fact is then presented.

6.1. Semi-structured interviews iterations

This evaluation involved conducting semi-structured interviews,
which is relatively cheaper to evaluate with real users in their real
context, and also maintains the goal of having a rigorous evaluation,
establishing that utility/benefit will continue in real and long-term sit
uations. This phase was targeted at people with various skills to collect
different visions and ensure greater completeness of the validated
artifact.

Ten semi-structured interviews were carried out in order to perform
several assessment iterations with practitioners listed and are charac
terized in Table 15, following the outline in Table A.20, with the
objective of refining and validating the artifact proposed in Section 5.2.
The preparation is similar to what is described in Section 5.1.1

A total of 10 interviews were conducted in this section to evaluate
the research proposal. The practitioners interviewed and seen in
Table 15 were: seven individual contributors, one architect, one VP and
one product owner. The companies they work for are Acquia, Boxboat,
and Liip. Five practitioners have more than 3 years of experience in
DevOps, while three practitioners have between 1 year and 3 years of
experience, and two have less than one year of experience. Of the 21
contributors, 19 are individual contributors with diverse roles, six are
Team Leads and the other six are at the management level or above. The
majority of the 4 practitioners are between 25 and 34 years of age, three
are between 35 and 44 and three have less than 24 years. Their locations
are India, Romania, Switzerland and USA.

6.1.1. Evaluation iterations
In this section, every practitioner was requested to go through the

suggested research artifact while the interview followed the outline in
Table A.20. The interviewees were incentivized to suggest recommen
dations for changing or adding the relationships that they would see fit,
as well as double-check the metrics and capabilities categorization.

In interview IT01, it was asked to analyze the artifact and make
suggestions for improvements of any missing relations. The practitioner
mentioned and justified some extra metrics that are impacted positively
by Trunk-based development (C22) like Mean time to failure (MTTF),
automated tests pass, Automation Code Coverage, and wait time (Ta
bles 16 and 17). It was also suggested that continuous improvement of
processes and workflows (C06) improves customer feedback, keeping
Service Level Agreements (SLAs) and Service Level Objectives (SLOs),
reliability, and deployment speed. Furthermore, in terms of expenses
and environments for Continuous Integration (CI), an organization needs
the infrastructure to accomplish tests and builds, but the team can
probably start by doing it on the desktop or in a virtual environment to
save costs. For that, it was stated, that an open-source operating system
like GNU/Linux (https://gnu.org) is much better suited. Regarding re
leases, if things don’t improve, by the end of the process an engineer is
always caught up in something else and doesn’t even have time to enjoy
the fact that his work is in production because deployment takes too
long. The practitioner concluded that the proposed categorization was
sound.

For interview IT02 the same was proposed to the practitioner and Ta
bl

e
16

Re

la
tio

ns
 u

pd
at

ed
 in

 th
e

ar
tif

ac
t d

ur
in

g
ea

ch
 e

va
lu

at
io

n
ite

ra
tio

n.

Ev
al

ua
tio

n
ite

ra
tio

ns

Ch
an

ge
 K

PI

O
pe

ra
tin

g
KP

I
Cu

ltu
ra

l K
PI

|
Bu

si
ne

ss
 K

PI

U
pd

at
ed

M
02

M

03

M
04

M

06

M
09

M

10

M
12

M

15

M
17

M

19

M
01

M

05

M
07

M

08

M
11

M

13

M
20

M

21

M
22

M

18

M
42

M

59

M
14

M

16

Re
la

tio
ns

To

ta
l

Pe
rc

en
ta

ge

IT
01

C0
6

C2

2
C2

2
C2

2

C0
6

C0

6

C2
2

C0

6

8
34

0
0.

90
%

IT

02

C2

4

C2

4

C2
4

C2

4

C0

6
C0

6
C2

4

7
34

7
0.

79
%

IT

03

C2
4

C2
4

C2

4

C2
4

4
35

1
0.

45
%

IT

04

C2
3

C3

7
C2

3

C2
3

C2

3

C2
3

6

35
7

0.
68

%

IT
05

C0
9

C2
8

C0
9

C0

9

C0
9

C2
8

C0

2,
C0

3

8
36

5
0.

90
%

IT

06

C1

4

C1
8

C1

4
C1

4

C1
4

C1
4

C1

4
7

37
2

0.
79

%

IT
07

C2
0

C2
0

C1
2

C1

2
C1

2

C2
0

C2
0

C1

2
8

38
0

0.
90

%

IT
08

C0

8

C0
8

C0
8

C2

7

C2

1
5

38
5

0.
56

%

IT
09

C1

5

C1
5

C1

5

3
38

8
0.

34
%

IT

10

C2
0

C1

5

C2
0

3

39
1

0.
34

%

Le
ge

nd
:M

01
-M

59
, C

01
-C

37
: S

am
e

Ca
pa

bi
lit

ie
s

an
d

M
et

ri
cs

 a
lr

ea
dy

 li
st

ed
 in

 T
ab

le
 1

3.

R. Amaro et al.

105

Information & Management 60 (2023) 103809

19

Performance Oriented Culture (C24) was identified as highly important
since there will be a lot of confidence between the team and the lead
ership, having a positive impact on deployment speed, automated tests
pass, pipeline success rate, reliability, Service Level Objectives (SLOs)
and customer feedback. Also mentioned as related to Continuous
Improvement (C06), influencing cultural KPIs like team Happiness and
talent retention. Businesses with a high-performance culture may
consistently achieve high levels of performance and outcomes. There
fore, many companies place an effort on cultivating a high-performance
culture, since it may be the difference between mediocrity and growth,
efficiency and falling behind.

During interview IT03 the DevOps engineer focused on examining
performance organizational culture (C24) capability, impacting change
volume, application performance, production errors rate, and Un
planned Work Rate (UWR) and at the same time mentioning that the
most creative companies and high-performing organizations are
continuously seeking to improve and never consider themselves done

with their development or transformational journey. Several other
interesting aspects were mentioned like when there is technical depth
closed that means, whatever the technical issues there are closed,
organizational culture is the enabler for that change. An important
lesson learned is that growth requires a careful mix of challenge and
nurture. Too much challenge, repeated too frequently, it’s over
whelming and can lead to burnout. Too little challenge prevents us from
growing and does not improve the needed outcomes.

The interview IT04 Centralized Dashboards for Monitoring systems
to inform business decisions (C23) associated with mostly operating
KPIs and customer feedback, which is influencing visual management
capabilities (C37) was the main focus of discussion and settled on how
this affects operational mindset, especially on reliability. The charac
teristics that we consider a metric to be an Operational KPI and the
factors that we consider a metric to be a Change KPI were also discussed.
Dashboards improve decision-making and may streamline the entire
decision-making process, saving time and decreasing paperwork. It
improves participation and cooperation by giving everyone first-hand
access to data and allowing them to witness the real-time outcomes of
their efforts.

The practitioner in interview IT05 examined how empowering the
team to make decisions and changes (C09) is affecting a few more
change and operating KPIs and definitely improves all the cultural KPIs
and customer feedback. Employees will only strengthen their decision-
making skills via experience and learning, especially if the firm is
experiencing rapid development. Things may not go as planned the first
time, or even the second, which is where leading and mentoring are
fundamental. Regardless of industry, business size, or location, high-
performance cultures share several common traits. Transformational
leadership and empowered teams are common examples. Continuous

Table 17
Validated artifact with categorized DevOps capabilities influencing main metrics.

Table 18
Capability categories, weight on KPI categories.

Change
KPIs

Operating
KPIs

Cultural
KPIs

Business
KPIs

Total
AVG

Cultural
capabilities

45.71% 39.68% 90.48% 42.86% 54.68%

Technical
capabilities

49.44% 61.90% 46.30% 33.33% 47.74%

Measurement
capabilities

20.00% 64.44% 26.67% 30.00% 35.28%

Process
capabilities

30.00% 33.33% 52.38% 42.86% 39.64%

R. Amaro et al.

106

Information & Management 60 (2023) 103809

20

learning and experimentation, as well as an openness to change, are
essential. Another approach was the visibility of work in the value
stream (C28), a process capability that also improves Cycle Time Value
(CTV) and “wait time” metrics. Finally, customer feedback has a positive
impact on C02 Continuous Integration (CI) and C03 Continuous Delivery or
Deployment (CD).

The engineering architect in interview IT06 is an expert on micro
services and distributed systems and so contributed more to examining
Loosely Coupled Architecture and Microservices (C14), where he argued
the importance of adding deployment duration, reliability, and a few
other operating and cultural KPIs like team happiness and talent
retention as well as customer traffic. Loose coupling is a design pattern
that hides implementation details inside each microservice in this ca
pacity. When components are loosely connected, systems have several
advantages for the organization. Containerization (C18) was also briefly
discussed, with the result of adding deployment speed to Table 17 and
confirming others in the list of metrics impacted by this capability.
Containerization is also a big benefit in continuous integration Contin
uous Integration (CI) and continuous delivery Continuous Delivery or
Deployment (CD): containers greatly simplify integration testing and
standardize CI/CD through Docker images.

Examination in interview IT07 focused on Cloud Infrastructure and
Cloud Native (C12) validating already existing or new change KPIs re
lations like Mean time to failure (MTTF) and also operating KPIs pro
duction errors rate and incidents, Work in Progress (WIP), and customer
usage. Moreover, traditional business apps, which are generally run in
an on-premises data center, require an entirely different design than
cloud-native applications. Security should be shifted to the left and
reduce risks to a minimum. Taking this strategy lowers the chances of
suffering a data breach or security issue. Shift Left on security (C20)
impacts all cultural KPIs and some change KPIs like defect escape rate,
Cycle Time Value (CTV), and deployment size, also impacting operating
KPIs wait time and organizational culture metrics. Finally, the team
happiness cultural KPI was also confirmed to be impacted by the existing
relations in the matrix. Some indications of employee dissatisfaction,
like low talent retention, are easy to identify.

In interview IT08, three capabilities were assessed in depth. The first
was support learning culture and experimentation (C08) where change
KPIs Mean Lead-time for Changes (MLT), deployment speed, and work
in progress were explained to have a strong impact while practicing this
capability. The second, Transformational leadership (C21) was also
confirmed to have an influence on customer feedback due to the
attention that these leaders are putting into all the life cycle processes to
improve it. Lastly, Lightweight change approval (C27) was mentioned to
be missing an obvious impact relationship in wait time operating KPI. It
also stated the importance of visionary inspirational communication,
personal recognition, and intellectual stimulation by supportive lead
ership while adopting DevOps capabilities.

In interview IT09, the most evaluated capability was Database
Change management (C15). For operating KPIs there were missing re
lations on Service Level Agreements (SLAs) / Service Level Objectives
(SLOs), wait time, and cultural KPI talent retention. Database change
management is one of a set of capabilities that helps organizations
produce better software and perform better. It should be possible to
track database changes and those should be implemented and reconciled
as quickly as feasible, while still protecting data privacy inside the
database context. In the end, talent retention cultural KPI was also stated
that by personal experience, when C15 improves there is not only team
happiness rising but also fewer people leaving.

In the last evaluation interview IT10 the previous Database Change
management (C15) relationships were confirmed also adding Mean
Time To Detection (MTTD) and in Shift Left on security (C20) adding
related KPIs pipeline success rate and production error rate. Managing
database changes was stated to be a difficult process. It is much more
challenging when just getting started on a project and the data model is
continuously changing. There was also a valuable discussion about

Table A.19
Questions used in the research proposal, adapted from Mäkinen et al. [60].

ID Related
RQs

Type Question

1 Background Information
1.1 – Closed-

ended
How large is your organization?

1.2 – Open-
ended

How do you see your current DevOps adoption?

1.3 – Closed-
ended

What is your team size currently?

2 Methods
2.1 – Open-

ended
What software engineering methods or
capabilities are you using?

2.2 RQ1 Open-
ended

What capabilities of DevOps are you using and
why?

2.3 RQ4 Open-
ended

What metrics should be tracked in the DevOps
process and why?

3 Categorization
3.1 RQ7 Open-

ended
How are DevOps capabilities categorized?

3.2 RQ8 Open-
ended

How are the main metrics categorized?

4 Software Life Cycle Impact
4.1 – Open-

ended
What aspects most impact your day-to-day work?

4.2 RQ9 Open-
ended

What DevOps capabilities have a positive impact
on which main metrics?

4.3 RQ9 Closed-
ended

Do you see any relations that are missing or
incorrect in the shown table?

5 DevOps Capabilities Challenges and Benefits
5.1 – Open-

ended
Any other DevOps capabilities challenges or
benefits you would like to mention?

6 DevOps Metrics Challenges and Benefits
6.1 – Open-

ended
Any other DevOps metrics challenges or benefits
you would like to mention?

Table A.20
Interview iterations topics used in evaluating the proposed artifact, adapted
from Mäkinen et al. [60].

ID Related
RQs

Type Question

1 Background Information
1.1 – Closed-

ended
How large is your organization?

1.2 – Open-
ended

How do you see your current DevOps adoption?

1.3 – Closed-
ended

What is your team size currently?

2 Categorization evaluation
2.1 RQ7 Closed-

ended
Do you agree with the DevOps capabilities
categorization shown?

2.2 RQ7 Open-
ended

If not how would you categorize capabilities?

2.3 RQ8 Closed-
ended

Do you agree with the DevOps metrics
categorization shown?

2.4 RQ8 Open-
ended

If not how would you categorize capabilities?

3 Capabilities and Metrics evaluation
3.1 – Open-

ended
Do you see value in using this evaluation matrix
and why?

3.2 RQ1 Open-
ended

Do you agree or disagree with any of these
DevOps capabilities and why?

3.3 RQ4 Open-
ended

Do you agree or disagree with any of these
DevOps metrics and why?

4 Impact based evaluation
4.1 RQ9 Closed-

ended
Do you disagree with any of the relations shown in
the table and why?

4.2 RQ9 Open-
ended

What more DevOps capabilities have a positive
impact in which main metrics?

4.3 – Open-
ended

What would be your expected results from
applying these capabilities and metrics in your
organization?

R. Amaro et al.

107

Information & Management 60 (2023) 103809

21

capabilities being multifaceted and dynamic, allowing different areas of
the company to tailor their approach to improvement and focus on the
skills that would bring them the most value.

6.1.2. Evaluation results
In this section, the key results of the evaluation done with ten

interview iterations are summarized. Primarily, Table 16 shows that the
additions or updates to the matrix have become residual, which confirms
the data saturation already observed in Section 5.1.4. A summary of all
updated relations in each iteration can be found in Table 16, together
with the total relations and the relative percentage of each change.

There were residual relations suggested between capabilities and met
rics, but there were no suggestions for changing capabilities, metrics, or
categories, therefore not expressed in the table.

As can be seen, the changes to the artifact are now modest in contrast
to the previous phase, indicating that the evaluation was successful and
supports the proposal’s design [99].

6.2. Validated artifact

Using the validated here artifact presented, business executives and
organization leaders will be able to evaluate the various DevOps

Listing 1. Python code for consistent fetching of a large number of Google search results.

R. Amaro et al.

108

Information & Management 60 (2023) 103809

22

capabilities in relation to the outcomes, identifying the capabilities that
require the most significant long-term enhancements and highlighting
the capabilities that should become the primary focus of future IT in
vestments as seen in Table 17.

As a few participants mentioned, this will also allow the organization
to stimulate discussions about how each capability impacts DevOps
adoption, allowing them to figure out where they can get the most value
from. Like what capabilities, if included from the start, would have the
most influence on a variety of KPIs. This capability matrix is outcome-
based, focusing on important outcomes (KPIs) and how capabilities
promote change in those outcomes. This gives clear guidance and
strategy on high-level goals (with an emphasis on capabilities to
enhance key outcomes) to technical leadership. It also allows team
leaders and individual contributors to define progress targets for the
current period based on the capabilities their team is working on.

7. Conclusion

In this section, we conclude the research done with communication,
general conclusions, limitations, and future work.

7.1. Communication

Out of the research already done, the two MLRs have been submitted
for approval and publication in two different journals with Q1 rank. The
MLR on DevOps capabilities was already published. The MLR on DevOps
metrics was also submitted and awaits publisher reviews.

7.2. Research conclusions

This study has made important contributions to both academia and
industry on the DevOps topic. In summary, Design Science research was
done based on two MLRs on DevOps capabilities, in DevOps metrics, and
21 semi-structured interviews in the build phase, where 207 papers were
identified as relevant to these study topics. In order to evaluate the
research proposal, 10 semi-structured interviews were done, resulting in
a validated Capability Evaluation Matrix.

• This study proposes a consensus definition distinguishing capabil
ities from practices, based on academic and industry literature
review.

• A thorough investigation was conducted in order to find a consensus
definition of DevOps metrics across academics and practitioners.

• It was investigated and exposed where the capabilities or practices
are mentioned in the literature (RQ2) and what are their differences
seen (RQ3).

• The purpose of each metric is identified in detail (RQ5) and the
reason why each metric is important is analyzed (RQ6).

• From all the literature review done in this research, 37 DevOps ca
pabilities (RQ1) and 24 validated DevOps metrics (RQ4) were
identified.

• DevOps capabilities have been researched, explained, and after a
careful evaluation categorized (RQ7). The same rigorous work was
conducted for DevOps metrics (RQ8).

• In order to develop a core study proposal, this investigation drafted
the DevOps capabilities that have a beneficial influence on each of
the key metrics (RQ9).

• The major outcome of this research is a Capability Evaluation Matrix
presented in Section 6.2, which has been proposed, debated, and
validated by DevOps practitioners and experts.

A set of interesting conclusions arise when identifying the analysis
vector that connects the capability categories to the KPI categories based
on the validated artifact in Table 17. Table 18 shows mainly the most
evident conclusion is that cultural capabilities have a strong impact on
improving the cultural KPIs and the highest overall impact.

Nevertheless, operating KPIs are mostly impacted by technical and
measurement capabilities. However, process capabilities are the second
most impactful on cultural KPIs, and when looking at what are the main
drivers of change, those are technical, cultural, and process capabilities.
Therefore, organizations should prioritize not only technology, but also
cultural and process improvements. A DevOps capability is defined as
the ability to perform a DevOps practice or by the quality, or state, of
being capable. These capabilities are, dynamic and have been growing
and changing over the years, are defined by the ability of an organiza
tion to perform DevOps practices, or by the quality, or state of being
capable. The two capabilities with the maximum relation to metrics are,
in order, C09-Empower teams to make decisions and changes and C24-
Performance organizational culture. A DevOps metric is defined as a
quantifiable, business-relevant, trustworthy, actionable, and traceable
indicator that aids organizations in making data-driven decisions to
continuously improve their software delivery process. The five top
metrics with most of the relations in the model, that an organization
should start by measuring are, in order, M03-Deployment Frequency
(DF), M01-Mean Time To Recover/Restore (MTTR), M42-Team happi
ness, M02-Mean Lead-time for Changes (MLT) and M04-Change Failure
Rate (CFR). Metrics have been extended to 24, divided into four KPI
categories: change, operating, cultural, and business. Finally, it was also
perceived that releasing software with both speed and stability is
achievable if the company is continuously monitoring the appropriate
metrics and improving the right capabilities by focusing on the out
comes, rather than just following a prescribed path for each team.

7.3. Limitations

Identified limitations of this study include the fact that it is based on
MLR. Therefore, a part of the material has not gone through the critical
peer-review process that academic research is typically exposed to. To
mitigate the impact of this danger, it was chosen to design the review
procedure using the recommendations given by Garousi et al. [38] and
to conduct each step using this method. Semi-structured interviews used
in this research usually require a large enough variety sample to yield
precision and a variety of opinions. To address this problem, 31 in
terviews were conducted in total, considered a good number [64,65] for
this kind of qualitative research. The use of search terms and search
engines may result in an inadequate selection of primary materials.
Formal searches were conducted using particular keywords, and specific
source code was used to decrease the chance of missing all relevant
studies and increase the dependability of repeating this study. For the
year 2021, this research was limited to only three months. Although the
year 2021 is present, it is irrelevant for the extraction of the data because
the three-month analysis is insignificant. Lastly, the inclusion of
English-only publications, which may exclude relevant research in other
languages, was a limitation.

7.4. Future work

The results and findings revealed in this study will assist to feed new
research so that future studies can evaluate if certain metrics are still
common and should be explored further researching the possible ways
to put these capabilities, metrics, and relations into practice. The rela
tionship matrix used in the artifact may also be expanded to indicate
whether the influence or impact on the metric can be verified as positive
or negative. Based on this, it should be possible to produce a heat map
for a capability model that would be easier to use in management de
cisions. At the organizational level, we still don’t know which measures
are already being utilized by which industries. Section 5.1.6 states that
interviewees acknowledge difficulties for organizations to track metrics
and capabilities, which might be an interesting opportunity for future
work since the problem is outside the scope of this study. What other
organizational factors have the most influence on each of the main,
important metrics, and if we can influence these factors, or how? Is it

R. Amaro et al.

109

Information & Management 60 (2023) 103809

23

possible to expose the metrics, capabilities, and influencing factors in
information systems in order to support management decisions [58]? In
contrast, there is still a debate going on [14,26,29,91] regarding: Should
all of these indicators be tracked regularly? Which metrics are capable of
being monitored automatically? Which metrics can only be monitored
using surveys? All are interesting questions to investigate. Lastly, as
demonstrated in Section 4, better monitoring of the software delivery
process is extremely significant and sought. DevOps metrics should try
to measure efficiently the right aspects in order to determine whether
DevOps is effective.

Author biographical note

The author was born in Lisbon, Portugal in 1974. He has a Masters
Degree in Management Information Systems, a Computer Science En
gineering Degree at UAb in Lisbon, and in 1998 he received a B.S. De
gree in Arts at Institute Polytechnic of Lisbon.

In 2018, he co-authored the book Seeking SRE, Publisher: O’Reilly
Media. Chpt 18 09/2018 ISBN: 9781491978856.

In May 2011 the author founded the Portuguese Drupal Association,
dedicated to manage and support the open source software community
and from 2015 until 2021 he has been the DevOps and Infrastructure
track chair for Drupalcon Europe. Also, he has been a frequently invited
speaker at Agile, Devops and Software conferences in the US and
Europe.

Since 2011 he has been working for Acquia Inc. www.acquia.com
where he manages the DevOps and SRE teams, implementing industry
best practices and information systems targeted to support decisions.
Before that, from 2006 to 2011 he was Internet Director at Ocasião Lda,
a media newspaper in Lisbon and from 2001 to 2005 he was I.T. systems
manager at EGEAC and Lisbon City hall public company.

CRediT authorship contribution statement

Ricardo Amaro: Conceptualization, Methodology, Writing – orig
inal draft. Rúben Pereira: Data curation, Investigation, Supervision,
Writing – review & editing. Miguel Mira da Silva: Supervision, Vali
dation, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Interview outline

Appendix B. Source code

References

[1] S. Abdelkebir, Y. Maleh, M. Belaissaoui, An agile framework for ITS management
in organizations. Proceedings of the 2nd International Conference on Computing
and Wireless Communication Systems - ICCWCS’17, ACM Press, New York, New
York, USA, 2017, p. 8, https://doi.org/10.1145/3167486.3167556.

[2] W.C. Adams, Conducting semi-structured interviews. Handbook of Practical
Program Evaluation: Fourth Edition, John Wiley and Sons, Inc., Hoboken, NJ,
USA, 2015, pp. 492–505, https://doi.org/10.1002/9781119171386.ch19.

[3] J. Angara, S. Gutta, S. Prasad, Devops with continuous testing architecture and its
metrics model. Advances in Intelligent Systems and Computing vol. 709, Springer
Verlag, K.L. University, Vijayawada, AP, India, 2018, pp. 271–281, https://doi.
org/10.1007/978-981-10-8633-5_28.

[4] S. Badshah, A.A. Khan, B. Khan, Towards process improvement in DevOps: a
systematic literature review. 24th Evaluation and Assessment in Software
Engineering Conference, EASE 2020, ACM, Association for Computing

Machinery, Comsats University Islamabad, Islamabad, Pakistan, 2020,
pp. 427–433, https://doi.org/10.1145/3383219.3383280.

[5] R.L. Baskerville, M. Kaul, V.C. Storey, Genres of inquiry in design-science
research: justification and evaluation of knowledge production, MIS Q. 39 (3)
(2015) 541–564, https://doi.org/10.25300/MISQ/2015/39.3.02.

[6] K. Behr, G. Kim, G. Spafford, The Visible Ops Handbook: Implementing ITIL in
Four Practical and Auditable Steps, IT Process Institute (ITPI), Eugene, OR, 2008.

[7] A. Bertolino, G.D. Angelis, A. Guerriero, B. Miranda, R. Pietrantuono, S. Russo,
DevOpRET: continuous reliability testing in DevOps, J. Softw. n/a (n/a) (2020)
e2298, https://doi.org/10.1002/smr.2298.

[8] B. Beyer, C. Jones, J. Petoff, N.R. Murphy, Site Reliability Engineering: How
Google Runs Production Systems, O’Reilly Media, Inc., 2016.Google, https
://landing.google.com/sre/sre-book/toc/

[9] D.N. Blank-Edelman, Seeking SRE: Conversations About Running Production
Systems at Scale, O’Reilly Media, Inc., USA, 2018.

[10] Cambridge, CAPABILITY | meaning in the Cambridge English Dictionary, 2021a,
https://dictionary.cambridge.org/dictionary/english/capability.

[11] Cambridge, PRACTICE | meaning in the Cambridge English Dictionary, 2021b,
https://dictionary.cambridge.org/dictionary/english/practice.

[12] D. Cohen, B. Crabtree, Semi-structured Interviews, 2006, http://www.qualres.org
/HomeSemi-3629.html.

[13] C.M. Conway, K. Roulston, Conducting and analyzing individual interviews. The
Oxford Handbook of Qualitative Research in American Music Education, 2014,
https://doi.org/10.1093/oxfordhb/9780199844272.013.014.

[14] Cprime, DevOps Metrics to Monitor Software Development - Cprime, 2021, https:
//www.cprime.com/resources/blog/devops-metrics-to-monitor-software-develo
pment/.

[15] R. Cyber, DevOps KPIs to Measure Success, 2019, https://www.royalcyber.
com/blog/devops/devops-kpis-to-measure-success/.

[16] E. DeBoer, Sonatype, Accelerate: A Principle-based DevOps Framework, 2019,
https://blog.sonatype.com/principle-based-devops-frameworks-accelerate.

[17] T. Development, A Guide To Measuring DevOps Success and Proving ROI, 2020,
https://www.tiempodev.com/blog/measuring-devops/.

[18] Devopedia, DevOps Metrics, 2019, https://devopedia.org/devops-metrics.
[19] DevOps Research and Assessment (DORA), State of DevOps 2019 - DORA.

Technical Report, DORA, 2019.https://services.google.com/fh/files/misc/state
-of-devops-2019.pdf

[20] J. Díaz, J.E. Pérez, M.A. Lopez-Peña, G.A. Mena, A. Yagüe, Self-service
cybersecurity monitoring as enabler for DevSecops, IEEE Access 7 (1) (2019)
100283–100295, https://doi.org/10.1109/ACCESS.2019.2930000.

[21] Z. Ding, J. Chen, W. Shang, Towards the use of the readily available tests from the
release pipeline as performance tests: are we there yet. 42nd ACM/IEEE
International Conference on Software Engineering, ICSE 2020, IEEE Computer
Society, New York, NY, USA, 2020, pp. 1435–1446, https://doi.org/10.1145/
3377811.3380351.

[22] D. Dingley, 4 Key Metrics for DevOps Success Video, 2019, https://www.verac
itysolutions.com/4-key-metrics-for-devops-success.

[23] B. Dobran, 15 DevOps Metrics and Key Performance Indicators (KPIs) To Track,
2019, https://phoenixnap.com/blog/devops-metrics-kpis.

[24] DORA, DORA research program, 2020, https://www.devops-research.com/rese
arch.html.

[25] A. Dyck, R. Penners, H. Lichter, Towards definitions for release engineering and
DevOps, in: B. Adams, S. Bellomo, C. Bird, F. Khomh, K. Moir (Eds.), RELENG@
ICSE, IEEE Computer Society, 2015, p. 3.http://dblp.uni-trier.
de/db/conf/icse/releng2015.html#DyckPL15

[26] R. Edwards, Research highlights challenges of Salesforce DevOps in 2020, 2021,
https://www.enterprisetimes.co.uk/2021/02/16/research-highlights-challe
nges-of-salesforce-devops-in-2020/.

[27] F.M.A. Erich, C. Amrit, M. Daneva, A qualitative study of devops usage in
practice, J. Softw. 29 (6) (2017) e1885, https://doi.org/10.1002/smr.1885.

[28] V. Fedak, DevOps metrics: what to track, how and why do it, 2020, https://
medium.com/@FedakV/devops-metrics-what-to-track-how-and-why-do-it-e08
dc6864eab.

[29] Flosum, Keys to Improve Salesforce DevOps Efficiency - Flosum - Continuous
Integration, release management, 2021, https://flosum.com/keys-to-improve-s
alesforce-devops-efficiency/.

[30] N. Forsgren, J. Humble, The role of continuous delivery in it and organizational
performance. SSRN Electronic Journal, 2015, p. 15, https://doi.org/10.2139/
ssrn.2681909.

[31] N. Forsgren, J. Humble, G. Kim, Accelerate: The Science of Lean Software and
Devops: Building and Scaling High Performing Technology Organizations, IT
Revolution, USA, 2018.https://itrevolution.com/accelerate-book/

[32] N. Forsgren, J. Humble, G. Kim, A. Brown, N. Kersten, Accelerate state of DevOps
2018 strategies for a new economy, Rep. DevOps Res. Assess. (DORA) 1 (2018)
78.

[33] N. Forsgren, M. Rothenberger, J. Humble, J. Thatcher, D. Smith, A taxonomy of
software delivery performance profiles: investigating the effects of devops
practices. 26th Americas Conference on Information Systems, AMCIS 2020 vol. 1,
2020, p. 5.

[34] B.B.N. de França, H. Jeronimo, G.H. Travassos, B.B. Nicolau de França,
H. Jeronimo, G.H. Travassos, Characterizing DevOps by hearing multiple voices,
in: E, S. DeAlmeida (Ed.), Proceedings of the 30th Brazilian Symposium on
Software Engineering, Unicesumar; Colivre; Espweb; Tasa Eventos, New York,
NY, USA, 2016, pp. 53–62, https://doi.org/10.1145/2973839.2973845.

[35] A.M. Fred, C. Cook, 6 proven metrics for DevOps success | TechBeacon, 2021,
https://techbeacon.com/devops/6-proven-metrics-devops-success.

R. Amaro et al.

110

Information & Management 60 (2023) 103809

24

[36] P. Gallagher, Tracking Success in DevOps Pipelines, 2020, https://blog.goodele
arning.com/subject-areas/devops/how-to-measure-success-in-devops/.

[37] V. Garousi, M. Felderer, M.V. Mäntylä, The need for multivocal literature reviews
in software engineering. Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering - EASE ’16, ACM Press, New
York, New York, USA, 2016, p. 6, https://doi.org/10.1145/2915970.2916008.

[38] V. Garousi, M. Felderer, M.V. Mäntylä, Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering, Inf. Softw.
Technol. 106 (September 2018) (2019) 101–121, https://doi.org/10.1016/j.
infsof.2018.09.006.

[39] J. Gelo, DevOps Metrics Matter: Why, Which Ones, and How - HCL SW Blogs,
2020, https://blog.hcltechsw.com/accelerate/devops-metrics-matter-why-which
-ones-and-how-2/.

[40] Google, DevOps capabilities | DORA - Google Cloud, 2020, https://cloud.google.
com/solutions/devops/capabilities.

[41] M.P. Grady, Qualitative and Action Research: A Practitioner Handbook, Phi Delta
Kappa International, 1998.

[42] G. Guest, E. Namey, M. Chen, A simple method to assess and report thematic
saturation in qualitative research, PLoS One 15 (5) (2020) e0232076, https://doi.
org/10.1371/journal.pone.0232076.

[43] T. Hall, DevOps metrics | Atlassian, 2016, https://www.atlassian.com/devop
s/frameworks/devops-metrics.

[44] A.R. Hevner, A three cycle view of design science research, Scand. J. Inf. Syst. 19
(2) (2007) 87–92.http://aisel.aisnet.org/sjis/vol19/iss2/4

[45] A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in information systems
research, MIS Q. 28 (1) (2004) 75–105, https://doi.org/10.2307/25148625.

[46] R. Honig, Bridge the DevOps Development Chasm to Boost DevOps KPIs - Ozcode,
2020, https://oz-code.com/blog/devops/bridging-the-devops-development-obse
rvability-chasm-to-boost-devops-kpis.

[47] J. Humble, D. Farley, Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation, Addison-Wesley Professional, USA,
2010.

[48] J. Humble, B. O’Reilly, Lean Enterprise: How High Performance Organizations
Innovate at Scale, O’Reilly Media, Inc., USA, 2014.

[49] M.M.A. Ibrahim, S.M. Syed-Mohamad, M.H. Husin, M.M. Ahmad Ibrahim,
Managing quality assurance challenges of DevOps through analytics. Proceedings
of the 2019 8th International Conference on Software and Computer Applications
vol. Part F1479, Association for Computing Machinery, New York, NY, USA,
2019, pp. 194–198, https://doi.org/10.1145/3316615.3316670.

[50] V. Kamani, 7 crucial DevOps metrics that you need to track, 2019, https://hub.pa
cktpub.com/7-crucial-devops-metrics-that-you-need-to-track/.

[51] A. Kankanhalli, B.C. Tan, K.K. Wei, Contributing knowledge to electronic
knowledge repositories: an empirical investigation, MIS Q. 29 (1) (2005)
113–143, https://doi.org/10.2307/25148670.

[52] J. Kernel, DevOps Metrics: 7 KPIs to Evaluate Your Team’s Maturity, 2020, http
s://www.xplg.com/devops-metrics-7-kpis/.

[53] G. Kim, J. Humble, P. Debois, J. Willis, The DevOps Handbook : How to Create
World-Class Agility, Reliability, and Security in Technology Organizations, IT
Revolution Press, USA, 2016.https://www.amazon.com/DevOps-Handbook-Wo
rld-Class-Reliability-Organizations/dp/1942788002

[54] B. Kitchenham, Procedures for Performing Systematic Reviews vol. 33, Keele
University, Keele, UK, 2004, p. 26.

[55] B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature
Reviews in Software Engineering. Technical Report, Ver. 2.3 EBSE Technical
Report. EBSE, 2007.

[56] Kris Buytaert, Help, My Datacenter is on fire, 2021, https://www.slideshare.net/
KrisBuytaert/help-my-datacenter-is-on-fire.

[57] C.J. Kuiper. Relationship of Transformational Leadership and Organizational
Change During Enterprise Agile and DevOps Initiatives In Financial Service Firms,
Liberty University, School of Business, 2019. Ph.D. thesis.

[58] J.P.L..K.C. Laudon, Management Information Systems: Managing the Digital
Firm, Global Edition, Pearson Education, USA, 2017.

[59] E. Lock, Measure DevOps Metrics That Matter, 2020, https://www.devopsdigest.
com/measure-devops-metrics-that-matter.

[60] S. Mäkinen, M. Leppänen, T. Kilamo, A.-L. Mattila, E. Laukkanen, M. Pagels,
T. Männistö, Improving the delivery cycle: a multiple-case study of the toolchains
in Finnish software intensive enterprises, Inf. Softw. Technol. 80 (2016) 175–194,
https://doi.org/10.1016/j.infsof.2016.09.001.

[61] R. Mao, H. Zhang, Q. Dai, H. Huang, G. Rong, H. Shen, L. Chen, K. Lu, Preliminary
findings about DevSecOps from grey literature. 20th IEEE International
Conference on Software Quality, Reliability, and Security, QRS 2020, Institute of
Electrical and Electronics Engineers Inc., Nanjing University, State Key
Laboratory for Novel Software Technology, Nanjing, China, 2020, pp. 450–457,
https://doi.org/10.1109/QRS51102.2020.00064.

[62] S.T. March, G.F. Smith, Design and natural science research on information
technology, Decis. Support Syst. 15 (4) (1995) 251–266, https://doi.org/
10.1016/0167-9236(94)00041-2.

[63] D. Marijan, S. Sen, Devops enhancement with continuous test optimization. 30th
International Conference on Software Engineering and Knowledge Engineering,
SEKE 2018 vol. 2018-July, Knowledge Systems Institute Graduate School, Simula,
Norway, 2018, pp. 536–541, https://doi.org/10.18293/SEKE2018-168.

[64] B. Marshall, P. Cardon, A. Poddar, R. Fontenot, Does sample size matter in
qualitative research?: a review of qualitative interviews in is research, J. Comput.
Inf. Syst. 54 (1) (2013) 11–22, https://doi.org/10.1080/
08874417.2013.11645667.

[65] M.J. McIntosh, J.M. Morse, Situating and constructing diversity in semi-
structured interviews, Glob. Qual. Nurs. Res. 2 (2015), https://doi.org/10.1177/
2333393615597674.

[66] Merriam-Webster, Capability | Definition of Capability by Merriam-Webster,
2021a, https://www.merriam-webster.com/dictionary/capability.

[67] Merriam-Webster, Practice | Definition of Practice by Merriam-Webster, 2021b,
https://www.merriam-webster.com/dictionary/practice.

[68] K. Mikko, DevOps capability assessment in a software development team, Science
135 (2018) 408–415.

[69] A. Mishra, Z. Otaiwi, Devops and software quality: a systematic mapping,
Comput. Sci. Rev. 38 (1) (2020) 14, https://doi.org/10.1016/j.
cosrev.2020.100308.

[70] J. Mitlohner, S. Neumaier, J. Umbrich, A. Polleres, Characteristics of open data
CSV files. 2016 2nd International Conference on Open and Big Data (OBD), IEEE,
Vienna, 2016, pp. 72–79, https://doi.org/10.1109/OBD.2016.18.

[71] S.I. Mohamed, DevOps maturity calculator DOMC -value oriented approach, Int.
J. Eng. Res. Sci. 2 (2) (2016) 2395–6992.

[72] F.J. Moraes, DevOps KPI in Practice — Chapter 1 — Deployment Speed,
Frequency and Failure, 2018, https://medium.com/@fabiojose/devops-kpi-in-p
ractice-chapter-1-deployment-speed-frequency-and-failure-2fd0a9303249.

[73] A.D. Nagarajan, S.J. Overbeek, A DevOps implementation framework for large
agile-based financial organizations, in: H.A. Proper, R. Meersman, C.A. Ardagna,
H. Panetto, C. Debruyne, D. Roman (Eds.), Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), LNCS, vol. 11229, Springer Verlag, Department of Information
and Computing Sciences, Utrecht University, Utrecht, Netherlands, 2018,
pp. 172–188, https://doi.org/10.1007/978-3-030-02610-3_10.

[74] T. Nero, DevOps Metrics : 15 KPIs that Boost Results and RoI - Cuelogic
Technologies Pvt. Ltd, 2021, https://www.cuelogic.com/blog/devops-metrics.

[75] A. Novak, Six Core Capabilities of a DevOps Practice – The New Stack, 2014,
https://thenewstack.io/six-core-capabilities-of-a-devops-practice/.

[76] R.T. Ogawa, B. Malen, Towards rigor in reviews of multivocal literatures:
applying the exploratory case study method, Rev. Educ. Res. 61 (3) (1991)
265–286, https://doi.org/10.3102/00346543061003265.

[77] L. Olsina, P. Becker, D. Peppino, G. Tebes, Specifying the process model for
systematic reviews: an augmented proposal, J. Softw. Eng. Res. Dev. 7 (February
2020) (2019) 7, https://doi.org/10.5753/jserd.2019.460.

[78] K. Peffers, T. Tuunanen, C.E. Gengler, M. Tuunanen, W. Hui, V. Virtanen,
J. Bragge, The design science research process: a model for producing and
presenting information systems research. First International Conference on
Design Science Research in Information Systems and Technology, 2006.83–16

[79] R. Pereira, J. Serrano, A review of methods used on IT maturity models
development: a systematic literature review and a critical analysis, J. Inf.
Technol. 35 (2) (2020) 161–178, https://doi.org/10.1177/0268396219886874.

[80] J.F. Pérez, W. Wang, G. Casale, Towards a DevOps approach for software quality
engineering. WOSP-C 2015 - Proceedings of the 2015 ACM/SPEC Workshop on
Challenges in Performance Methods for Software Development, in Conjunction
with ICPE 2015, ACM Press, New York, New York, USA, 2015, pp. 5–10, https://
doi.org/10.1145/2693561.2693564.

[81] Plutora, DORA DevOps Metrics - Accelerate your Value Stream - Plutora.com,
2020, https://www.plutora.com/resources/videos/devops-dora-metrics.

[82] W. Pourmajidi, A. Miranskyy, J. Steinbacher, T. Erwin, D. Godwin, Dogfooding:
using IBM cloud services to monitor IBM cloud infrastructure. CASCON 2019
Proceedings - Conference of the Centre for Advanced Studies on Collaborative
Research - Proceedings of the 29th Annual International Conference on Computer
Science and Software Engineering, 2020, pp. 344–353.http://arxiv.org/abs/1
907.06094

[83] T. Power, D. Jackson, B. Carter, R. Weaver, Misunderstood as mothers: women’s
stories of being hospitalized for illness in the postpartum period, J. Adv. Nurs. 71
(2) (2015) 370–380, https://doi.org/10.1111/jan.12515.

[84] L. Prates, J. Faustino, M. Silva, R. Pereira, DevSecOps metrics, in: S. Wrycza,
J. Maślankowski (Eds.), Lecture Notes in Business Information Processing vol.
359, ISCTE-IUL, Instituto Universitário de Lisboa (ISCTE-IUL), Lisbon, Portugal,
2019, pp. 77–90, https://doi.org/10.1007/978-3-030-29608-7_7.

[85] J. Pries-Heje, R. Baskerville, The design theory nexus, MIS Q. 32 (4) (2008)
731–755, https://doi.org/10.2307/25148870.

[86] J. Pries-Heje, R. Baskerville, J. Venable, Strategies for design science research
evaluation. 16th European Conference on Information Systems, ECIS 2008, 2008.

[87] Puppet Labs, 2013 State of DevOps Report. Technical Report, Puppet Labs, 2013.
http://puppetlabs.com/2013-devops-report

[88] Puppet Labs, 2014 State of DevOps Report. Technical Report, Puppet Labs, 2014.
http://puppetlabs.com/2014-devops-report

[89] Puppet Labs, 2015 State of DevOps Report. Technical Report, Puppet Labs, 2015.
http://puppetlabs.com/2015-devops-report

[90] Puppet Labs, 2016 State of DevOps Report. Technical Report, Puppet Labs, 2016.
https://puppetlabs.com/solutions/devops/

[91] Puppet Labs, 2020 State of DevOps Report. Technical Report, Puppet Labs, 2020.
https://puppet.com/resources/report/2020-state-of-devops-report/

[92] K. Raworth, C. Sweetman, S. Narayan, J. Rowlands, A. Hopkins, Conducting
Semi-Structured Interviews, Oxfam, 2012.

[93] ReleaseTEAM, DevOps Metrics Measure Your DevOps Results, 2021, https
://www.releaseteam.com/measure-your-devops-results/.

[94] I.T. Revolution, Itrevolution, 24 Key Capabilities to Drive Improvement in
Software Delivery - IT Revolution, 2020, https://itrevolution.com/24-key-capabi
lities-to-drive-improvement-in-software-delivery/.

R. Amaro et al.

111

Information & Management 60 (2023) 103809

25

[95] J. Riggins, Google’s Formula for Elite DevOps Performance – The New Stack,
2020, https://thenewstack.io/googles-formula-for-elite-devops-performance/.

[96] P. Rodríguez, M. Mäntylä, M. Oivo, L.E. Lwakatare, P. Seppänen, P. Kuvaja,
Advances in using agile and lean processes for software development, in: A.
M. Memon (Ed.), Advances in Computers vol. 113, Academic Press Inc., Faculty of
Information Technology and Electrical Engineering, University of Oulu, Finland,
2019, pp. 135–224, https://doi.org/10.1016/bs.adcom.2018.03.014.

[97] M. Rother, Toyota Kata: Managing People for Improvement, Adaptiveness and
Superior Results, MGH, New York, USA, 2019.

[98] M. Sánchez-Gordón, R. Colomo-Palacios, A multivocal literature review on the
use of DevOps for e-learning systems. Proceedings of the Sixth International
Conference on Technological Ecosystems for Enhancing Multiculturality,
TEEM’18, ACM, Association for Computing Machinery, New York, NY, USA,
2018, pp. 883–888, https://doi.org/10.1145/3284179.3284328.

[99] B. Saunders, J. Sim, T. Kingstone, S. Baker, J. Waterfield, B. Bartlam,
H. Burroughs, C. Jinks, Saturation in qualitative research: exploring its
conceptualization and operationalization, Qual. Quant. 52 (4) (2018) 1893–1907,
https://doi.org/10.1007/s11135-017-0574-8.

[100] A. Schurr, Mobile App DevOps Metrics that Matter - NowSecure, 2019, http
s://www.nowsecure.com/blog/2019/02/27/mobile-app-devops-metrics-that-ma
tter/.

[101] M. Senapathi, J. Buchan, H. Osman, DevOps capabilities, practices, and
challenges: insights from a case study. Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018 -
EASE’18, number June in EASE’18, ACM, Association for Computing Machinery,
New York, USA, 2018, pp. 57–67, https://doi.org/10.1145/3210459.3210465.

[102] S. Sharma, The DevOps Adoption Playbook: A Guide to Adopting DevOps in a
Multi-Speed IT Enterprise, John Wiley & Sons, Inc., Indianapolis, Indiana, 2017,
https://doi.org/10.1002/9781119310778.

[103] R. Shinde, Is your DevOps successful?, 2019, https://www.accenture.com/us-en
/blogs/software-engineering-blog/reshma-shinde-devops-success-metrics.

[104] G. Singh, Measuring DevOps Success with DevOps Metrics, 2019, https://www.
xenonstack.com/blog/devops-metrics/.

[105] J. Smeds, K. Nybom, I. Porres, DevOps: a definition and perceived adoption
impediments. Lecture Notes in Business Information Processing vol. 212,
Springer, USA, 2015, pp. 166–177, https://doi.org/10.1007/978-3-319-18612-2_
14.

[106] B. Snyder, B. Curtis, Using analytics to guide improvement during an agile-
DevOps transformation, IEEE Softw. 35 (1) (2017) 78–83, https://doi.org/
10.1109/MS.2017.4541032.

[107] C. Sonnenberg, J. vom Brocke, Evaluation patterns for design science research
artefacts, in: M. Helfert, B. Donnellan (Eds.), Practical Aspects of Design Science
Chapter 7, Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 71–83,
https://doi.org/10.1007/978-3-642-33681-2_7.

[108] C. Staff, Essential Quantitative DevOps Metrics - Coveros, 2016, https://www.
coveros.com/essential-quantitative-devops-metrics/.

[109] D. Sun, M. Fu, L. Zhu, G. Li, Q. Lu, Non-Intrusive anomaly detection with
streaming performance metrics and logs for DevOps in public clouds: a case study
in AWS, IEEE Trans. Emerg. Top. Comput. 4 (2) (2016) 278–289, https://doi.org/
10.1109/TETC.2016.2520883.

[110] D.A. Tamburri, D. Di Nucci, L. Di Giacomo, F. Palomba, Omniscient DevOps
analytics, in: J.M. Bruel, M. Mazzara, B. Meyer (Eds.), Software Engineering
Aspects of Continuous Development and New Paradigms of Software Production
and Deployment, DevOps 2018 vol. 11350, Springer International Publishing,
2019, pp. 48–59, https://doi.org/10.1007/978-3-030-06019-0_4.

[111] F.T.C. Tan, S.L. Pan, M. Zuo, Realising platform operational agility through
information technology–enabled capabilities: aresource-interdependence
perspective, Inf. Syst. J. 29 (3) (2019) 582–608, https://doi.org/10.1111/
isj.12221.

[112] D. Teixeira, R. Pereira, T. Henriques, M.M.D. Silva, J. Faustino, A maturity model
for DevOps, Int. J. Agile Syst. Manag. 13 (4) (2020) 464, https://doi.org/
10.1504/IJASM.2020.112343.

[113] D. Teixeira, R. Pereira, T.A. Henriques, M. Silva, J. Faustino, A systematic
literature review on DevOps capabilities and areas, Int. J. Hum. Cap. Inf. Technol.
Prof. 11 (2) (2020) 22, https://doi.org/10.4018/IJHCITP.2020040101.

[114] TestEnvironmentManagement.com, Top 5 DevOps Metrics – Test Environment
Management, 2019, https://www.testenvironmentmanagement.com/top-5-de
vops-metrics/.

[115] Ubiq, Top DevOps Metrics and KPIs To Monitor Regularly - Ubiq BI Blog, 2020,
http://ubiq.co/analytics-blog/top-devops-metrics-kpis-to-monitor-regularly/.

[116] J. Venable, J. Pries-Heje, R. Baskerville, A comprehensive framework for
evaluation in design science research. Proceedings of the 7th International
Conference on Design Science Research in Information Systems: Advances in
Theory and Practice, 2012, pp. 423–438, https://doi.org/10.1007/978-3-642-
29863-9_31.

[117] J. Venable, J. Pries-Heje, R. Baskerville, FEDS: a framework for evaluation in
design science research, Eur. J. Inf. Syst. 25 (1) (2016) 77–89, https://doi.org/
10.1057/ejis.2014.36.

[118] Veritis, Measuring DevOps: Key ‘Metrics’ and ‘KPIs’ That Drive Success!, 2020, htt
ps://www.veritis.com/blog/measuring-devops-key-metrics-and-kpis-that-drive-s
uccess/.

[119] Y. Wang, M. Mäntylä, S. Demeyer, K. Wiklund, S. Eldh, T. Kairi, Software test
automation maturity: a survey of the state of the practice, in: M. Vansinderen, H.
G. Fill, L. Maciaszek (Eds.), Proceedings of the 15th International Conference on
Software Technologies, No. 15th International Conference on Software
Technologies (ICSOFT), SCITEPRESS - Science and Technology Publications,
2020, pp. 27–38, https://doi.org/10.5220/0009766800270038.

[120] M. Watson, 15 Metrics for DevOps Success, 2017, https://stackify.com/15-met
rics-for-devops-success/.

[121] S. Watts, DevOps: Metrics and Key Performance Indicators (KPIs), 2017, https://it
chronicles.com/devops/devops-metrics-kpis/.

[122] R. Westrum, A typology of organisational cultures, Qual. Saf. Health Care 13
(Suppl 2) (2004) 22–27, https://doi.org/10.1136/qshc.2003.009522.

[123] J. Wettinger, U. Breitenbücher, F. Leymann, DevOpSlang – bridging the gap
between development and operations. Lecture Notes in Computer Science
(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), in: LNCS, vol. 8745, IFIP, Stuttgart, 2014, pp. 108–122, https://
doi.org/10.1007/978-3-662-44879-3_8.

R. Amaro et al.

112

CHAPTER 5

Article #4

This paper (A4) researches the DevOps adoption benefits and synthesizes them, following two
SLRs conducted over 98 publications on the topic, together with 36 case studies. In this process,
key benefits are identified, such as faster time to market, improved collaboration, and increased
automation, and using empirical evidence from case studies to confirm the found benefits
[27]. While the first SLR elicits all of the benefits found in the literature, the second SLR
compares these benefits to practical data from the case studies’ DevOps deployment. The most
commonly claimed benefits include faster time to market, enhanced collaboration, and increased
automation. The study confirms that empirical evidence exists for all identified benefits. The
study contributes to the theoretical body of knowledge by consolidating the benefits of DevOps
implementations.

The main findings are consolidating the benefits of DevOps implementation1 through two
systematic literature reviews. The most reported benefits include better collaboration between
developers and operators, faster time to market, and improvements in synergy and automation.
The findings also show that the most reported benefits are better collaboration between developers
and operators, faster time to market, and improvements in synergy and automation. Finally, it
provides a comprehensive synthesis of DevOps benefits and a discussion on the challenges,
helping new practitioners understand what to expect when adopting DevOps.

Article details:

– Title: DevOps benefits: A systematic literature review

– Date: May 2022

– Journal: Software - Practice and Experience

– Scimago Journal Rank: Q2

– Publisher: John Wiley and Sons Ltd

113

Received: 13 October 2021 Revised: 9 February 2022 Accepted: 8 April 2022

DOI: 10.1002/spe.3096

R E S E A R C H A R T I C L E

DevOps benefits: A systematic literature review

João Faustino1 Daniel Adriano1 Ricardo Amaro1 Rubén Pereira1

Miguel Mira da Silva2

1Instituto Universitário de Lisboa
(ISCTE-IUL), Lisboa, Portugal
2Instituto Superior Técnico, Universidade
de Lisboa, Lisboa, Portugal

Correspondence
João Faustino, Instituto Universitário de
Lisboa (ISCTE-IUL), Lisboa, Portugal.
Email: jpcfo11@iscte-iul.pt

Abstract
Among current IT work cultures, DevOps stands out as one of the most adopted
worldwide. The focus of this culture is on bridging the gap between development
and operations teams, enabling collaborative effort toward quickly producing
software, without sacrificing its quality and support. DevOps is used to tackle a
variety of issues; as such, there are differing benefits reported by authors when
performing their analysis. For this research, we aim to reach consensus on the
DevOps benefits reported in existing literature. To accomplish this objective, two
systematic literature reviews. The first intends to find all benefits reported in
the literature, while the second review will be used to map the benefits found
in the first one with DevOps implementation case studies, providing empir-
ical evidences of each benefit. To strengthen the results, the concept-centric
approach is used. During this research it was possible to observe that the most
reported benefits are aligned with the DevOps premises of better collaboration
between developers and operators, delivering software and products quicker.
Based on DevOps implementation case studies, most reported benefits include a
faster time to market as well as improvements in synergy and automation. Less
reported benefits include a reduction in failed changes and security issues.

K E Y W O R D S
agile, benefits, case study, DevOps, systematic literature review

1 INTRODUCTION

With recent technological advances, information technology (IT) departments have taken an increasingly strategic role
in organizations1 given the importance of IT in helping the accomplishment of business objectives.2 Several disciplines
like IT governance and IT service management (ITSM) have built mechanisms and processes so that both IT and business
can be aligned in terms of aims and expectations, helping organizations satisfy their objectives.3–5

Just as organizations’ strategic view has evolved, software development lifecycles (SDLC) have also matured to satisfy
current demands. To face the great changes observed in the modern-day markets, businesses need to have greater speed
and flexibility. This translates to challenges for IT departments worldwide.6 As stated, the SDLC has been evolving, no
longer strictly focusing on the performance of its own processes, as seen on traditional software development method-
ologies like waterfall,7,8 but on the iterations and relationships between the intervenient on the SDLC process and the
value that the software can bring to the business.9 These kinds of software development methodologies are considered
agile methodologies and follow the “Agile Manifesto.”10 Even though Business and IT development are brought closer, a

Softw: Pract Exper. 2022;52:1905–1926. wileyonlinelibrary.com/journal/spe © 2022 John Wiley & Sons, Ltd. 1905

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

114

1906 FAUSTINO et al.

gap is still observed within the IT department’s development and operations teams.11 The major issue between these two
teams are the different objectives for each team, IT development team is focused on delivering new features or products,
while the IT operators are focused on the stability.12 It’s believed by introducing changes on systems would lead to insta-
bility.13 however due to the constant market changes, IT of the organizations need to evolve into new functionalities.14

A DevOps culture has emerged to address this gap. The DevOps word itself comes from the junction of two other words:
development and operations.15

DevOps has been adopted across the globe and new research articles flourish. Several studies have reported practices,
benefits, and challenges however not always in a structured, clear, and concise way.16–18 In literature, one can find studies
that synthesize DevOps practices, as for example, deployment automation19–21; however, it presently lacks research that
specifically synthesize its benefits and challenges, guiding professionals in what they may expect during and after DevOps
practice implementation.22 Lack of willingness to share can be a challenge to DevOps implementation.23

Being a contemporary topic, with both theoretical and empirical studies found in literature, this research aims to
synthesize the benefits organizations may expect with DevOps implementation and how to achieve them. Being said,
by synthetizing the DevOps benefits, this research also provides which problems organizations faced before the DevOps
adoption and what was the benefit achieved after that. This will help organizations to know what problems could be fixed
by the DevOps adoption. The adopted research methodology will include two systematic literature reviews (SLR).

2 RESEARCH BACKGROUND

The term DevOps started to be researched after Patrick Debois introduced it at a conference entitled “Agile Infrastructure
and Operations” in 2008.24 A DevOps culture aims to bridge the gap between IT development and IT operations, who
support applications after they are delivered to production.25 The focus of DevOps is on improving communication, col-
laboration, and synergy of IT teams,26,27 enabling the continuous development and enhancement of applications to meet
both market changes and the dynamic needs of the business.28,29

In order to achieve said objectives, DevOps builds a foundation in the following areas: culture, automation, lean, mea-
surement and sharing.6 By looking at Wiedemann et al.’s6 work, one may note that of the perspectives presented above,
people play an important role for culture and sharing. Willingness to share is needed, allowing for colleagues and team
members to learn and improve their knowledge and experiences. On automation and measurement, one can state that
technological tools are the main factor; tools that are used to improve performance, automating what is being done manu-
ally, removing the element of human error, and be used to measure tasks and find improvements.30 Process optimization
is a focal point for lean methodologies. They are used in DevOps to identify opportunities for process enhancement, lever-
aging feedback loops between a its main actors. In later studies,31 people, technology and processes are considered the
cornerstones of DevOps.

Since 2001, organizations have adopted agile methodologies for its SDLC32 where the most implemented methodolo-
gies are XP and SCRUM.33 These methodologies are the foundation of DevOps and DevOps can be seen as its extension,
since they are based on the same principles of introducing short release cycles and to develop forward the customer or
user feedback.34 However, DevOps includes the operations team on early stages of the software development, being able to
develop the software already with the operations team input, thus developing software more stable including the business
feedback.35 Also, DevOps stands out due to the collection of techniques and tool to enable software continuous delivery,
clearing the path of the software to production.36,37

In conclusion, a DevOps culture seems to be very attractive to organizations worldwide, being based in a “The faster
you fail, the faster you recover” philosophy14(p1), enabling a culture of experimentation to release new products, services
and software, allowing the organization to grow and to satisfy their customers.38

3 RESEARCH METHODOLOGY

To achieve this research goal, the authors have chosen the systematic literature review (SLR) methodology. It is seen as
one of the most widely used research methods to collect and synthesize evidence.39 SLR’s are meant to have a well-defined
process to identify, evaluate, and interpret all the evidence collected during research.40,41 Thus, for this investigation,
the authors have followed the framework proposed by Kitchenham40 where the SLR is split into three stages (Figure 1).
Moreover, to add rigour to this research, the authors have chosen to perform two SLR’s: the first to find all the benefits

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

115

FAUSTINO et al. 1907

F I G U R E 1 Steps performed in each of the performed SLRs

described on existing literature, while the second one being used to find instances of those benefits being reported on case
studies from DevOps implementation. This second SLR will confirm and evaluate the findings from the first SLR, where all
the DevOps benefits were gathered from literature. The authors believe that searching for case studies is a reliable method
of evaluation given that these are a research methodology known by providing evidence of a certain phenomenon.42 The
first SLR was conducted between May and September 2020, while the second SLR was carried out between August and
October 2020.

The process designed by Kitchenham40 was followed by both SLR’s. The authors have started by defining the Problem
and Motivation for the review. For the first SLR where the expected result was to identify the reported benefits on the
literature, the motivation was to acknowledge the DevOps benefits on the literature, while for the second SLR the moti-
vation was to find evidence of the DevOps benefits. The next step of the process was to define the research question (RQ)
for the review. In this case, the same RQ was identified for both SLRs “What are the benefits of implementing DevOps?”

After the RQ definition, the next step is to define a protocol where inclusion and exclusion criteria was defined, along
with the search databases and the search string of each SLR. The inclusion and exclusion criteria were based on the lan-
guage of the publications, scientific publications, and publication date. Regarding inclusion and exclusion criteria (IEC) a
minimum date was set, considering that the DevOps concept was born after the aforementioned “Agile Infrastructure and
Operations” conference, in 2008.24 For the databases, the authors have used some of the most known and used databases
on the scientific community. All these criteria were the same for both SLRs except the search string. For the first SLR the
search string was focused on DevOps benefits while for the second SLR the search string was focused on DevOps case
studies.

After applying these criteria, some filters were added to the review to exclude publications that wouldn’t provide the
necessary information for this research. One example of the used filters was the removal of duplicated. All this process
definition can be seen with more detail in Figure 1 for both SLRs.

To evaluate the research subject’s trend, the researchers have analyzed the date of publication of each relevant
piece of literature from a chronological point of view. This is extremely helpful to prove that the research topic has a

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

116

1908 FAUSTINO et al.

corresponding trend and is largely demanded by the market. The researchers used the concept-centric approach43 to bet-
ter synthesize and analyze the concepts elicited from the literature. This helps to understand the focus of the review, for a
better understanding of the readers. Also, it helps the researchers to structure the review. The usage of the concept-centric
approach can be seen in Section 4 where the concepts identified are the benefits found per reference, while in Section 5
one can see the case studies identified per reference.

4 FIRST SLR: LIST OF BENEFITS

After performing the first SLR and analyzing the articles, the list of DevOps benefits was elicited and can be seen in
Table 1. The concept-centric approach taken by the researchers can be found in Appendix A, where it is possible to see
the match between the concepts and the authors that have identified those concepts in literature.

In the next section, one can see a discussion and some conclusions about the benefits found on the literature, regarding
Table 1. After the full read of the publications, the authors have identified the benefits described on the publications and
grouped those benefits by the concepts, also seen on Table 1.

Several authors among literature claim to see an improvement on the communication and collaboration (as seen in
Appendix A) between developers and operators,22,28,44,45 creating a synergetic environment where both teams desire to
work together toward accomplishing overall objectives.11,46

Before DevOps, operators and developers may have had different mindsets when facing change. With the disappear-
ing of the waterfall software development methodology and the emergence of the “Agile Manifesto”,10,47 the developer’s
mindset shifted to deliver more features as fast as possible to production, while the operator’s continued to have the
mindset of guaranteeing the stability of the systems it was solely responsible for.12 These divergent views on change typ-
ically lead to finger-pointing, with operators blaming developers for the production impact of deployments when they
might have been involved earlier in the development process to try to anticipate possible problems before they reached
production.48

T A B L E 1 List of benefits identified in literature

Concept ID Benefits # References

B01 Cross team collaboration and communication 49

B02 Faster time to market 41

B03 Faster and better feedback loops 38

B04 Increase of code quality 32

B05 Increase of value 26

B06 Improvement of system reliability 22

B07 Less mean time to recover 17

B08 Increase of team performance 17

B09 Costs reduction 13

B10 Processes and tools standardization 13

B11 Maximization of competences 13

B12 Decrease of manual work 11

B13 Increase of customer satisfaction 11

B14 Less failed changes 11

B15 Increase of employees motivation 9

B16 More innovation 8

B17 Better deployment management 5

B18 Less security issues 5

B19 Organizational cultural changes 41

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

117

FAUSTINO et al. 1909

Because of the resultant DevOps synergy, both operators and developers are more driven to collaborate across teams.
They will feel that they are working toward a common and greater goal for everyone.49 However, this can also be extended
to the business. Just as Agile practices and principles brought business and developers together,10 DevOps introduces
operators into the mix, emphasizing the significance of operations management in the organization.50

As seen in Appendix A, faster time to market, related to continuous integration and continuous delivery capabilities,
is one of the most reported benefits from DevOps. Organizations can design new, better features for their products as a
result of faster feedback.51 Through DevOps enabled automation they are then able to put said features into the market
at a quicker rate than competition.52

It is noteworthy to mention that various authors were able to identify the different sources that contribute for a bet-
ter and faster feedback under DevOps: customers and end users (business users)14 as well as between the DevOps team
itself.49 Customers and end users are those who use the application; they are best to identify issues and potential improve-
ments.53,54 DevOps has a practice to shorten the feedback loops between operators and developers, which also leads to
faster feedback when something is going wrong and requires further work.55

Improved feedback does not only contribute for better development and application stability, but also leads to oppor-
tunities for DevOps teams to learn about its components (for example, operators can learn about the development process,
and developers learn about processes which guide operators work) as well as the business itself.56

Code quality can be increased as a result of implementing improved delivery pipelines under which code is built
into packages and introduced to the respective repository after each check.57 During the packaging of a new build, code
can be submitted through quality gates, ensuring that best practices defined for that application are being adhered to.20

Due to the continuous integration capability encouraged by DevOps culture, developers from several teams will be work-
ing in collaboration with other developers. There will be opportunities to find issues or needed improvements to other
developers’ code, improving the overall code quality of applications.58

There is great consensus in literature about the increase of value when using DevOps. DevOps is a culture that uses
lean and agile practices. DevOps phenomenon arose as an extension of agile software development inspired by lean con-
cepts.59 The first Agile Manifesto principle is about value: “Our highest priority is to satisfy the customer through early
and continuous delivery of valuable software.”10 Due to the continuous delivery capability that DevOps employs, shorter
development and release cycles60 can be achieved, where business and customers will notice the ongoing improvement
of software, realizing the continuous increase in value of their applications.29

Automation brings an additional benefit in the ability to perform defined actions after an event is triggered by
automated monitoring.61 By automating infrastructure using infrastructure as code, the availability and reliability of
applications will be improved. Such infrastructure can scale up and scale down according to its reported usage and
demand.14

Related to the faster time to market benefit, feedback and automation is not only used to deliver new or improved
products.62 Due to the premises of DevOps in having a solid IT team, both developers and operations work together to
guarantee that fixes are deployed in production instantly.63 This contributes to the stability and availability of applications,
so that defects do not cause greater impact.23

The objective of implementing any framework, practice or methodology is to improve performance. However, oper-
ators and developers commonly have different objectives and use different metrics to measure their performance, as
explained in Section 1. Thus, to improve a team’s performance, an alignment is needed for the definition of clear and
visible goals.64 In case of operations, these would be aimed at the stability and reliability of an application, while for devel-
opers the focus should be on the features delivered for it.44,65 Since DevOps is also targeted toward using lean and agile
practices,59 it concentrates its aim on improving people, processes and technologies capabilities, specifically in the way
the work in process is limited and done in small batches, therefore contributing to the well-being of their teams.29

Cost reduction is among the top goals of every organization in the world. As discussed before, DevOps can help reduce
costs by reducing bottlenecks in the SDLC, optimizing time to deploy changes in production and enabling better resource
management.22 This can help balance software quality with costs, helping organizations to have an increased return on
investment.66,67

To optimize the SDLC it is essential that operations can react quickly, helping developers have their environments
stable, up and running. DevOps encourages operators to use the infrastructure as a code capability in order to help manage
and configure environments more quickly and in a standardized way.68,69 This allows developers to have development and
preproduction environments, which aids in the discovery of issues early in the SDLC.70 Likewise, the environment process
configuration and tools used by each team should be standardized, avoiding common situations like “it was working on
my machine.”71

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

118

1910 FAUSTINO et al.

With the mixing of IT teams by making developers and operators work together, the competences of these resources
will be increased.25 Developers will be able to get abilities that most often regard to operations, while operators will get
abilities on areas of development.65 This also contributes for improved knowledge management,22 allowing a DevOps
team to be more complete in terms of their joint competences.

On a decrease of manual work a consensus can be concluded in literature. This is accomplished by using automation.
There are three major areas where it can be applied: testing,72 the delivery pipeline,73 and configuration or provisioning.74

Test scripts can be automated by using tools that will perform the actions of the testers, verifying if the final output is
the desired one. Thus, this capability reduces the manual work of testers as well as the risk for human error. Moreover,
automated tests enable continuous testing capability which helps find integration issues earlier in the development cycle,
making defect resolution faster and with less impact on production environments.72 This also frees up the tester to create
other, exploratory testing activities.

Operations are usually not only responsible to guarantee the stability of production environments but also of the lower
environments. If a development team requires several development environments, each requiring operators to config-
ure manually, a blocking of development resources may occur. DevOps encourages the usage of infrastructure-as-code to
allow the operators to manage their infrastructure and environment configurations by using code, replicating said con-
figurations for several alternative environments, speeding up configuration.70 Furthermore, it is possible to automatically
provision environments with resources based on predetermined thresholds, guaranteeing their stability and availability.67

DevOps encourages developers to continuously integrate their code so that issues can be found earlier.75 However, this
requires a lot of work if every time a developer checks-in his code, a manual package needs creation for other developers
to review. Under DevOps, every time that a developer commits code to a code repository, a script is triggered that will
automatically test and create a package or artifact, checking and giving immediate feedback if there is any error and, if
successful, storing it properly.56 From this point onwards, the developed package can be used for installation across all
environments. With the package stored, one could also trigger a script that will deploy the package with new code in a test
environment, making it available for testers; alternatively, once the deployment is completed, more complex automated
testing can be triggered, like integration or end-to-end tests and developers informed if the new code failed in any test,
speeding up the bug fixing and increasing the software’s stability.22,76

Customer satisfaction can be seen as a consequence, resulting from a variety of previously described benefits. Since
DevOps will continuously improve the stability of applications while reaching for customer feedback, customer satisfac-
tion will increase.22 By reducing bottlenecks on the SDLC process, the customers’ feedback is deployed on the application
faster, further increasing satisfaction.77 Also, looking from a perspective in which a customer is internal, DevOps can also
contribute to cost reduction.

Less failed changes can be seen as a consequence from both the standardization of processes and tools, as well as
from other DevOps capabilities in general. With a standardization of processes, like those used in a deployment, for
example, issues on a deployment script can be found and fixed in other environment, before reaching a production deploy-
ment.22 With all the automation (in testing areas, for example) and continuous integration that DevOps encourages, help
is obtained toward identifying issues with development work earlier on the SDLC, helping to avoid failed changes when
moving to production.78

Employees of an organization will feel more motivated by working on a more communicative environment, in which
they feel that their team will back them up.12 This will contribute to reduced blame-games between developers and oper-
ators.54 Due to the sharing culture that DevOps promotes, developers will learn about operators’ tasks just as much as
operators will learn about developers’ tasks. Thus, employees will be more capable to backup each other up on different
types of work.15,79

Due to the increased speed of development, and by enabling a faster time to market, DevOps allows organizations
to experiment new solutions, features and products29 without incurring in significant economic impacts. Start-up com-
panies are known for creating new market segments due to the innovative solutions they create. DevOps brings a great
opportunity for these organizations, which does not have much revenue, allowing a spirit of the “Faster you fail, faster
you recover”14(p1).

The setup of IT Teams before DevOps were structured in a way that deployments were manually performed by single
or multiple operation teams that had the responsibility for configuring and setting up production environments, database
configuration, backups of software build and reversing bad builds on the new software.56 This raises the possibility and
concern of human errors, which can impact the entire service stack of an organization.69 Automation is one of the most
used capabilities in DevOps which can help on this matter. By building automatic deployment mechanisms it is possible
to decrease the volume of potential outages from applications.65 Moreover, DevOps gives the ability for developers to

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

119

FAUSTINO et al. 1911

perform their own deployments under the motto “You build it, you run it”,73 which empowers developers to find bad
builds before operators, resulting in improved deployment management.

DevOps promotes monitoring during the entire deployment pipeline, using tools to notify developers and operators
in case of something going wrong, or the need for manual actions, like rolling back the software to a previous version,63

contributing also to a better deployment management.
DevOps is usually allied with cloud implementations which help deploy security integration and carry out penetration

tests between applications.80,81 Nowadays, cloud providers offer services that promote the usage of DevOps, in which a
security model for their customers is ensured.82

As discussed earlier, DevOps is not only focused on automating processes and improved performance, but also on cross
team collaboration and interaction between people. For DevOps, or other agile software development methodologies,
organizations need to have a culture that allows for these interactions. Lean, Agile, and DevOps appeared in various
times to meet various requirements,83 but they all concentrate on organizational culture by forming interdisciplinary
teams, cutting waste, concentrating on the customer, embracing change, and providing value on a continual basis. Under
DevOps, sharing is the key for operators and developers to work together. As such, organizational culture needs to be
adapted to promote this kind of involvement.76

5 SECOND SLR: EMPIRICAL EVIDENCES OF DEVOPS BENEFITS

A second SLR was carried out to confirm and evaluate the findings from the first SLR, in which all DevOps benefits were
gathered from literature. To do so, the authors captured and analyzed a total of 36 DevOps implementation case studies.
Each of the studies was read for data on the outcomes of introducing DevOps capabilities in a business environment. A
list of these articles, their references, and basic vectors of analysis, are found on Table 2.

Due to the data provided in Table 2, it was possible to produce Figure 2 with a segregation of the case studies
by continent, country, and business sector. It is possible to see that DevOps is more present in Europe or on multi-
national organizations that work in several countries from multiple continents. Regarding the business sector, the IT
business sector clearly stands out from the other sectors. Since DevOps is a culture that is focused on IT developers
and operators, it makes sense that IT organizations implement this culture before other sectors. However, from pro-
fessional experience from the authors, the DevOps culture have been expanding on the financial sector (banking and
insurance).

Having identified and analyzed the final list of DevOps implementation articles, we proceeded to map business benefit
concept IDs to case studies in which they are mentioned. Some of the documents included findings from more than one
case study; for these, we relied on decimals to differentiate implementation results from each organization as much as we
possibly could. However, it is important to note that some authors merged in a single body the observations and results
of multiple, different DevOps case studies, making full differentiation impossible. In total, 69 case studies were identified
and reviewed as part of our research. The results of this effort are presented in Table 3 (also refer to Appendix B). Moreover,
one of the case studies didn’t presented any benefit, where the authors have identified to study the benefits as their own
future work. The benefit ID and benefit description columns are referring to the concepts previously presented in Table 1.
Lastly, it is relevant to add that most of the case studies did not provide quantitative evidence of these benefits, but often
referred to them in a qualitative manner.

An improvement in the rate by which new development is produced, deployed, and reaches the market was by
a considerable margin the most widely and explicitly observed benefit of a DevOps adoption. The implementation of
DevOps practices, particularly when it comes to establishing a bridge between development and operations teams,91

was commonly pointed out as an enabling factor toward faster delivery.108 The added flexibility associated with DevOps
practices allows for new software evolutions to be implemented faster, while sustaining a quality standard.75 Shorter
response times53 and increased deployment speed104 are likely to be observed in a successful DevOps integration. In
Luz et al.’s28 study it is stated that “after the DevOps adoption, it was possible to make 29 deployments on a single day”
whereas before, due to rigid and conflicting policies at the operational level, deployment were only scheduled to occur
once, weekly.

As established, the development of synergies between teams is a foundational principle for applying DevOps prac-
tices. From our research, improved collaboration and communication between developers and operational staff was a
frequently reported benefit resulting from DevOps implementation. Increased awareness of the overall software devel-
opment processes, standard deployment practices and service management took place69 as teams abandoned traditional

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

120

1912 FAUSTINO et al.

T A B L E 2 List of DevOps implementation case studies analyzed

ID Reference Country Continent Business sector

CS.01 84 Sweden Europe Information technology

CS.02 85 Spain Europe Human resources

CS.03 86 Italy Europe Lighting business

CS.04 56 Denmark Europe Information technology

CS.05 28 Brazil South America Government organization

CS.06 64 Morocco Africa Information technology

CS.07 87 Montenegro Europe Banking industry

CS.08 88 Germany Europe Information technology

CS.09 55 USA North America Information technology

CS.10 89 Multinational Multinational Healthcare

CS.11 90 USA North America University project

CS.12 91 Finland Europe Information technology

CS.13 92 New Zealand Oceania Finance & insurance industry

CS.14 93 USA North America Government organization

CS.15 68 Spain Europe Information technology

CS.16 53 Multinational Multinational Mixed

CS.17 15 Finland Europe Information technology

CS.18 94 Australia Oceania Information technology

CS.19 95 Finland Europe Information technology

CS.20 96 USA North America Information technology

CS.21 18 Multinational Multinational Information technology

CS.22 97 N/A Europe Information technology

CS.23 98 Multinational Multinational Mixed

CS.24 75 (Not provided) (Not provided) Finance & insurance industry

CS.25 99 (Not provided) (Not provided) Information technology

CS.26 23 Multinational Multinational Mixed

CS.27 100 Multinational Multinational Information technology

CS.28 101 UK Europe Information technology

CS.29 69 Multinational Multinational Information technology

CS.30 102 Spain Europe University project

CS.31 103 USA North America Government organization

CS.32 104 Multinational Multinational Information technology

CS.33 105 Sweden Europe Information technology

CS.34 106 Finland Europe Information technology

CS.35 107 Germany Europe Information technology

CS.36 67 (Not provided) (Not provided) Information technology

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

121

FAUSTINO et al. 1913

F I G U R E 2 Case studies segregation

T A B L E 3 DevOps benefits analysis

Benefit ID (from Table 1) Benefit description (from Table 1) Occurrences in case studies Percentage of case studies

B02 Faster time to market 49 71%

B01 Cross team collaboration and communication 39 57%

B12 Decrease of manual work 38 55%

B08 Increase of team performance 30 43%

B04 Increase of code quality 27 39%

B17 Better deployment management 25 36%

B06 Improvement of system reliability 23 33%

B03 Faster and better feedback 22 32%

B10 Processes and tools standardization 19 28%

B11 Maximization of competences 20 29%

B13 Increase of customer satisfaction 19 28%

B15 Increase of employees motivation 18 26%

B09 Costs reduction 12 17%

B07 Less mean time to recover 10 14%

B19 Organizational cultural changes 9 13%

B16 More innovation 6 9%

B05 Increase of value 6 9%

B14 Less failed changes 5 7%

B18 Less security issues 2 3%

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

122

1914 FAUSTINO et al.

“work silos” in favor of DevOps.91 Furthermore, this “empowerment of teamwork”96 between development and oper-
ations seems to heavily tie in with other business benefits ranging from improved reliability, quality, and security15 to
competence maximization, innovation and employee motivation. Referring to Shahin’s104 work, in interviews that were
held with participants of a DevOps implementation study, the opportunity of learning about overall operational and
architecture aspects was often commented as a deeply useful and “growing exercise.”

DevOps practices emphasize automation over manual work in the development, testing and deployment of soft-
ware.23 Over 50% of the reviewed case studies clearly mention a reduction in the volume of manual tasks. For example,
in Laukkanen et al’s105 study, “manual test[ing] had been the bottleneck” for reducing feature freeze periods; with
DevOps implemented, release tests for specific systems were automated, causing a reduction in the time necessary for
completion. Luz et al.28 also describe how before having DevOps implemented a vast majority of automatable tasks
were done manually, often causing errors and need for rework. Similar to what we observed in our analysis of B01
(cross team collaboration and communication), the benefit of reducing manual work appears to tie in with faster deliv-
ery,14 less failed changes, improved code quality and even employee motivation, as was observed in Gupta et al.’s89

case study. Here, teams focused on incremental automation, focusing on a single, critical workflow at a time; upon
reviewing progress, it is stated that “such small successes motivated the team”, encouraging them to pursue further
automation.

Although increase of value (B05), less failed changes (B14) and less security issues (B18) were not commonly and
explicitly discussed in the analyzed case studies, there is room for further investigation toward better understanding
how business benefits can relate to each other. Despite said links not being subject to investigation under the present
research, it may not be unreasonable to consider that organizations who increase release rates and quicken their time
to market (B02) are in a better position to deliver greater value to stakeholders (B05); or that those who significantly
improve communication and collaboration between developers and operations (B01) may also observe a reduction in
failed changes or release faults (B14).

6 RESULTS AND DISCUSSION OF DEVOPS EMPIRICAL EVIDENCES

Table 4 presents examples for each of the 19 business benefits identified as part of our research. Where applica-
ble, cells referring to the “Problem Solved” column are also filled in, indicating the motivation or reasoning that
led to the implementation of DevOps, which led to the observed benefits. This section shows that DevOps can
solve different problems on the organizations, indicating an empirical evidence of the benefits got after the DevOps
implementation.

7 CHALLENGES IN DEVOPS ADOPTION: THE OTHER SIDE OF THE COIN

Even thought, this research is about the benefits of the DevOps culture adoption, the main objective is to show
what to expect when adopting DevOps. Thus, for this article some DevOps challenges will also be presented,
since some of the researchers that identified DevOps benefits, were also able to identify challenges to the DevOps
implementation. In Table 5, one can see which challenges were identified by the researchers that also identified
benefits.

As it can be seen, some of the challenges shown in Table 5, are more related with the culture, environment, and
business industry where the DevOps culture is being implemented, rather than the technologic point of view of DevOps,
such as “Insufficient communication,” “Deep-seated company culture” and “Industry constraints.” This shows that when
an organization is thinking to adopt DevOps, should self-assess if it is culturally ready for this change. Moreover, to help
to mitigate this challenge, the top management of the organization should be propelling for this change so it could be
example for the rest of the organization.25 But there is a technologic challenge regarding the automation of the deployment
scripts for several technologies. Organizations have multiple applications, where each of them can have different coding
languages which needs its own deployment script. This requires a lot of different skills for DevOps to be able to automate
these different deployment scripts.

DevOps has been evolving constantly, which could help regarding the challenge “DevOps is unclear but also evolving.”
The amount of publications shows that the DevOps adoption has been growing over the time, showing that organizations
have been able to understand how to implement DevOps.

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

123

FAUSTINO et al. 1915

T A B L E 4 Case study analysis: DevOps benefit and problem solved

Benefit Example of benefit Problem solved Case study

(B01)–Cross team
collaboration and
communication

“The inclusion of operation team members and
operation topics help the operation team to
know the development topics and plan their
readiness accordingly. Additionally, they take
building knowledge and feedback for risk
assessment without additional effort.”

“We soon realized that with the current approach
we would not be able to release the first couple of
version increments. Team members in India and
USA have experience in traditional software
development and product management group in
Germany has no experience in software
development.”

CS.10

(B02)–Faster time
to market

The organization achieved a one deployment per
week frequency, with one hour / one day lead
time for changes.

“The organization size, the diversity of its
departments (development, operations, security,
service, QA, architecture, etc.) as well as the
interaction between them, and the complexity of
its processes, hampered reducing time to market,
and made this company less competitive”

CS.15

(B03)–Faster and
better feedback

“The flexibility afforded by the DevOps approach
allowed the development teams to recognize,
characterize and accommodate- date changes
to DART’s control algorithms for NEXT-C in
real time. The team was able to update the test
specifications and procedures in real time, and
ultimately achieve the goal of demonstrating
NEXT-C at Technology Readiness Level.”

“While NEXT-C was well characterized from its
own development and test perspective, there were
unknowns in the specifics of DART’s tailored
use-case for the thruster.”

CS.14

(B04)–Increase of
code quality

“Higher levels of automation were found to drive
improved quality assurance. (…) The
automated DevOps production pipeline helps to
ensure that every change is verified before it is
pushed forward for delivery.”

Description of a Problem / Motivation was not
provided.

CS.12

(B05)–Increase of
value

“Increase in deployment frequency from about 30
releases a month to an average of 120 releases
per month.”

“Need for a change by the business in order to
remain agile and competitive. (…) Prior to
DevOps, the company had been maintaining and
developing its aging monolith application that
was hosted in a traditional data center.”

CS.13

(B06)–Improvement
of system
reliability

“The time spent in the queue for the Basic
approach is about 330 times that of the
Containerized approach, and similarly the
queue time using the Hosted agent is 1,110
times that of the Containerized approach,
which translates to significant time saved. Since
all of the infrastructure is managed without any
new cost incurred, yet the throughput is high,
our CI/CD pipeline is very lean.”

“We recently decided to move toward a
micro-services-based architecture (…)
Consequently, the number of build and release
definitions would increase significantly, and the
infrastructure that was utilized may no longer be
sufficient.”

CS.8

(B07)–Less mean
time to recover

“This case study illustrates how rapid and simple
its deployment was, in accordance with the
DevOps principles, and therefore focusing on
how self-service monitoring infrastructure for
threats detection provided engineers—both
developers and IT operators—fast and
continuous feedback of the Library
Energy-Efficiency System deployed into
production. (…) it provides evidence of how this
cybersecurity monitoring infrastructure enabled
to detect threats, such as denial attacks, and
helped to better anticipate spoofing problems.”

“The development and deployment of such systems
[IoT] into production as well as their operation
and monitoring are highly complex due to the
heterogeneity of delivery endpoints. (…) The
Cluster of European Projects on Software
Engineering for Services and Applications
highlights the importance of ensuring Quality of
Service (QoS) and correctness of IoT systems
together with the complexity of such purpose as
devices and software could change for various
reasons such as bugs and failures, changing
interfaces and implementations, and changing
requirements.”

CS.30

(Continues)

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

124

1916 FAUSTINO et al.

T A B L E 4 (Continued)

Benefit Example of benefit Problem solved Case study

(B08)–Increase of
team
performance

“Considering the e-TCE system, after the DevOps
adoption, it was possible to make 29 deployments on
a single day. Before the DevOps adoption, and due to
the rigid policies of the operations team, the
deployments were schedule to occur once a week.”

“Before DevOps, deployment activities
were historically a controversial point
at the TCU. Several conflicts occurred
over time. Rigid procedures were
created to try to avoid problems.”

CS.5

(B09)–Costs
reduction

“Most companies confirm that DevOps brings shorter
response time and more frequent deployments,
higher productivity, better feedback from the client
and lower IT cost.”

Description of a Problem / Motivation
was not provided.

CS.16

(B10)–Processes
and tools
standardization

“Although having simpler deployment pipeline for each
component or service can bring a lot of benefits but
the requirement of a dedicated pipeline needs extra
effort to set up the dedicated pipelines for the first
time. Some of the participants reported that they
were employing automation technologies such as
Docker to simplify the deployment process.”

“Our analysis of the data revealed that it
was challenging for a couple of
practitioners to design applications for
different operations environments, in
which they may have had difficulty to
make consistency in a set of
heterogeneous operations
environments”

CS.32

(B11)–Maximization
of competences

“The advantage is that the DevOps team teaches the
student the necessary activities and attempt to
integrate him\her into the team. There are no
educational programs, for example, from the
university that teach all necessary competencies that
are required to work in a DevOps team. Hence,
companies train their students or team members to
get ready for the role.”

“In the traditional silo organized IT
department, there is a high level of
specialist knowledge. However, in the
DevOps setups, these departments are
linked, and the human capitals move
from highly specialized to more
generalized knowledge.”

CS.26

(B12)–Decrease of
manual work

“Overall, developers are able to perform the defect
validations much more quickly without having to
wait to manually configure the hardware with latest
software bundles having their fix in it. With this
automation, developers have full control – to
validate any defect they have to just pick and choose
the config and within few clicks they will have a
setup up and running on which, they can validate
the defect in production like environment.”

“No organizations can afford to live with
manual, error prone and repeated
activities in the software delivery
lifecycle (…) the project teams identify
this precise business need and adopt
DevOps to optimize their processes, it is
going to reap more fruits.”

CS.36

(B13)–Increase of
customer
satisfaction

“The more and faster development team adds new
features, more citizens visit the website or in the web
application. (…) The deliverables may be released
daily or at the end of the release cycle time.
Subsequently, the development team gains faster
feedback from end-users that would help in
mitigating several risks”

Description of a Problem / Motivation
was not provided.

CS.23

(B14)–Less failed
changes

“Because every change in the code is checked at every
stage of the development, and errors are discovered
and resolved on the fly, the end products have fewer
bugs, and the software can be readily released.”

Description of a Problem / Motivation
was not provided.

CS.12

(B15)–Increase of
employees
motivation

“The instantiation of the role rotation in the
cross-functional DRR practice in our case enabled
large-scale learning and KS since all team members
were able to perform several roles and become more
knowledgeable. (…) When team members rotate,
they can take on responsibilities, develop skills, and
acquire knowledge. This fosters the team’s
autonomy.”

Cross-functional collaboration and team
self-organization were described as
major challenges.

CS.25

(Continues)

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

125

FAUSTINO et al. 1917

T A B L E 4 (Continued)

Benefit Example of benefit Problem solved Case study

(B16)–More
innovation

“The single-case study presented in this research
was helpful to answer the two research questions.
First, DevOps may be considered an approach
that contributes to implementing innovation for
software-defined business environments, (…)
Second, the case shows that (IT) consulting
companies need to transform themselves for
DevOps.”

“To develop its own consulting approach,
T-Systems MMS initiated a DevOps
program, which explicitly aims to improve
the company’s offering in the area of
innovative digital services.”

CS.35

(B17)–Better
deployment
management

“This has reduced errors caused by builds with
wrong dependencies, incorrect deployment
documents, and human errors in general, since
only automated processes would deploy in the
environments. (…) Initially there will be the
impression that some legacy systems and
technologies will not be able to be automated or
benefitted by the Continuous Delivery process,
but in the case of the institution of the case study,
even COBOL and Power builder systems have
benefited from process automation.”

“It was identified that the deployment
process executed until the beginning of this
work required a lot of effort and there was
a lot of bureaucracy.”

CS.24

(B18)–Less security
issues

“The success so far shows that organizations with
large bureaucratic obstacles and stringent
software security and accreditation requirements
are able to use (Sec)DevOps processes and
toolsets to produce software that meets security
and accreditation requirements and ultimately
satisfies their customers.”

“Ensure that security became a continuous
practice rather than being tacked on at the
end.”

CS.31

(B19)–Organizational
cultural changes

“DevOps culture and mind-set, which were
enriched with colocation, were observed in the
wider dissemination of DevOps approach across
the organization.”

“Prior to this improvement, the team spent
huge efforts in merging code and resolving
merge conflicts, which were causing
broken builds often.”

CS.17

T A B L E 5 DevOps adoption challenges

ID Challenge # of references References

C.01 Industry constraints 2 29

109

C.02 Deep-seated company culture 2 39

29

C.03 Insufficient communication 1 29

C.04 DevOps is unclear 1 29

Every new adoption for an organization takes time to learn, and DevOps is not an exception for it. To adopt DevOps,
it is important to give training to the organizations employees so they can understand how to implement DevOps.

8 VALIDITY OF THE SLRS

The authors have submitted this research to validity tests where the validity is made in four different categories, construct
validity, external validity, internal validity and conclusion validity.110 Zhou et al.110 have performed a research to synthetize

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

126

1918 FAUSTINO et al.

T A B L E 6 Validity tests

Pitfall description Review test

Nonspecification of SLR’s setting and sufficient details These pitfalls are regarding the planning phase of the review. However,
this research has a process and protocol correctly defined describing
the decisions for the criteria, databases and search terms used. This
shows a path that other researchers can follow to reproduce and
replicate this research, adding more validity to this research.

Incorrect or incomplete search terms in automatic
search

Incomprehensive venues or databases

Inappropriate inclusion & exclusion criteria

Inadequate size and number of samples For both SLRs on this study, it was possible to gather a significative
amount of publications. From these samples, the authors were able to
identify several benefits on the first SLR likewise, on the second review
where was possible to identify several DevOps case studies.

Restricted time span The only time restriction defined was the minimum date of research
since DevOps was first presented in 2008.

Bias in study selection To avoid the bias study selection, the authors have defined filters and
criteria to select the studies on the same way for all of them.

Paper/database inaccessible The databases used are some of the known databases by the
academic/scientific and software engineering communities, showing
the reliability of these databases.

Primary study duplication To avoid duplication, the authors have applied a filter to remove
duplicated articles.

Bias in data extraction The several authors of this research have reviewed the data extracted
from each author to avoid that some researchers have not identified
important data.

the most common pitfalls when performing literature reviews by the different review phases. In Table 6 one can see some
of these common pitfalls and how the authors have passed the test for this research.

9 CONCLUSION

DevOps is a novel culture being adopted worldwide. The authors noticed a lack of synthetization for DevOps imple-
mentations benefits in present literature. Thus, the objective for this research was to consolidate the benefits of DevOps
implementation so new practitioners know what to expect when adopting the methodology.

To accomplish this objective, the authors have chosen to perform an SLR on the benefits reported in literature. The
SLR methodology is known for adding rigor to research due to the well-defined protocol that one must comply to when
defining it. Additionally, a second SLR was carried out to find case studies of DevOps implementation. This second SLR
was important for research, allowing for the mapping between issues that organizations faced, what were the achieved
benefits, and what empirical evidence are there, respectively. Given the accomplishment of the study objective, it is
possible to note that this study brings contributions to the theoretical body of knowledge by synthetizing the DevOps
implementations benefits.

Regarding the findings originated from this research it is possible to state that even though there was a small
number of studies in common between both SLR’s, all benefits listed from the first SLR were also found on the
second SLR. This demonstrates that empirical evidence exists for said benefits. It was also interesting to note that
the top five benefits with more references from the first SLR are not the same as the top five benefits with more
occurrences in the second SLR. Of the top five from the first SLR one can find benefits B03 and B05, while on the
second SLR one finds benefits B08 and B11. Comparing B05 with B08, the authors can understand that it is eas-
ier to measure an improvement in team performance rather than a measure of value increase. As such, it makes
sense to find B08 with more occurrences with empirical evidence. Furthermore, when comparing B03 with B11, one
can also suppose that all the automation that DevOps encourages makes it easier to record a decrease of manual

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

127

FAUSTINO et al. 1919

work, as the effect should be immediate, while faster and better feedback often results from willingness by individuals
themselves.

It is possible to see that the most reported benefits are common between the two SLR’s. Those benefits are B01 and
B02. This is aligned with the premises of DevOps, bridging the gap between developers and operators, working together
in delivering software or products faster to their customers.

Regarding the least reported benefit it is possible to see B18 on the bottom of each SLR. It seems that
this benefit is related with DevOps, but it is more specifically studied as an own discipline for security, called
DevSecOps.

The fact that case study authors did not frequently provide quantitative evidence regarding the observed busi-
ness benefits did increase the difficulty of establishing fully consolidated findings. This brings the opportunity of
future researchers to expose metrics on how to measure the DevOps benefits, to compare how the organizations busi-
ness units behave with these DevOps benefits. Another limitation to this study is due to the novelty of DevOps,
the authors couldn’t apply a quality filter on the SLR’s for top conferences and top journals, otherwise, the total
amount of articles for analysis would be low. As future work, the authors suggest performing a similar study for
DevOps, but instead of benefits it could be directed at finding adoption challenges and how to overcome them. The
authors believe that combining this research with a study where adoption challenges are tackled would help new
DevOps practitioners clarify what is expected to be achieved with DevOps and how to go about its implementation.
Moreover, this research would help organization on the decision to implement DevOps, since this research shows
the trade-off between challenges and benefits. Furthermore, there may be value in studying to what extent do iden-
tify DevOps business benefits can relate to each other, building a potential series of linked, expected improvements
for business.

DATA AVAILABILITY STATEMENT
Since this publication is a literature review where the literature is based on several digital libraries, all the data used on
this publication can be fetched by checking the references section for each publication.

ORCID
João Faustino https://orcid.org/0000-0002-1743-5348
Daniel Adriano https://orcid.org/0000-0003-2907-855X
Rubén Pereira https://orcid.org/0000-0002-3001-5911
Miguel Mira da Silva https://orcid.org/0000-0002-0489-4465

REFERENCES
1. Ajayi BA, Hussin H. Influence of ITG on organisation performance: the mediating effect of absorptive capacity. Proceedings of the 6th

International Conference on Information and Communication Technology for the Muslim World, ICT4M; 2016:1-6. doi:10.1109/ICT4M.
2016.13

2. Setyadi R, Fattah A, Waseso B. Trust Effect on Business-IT Governance Alignment in Society Culture (A Case Study in Indonesia).
Proceedings of the 2019 7th International Conference on Cyber and IT Service Management, CITSM 2019:1-5. doi:10.1109/CITSM47753.
2019.8965411

3. Bartolini C, Salle M, Trastour D. IT service management driven by business objectives An application to incident management.
Proceedings of the 2006 IEEE/IFIP Network Operations and Management Symposium NOMS 20066:45-55. doi:10.1109/NOMS.2006.
1687537

4. Cavalcante V, Bianchi S, Braz A, Amorin F, Nauata N. Investigating business needs fluctuations on IT delivery operations. Proceedings
of the Annual SRII Global Conference, SRII; 2014:19-26. doi:10.1109/SRII.2014.13

5. Setyadi R. Assessing trust variable impact on the information technology governance using business-IT alignment models: a model
development study. Proceedings of the ICSECC 2019 - International Conference on Sustainable Engineering and Creative Computing:
New Idea, New Innovation, Proceedings; 2019:218-222. doi:10.1109/ICSECC.2019.8907224

6. Wiedemann A, Forsgren N, Wiesche M. Research the practice: the DevOps phenomenon. Commun ACM. 2019;62(8):68.
7. Trivedi P, Sharma A. A comparative study between iterative waterfall and incremental software development life cycle model for opti-

mizing the resources using computer simulation. Proceedings of the 2013 2nd International Conference on Information Management in
the Knowledge Economy, IMKE 2013:188-194.

8. Michener JR, Clager AT. Mitigating an oxymoron: compliance in a DevOps environments. Proceedings of the International Computer
Software and Applications Conference; Vol. 1, 2016:396-398. doi:10.1109/COMPSAC.2016.155

9. Chen L. Continuous delivery: overcoming adoption challenges. J Syst Softw. 2017;128:72-86. doi:10.1016/j.jss.2017.02.013
10. Beck K, Beedle M, van Bennekum A, et al. Agile manifesto; 2001. Accessed January 9, 2020. https://agilemanifesto.org/

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

128

1920 FAUSTINO et al.

11. Katal A, Bajoria V, Dahiya S. DevOps: bridging the gap between development and operations. Proceedings of the 3rd International
Conference on Computing Methodologies and Communication, ICCMC 2019; 2019:1-7; IEEE. doi:10.1109/ICCMC.2019.8819631

12. Hussaini SW. A systemic approach to re-inforce development and operations functions in delivering an organizational program. Complex
Adaptive Systems. Vol 61. Elsevier Masson SAS; 2015:261-266. doi:10.1016/j.procs.2015.09.209

13. Rance S. In: Hanna A, ed. ITIL 2011 Service Transition. 1st ed. The Stationery Office; 2011.
14. Soni M. End to end automation on cloud with build pipeline: the case for DevOps in insurance industry, continuous integration, continu-

ous testing, and continuous delivery. Proceedings of the 2015 IEEE International Conference on Cloud Computing in Emerging Markets,
CCEM 2015; 2016:85-89. doi:10.1109/CCEM.2015.29

15. Lwakatare LE, Kilamo T, Karvonen T, et al. DevOps in practice: a multiple case study of five companies. Inf Softw Technol.
2017;2019(114):217-230. doi:10.1016/j.infsof.2019.06.010

16. Sharma S, Coyne B. DevOps For Dummies. 2nd ed. John Wiley & Sons, Inc; 2014.
17. Ebert C, Gallardo G, Hernantes J, Serrano N. DevOps. IEEE Softw. 2016;33(3):94-100. doi:10.1109/MS.2016.68
18. Caprarelli A, Nitto E, Tamburri D. Fallacies and pitfalls on the road to DevOps: a longitudinal industrial study; 2020:200-210.

doi:10.1007/978-3-030-39306-9_15
19. Jabbari R, bin Ali N, Petersen K, Tanveer B. What is DevOps? a systematic mapping study on definitions and practices. Proceedings of

the Scientific Workshop Proceedings of XP2016 on – XP ’16 Workshops; 2016:1-11. doi:10.1145/2962695.2962707
20. Ivanov V. Implementation of DevOps pipeline for Serverless Applications. Springer; 2018. doi:10.1007/978-3-030-03673-7_4
21. Teixeira D, Pereira R, Henriques T, da Silva MM, Faustino J, Silva M. A maturity model for DevOps. Int J Agile Syst Manag.

2020;13(4):464-511. doi:10.1504/IJASM.2020.112343
22. Jabbari R, bin Ali N, Petersen K, Tanveer B. Towards a benefits dependency network for DevOps based on a systematic literature review.

J Softw Evol Process. 2018;30(11):1-26. doi:10.1002/smr.1957
23. Wiedemann A, Wiesche M, Krcmar H. Integrating development and operations in cross-functional teams — Toward a DevOps compe-

tency model. SIGMIS-CPR 2019 - Proceedings of the 2019 Computers and People Research Conference; 2019:14-19. doi:10.1145/3322385.
3322400

24. Lwakature LE. Devops adoption and implementation in software development practice: concept, practices, benefits and challenges;
2017:99.

25. Leite L, Rocha C, Kon F, Milojicic D, Meirelles P. A survey of DevOps concepts and challenges. ACM Comput Surv. 2019;52(6):1-35.
doi:10.1145/3359981

26. Punjabi R, Bajaj R. User stories to user reality: a devops approach for the cloud. In: 2016 IEEE International Conference
on Recent Trends in Electronics, Information and Communication Technology, RTEICT 2016 - Proceedings.; 2017:658-662.
doi:10.1109/RTEICT.2016.7807905

27. Silva MA, Faustino J, Pereira R, Silva MM. Productivity gains of DevOps adoption in an IT team: a case study. In: Andersson B, Johans-
son B, S. Carlsson C, Barry ML, Linger H, Schneider C, eds. Proceedings of the 27th International Conference on Information Systems
Development. ISD2018; 2018:13.

28. Luz WP, Pinto G, Bonifácio R. Adopting DevOps in the real world: a theory, a model, and a case study. J Syst Softw. 2019;157:1-16. doi:10.
1016/j.jss.2019.07.083

29. Riungu-Kalliosaari L, Mäkinen S, Lwakatare LE, Tiihonen J, Männistö T. DevOps adoption benefits and challenges in practice: a case
study. Proceedings of the 17th Internacional Conference, PROFES 2016, Throndheim, Norway. Vol 10027 LNCS. Springer International
Publishing; 2016:590-597. doi:10.1007/978-3-319-49094-6_44

30. Faustino J, Pereira R, Alturas B, da Silva MM. Agile information technology service management with DevOps: an incident management
case study. Int J Agile Syst Manag. 2020;13(4):339-389. doi:10.1504/IJASM.2020.112331

31. Teixeira D, Pereira R, Henriques TA, Silva M, Faustino J. A systematic literature review on DevOps capabilities and areas. Int J Human
Capital Inf Technol Profess (IJHCITP). 2020;22:1-22. doi:10.4018/IJHCITP.2020070101

32. Silva CC, Goldman A. Agile methods adoption on software development: a pilot review. Proceedings of the 2014 Agile Conference, AGILE
2014; 2014:64-65; Institute of Electrical and Electronics Engineers Inc. doi:10.1109/AGILE.2014.14

33. Rauf A, Alghafees M. Gap analysis between state of practice and state of art practices in agile software development. Proceedings of the
2015 Agile Conference, Agile 2015; 2015:102-106; Institute of Electrical and Electronics Engineers Inc. doi:10.1109/Agile.2015.21

34. Govil N, Sayrakhia M, Agnihotri P, Shukla S, Agarwal S. Analyzing the behaviour of applying agile methodologies & DevOps culture
in e-commerce web application. Proceedings of the 4th International Conference on Trends in Electronics and Informatics; 2020; IEEE.
doi:10.1109/ICOEI48184.2020.9142895

35. Snyder B, Curtis B. Using analytics to guide improvement during an agile-DevOps transformation. IEEE Softw. 2017;35(1):78-83. doi:10.
1109/MS.2017.4541032

36. Dornenburg E. The path to DevOps. IEEE Softw. 2018;35(5):71-75. doi:10.1109/MS.2018.290110337
37. Silva MA, Faustino J, Pereira R, Mira M. Productivity gains of DevOps adoption in an IT team: a case study. Proceedings of the 27th

International Conference on Information Systems Development; 2018. https://repositorio.iscte-iul.pt/handle/10071/16388
38. Furfaro A, Gallo T, Garro A, Saccà D, Tundis A. ResDevOps: a software engineering framework for achieving long-lasting complex sys-

tems. Proceedings of the 2016 IEEE 24th International Requirements Engineering Conference, RE 2016. Published online 2016:246-255.
doi:10.1109/RE.2016.15

39. Shahin M. Architecting for DevOps and continuous deployment. Proceedings of the ASWEC 2015 24th Australasian Software Engineer-
ing Conference on - ASWEC ’15; Vol II, 2015:147-148. doi:10.1145/2811681.2824996

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

129

FAUSTINO et al. 1921

40. Kitchenham B. Procedures for performing systematic reviews; 2004:33.
41. Okoli C. A guide to conducting a standalone systematic literature review. Commun Assoc Inf Syst. 2015;37(1):879-910. doi:10.17705/1cais.

03743
42. Thomas G. In: Seaman J, Piper J, eds. How to Do Your Case Study. 2nd ed. Sage Publications Asia-Pacific Pte Ltd; 2016.
43. Webster J, Watson RT. Analyzing the past to prepare for the future: writing a literature review. MIS Q. 2002;26(2):xiii-xxiii. doi:10.2307/

4132319
44. Veres O, Kunanets N, Pasichnyk V, Veretennikova N, Korz R, Leheza A. Development and operations - the modern paradigm of the work

of IT project teams. Proceedings of the IEEE 2019 14th International Scientific and Technical Conference on Computer Sciences and
Information Technologies, CSIT 2019 – Proceedings; Vol. 3, 2019:103-106. doi:10.1109/STC-CSIT.2019.8929861

45. Sousa L, Trigo A, Varajão J. DevOps – Foundations and perspectives [DevOps – Fundamentos e perspetivas]. Atas da Conferencia da
Associacao Portuguesa de Sistemas de Informacao. 2019.

46. Céspedes D, Angeleri P, Melendez K, Dávila A. Software product quality in DevOps contexts: a systematic literature review. In:
Mejia J, Muñoz M, Rocha ÁA, Calvo-Manzano J, eds. Advances in Intelligent Systems and Computing. Springer International Publishing;
2020:51-64. doi:10.1007/978-3-030-33547-2_5

47. Ottosson S. Agile principles and innovation development stig. developing and managing innovation in a fast changing and complex
world: benefiting from dynamic principles; 2018:1-281. doi:10.1007/978-3-319-94045-8

48. Wahaballa A, Wahballa O, Abdellatief M, Xiong H, Qin Z. Toward unified DevOps model. Proceedings of the 6th IEEE International
Conference on Software Engineering and Service Science (ICSESS); 2015:1-4. doi:10.1109/ICSESS.2015.7339039

49. Beigi-Mohammadi N, Litoiu M, Emami-Taba M, et al. A DevOps framework for quality-driven self-protection in web software
systems a DevOps framework for quality-driven self-protection in web software. System. 2018;(October):270-274. doi:10.1145/nnnnnnn.
nnnnnnn

50. Roche J. Adopting DevOps practices in quality assurance. Commun ACM. 2013;11(9):38-43. doi:10.1145/2524713.2524721
51. Wettinger J, Andrikopoulos V, Leymann F. Enabling DevOps collaboration and continuous delivery using diverse application.

Proceedings of the On the Move to Meaningful Internet Systems: OTM 2015 Conferences; Vol 9415; 2015:348-358.
doi:10.1007/978-3-319-26148-5

52. Schaefer A, Reichenbach M, Fey D. Continuous integration and automation for DevOps. IAENG Trans Eng Technol. 2012;170:345-358.
doi:10.1007/978-94-007-4786-9

53. Díaz J, Almaraz R, Pérez J, Garbajosa J. DevOps in practice - An exploratory case study. ACM Int Conf Proc Ser. 2018;18-20. doi:10.1145/
3234152.3234199

54. Sánchez-Gordón M, Colomo-Palacios R. Characterizing DevOps culture: a systematic literature review. In: Stamelos I, O’Connor
RV, Rout T, Dorling A, eds. Communications in Computer and Information Science. Springer International Publishing; 2018:3-15.
doi:10.1007/978-3-030-00623-5_1

55. Debroy V, Miller S, Brimble L. Building lean continuous integration and delivery pipelines by applying devops principles: a case study
at varidesk. ESEC/FSE 2018 - Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering; 2018:851-856. doi:10.1145/3236024.3275528

56. Kuusinen K, Balakumar V, Jepsen SC, et al. A large agile organization on its journey towards DevOps. Proceedings of the 2018 44th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA); 2018:60-63. doi:10.1109/SEAA.2018.00019

57. Machiraju S, Gaurav S. In: Srivastava S, Moodie M, Modi D, eds. DevOps for Azure Applications. 1st ed. Apress; 2018. doi:10.1007/978-1-
4842-3643-7

58. Atwal H. DevOps for DataOps. Practical DataOps. Apress; 2019:161-189. doi:10.1007/978-1-4842-5104-1_7
59. Forsgren N, Humble J, Kim G. Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology

Organizations. IT Revolution Press; 2018.
60. Bruneo D, Fritz T, Keidar-Barner S, et al. CloudWave: where adaptive cloud management meets DevOps. Proceedings of the 2014 IEEE

Symposium on Computers and Communications (ISCC) Workshops; 2014:1-6. doi:10.1109/ISCC.2014.6912638
61. Perez-Palacin D, Ridene Y, Merseguer J. Quality assessment in DevOps; 2017:133-138. doi:10.1145/3053600.3053632
62. Riti P. Cloud and DevOps. Practical Scala DSLs. 1st ed. Apress; 2018:209-220. doi:10.1007/978-1-4842-3036-7_11
63. Elberzhager F, Arif T, Naab M, Süß I, Koban S. From agile development to DevOps: going towards faster releases at high quality -

Experiences from an industrial context. Lect Notes Bus Inf Process. 2017;269:33-44. doi:10.1007/978-3-319-49421-0_3
64. Sahid A, Maleh Y, Belaissaoui M. An agile framework for ITS management in organizations. A case study based on DevOps.

ICCWCS’17: Proceeding of the 2nd Edition of the International Conference on Computing and Wireless Communication Systems; 2017:8.
doi:10.1145/3167486.3167556

65. de França BBN, Jeronimo H, Travassos GH. Characterizing DevOps by hearing multiple voices. ACM Int Conf Proc Ser. 2016;53-62. doi:10.
1145/2973839.2973845

66. Ravichandran A, Taylor K, Waterhouse P. DevOps and real world ROI. In: Ravichandran A, Taylor K, Waterhouse P, eds. DevOps for
Digital Leaders: Reignite Business with a Modern DevOps-Enabled Software Factory. Apress; 2016:139-150.

67. Virmani M. Understanding DevOps & bridging the gap from continuous integration to continuous delivery. Proceedings of the
5th International Conference on Innovative Computing Technology, INTECH 2015; 2015;(Intech):78-82. doi:10.1109/INTECH.2015.
7173368

68. Díaz J, Perez JE, Yague A, Villegas A, de Antona A. Devops in practice - A preliminary analysis of two multinational companies. arXiv;
2019:1-8. doi:10.1007/978-3-030-35333-9_23

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

130

1922 FAUSTINO et al.

69. Nybom K, Smeds J, Porres I. On the impact of mixing responsibilities between Devs and Ops. In: Sharp H, Hall T, eds. Lecture Notes in
Business Information Processing. Springer International Publishing; 2016:131-143. doi:10.1007/978-3-319-33515-5_11

70. Siebra C, Lacerda R, Cerqueira I, et al. Empowering continuous delivery in software development: the DevOps strategy. In: van Sin-
deren M, Maciaszek LA, eds. Software Technologies. Communications in Computer and Information Science. Springer International
Publishing; 2019:247-265. doi:10.1007/978-3-030-29157-0_11

71. Benguria G, Alonso J, Etxaniz I, Orue-Echevarria L, Escalante M. Agile development and operation of complex systems in
multi-technology and multi-company environments: following a DevOps approach. Commun Comput Inf Sci. 2018;896:15-27.
doi:10.1007/978-3-319-97925-0_2

72. Angara J, Gutta S, Prasad S. DevOps with continuous testing architecture and its metrics model. In: Sa PK, Bakshi S, Hatzilygeroudis IK,
Sahoo MN, eds. Advances in Intelligent Systems and Computing. Springer; 2018:271-281. doi:10.1007/978-981-10-8633-5_28

73. Kaiser AK. Reinventing ITIL® in the Age of DevOps. Apress; 2018. doi:10.1007/978-1-4842-3976-6
74. Cuppett MS. DevOps, DBAs, and DBaaS; 2016:73-85. doi:10.1007/978-1-4842-2208-9
75. Albuquerque AB, Cruz VL. Implementing DevOps in legacy systems. In: Silhavy R, Silhavy P, Prokopova Z, eds. Advances in Intelligent

Systems and Computing. Springer International Publishing; 2019:143-161. doi:10.1007/978-3-030-00184-1_14
76. Baudry B, Harrand N, Schulte E, et al. A spoonful of DevOps helps the GI go down. Proc Int Conf Softw Eng. 2018;35-36. doi:10.1145/

3194810.3194818
77. Lai ST, Leu FY. A Micro Services Quality Measurement Model for Improving the Efficiency and Quality of DevOps. Vol 773. Springer

International Publishing; 2019. doi:10.1007/978-3-319-93554-6_55
78. Mala DJ, Reynold PA. Towards green software testing in agile and devops using cloud virtualization for environmental protection.

Software Engineering in the Era of Cloud Computing. Springer; 2020:277-297. doi:10.1007/978-3-030-33624-0_11
79. Masombuka T, Mnkandla E. A DevOps collaboration culture acceptance model. ACM Int Conf Proc Ser. 2018;279-285. doi:10.1145/

3278681.3278714
80. Jaatun MG, Cruzes DS, Luna J. DevOps for better software security in the cloud. ACM Int Conf Proc Ser. 2017;F1305. doi:10.1145/3098954.

3103172
81. Jaatun MG. Software security activities that support incident management in secure DevOps. ACM Int Conf Proc Ser. 2018. doi:10.1145/

3230833.3233275
82. Rahman AAU, Williams L. Software security in DevOps: synthesizing practitioners’ perceptions and practices. Proceedings - Interna-

tional Workshop on Continuous Software Evolution and Delivery, CSED; 2016. doi:10.1145/2896941.2896946
83. Kim G, Debois P, Willis J, Humble J. The DevOps Handbook: How to Create World-Class Agility, Reliability, and Security in Technology

Organizations. IT Revolution Press; 2016.
84. Šmite D, Gonzalez-Huerta J, Moe NB. “When in Rome, Do as the Romans Do”: cultural barriers to being agile in distributed teams. In:

Stray V, Hoda R, Paasivaara M, Kruchten P, eds. Agile Processes in Software Engineering and Extreme Programming. Lecture Notes in
Business Information Processing. Springer International Publishing; 2020:145-161. doi:10.1007/978-3-030-49392-9_10

85. Colomo-Palacios R, Fernandes E, Soto-Acosta P, Larrucea X. A case analysis of enabling continuous software deployment through
knowledge management. Int J Inf Manag. 2018;40:186-189. doi:10.1016/j.ijinfomgt.2017.11.005

86. De Sanctis M, Bucchiarone A, Trubiani C. A DevOps perspective for QoS-aware adaptive applications. In: Bruel JM, Mazzara M, Meyer B,
eds. Software Engineering Aspects of Continuous Development and New Paradigms of Software Production and Deployment. Lecture Notes
in Computer Science. Springer International Publishing; 2020:95-111. doi:10.1007/978-3-030-39306-9_7

87. Šćekić M, Gazivoda M, Šćepanović S, Nikolić J. Application of DevOps approach in developing business intelligence system in bank.
Proceedings of the 2018 7th Mediterranean Conference on Embedded Computing (MECO); 2018:1-4. doi:10.1109/MECO.2018.8406047

88. Mohan V, Ben Othmane L, Kres A. BP: security concerns and best practices for automation of software deployment processes: an
industrial case study; 2018:21-28. doi:10.1109/SecDev.2018.00011

89. Gupta RK, Venkatachalapathy M, Jeberla FK. Challenges in adopting continuous delivery and DevOps in a globally distributed product
team: a case study of a healthcare organization. In: Proceedings - 2019 ACM/IEEE 14th International Conference on Global Software
Engineering, ICGSE 2019. IEEE; 2019:30-34. doi:10.1109/ICGSE.2019.00020

90. Sampedro Z, Holt A, Hauser T. Continuous integration and delivery for HPC: using singularity and Jenkins. Proceedings of the Practice and
Experience on Advanced Research Computing PEARC ’18. Association for Computing Machinery; 2018:1-6. doi:10.1145/3219104.3219147

91. Riungu-Kalliosaari L, Mäkinen S, Lwakatare LE, Tiihonen J, Männistö T. DevOps adoption benefits and challenges in practice: A
case study. Proceedings of the 17th Internacional Conference, PROFES 2016, Throndheim, Norway; Vol 10027, 2016:590-597; LNCS.
doi:10.1007/978-3-319-49094-6_44

92. Senapathi M, Buchan J, Osman H. DevOps capabilities, practices, and challenges: insights from a case study. ACM Int Conf Proc Ser.
2018;F1377. doi:10.1145/3210459.3210465

93. Heistand C, Thomas J, Tzeng N, et al. DevOps for spacecraft flight software. Proceedings of the IEEE Aerospace Conference Proceedings;
March 2019:1-16. doi:10.1109/AERO.2019.8742143

94. Ghantous GB, Gill AQ. DevOps reference architecture for multi-cloud IOT applications. Proceedings of the 2018 IEEE 20th Conference
on Business Informatics (CBI); Vol. 01; 2018:158-167. doi:10.1109/CBI.2018.00026

95. Smeds J, Nybom K, Porres I. DevOps: a definition and perceived adoption impediments. In: Lassenius C, Dingsøyr T, Paasivaara M,
eds. Agile Processes in Software Engineering and Extreme Programming. Lecture Notes in Business Information Processing. Springer
International Publishing; 2015:166-177. doi:10.1007/978-3-319-18612-2_14

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

131

FAUSTINO et al. 1923

96. Jiménez M, Rivera LF, Villegas NM, Tamura G, Müller HA, Gallego P. DevOps’ shift-left in practice: an industrial case of applica-
tion. In: Bruel JM, Mazzara M, Meyer B, eds. Lecture Notes in Computer Science. Springer International Publishing; 2019:205-220.
doi:10.1007/978-3-030-06019-0_16

97. Hemon A, Lyonnet B, Rowe F, Fitzgerald B. From agile to DevOps: smart skills and collaborations. Inf Syst Front. 2020;22(4):927-945.
doi:10.1007/s10796-019-09905-1

98. AL-Zahran S, Fakieh B. How DevOps practices support digital transformation. Int J Adv Trends Comput Sci Eng. 2020;9:2780-2788. doi:10.
30534/ijatcse/2020/46932020

99. Hemon-Hildgen A, Fitzgerald B, Lyonnet B, Rowe F. Innovative practices for knowledge sharing in large-scale DevOps. IEEE Softw.
2019;37(3):30-37. doi:10.1109/MS.2019.2958900

100. Gall M, Pigni F. Leveraging DevOps for mission critical software. AMCIS; 2018. https://aisel.aisnet.org/amcis2018/ITProjMgmt/
Presentations/2

101. Jones S, Noppen J, Lettice F. Management challenges for devops adoption within UK SMEs. QUDOS 2016 - Proceedings of the 2nd
International Workshop on Quality-Aware DevOps, co-located with ISSTA 2016; 2016:7-11. doi:10.1145/2945408.2945410

102. Díaz J, Pérez JE, Lopez-Peña MA, Mena GA, Yagüe A. Self-service cybersecurity monitoring as enabler for DevSecOps. IEEE Access.
2019;7:100283-100295. doi:10.1109/ACCESS.2019.2930000

103. Bruza M. An Analysis of Multi-domain Command and Control and the Development of Software Solutions through DevOps Toolsets
and Practices; 2018.

104. Shahin M, Babar MA, Zhu L. The intersection of continuous deployment and architecting process: practitioners’ perspectives. Proceed-
ings of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. ESEM ’16. Association for
Computing Machinery; 2016:1-10. doi:10.1145/2961111.2962587

105. Laukkanen E, Paasivaara M, Itkonen J, Lassenius C, Arvonen T. Towards continuous delivery by reducing the feature freeze period: a
case study. Proceedings of the 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP); 2017:23-32. doi:10.1109/ICSE-SEIP.2017.21

106. Lwakatare LE, Kuvaja P, Oivo M. An exploratory study of DevOps: extending the dimensions of DevOps with practices. Proceedings of
the 11th International Conference on Software Engineering Advances (ICSEA); 2016.

107. Alt R, Auth G, Kögler C. Transformation of consulting for software-defined businesses: lessons from a DevOps case study in a German
IT company. Advances in Consulting Research. Springer; 2018:385-403. doi:10.1007/978-3-319-95999-3_19

108. Düllmann TF, Paule C, van Hoorn A. Exploiting DevOps practices for dependable and secure continuous delivery pipelines. Proceedings
of the 2018 IEEE/ACM 4th International Workshop on Rapid Continuous Software Engineering (RCoSE); 2018:27-30.

109. Laukkarinen T, Kuusinen K, Mikkonen T. DevOps in regulated software development: case medical devices. Proceedings - 2017
IEEE/ACM 39th International Conference on Software Engineering: New Ideas and Emerging Results Track, ICSE-NIER 2017.
doi:10.1109/ICSE-NIER.2017.20

110. Zhou X, Jin Y, Zhang H, Li S, Huang X. A map of threats to validity of systematic literature reviews in software engineering. Proceedings
- Asia-Pacific Software Engineering Conference, APSEC; 2016:153-160. doi:10.1109/APSEC.2016.031

111. Erich FMA, Amrit C, Daneva M. A qualitative study of DevOps usage in practice. J Softw Evol Process. 2017;29(6):1-20. doi:10.1002/smr.
1885

112. Metzger S, Durden D, Sturtevant C, et al. eddy4R 0.2.0: a DevOps model for community-extensible processing and analysis of
eddy-covariance data based on R, Git, Docker, and HDF5. Geosci Model Dev. 2017;10(9):3189-3206. doi:10.5194/gmd-10-3189-2017

113. Gupta V, Kapur PK, Kumar D. Modeling and measuring attributes influencing DevOps implementation in an enterprise using structural
equation modeling. Inf Softw Technol. 2017;92:75-91. doi:10.1016/j.infsof.2017.07.010

114. Chen B. Improving the software logging practices in devops. Proceedings - 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion, ICSE-Companion 2019; 2019:194-197; IEEE. doi:10.1109/ICSE-Companion.2019.00080

115. Barna C, Khazaei H, Fokaefs M, Litoiu M. Delivering elastic containerized cloud applications to enable DevOps. Proceedings - 2017
IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS 2017; 2017:65-75.
doi:10.1109/SEAMS.2017.12

116. Olszewska M, Waldén M. DevOps meets formal modelling in high-criticality complex systems. Proceedings of the 1st International
Workshop on Quality-Aware DevOps, QUDOS 2015 – Proceedings; 2015:7-12. doi:10.1145/2804371.2804373

117. Muñoz M, Negrete M. Reinforcing DevOps generic process with a guidance based on the basic profile of ISO/IEC 29110. In: Mejia J,
Muñoz M, Rocha Á, A. Calvo-Manzano J, eds. Advances in Intelligent Systems and Computing. Springer International Publishing;
2020:65-79. doi:10.1007/978-3-030-33547-2_6

118. Cruzes DS, Melsnes K, Marczak S. Testing in a DevOps era: perceptions of testers in Norwegian organisations. In: Misra S, Gervasi O, Mur-
gante B, et al., eds. Lecture Notes in Computer Science. Springer International Publishing; 2019:442-455. doi:10.1007/978-3-030-24305-0_33

119. Daneva M, Bolscher R. What we know about software architecture styles in continuous delivery and DevOps? In: van Sin-
deren M, Maciaszek LA, eds. Communications in Computer and Information Science. Springer International Publishing; 2020:26-39.
doi:10.1007/978-3-030-52991-8_2

120. Scheaffer J, Ravichandran A, Martins A. In: McDermott S, Berendson L, Fernando R, eds. The Kitty Hawk Venture. 1st ed. Apress; 2018.
doi:10.1007/978-1-4842-3661-1

121. Hüttermann M. DevOps for Developers. 1st ed. Apress; 2012. doi:10.1007/978-1-4302-4570-4
122. Davis A. DevOps. Mastering Salesforce DevOps. Apress; 2019. doi:10.1007/978-1-4842-5473-8_3

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

132

1924 FAUSTINO et al.

123. Kuruba M. DevOps for IT service reliability and availability. In: Karanki D, Vinod G, Ajit S, eds. Advances in RAMS Engineering. 1st ed.
Apress; 2019:149-183. doi:10.1007/978-3-030-36518-9_6

124. Familiar B, Barnes J. DevOps using PowerShell, ARM, and VSTS. Business in Real-Time Using Azure IoT and Cortana Intelligence Suite.
1st ed. Apress; 2017:21-93. doi:10.1007/978-1-4842-2650-6_2

125. Muñoz M, Díaz O. DevOps: foundations and its utilization in data center. In: J. MG, M. M, M. R, W. N, R O. Engineering and Management
of Data Centers. Springer; 2017:205-225. doi:10.1007/978-3-319-65082-1_10

126. Nagarajan AD, Overbeek SJ. A DevOps implementation framework for large agile-based financial organizations. In: H. P, C. D, H. P, C. A,
D. R, R. M. On the Move to Meaningful Internet Systems. OTM 2018 Conferences. Springer; 2018:1-17. doi:10.1007/978-3-030-02610-3_10

127. Wang W, Casale G, Iuhasz G. Closing the loop between ops and dev. In: Di Nitto E, Matthews P, Petcu D, Solberg A eds. Model-Driven
Development and Operationof Multi-Cloud Applications. Springer; 2017:95-105. doi:10.1007/978-3-319-46031-4_10

128. de Feijter R, Overbeek S, van Vliet R, Jagroep E, Brinkkemper S. DevOps competences and maturity for software producing organizations.
In: Gulden J, Reinhartz-Berger I, Schmidt R, Guerreiro S, Guédria W, Bera P, eds. Lecture Notes in Business Information Processing.
Springer International Publishing; 2018:244-259. doi:10.1007/978-3-319-91704-7_16

129. Cito J, Wettinger J, Lwakatare LE, Borg M, Li F. Feedback from operations to software development—A DevOps perspective on run-
time metrics and logs. In: Bruel JM, Mazzara M, Meyer B, eds. Lecture Notes in Computer Science. Springer International Publishing;
2019:184-195. doi:10.1007/978-3-030-06019-0_14

130. Alban D, Eynaud P, Malaurent J, Richet JL, Vitari C. Information Systems Management: Governance, Urbanization and Alignment. ISTE
Ltd and John Wiley & Sons, Inc; 2019. doi:10.1016/B978-012226570-9/50107-1

131. Beulen E. Implementing and contracting agile and DevOps: a survey in the Netherlands. In: Kotlarsky J, Oshri I, Willcocks L, eds. Lecture
Notes in Business Information Processing. Springer International Publishing; 2019:124-146. doi:10.1007/978-3-030-15850-7_7

132. Colavita F. DevOps movement of enterprise agile breakdown silos, create collaboration, increase quality, and application speed. In:
Ciancarini P, Sillitti A, Succi G, Messina A, eds. Advances in Intelligent Systems and Computing. Springer International Publishing;
2016:203-213. doi:10.1007/978-3-319-27896-4_17

133. Fishman N, Stryker C. In: Minatel J, ed. Smarter Data Science. 1st ed. John Wiley & Sons, Inc; 2020. doi:10.1002/9781119697985
134. Johng H, Kalia AK, Xiao J, Vuković M, Chung L. Harmonia: a continuous service monitoring framework using DevOps and service

mesh in a complementary manner. In: Yangui S, Bouassida Rodriguez I, Drira K, Tari Z, eds. Service-Oriented Computing. Lecture Notes
in Computer Science. Springer International Publishing; 2019:151-168. doi:10.1007/978-3-030-33702-5_12

135. Kang H, Le M, Tao S. Container and microservice driven design for cloud infrastructure DevOps. Proceedings of the 2016 IEEE
International Conference on Cloud Engineering (IC2E); 2016:202-211. doi:10.1109/IC2E.2016.26

136. Lewerentz M, Bluhm T, Daher R, et al. Implementing DevOps practices at the control and data acquisition system of an experimental
fusion device. Fusion Eng Design. 2018;146(October):40-45. doi:10.1016/j.fusengdes.2018.11.022

137. Lewis B, Smith I, Fowler M, Licato J. Enabling DevOps for containerized data-intensive applications: an exploratory study. Proceedings
of the Modern Artificial Intelligence and Cognitive Science Conference, MAICS 2017; 2017:189-190. doi:10.1145/1235

138. Palermo J. In: Murray J, Berendson L, Balzano J, eds. NET DevOps for Azure. 1st ed. Apress; 2019. doi:10.1007/978-1-4842-5343-4
139. Ravichandran A, Taylor K, Waterhouse P. DevOps for digital leaders; 2016. doi:10.1007/978-1-4842-1842-6
140. Rong G, Zhang H, Shao D. CMMI guided process improvement for DevOps projects. Proceedings of the International Workshop on

Software and Systems Process - ICSSP ’16; 2016:76-85. doi:10.1145/2904354.2904372
141. Senapathi M, Buchan J, Osman H. DevOps capabilities, practices, and challenges: insights from a case study. EASE; 2018. doi:10.1145/

3210459.3210465
142. Tomlinson T. Drupal 8 DevOps. Enterprise Drupal 8 Development. Apress; 2017:271-279. doi:10.1007/978-1-4842-0253-1_11
143. Wettinger J, Breitenbücher U, Falkenthal M, Leymann F. Collaborative gathering and continuous delivery of DevOps solutions through

repositories. Comput Sci Res Dev. 2017;32(3-4):281-290. doi:10.1007/s00450-016-0338-z
144. Ali N, Daneth H, Hong JE. A hybrid DevOps process supporting software reuse: a pilot project. J Softw Evol Process. 2020;32(7):1-23.

doi:10.1002/smr.2248
145. Gotimer G, Stiehm T. DevOps advantages for testing: Increasing quality through continuous delivery. CrossTalk. 2016;29(3):13-18.
146. Morales JA, Yasar H, Volkman A. Implementing DevOps practices in highly regulated environments. ACM Int Conf Proc Ser. 2018;F1477.

doi:10.1145/3234152.3234188
147. Pérez JF, Wang W, Casale G. Towards a DevOps approach for software quality engineering. WOSP-C 2015 - Proceedings of the 2015

ACM/SPEC Workshop on Challenges in Performance Methods for Software Development, in Conjunction with ICPE; 2015. doi:10.1145/
2693561.2693564

148. de Kort W. In: DeWolf J, Pundick D, eds. DevOps on the Microsoft Stack. 1st ed. Apress; 2016. doi:10.1007/978-1-4842-1446-6
149. Rittgen P, Cronholm S, Göbel H. Towards a model for assessing collaboration capability between development and operations. In:

Walker A, O’Connor R V, Messnarz R, eds. Communications in Computer and Information Science. Springer International Publishing;
2019:111-122. doi:10.1007/978-3-030-28005-5_9

150. Murphy GC, Kersten M. Towards bridging the value gap in DevOps. In: Bruel JM, Mazzara M, Meyer B, eds. Lecture Notes in Computer
Science. Springer International Publishing; 2020:181-190. doi:10.1007/978-3-030-39306-9_13

151. Arulkumar V, Lathamanju R. Start to finish automation achieve on cloud with build channel: by DevOps method. Proc Comput Sci.
2019;2019(165):399-405. doi:10.1016/j.procs.2020.01.032

152. Medina O, Schumann E. In: Murray J, Berendson L, Balzano J, eds. DevOps for SharePoint. 1st ed. Apress; 2018. doi:10.1007/978-1-4842-
3688-8

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

133

FAUSTINO et al. 1925

153. Koilada DK. Business model innovation using modern DevOps. Proceedings of the 2019 IEEE Technology and Engineering Management
Conference, TEMSCON 2019; 2019:1-6. doi:10.1109/TEMSCON.2019.8813557

154. Rong G, Jin Z, Zhang H, Zhang Y, Ye W, Shao D. DevDocOps: enabling continuous documentation in alignment with DevOps. Softw
Pract Exp. 2019;50(3):210-226. doi:10.1002/spe.2770

155. Forsgren N, Kersten MIK. DevOps metrics. ACM Queue. 2017;61(december):1-16.
156. Cukier D. DevOps patterns to scale web applications using cloud services. SPLASH 2013 - Proceedings of the 2013 Companion Publica-

tion for Conference on Systems, Programming, and Applications: Software for Humanity; 2013;(Figure 2):143-152. doi:10.1145/2508075.
2508432

157. Combemale B, Wimmer M. Towards a model-based DevOps for cyber-physical systems. In: Bruel JM, Mazzara M, Meyer B, eds. Lecture
Notes in Computer Science. Springer International Publisheing; 2020:84-94. doi:10.1007/978-3-030-39306-9_6

How to cite this article: Faustino J, Adriano D, Amaro R, Pereira R, da Silva MM. DevOps benefits: A
systematic literature review. Softw: Pract Exper. 2022;52(9):1905-1926. doi: 10.1002/spe.3096

APPENDIX A. CONCEPT- CENTRIC APPROACH FOR BENEFITS AND LITERATURE

This appendix provides a mapping between all the authors (references) that mention a certain DevOps benefit.

Concept ID Reference

B01 6,12,15,17,22,25,28,29,44–46,49–51,56,57,62–66,68,69,72,75,79,82,89,92,107,111–129

B02 6,12,14,17,22,23,25,39,51–54,56,58,63,65,74,78,91,101,113,121–123,125,126,129–143

B03 6,14,15,22,23,39,44,45,49,51,53–56,58,60,63,66,72,74,75,93,109,111,117,118,121,122,125,133,138,144–150

B04 14,15,20,22,28,29,45,51,57,65,70,75–77,92,93,107,109,113,118–120,122,125,128,132,134,145,148,150–152

B05 6,17,22,28,29,45,50,56,58,60,65,68,89,92,101,118,120–122,125,133,134,138,153–155

B06 6,14,22,46,57,61,64,65,67,70,93,107,116,118,119,121–123,130,147,152,156

B07 6,14,23,45,46,56,62–64,66,68,81,122,123,135,142,145

B08 12,22,28,29,44,45,53,57,63–65,69,113,134,144,151,153

B09 22,28,51,65–67,74,107,125,129,130,143,145

B10 22,65,67–71,109,124,125,140,144,146

B11 15,22,23,25,29,54,65,66,69,92,117,118,123

B12 22,56,65,67,70,72–74,76,117,148

B13 22,29,51,55,56,58,64,65,77,113,133

B14 22,46,58,65,66,74,75,78,118,142,157

B15 12,15,54,63,69,79,92,113,121

B16 14,29,117,133,136,150,153,157

B17 56,63,65,69,73

B18 80–82,122,134

B19 15,76

APPENDIX B. IDENTIFIED BUSINESS BENEFITS PER DEVOPS IMPLEMENTATION CASE
STUDY

In this appendix there is the mapping between the case studies and the benefits identified on each of these case studies.

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

134

1926 FAUSTINO et al.

ID Case study number DevOps benefit concept ID
CS.1 1 B01
CS.2 2 B02; B04; B17
CS 3 3 B01; B06
CS.4 4 B11
CS.5 5 B01; B02; B08; B10; B17
CS.6 6 B01; B03; B13; B04; B06; B10; B12;
CS.7 7 B01; B02; B06; B10; B17
CS.8 8 B01; B02; B06; B10; B18; B17;
CS.9 9 B01; B04; B06; B16
CS.10 10 B01; B02; B03; B10; B17;
CS.11 11 B04; B06

CS.12 12.1 B01; B02; B03; B04; B05; B06; B07; B08; B10; B12; B14; B15; B17
12.2 B01; B02; B03; B04; B05; B06; B07; B08; B10; B12; B14; B15; B17
12.3 B01; B02; B03; B04; B05; B06; B07; B08; B10; B12; B14; B15; B17

CS.13 13 B01; B04; B05; B10; B13; B15; B16
CS.14 14 B06; B17

CS.15 15.1 B02; B06; B07; B17
15.2 B02; B06; B07; B17

CS.16 16.1 B02; B03; B08; B09; B12; B13
16.2 B02; B03; B08; B09; B12; B13
16.3 B02; B03; B08; B09; B12; B13
16.4 B02; B03; B08; B09; B12; B13
16.5 B02; B03; B08; B09; B12; B13
16.6 B02; B03; B08; B09; B12; B13
16.7 B02; B03; B08; B09; B12; B13
16.8 B02; B03; B08; B09; B12; B13
16.9 B02; B03; B08; B09; B12; B13
16.10 B02; B03; B08; B09; B12; B13
16.11 B02; B03; B08; B09; B12; B13

CS.17 17.1 B4; B6; B7; B9; B10; B11; B17; B19
17.2 B02; B04; B08; B15; B19
17.3 B01; B02; B04; B06; B07; B08; B15; B19
17.4 B02; B04; B06; B07; B08; B15; B19
17.5 B02; B04; B08; B15; B19

CS.18 18 B01; B02; B04; B08; B12
CS.19 19 B01
CS.20 20 B04; B06
CS.21 21 No benefits identified
CS.22 22 B01; B03; B08; B11

CS.23 23.1 B02; B06; B11; B13; B15; B16; B17
23.2 B02; B03; B06; B11; B13; B16; B15

CS.24 24 B01; B02; B03; B04; B06; B07; B12 B13; B17
CS.25 25 B01; B08; B11; B12; B15; B19

CS.26 26.1 B01; B08; B11; B12; B15
26.2 B01; B08; B11; B12; B15
26.3 B01; B08; B11; B12; B15
26.4 B01; B08; B11; B12; B15

CS.27 27 B01; B02
CS.28 28 B01
CS.29 29 B01; B06; B11; B12; B14; B15; B19
CS.30 30 B01; B06; B07; B08; B12; B19
CS.31 31 B01; B02; B03; B04; B05; B06; B08; B13; B15; B16; B17; B18

CS.32 32.1 B01; B02; B04; B10; B11; B12; B17
32.2 B01; B02; B04; B10; B11; B12; B17
32.3 B01; B02; B04; B10; B11; B12; B17
32.4 B01; B02; B04; B10; B11; B12; B17
32.5 B01; B02; B04; B10; B11; B12; B17
32.6 B01; B02; B04; B10; B11; B12; B17
32.7 B01; B02; B04; B10; B11; B12; B17
32.8 B01; B02; B04; B10; B11; B12; B17
32.9 B01; B02; B04; B10; B11; B12; B17
32.10 B01; B02; B04; B10; B11; B12; B17

CS.33 33 B02; B06; B14

CS.34 34.1 B02; B12
34.2 B02; B12
34.3 B02; B12
34.4 B02; B12

CS.35 35 B01; B02; B03; B05; B13; B16
CS.36 36 B02; B03; B08; B09; B12; B13; B19

 1097024x, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/spe.3096 by C

ochrane Portugal, W
iley O

nline L
ibrary on [13/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

135

136

CHAPTER 6

Article #5

The fifth article (A5) presents a systematic mapping of DevOps capabilities to software devel-
opment cycles and identifies key capabilities and processes that significantly influence software
delivery performance and quality. It provides a means to leverage DevOps within software devel-
opment and maintenance. This study strongly suggested that technical capabilities in DevOps,
have strong associations with the technical LCP processes. Secondly, there are DevOps mea-
surement capabilities and agreement processes, which a significant proportion of LCPs also
benefit from. From Table 6.12 it can be seen that eight capabilities are classified as ”Excep-
tional” (Top 1%), and 11 capabilities are classified as ”Very High” (Top 3% to 1%), which is a
strong indication from the literature of their relationship, influencing activities and tasks of the
respective LCPs.

Practical examples and a structured approach are given for integrating DevOps into software
development and maintenance. Examples and a structured approach are given for integrating
DevOps into software development and maintenance. This approach can be used to make an
organization’s DevOps processes work better. The findings are expected to help organizations
successfully adopt DevOps by providing a clear understanding of the relationship between
DevOps capabilities and LCPs. In Figure 6.9 a diagram shows the process improvements
driving LCP outcomes with exceptional DevOps Capabilities.

Finally, future research directions are suggested, focusing on a practical case study evaluating
overcoming adoption challenges. This will require empirical validation and refinement of the
proposed approach.

Article details:

– Title: Mapping DevOps Capabilities to the Software Life Cycle: A Systematic
Literature Review

– Date: September 2024

– Journal: Information and Software Technology

– Scimago Journal Rank: Q1

– Publisher: Elsevier B.V.

137

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Mapping DevOps capabilities to the software life cycle: A systematic
literature review
Ricardo Amaro a,∗, Rúben Pereira a, Miguel Mira da Silva b

a Instituto Universitário de Lisboa (ISCTE-IUL), INOV, Portugal
b Instituto Superior Técnico, Universidade de Lisboa, INOV, Portugal

A R T I C L E I N F O

Keywords:
DevOps
Metrics
Performance
Adoption
Software development life cycle
Information system

A B S T R A C T

Context: Many IT organizations are looking towards DevOps to make their software development and delivery
processes faster and more reliable, while DevOps revolutionized the industry by emphasizing collaboration
between development and operations teams. Nonetheless, there still exist challenges in harmonizing cultural,
technical, measurement and process capabilities for its successful adoption.
Objective: To research improving DevOps adoption, this study explores DevOps Capabilities relevant to the
Life Cycle Processes (LCPs) of the IEEE 2675-2021 DevOps standard. Aiming to provide valuable information
on increasing efficiency and outcomes by mapping DevOps Capabilities in each phase of the LCPs. Whereas
previous research identified and classified 37 DevOps Capabilities, this study aims to determine which
capabilities can enhance each of the 30 phases of the LCPs.
Methods: Out of 102 documents identified in the Systematic Literature Review (SLR), relations among DevOps
Capabilities and LCPs have been synthesized and organized. An in-depth analysis of data was conducted over
the connections across various categories. The mapping revealed how they relate in terms of their application
and impact.
Results: The SLR shows technical DevOps Capabilities and technical LCPs strongly correlated. DevOps mea-
surement capabilities have a significant impact on agreement processes. Using an impact scale classification,
the study identifies eight capabilities that have exceptional impact on LCPs and eleven capabilities that have
a very high impact on the supply process, requirements definition, integration process, and validation process.
Conclusion: The study demonstrates how DevOps Capabilities together with LCPs can improve software
delivery, quality, and reliability. It presents a structured approach for improving processes, as well as
evidence of DevOps integration in software development and maintenance. The findings help to assess DevOps
Capabilities and LCP relations, which is expected to improve successful adoption. Future research should focus
on researching practical cases of DevOps integration into LCPs, while overcoming adoption challenges.

Contents

1. Introduction .. 2
1.1. Context ... 2
1.2. Problem... 2
1.3. Proposal and objective.. 2

2. Research background ... 3
2.1. DevOps capabilities .. 3
2.2. Software life cycle processes ... 3

3. Systematic literature review.. 5
3.1. Planning .. 5

3.1.1. Review protocol ... 5
3.2. Conducting the SLR .. 6

3.2.1. Identification of primary documents .. 6
3.2.2. Quality assessment and eligibility .. 6

∗ Corresponding author.
E-mail addresses: ricardo_amaro@iscte-iul.pt (R. Amaro), ruben.filipe.pereira@iscte-iul.pt (R. Pereira), mms@tecnico.ulisboa.pt (M.M.d. Silva).

https://doi.org/10.1016/j.infsof.2024.107583
Received 22 May 2023; Received in revised form 12 September 2024; Accepted 14 September 2024

Information and Software Technology 177 (2025) 107583

Available online 19 September 2024
0950-5849/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

138

R. Amaro et al.

3.2.3. Extraction of data .. 7
3.3. Data extraction analysis .. 7

3.3.1. Literature number of contributions .. 7
3.3.2. Distribution of publications over the years ... 8

4. Reporting the literature review ... 8
4.1. RQ1 - How do authors in scientific literature relate Software Life Cycle Processes to DevOps Capabilities? ... 8

4.1.1. Agreement processes... 9
4.1.2. Organizational project-enabling processes... 9
4.1.3. Technical management processes ... 11
4.1.4. Technical processes .. 13

4.2. RQ2 - Which categories of DevOps capabilities are most relevant to the software life cycle processes?.. 16
5. Discussion ... 17

5.1. Categories with fewer relations but high average values .. 17
5.2. Improving life cycle processes with DevOps capabilities .. 19

5.2.1. Exceptional impact relations.. 19
5.2.2. Very high impact relations .. 19
5.2.3. Applying the life cycle concepts .. 19

5.3. Impact and practical applications on the field of DevOps... 20
6. Conclusion .. 21

6.1. Contributions ... 21
6.2. Limitations .. 21
6.3. Future work... 22
CRediT authorship contribution statement ... 22
Declaration of competing interest .. 22
Data availability .. 22
References... 22

1. Introduction

1.1. Context

Since the early years of Software Development (SD), developers
are consistently trying to find the best ways to produce and deliver
software. Similarly, companies today also seek to improve methods of
creating and implementing software with high quality and return on
investment in order to meet the demands of customers and the market
[1]. Thus, over the years there has been a dramatic change in SD
models, for example, from conventional Waterfall to the Agile method-
ology. More recently, these organizations are looking to modernize
their development environment rapidly by reducing development cy-
cles and improving continuous delivery using a cutting-edge paradigm
emphasizing the collaboration of Developers(Dev) and Operations(Ops)
(DevOps). DevOps helps improve situations where Software delivery
is a somewhat risky, complex or lengthy process [2]. Last-minute
defects and integration issues frustrate end users, development teams,
and business stakeholders. Moreover, coordination issues across teams
frequently result in the execution of incorrect functionality, integration,
and deployment issues, and finger-pointing. Thus, DevOps is an enabler
of software delivery performance [3].

1.2. Problem

The problem remains that, while many organizations have been suc-
cessful in implementing DevOps internally, others are still failing when
trying to incorporate the cultural, technical, measurement, and process
capabilities of DevOps [4–6]. Therefore, DevOps adoption remains
uncertain [7,8], emphasizing the importance of providing managers
and teams with appropriate information to successfully support the
implementation of DevOps Capabilities and practices [4].

For organizations that do not employ Agile methodologies, it is
unclear how DevOps can improve software Life Cycle Processes (LCPs)
beyond Agile. The suitability of DevOps for waterfall or other method-
ologies is questioned [9]. While practices like continuous integration
and delivery are said incompatible with waterfall due to its lack of con-
tinuity [10], DevOps-specific capabilities can enhance team efficiency
even in other environments [9].

From another more formal perspective, the IEEE Standard for De-
vOps [11] states that DevOps is suitable for most LCP models [12],
and ‘‘particularly appropriate for teams adopting Agile methodologies’’.
While it is stated that DevOps is suitable for most LCP models, for
instance in an iterative waterfall approach [11, p. 32], it is not clear
how DevOps will be suitable in other methodologies in a generic way,
where each process benefits from one or more DevOps Capabilities.
How is it suitable? What DevOps Capabilities can improve each LCP?

1.3. Proposal and objective

The DevOps Standard IEEE Std 2675:2021 [11] is aligned with the
Configuration Management IEEE Std 828:2012 [13] and closely adheres
to the ISO/IEC/IEEE 15288:2015 [12] and ISO/IEC/IEEE 12207:2017
LCP standards [14]. However, these standards were developed before
the systematization of DevOps Capabilities [4], leaving room for im-
provement. This research proposes a comprehensive literature review
to determine which DevOps Capabilities can improve each Software
and System LCP presented in the IEEE Standard for DevOps [11]. Previ-
ous research has identified and categorized 37 DevOps Capabilities [4].
It will examine how each DevOps Capability relates to each LCP, aiming
to enhance existing standards by providing a precise understanding of
the impact of DevOps Capabilities on LCPs.

This paper includes an extensive literature review and utilizes a
conceptual map seen in Fig. 1 as the framework for analysis in Sec-
tion 5. Processes consist of interrelated activities that transform inputs
into outputs, with the process outcome reflecting the successful attain-
ment of their purpose, which is the high-level objective and expected
outcomes of effective process implementation [14].

In Fig. 1 it can be seen how they are interrelated. Each process in
the life cycle has a purpose defined in the standard and attains out-
comes [15] also defined there, for which it includes specific activities
and tasks performed by teams. Teams adopting the process need to
learn the skills and knowledge required by DevOps Capabilities in order
to enable the activities and tasks of the process.

On the other hand, as proposed, the acquired DevOps Capabil-
ities must be periodically evaluated, through a DevOps assessment,
in order to generate and ensure the results intended by the process.
The purpose of implementing the process is to provide benefits to the
stakeholders [14].

Information and Software Technology 177 (2025) 107583

2

139

R. Amaro et al.

Fig. 1. Relating DevOps Capabilities [4] to LCPs[11] conceptual map.

Based on the original question of how DevOps Capabilities can im-
prove each LCP, this study aims to find and study DevOps Capabilities
that are relevant to LCPs from ISO/IEC/IEEE 12207 and IEEE 2675-
2021. This is because DevOps is an interdisciplinary field that could
use more management-focused research [16, p. 7]. This study conducts
a SLR to identify relevant literature that discusses or examines the
relationship between DevOps and LCPs. The research questions that
will guide this study are:

• RQ1. How do authors in scientific literature relate Software Life
Cycle Processes to DevOps Capabilities?

• RQ2. Which categories of DevOps Capabilities are most relevant
to the Software Life Cycle Processes?

This research is grounded in the need to understand how DevOps
can improve the software development process by identifying the most
relevant capabilities to LCPs.

2. Research background

This section provides a theoretical foundation for the study area of
this research. Furthermore, this SLR also gives an overview of other
similar studies in Section 4.1. More related work has been previously
analyzed in published the studies listed in Section 5 where 37 De-
vOps Capabilities were extracted from an Multivocal Literature Review
(MLR), also mentioned in this section, were harmonized. Although all
reviewed papers acknowledge the connection between DevOps and the
software development process, none of them explicitly does an SLR to
address how authors relate DevOps Capabilities [4] to LCPs from IEEE
Standard 2675-2021 [11], which is a key novelty of this paper.

2.1. DevOps capabilities

DevOps comprises capabilities and continuous practices aimed at
facilitating rapid software development and delivery through collabo-
rative efforts among development, testing, and operations teams [4,17–
19]. It fosters a cultural mindset change, eliminating information silos
and promoting higher delivery, quality, and cooperation [5,20]. Au-
tomation plays a crucial role in DevOps, leveraging both Free/Libre and
Open Source Software (FLOSS) and other tools such as Chef, Puppet,
Ansible, Linux, Kubernetes, Jenkins, and Prometheus [21]. Continuous
monitoring, feedback, integration (CI), and deployment (CD) are key
capabilities that shorten time to market and ensure software correctness
and reliability [5,22].

Businesses adopt DevOps to achieve a balance between velocity and
system reliability, addressing stakeholder needs and functionality early
in the software development cycle [11,15]. This software development

process requires identifying, engaging, and collaborating with all stake-
holders. This study will utilize the identified DevOps Capabilities seen
in Fig. 2 to address the research questions.

The investigation done in this paper also takes into account the pro-
cesses and definition proposed for DevOps in the IEEE Standard 2675-
2021 [11], where it is described as a set of principles and practices that
encourage increased communication and collaboration among stake-
holders. Majorly involved in designing, developing, and running sys-
tems and software products or services, as well as achieving continuous
improvement in all aspects of that entity’s LCPs.

Finally, DevOps is a fast-growing cultural shift. It stresses building
an Agile relationship and collaboration between software development
and operations [20], namely with the use of tools to automate the
management of software infrastructures, which, over the years, have
become complex, heterogeneous, and of large-scale [23].

2.2. Software life cycle processes

For over 60 years, researchers have studied software processes and
life cycle models [24]. These models provide an organized and effective
approach to software development and delivery, defining roles, activi-
ties, and expected results. Initially, the term ‘‘software development’’
replaced ‘‘computer system development’’ as software and hardware
were developed together, making code changes time-consuming and
costly. Interest in software processes was limited until Benington’s work
in the 1950s [25], which presented an explicit representation of a
Software Development Life Cycle (SDLC). In 1970, Winston W. Royce’s
paper [26] introduced the concept of a SDLC and described a sequential
and interactive approach, now known as the waterfall model.

The term ‘‘waterfall model’’ was later coined by Bell and Thayer in
1976 [27], referring to Royce’s work. It became a widely recognized life
cycle model, providing a foundation for estimation, project monitoring,
and other tasks [28]. Royce’s article highlighted the state of the water-
fall model at the time and proposed improvements to mitigate the risks
of redesign and rework [29]. Since then, there have been many distinct
approaches, with different Software Engineering (SE) methodologies
and methods. Several other software processes and models like the V-
Model [30], Iterative Enhancement [31], Prototyping [32], Spiral [33]
all with considerable differences from each other, which have been
the object of other studies [24,29], all focused in improving software
development and delivery. Today we witness many ways of addressing
the whole software product life cycle or portions of it.

Software process models and life cycle models are distinct con-
cepts. A life cycle model, as defined in SEVOCAB1 [11], serves as
a framework for the stages and activities involved in the software

1 https://pascal.computer.org/sev_display

Information and Software Technology 177 (2025) 107583

3

140

R. Amaro et al.

Fig. 2. Categorization of DevOps Capabilities.
Source: Adapted [4].

Fig. 3. Processes and Life Cycle Processes in Software Engineering (in Fig. 4).

life cycle, providing a common reference for communication and un-
derstanding. On the other hand, software process models offer more
detailed information, including sub-steps, outputs, and the roles of
individuals involved. As an example, using the Waterfall Life Cycle
model outlines the high-level sequential stages of development like
Requirements Analysis, Implementation or Maintenance, while in a
Software Process Model, employing the Agile practices within the
coding phase specifies iterative, collaborative methods for executing
the work, like Sprint Planning, Daily Stand-ups or Retrospectives. A
process refers to a set of interconnected activities that transform inputs
into outputs, aiming to achieve a specific result [12]. In contrast, LCPs,
illustrated in Fig. 3 and listed in Fig. 4, encompasses the processes
involved in the development or evaluation of software, hardware, or
system products [14]. Therefore, a process is a broader concept that
encompasses the execution of relevant activities [22].

Software processes and life cycle models play a vital role in support-
ing organizational goals and strategies related to software consumption
or development. They are integral to Information Technology (IT)
governance, aiming to deliver sustainable, standardized services and
achieve desired objectives. Software processes and life cycle mod-
els reduce risk, enhance the predictability of LCPs, and align with
stakeholders’ perspectives, including senior management and external
regulatory agencies concerned about reliability, security, and error-free
products [11].

The emergence of Agile methodologies created a cultural conflict
between plan-driven models like Waterfall and Agile development.
While Agile has clear advantages, its adoption was initially slow,
with project managers preferring more control through strict, planned
approaches [18,23]. However, there is a growing understanding that

both approaches share the goal of efficiently building quality software,
leading to the adoption of hybrid development models that combine
elements from both approaches [24].

The ISO/IEC/IEEE 12207:2017 standard provides a reference model
for structuring the software life cycle into different processes, known
as Software LCPs. It aligns to the requirements of Waterfall or Agile
approaches, accommodating the incremental and iterative nature of
Agile development and the detailed specifications and monitoring of
Waterfall projects. The standard establishes common terminology and
serves as a reference for activities like process definition, modeling,
and assessment. It complements other process standards, including
IEEE Standard 2675-2021 for DevOps [11]. ISO/IEC/IEEE 12207 helps
consolidate and structure various software process categories within its
30 LCPs, as seen in Fig. 4.

• Agreement processes are concerned with collaboration and
agreements with other organizations.

• Organizational project-enabling processes offer the environ-
ment required for project execution.

• Technical management processes refer to many facets of project
management and are therefore executed at the project level.

• Technical processes describe the many processes or phases of a
software product’s life cycle, from defining stakeholder needs to
software development.

The life cycle model framework of processes and activities is con-
cerned with the all life cycle, which can be organized into stages,
acting as a common reference for communication and understanding
between stakeholders [14]. Agile development has proved to save time
in market development, while developers and customers can work
together rapidly. However, problems arose when the Agile operations
team did not get cooperation from the developers to execute the
operational processes. The DevOps movement is a mindset shift to solve
the problem in Agile operations. ‘‘DevOps is a full life cycle endeavor
which gives equal consideration to each stage’’[11, p. 23]. Thus, it is a
set of concepts and practices that improve stakeholder communication
and collaboration for specifying, producing, improving, and operating
software and systems products and services.

Information and Software Technology 177 (2025) 107583

4

141

R. Amaro et al.

Fig. 4. Software Life Cycle Processes (LCPs).
Source: Adapted [14].

Fig. 5. The SLR process.
Source: Adapted from
Kitchenham et al. [35].

3. Systematic literature review

This research focuses on DevOps Capabilities and Life Cycle Pro-
cesses (LCPs) relying on the guidelines presented by Kitchenham et al.
[34] to perform systematic literature reviews in SE. These guidelines
are divided into three main phases: planning, conducting, and reporting
the review, as shown in Fig. 5. In this section, each step of the SLR
performed is detailed.

Since Kitchenham et al. (2004) [35] on SLRs, the use of this kind
of review in SE and other scientific communities has become frequent
for gathering evidence mainly from primary studies. The development
of the research usually consists of three phases, as presented in Fig. 5.

1. Planing: Identifying the need for a SLR in order to summarize
existing information about some phenomenon in a thorough
and unbiased manner. Development and Validation of a Review
Protocol presented in Section 3.1.

2. Conducting: Is the process of identifying relevant research, elec-
tion of studies, study quality assessment, data extraction while
monitoring progress and data synthesis shown in Section 3.2 and
represented in Fig. 6.

3. Documenting/Reporting: In the last phase, a review report
needs to be written in order to get validation from peer review
as seen in Section 4.

3.1. Planning

The initial step of the SLR process involves developing and vali-
dating the review protocol. In the introduction, the importance of the
study, including the problem, objectives, and research questions, is
explained. This section describes how the study is being conducted and
the steps taken to develop and validate the review protocol.

3.1.1. Review protocol
In order to find other studies, that may provide answers to the

proposed research questions, a search was conducted in November
2022 using various keywords, based on DevOps and the related Life
Cycle Processes (LCPs) [11,14].

Following is the resultant search string to be used in the search to
retrieve the maximum number of relevant studies. The query is applied
to the chosen datasets, which are also listed below.

Information and Software Technology 177 (2025) 107583

5

142

R. Amaro et al.

• Datasets: The search engines used were, ACM Digital Library,2
IEEE Xplore,3 Science Direct,4 Springer Link,5 Wiley Online Li-
brary,6 EBSCO.7 Scopus8 and Web of Science.9

• Search String: The following search string finds the word ‘‘De-
vOps’’ together with any of the other 31 words.

DevOps AND (
"ISO/IEC 12207" OR
"Acquisition" OR
"Supply" OR
"Life Cycle Model Management" OR
"Infrastructure Management" OR
"Portfolio Management" OR
"Human Resource Management" OR
"Quality Management" OR
"Knowledge Management" OR
"Project Planning" OR
"Project Assessment and Control" OR
"Decision Management" OR
"Risk Management" OR
"Configuration Management" OR
"Information Management" OR
"Measurement" OR
"Quality Assurance" OR
"Business or Mission Analysis" OR
"Stakeholder Needs and Requirements Definition" OR
"System/Software Requirements Definition" OR
"Architecture Definition" OR
"Design Definition" OR
"System Analysis" OR
"Implementation" OR
"Integration" OR
"Verification" OR
"Transition" OR
"Validation" OR
"Operation" OR
"Maintenance" OR
"Disposal"

)

In the first phase, a preliminary set of papers is obtained. After the
search is complete, inclusion and exclusion criteria shown in Table 1
are applied to refine the search results, during abstract screening.
During this step, the abstracts are screened to evaluate the relevance
they have to the research. Thereafter, snowballing is done to include
any important and relevant material that might be referenced.

Following the process, relevant papers are read and organized in
Zotero10 reference manager to obtain the final selection of studies to
perform the review as outlined in Section 3.2. Finally, systematic anal-
ysis and qualitative coding are performed in Qualcoder11 Section 3.3
in order to extract data to spreadsheets12 and return the answers to the

2 https://dl.acm.org
3 https://ieeexplore.ieee.org
4 https://www.sciencedirect.com
5 https://link.springer.com
6 https://onlinelibrary.wiley.com
7 https://search.ebscohost.com
8 https://www.scopus.com
9 https://apps.webofknowledge.com

10 https://zotero.org
11 https://github.com/ccbogel/QualCoder
12 https://www.libreoffice.org/discover/calc/

Table 1
Inclusion and exclusion criteria applied in this research.

Inclusion Criteria Exclusion Criteria

Written in English Unidentified author
Published between 2017 and 2022 No publication date

Mention an LCP and DevOps Capability Full-text not accessible
Peer-reviewed Lack of rigor or validity (unreliable)

Engineering/Software Engineering Non-engineering related

research questions in Section 4.1 and Section 4.2. The document itself
is then written in LaTex.13

3.2. Conducting the SLR

This section presents an overview of the SLR process. Fig. 6 il-
lustrates the selection procedure, which consists of four stages: Iden-
tification, Screening, Eligibility, and Inclusion, based on the PRISMA
statement [36]. These stages also follow the guidelines for conducting
an SLR [34,35] and are designed to ensure replicability and adherence
to peer-review standards.

3.2.1. Identification of primary documents
In the initial phase, the search process involved querying the se-

lected databases using the search string defined in the planning phase.
A total of 25,979 studies were initially identified when searching
by full text. To better filter this number, the search query was also
applied to the title and abstract, resulting in 3,125 documents for easier
identification, as shown in Fig. 6. Applying the inclusion and exclusion
criteria seen in Table 1 of Section 3.1.1, the retrieved documents
were filtered based on their relevance, publication date (January 2017
to November 2022), only related to software engineering, and have
been peer-reviewed. This filtering process excluded 2,524 non-relevant
documents. This was done by using the search engine of each database
to exclude documents before 2017 (1,186), non-software engineering
related (909) and no peer-reviewed documents (429). We remain with
601 documents in Step 3, Relevant after inclusion/exclusion criteria to
be imported into the bibliographic reference manager Zotero, for the
Quality Assessment and Eligibility process.

In Step 4, Zotero automated deduplication feature removes 131
duplicates using resulting in a final set of 470 unique documents.

3.2.2. Quality assessment and eligibility
This phase of the SLR targets high-quality, relevant studies to be

included. After screening, titles and abstracts are reviewed for relevant
studies. The Quality Assessment criteria were grounded on recency (af-
ter 2017), full-text available, methodological rigor/impartiality/validity
(sound), sufficient relevance and data (enough to support results on
LCPs and DevOps Capabilities).

In Step 5, a full-text review, when that was available, evaluated
studies’ methodological rigor, relevance, and quality. Documents with-
out a full text, unsound or without sufficient relevance and data about
LCP and DevOps Capabilities were excluded (377). The authors dis-
cussed and resolved any quality discrepancies on eligibility decisions
through discussion to reach a consensus, captured in a spreadsheet. This
step reduced the number to 93 documents after screening abstracts. In
order to capture any relevant missing publications, the forward and
backward iterative process of snowballing [37] was then applied to the
references, of the screened literature, in Step 5. This process yielded
9 additional documents to be included, resulting in a final set of 102
full-text documents for assessment. The overall process is illustrated in
Fig. 6.

13 https://www.latex-project.org/

Information and Software Technology 177 (2025) 107583

6

143

R. Amaro et al.

Fig. 6. Systematic review flow of information diagram for this study.
Source: Adapted [36].

3.2.3. Extraction of data
In Step 6, the flow ends with the extraction of data, performing

systematic coding and synthesizing results over the 102 final docu-
ments. For the extraction process, the methodology involved systematic
study within Zotero, as mentioned before, highlighting and extracting
relevant parts of text and sections to export them and performing
qualitative coding of papers within Qualcoder. This leads to identifying
the relations in the study and common themes which are used in
the discussion of this article. Data synthesis and results provide a
comprehensive answer to the research question.

3.3. Data extraction analysis

The extraction phase involves locating and identifying relevant data
for analysis. It allows for the combination of different categories of data
to be synthesized. The systematic analysis phase follows qualitative
coding.

3.3.1. Literature number of contributions
The number of contributions gathered from literature towards qual-

ity assessment derives from several databases, as seen in Table 2.
This process is important to achieve the necessary quality for the data
extraction phase.

This approach tries to reach the most databases possible and still
maintain a feasible and large scope of academic publications in order
to answer the research questions using qualitative coding analysis.

Fig. 7 shows the publications gathered for the SLR, categorized
according to several ranking factors sourced from reputable academic

Fig. 7. Break down of publication quality based on ranking.

sites, including Conference Ranks.14 and Scimago Journal & Country
Rank15 The data reveals a focus on strong publications in high-quality
outlets, including Q1 and Q2 journals, A/B conferences, and books.

This is a reliable indicator of the research quality and impact
achieved in this domain, given the substantial number of publications
produced by these prominent institutions. Overall, the publications
selected for review meet the required high standards of academic rigor
and excellence, contributing to the advancement of the field.

14 https://www.conferenceranks.com
15 https://www.scimagojr.com

Information and Software Technology 177 (2025) 107583

7

144

R. Amaro et al.

Table 2
Databases and steps used in the Systematic Literature Review (SLR) protocol.

Database Step 1 Step 2 Step 3 Step 4 Step 5 Snowballing Step 6

ACM Digital Library 1,386 140 85 85 13 0 13
IEEE Xplore 449 350 117 117 21 3 24
Science Direct 2383 110 38 38 14 0 14
Springer Link 4129 225 34 13 2 2 4
Wiley Online Library 545 17 14 14 5 0 5
EBSCO 12,060 736 87 65 11 1 12
Scopus 4433 1138 198 123 20 0 20
Web of Science 594 409 28 15 7 3 10

Total 25,979 3125 601 470 93 9 102

Step 1 = Query All fields, All documents
Step 2 = Query Title and Abstract, Peer reviewed publications
Step 3 = Relevant (inclusion/exclusion criteria) Table 1
Step 4 = After Removing duplicates
Step 5 = After Abstracts Screened
Snowballing = Applied over screened literature [37]
Step 6 = Full-text Document Assess.

Fig. 8. Distribution of publications per type over the years.

3.3.2. Distribution of publications over the years
As can be seen in Fig. 8, it is also noted that there is an upward

trend concerning publication numbers, with articles being the predom-
inant types of them. On the other hand, conferences are other forms,
while books occur less frequently. The growth in publication numbers
indicates more interest in DevOps which could be a catalyst to improve
both the software lifecycle as well as processes associated with it.

In summary, the analysis of the figures indicates a consistent growth
in DevOps-related publications, with a significant increase in 2022.
These publications mainly focus on the application of DevOps prin-
ciples and practices to different stages of the SDLC. These findings
suggest that DevOps is a crucial and expanding area of knowledge in
software development, and ongoing research is valuable to explore its
applications and benefits further.

4. Reporting the literature review

After extracting data and performing systematic qualitative coding,
this reporting section answers this study’s research question.

4.1. RQ1 - How do authors in scientific literature relate Software Life Cycle
Processes to DevOps Capabilities?

This section addresses the first research question and discusses how
authors relate Life Cycle Processes (LCPs) to DevOps Capabilities in
literature.

Several papers propose ways to link DevOps with LCPs. For instance,
Ali (2020) mentions that a hybrid DevOps process incorporating sys-
tematic reuse-based software development and management can reduce
rework effort and costs while increasing productivity [38]. Similarly,

Sánchez-Gordón (2018) suggests that new organizational structures and
highly automated processes can connect LCPs with DevOps [39]. Al-
though all the papers acknowledge the connection between DevOps and
the software development process, none of them explicitly address how
authors relate LCPs to DevOps Capabilities. Leite et al. (2019) highlight
that DevOps involves collaborative and multidisciplinary efforts to
automate software development [5], while Senapathi et al. (2018)
found that the adoption of DevOps practices improves deployment
frequency and communication between IT development and operations
personnel [17]. To address this gap, Tables 3, 4, 5, and 6 present
the identified relations between DevOps Capabilities and Life Cycle
Processes [4,11].

This SLR utilizes the Life Cycle Processes (LCPs) from the Standard
for DevOps [11] and categories of DevOps Capabilities proposed by
Amaro et al. (2022) [4] as follows:

Cultural capabilities are those that focus on the people and teams in-
volved in software development and delivery. They include things like
cross-team collaboration and communication, a culture of learning and
experimentation, and Free/Libre and Open Source Software (FLOSS)
adoption.

Measurement capabilities are those that focus on collecting and
analyzing data about software development and delivery. They in-
clude things like proactive monitoring, observability, auto-scaling,
emergency response, proactive failure notification, monitoring systems
to inform business decisions, working in progress limits, and visual
management capabilities.

Process capabilities are those that focus on the way that software de-
velopment and delivery are done. They include things like continuous
improvement of processes and workflows, focus on people, process, and
technology, working in small batches, lightweight change approval,

Information and Software Technology 177 (2025) 107583

8

145

R. Amaro et al.

visibility of work in the value stream, customer focus and feedback,
and a data-driven approach for improvements.

Technical capabilities are the ones that focus on the tools and tech-
nologies used in software development and delivery. They include
things like continuous integration, continuous delivery/deployment au-
tomation, test automation, and environments, Version Control System
(VCS), empowering teams to make decisions and changes, Configura-
tion Management (CM), cloud infrastructure and cloud-native, artifacts
versioning and registry, loosely coupled architecture, database change
management, infrastructure as code, containerization, shift left on se-
curity, trunk based development, centralized log management, test data
management, chaos engineering, and code maintainability.

For the remainder of this section, the relationship between each LCP
(listed in Fig. 4) and the categories of DevOps Capabilities (as in Fig. 2)
is detailed according to the analysis of the retrieved literature.

4.1.1. Agreement processes
LCP01. Acquisition Process: Obtaining a product or service that

meets the acquirer’s requirements [11].
Cultural capabilities: DevOps requires teams to work together [11],

use FLOSS [40–42], and have a strong organizational culture that
invests in tools and technologies to facilitate knowledge sharing and
collaboration. [43,44].

Measurement capabilities: The acquisition of tools for proactive moni-
toring, observability, and autoscaling [11,45], emergency response, and
failure notification [11], as well as visual management capabilities such
as dashboards to support DevOps and the acquisition process [46] itself.
Likewise, Risk Management should be considered to analyze, treat, and
monitor risks [46] in these acquisitions.

Process capabilities: Focus on people, process, and technology [11,14,
40], with a customer-centric approach [47] and data-driven approach
for continuous improvement [24]. The acquisition process should align
with DevOps principles, improving acquisition, in the life cycle [11,47].

Technical capabilities: Such as Continuous Integration & Continuous
Delivery or Deployment (CI/CD) [48,49], Quality Assurance (QA) [14],
VCSs [50], should empower teams [45], by acquiring flexible and de-
coupled software, supporting microservices [45], containers [51], and
security best practices [11,14,43,49]. The process should be supported
by operational data to assess benchmarks [49].

LCP02. Supply Process: Providing a product or service that meets
the requirements agreement [11].

Cultural capabilities: While DevOps improves the technical and qual-
ity aspect of supply, it does so also by leveraging cross-team collab-
oration [52], communication, and experimentation [53,54] important
for job satisfaction [5,21], with key enablers like FLOSS tools like
Kubernetes [41,55,56], while reducing conflicts, failures [57], and
deployment times.

Measurement capabilities: Supply products and services with evidence
of DevOps measurement capabilities. Namely, observability, autoscal-
ing, emergency response [5], to monitor systems and inform business
decisions [58], integrated with visual management capabilities [59].
Moreover, cloud computing services offer productive, efficient, and
reliable infrastructure with vulnerability scans [41,45,53,60], moni-
toring mechanisms and links to interconnect data centers with high
performance, using FLOSS software on the cloud [40,57,61].

Process capabilities: Working in small batches [56] is essential for
supplying change and updating systems. Visibility of the value stream
helps control the life cycle [11,14], divided into four value streams:
creating value in the ‘‘Dev’’ space, downstream delivery, and value
creation in ‘‘Ops’’ monitoring and upstream feedback [58,62]. The
lightweight change approval process is used by development teams to
manage changes and supply customers with faster updates [46,63,64].

Technical capabilities: For the supply process, it is mentioned that
DevOps Capabilities and tools such as continuous integration [48,
65] using trunk-based development [42], continuous delivery [45,66],

test automation [23,67], VCSs [41,64], and configuration manage-
ment [14,21] are discussed. Security [17,68,69], cloud practices [40,
70], microservices [57,71,72], database change management [66], con-
tainers [45,57,65,73], monitoring and logging services, empowering
teams [23,63,74] and machine learning are also discussed. Finally, in-
frastructure is suggested as code [16], artifacts [65], and management
of test data and centralized logs [45,61].

4.1.2. Organizational project-enabling processes
LCP03. Life Cycle Model Management process: Ensure the def-

inition, maintenance, and availability of policies, processes, models,
and procedures aligned with organizational objectives. Emphasizes the
integration, collaboration, automation, and feedback systems crucial
for DevOps [11].

Cultural capabilities: The adoption of FLOSS in DevOps facilitates
continuous integration, delivery, and testing [85]. Chen et al. propose
a platform that integrates FLOSS components to support research and
development life cycle management [84]. The combination of DevOps
and FLOSS promotes a culture of learning and experimentation in
software development [79].

Measurement capabilities: Establishing Life Cycle Model Management
aligned with DevOps Capabilities, project needs, and organizational
policies are crucial [11]. Real-time analytics play a vital role in tracking
application health and usage metrics, diagnosing problems, and inte-
grating monitoring into application life cycle management using tools
like Chef, Ansible, and Puppet [11,66].

Process capabilities: DevOps emphasizes continuous improvement of
processes and workflows, particularly in alignment with security con-
siderations and infrastructure management [11]. Lightweight change
approval is a critical practice for managing software and system con-
figurations in DevOps, involving configuration identification, status
accounting, change control, and configuration audit [11].

Technical capabilities: DevOps relies on continuous integration, deliv-
ery, testing, and monitoring to ensure software reliability, availability,
and security. Configuration Management is employed to control system
elements and configurations throughout the product life cycle [11,46].
Database change management and containerization are also signif-
icant in DevOps [84,85]. Security considerations should align with
life cycle model management, encompassing accountability, continu-
ous tracking and evaluation, monitoring, and improvement of security
performance [14,66,84].

LCP04. Infrastructure Management process: Provides and main-
tains the necessary infrastructure and services to support objectives
throughout the lifecycle [11].

Cultural capabilities: Cultural capabilities in infrastructure manage-
ment include cross-team collaboration, communication [75], and trans-
formational leadership [88]. These capabilities support a learning cul-
ture, experimentation [5,17,56], and the adoption of FLOSS [41],
enabling effective infrastructure management [80–82].

Measurement capabilities: Effective infrastructure management in De-
vOps requires proactive monitoring, observability, autoscaling [21,52,
54,56], emergency response [5], visual management [45], and con-
tinuous delivery. Key aspects include artifacts and configuration man-
agement, infrastructure as code, containerization, and cloud services.
Continuous monitoring of runtime performance, availability, scalabil-
ity, resilience, reliability, metrics, alerting, and log management is
essential [5,51,61].

Process capabilities: Legacy infrastructure systems pose challenges in
DevOps due to factors like lack of automation, source code quality,
and monitoring. Continuous delivery can help overcome these barriers,
and successful DevOps implementation relies on frequent releases [5,
40,63]. Effective configuration management of code and infrastructure
and customer feedback play important roles [52].

Technical capabilities: Automation of infrastructure and software
development is a critical aspect of DevOps [49,66,95]. Infrastructure

Information and Software Technology 177 (2025) 107583

9

146

R. Amaro et al.

Table 3
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 01–08.

Agreement processes Organizational project-enabling processes

LCP01 LCP02 LCP03 LCP04 LCP05 LCP06 LCP07 LCP08

C01 [11] [52] [75] [52,75–77] [5,46] [78] [11]
C02 [11,14,46,53,54] [79] [5,17,56,80–82] [83] [79] [58,79]
C03 [40–42] [41,55,56,59,69,73] [84,85] [41] [80,86] [40,42] [87]
C04 [88] [11] [89]
C05 [43,44] [80] [90]
C06 [5,57]
C07

Cu
ltu

ra
l

Ca
pa

bi
lit

ie
s

[5,21]

C08 [11,45] [5,14,21,40,41,45,51,53,57,60–62,69–71,91] [11,66] [5,21,51,52,54,56,61] [46,86,92] [44,93] [14,23,77] [17,21,87]
C09 [11] [5] [5]
C10 [46] [58] [11] [86] [14,77,94]
C11
C12 M

ea
su

re
m

en
t

[45] [59] [45] [14,86] [23]

C13 [11] [58] [11,68] [22,78] [11]
C14 [11,14,40] [40]
C15 [56] [95]
C16 [11,14,46,63,64] [11] [5,40,63] [11,14,86] [63,77,96] [22]
C17 [58,62]
C18 [47] [52] [11]
C19

Pr
oc

es
s

Ca
pa

bi
lit

ie
s

[24] [97] [24]

C20 [48] [5,21,23,48,65] [84,85] [5,49,66,71,95] [5,66,77,95] [68] [11,22,42,77,78,96,98] [49,75,80]
C21 [49] [21,45,62,66] [66,84,85] [5,17,49,52,63,71] [5,49,52,77,96] [89,99] [5,11,22,42,63,77,78,96] [22,75,80]
C22 [14] [23,67] [5,49,67,75,95] [75,95] [67] [22,100] [14]
C23 [50] [41,64] [81,82,101] [64] [22,98]
C24 [45] [23,63,74] [45,95,102] [11,76,89,102] [89,95]
C25 [14,21,41,66] [11,14,46] [14,21,23,56,65,82] [11,14,46,75,89] [11] [14] [21]
C26 [21,40,53,56,61,70] [17,51,56,88,95] [41]
C27 [65]
C28 [45] [5,21,40,45,50,51,57,70–73,103,104] [84] [45,63,105] [105] [63,106]
C29 [66] [66]
C30 [16,52] [11,17,23,56,63,65,66,80,82,88,101] [64,66] [63,79]
C31 [51] [5,40,45,50,56,57,65,71,73,103] [85] [5,41,65,80,82,86,101] [41] [79] [75]
C32 [11,14,43,49] [11,14,17,40,41,45,46,55,60,66,68–70,104,107] [11,14,66,84] [5,16,40,60,67,88,108] [11,40,49,106] [99,109] [11,14,22] [11,14,22]
C33 [42]
C34 [40,45,61] [110]
C35 [66] [111]
C36
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[5] [14]

Legend: DevOps Capabilities C01 - Cross-team collaboration; C02 - Support learning and experimentation; C03 - Open source software adoption; C04 - Transformational leadership; C05 - Westrum organizational culture;
C06 - Blameless Postmortems ; C07 - Job satisfaction; C08 - Monitoring, Observability, and autoscaling; C09 - Emergency response; C10 - Monitor systems to inform business decisions; C11 - Working in progress limits;
C12 - Visual management Capabilities; C13 - Continuous Improvement of processes; C14 - Focus on people, process, and technology; C15 - Working in small batches; C16 - Lightweight change approval; C17 - Visibility
of work in the value stream; C18 - Customer focus/feedback; C19 - Data-driven approach for improvements; C20 - Continuous Integration; C21 - Continuous Delivery automation; C22 - Test Automation and environments;
C23 - Version Control System; C24 - Empower teams to make decisions; C25 - Configuration Management; C26 - Cloud infrastructure and cloud-native; C27 - Artifacts versioning and registry; C28 - Loosely coupled
architecture; C29 - Database change management; C30 - Infrastructure as Code; C31 - Containerization; C32 - Shift left on security; C33 - Trunk-based development; C34 - Centralized log management; C35 - Test data
management; C36 - Chaos Engineering; C37 - Code maintainability.
Life Cycle Processes LCP01 - Acquisition process; LCP02 - Supply process; LCP03 - Life Cycle Model Management process; LCP04 - Infrastructure Management process; LCP05 - Portfolio Management process; LCP06 -
Human Resource Management process; LCP07 - Quality Management process; LCP08 - Knowledge Management process.

as Code (IaC) is a key practice that manages infrastructure compo-
nents as programmable artifacts [11,23,63,101]. It automates system
provisioning, deployment, and orchestration. DevOps utilizes various
automation and management technologies for frequent and reliable re-
leases [49,95], including containerization [41,80,82,86], configuration
management [14,21,56], and microservices technologies [51,88].

LCP05. Portfolio Management process: Uses a central portfolio
for continuous assessment, managing, and redirected investment to
maintain strategic projects and ensure the organization’s success [11].

Cultural capabilities: Organizations that use reusable assets should
collaborate [76] and explore potential reuse opportunities [52,75,77].
FLOSS adoption improves portfolios and brings new tools [80,86].
Transformational leadership and portfolio risk management are key for
managing changes during the transition to DevOps [11,80].

Measurement capabilities: Proactive monitoring, observability, and
visual management improve Portfolio Management decision-making,
resource efficiency, and strategic alignment [14,86]. These capabilities
provide real-time insights, anticipate issues, optimize resources, and
provide clear data visualization to ensure the portfolio meets orga-
nizational goals and adapts to future changes and challenges [46,
92].

Process capabilities: Manage product lines to meet organizational or
customer needs and objectives while supporting technology changes
[11]. Implement lightweight changes supported by configuration man-
agement to maintain a product’s life cycle [14,86]. Improve processes
and workflows to achieve non-functional requirements and improve
software [58].

Technical capabilities: In portfolio management, continuous inte-
gration [66,95], continuous delivery [49,77], test automation [75,
95], VCSs [64], configuration management [14,46], cloud infrastruc-
ture [41], loosely coupled architecture [105], infrastructure as code
[64,66], containerization [41], and shift left on security [11,40,49,106]

are highlighted. These capabilities require automation, collaboration,
and closer feedback between teams, product, and customers [75,86].
Challenges related to continuous deployment adoption include team co-
ordination, customer adoption, feature discovery, plugin management,
and scaling CI tools [5,77].

LCP06. Human Resource Management process: Ensures the provi-
sion and maintenance of human resources and competencies [11].

Cultural capabilities: Implementing cross-functional teams in DevOps
is important, but challenges exist due to the shortage of operators with
development skills [5,46]. Transformational leadership and a culture
that supports learning and experimentation are needed for DevOps
adaptation [83,89,90]. Reallocation of resources and adjusting organi-
zational cultures and processes are challenges and benefits of changing
work structures [90].

Measurement capabilities: Alignment between HR management and
DevOps measurement capabilities is crucial, including identifying nec-
essary skills and providing performance data [44]. Monitoring provides
insights for resource management, but expertise in metrics monitoring
is important for successful DevOps adoption [93].

Process capabilities: Continuous improvement in software devel-
opment and related organizational functions is emphasized in De-
vOps [11,68]. Continuous integration and reducing organizational silos
are key aspects [40]. HR management should support teams and ensure
personnel has the flexibility and capacity to adopt new technologies
and methods [97].

Technical capabilities: Continuous integration, continuous delivery,
test automation, and configuration management provide insights for
managing HR and development time in DevOps [11,67,68,97]. Hiring
skilled professionals with DevOps knowledge is essential. Adapting HR
and automating infrastructure is necessary for operational contexts and
aligning with DevOps processes [40,89,95]. Security shift left is also
important [99,109].

Information and Software Technology 177 (2025) 107583

10

147

R. Amaro et al.

LCP07. Quality Management process: Assures that products, ser-
vices, and implementations meet quality objectives and achieve cus-
tomer satisfaction [11].

Cultural capabilities: DevOps improves software development prac-
tices and faces challenges with FLOSS adoption, including license,
quality, and security concerns. Cross-team collaboration, learning cul-
ture, and open-source tool adoption like SonarQube address these
challenges and support quality management [40,42,78,79].

Measurement capabilities: Monitoring, measuring customer satisfac-
tion, continuous monitoring, and visualization of product and process
quality inform business decisions in quality management [14,23,77,
94].

Process capabilities: Continuous improvement, small batches,
lightweight change approval, data-driven decisions, and managing
corrections, lessons learned, and customer feedback drive software
development and release management [11,22,24,63,77,78,95,96].

Technical capabilities: Standardizing quality management with Con-
tinuous Integration (CI), using FLOSS tools like Jenkins, Cucumber,
JUnit, GIT, and Selenium, practicing QA and testing, and addressing
log management, code quality analysis, and security contribute to
successful technology-driven transformation in DevOps [11,22,42,98,
100].

LCP08. Knowledge Management process: Enables the organization
to leverage existing knowledge for opportunities [11].

Cultural capabilities: Knowledge management can support cross-
functional communication, practical lessons learned, experimentation,
learning culture, and FLOSS software adoption support DevOps [11,58,
79,87].

Measurement capabilities: Upskilling the team, training, and hiring
for observability, alert handling, autoscaling, and monitoring tools are
crucial for DevOps adoption [17,21,87].

Process capabilities: Sharing lessons and artifacts, updating poli-
cies and processes, securing knowledge management environments,
and implementing CI/CD with lightweight change approval improve
workflows and artifact delivery [11,22].

Technical capabilities: Implementing CI/CD, test automation, CM,
containerization, shift left on security, and test data management im-
proves software development, infrastructure, quality, security, and op-
erations while promoting team knowledge sharing [14,22,49,75,80,
111]. Safeguarding and securing knowledge and skills is also impor-
tant [14].

4.1.3. Technical management processes
LCP09. Project Planning: Produces workable plans identifying out-

puts, tasks, schedules, acceptance criteria, and resources [11].
Cultural capabilities: DevOps roles emphasize improved cross-team

collaboration, project planning [77] with FLOSS and a business-focused
plan, transformational leadership, blameless postmortems, and a cul-
ture of feedback and improvement [14,40,47,79,112].

Measurement capabilities: Defining common objectives, management
priorities, roles, and responsibilities for cross-functional DevOps teams,
and using proactive monitoring, observability, and autoscaling to in-
form business decisions and system adjustments [14,40].

Process capabilities: Continuous improvement, integrating lessons
learned from QA processes, project planning, lightweight change ap-
proval, and customer feedback support system adoption and project
success [11,47,112,113].

Technical capabilities: Collaboration, continuous integration [21],
adherence to the project plan for testing and quality processes, au-
tomated testing, CM, security planning and coordination, transition
planning, coordination of CM plans, and loosely coupled architecture
are important technical aspects of DevOps [11,14,40,47].

LCP10. Project Assessment and Control: Monitors project align-
ment, performance, and provides corrective actions [11].

Cultural capabilities: Supporting learning and experimentation in
project assessment and control, particularly with VCS, enables tracking
project changes and learning from past mistakes [81].

Measurement capabilities: Proactive monitoring, observability, au-
toscaling, and visual management aid project control by providing in-
frastructure provisioning, validation, monitoring, and presenting
project tracking information through dashboards [14,64].

Process capabilities: Improvement of project tracking, assessment,
and control processes based on data and project needs [11], data-
driven approach, lightweight change approval processes, and continu-
ous project monitoring and assessment are essential for effective project
management and control [14].

Technical capabilities: Automation in continuous integration and de-
livery [21], continuous testing, VCSs like Git, loosely coupled architec-
ture, and shift left on security contribute to improved project assess-
ment and control processes and the overall quality of the project [11,
14,41,64,81,120].

LCP11. Decision Management: Structured framework for making
informed decisions throughout the lifecycle [11].

Cultural capabilities: Cross-team collaboration [11,77], learning cul-
ture, experimentation, and a performance-oriented organizational cul-
ture are crucial for decision management in DevOps, facilitating knowl-
edge sharing and the development of microservices at scale [14,23,
40].

Measurement capabilities: Proactive monitoring, observability, au-
toscaling, and visual management support informed business decisions
and communication of results to stakeholders in decision management
processes [14,23,40,41].

Process capabilities: Data-driven decision-making, lightweight change
approval processes, and standardization of tasks and processes drive
continuous improvement and enhance the quality of decisions in De-
vOps [11,14,23,119].

Technical capabilities: Effective decision management is crucial for
successful automation in Continuous Integration and Delivery, Test Au-
tomation, CM, cloud infrastructure utilization, and adopting a loosely
coupled architecture. Shifting left on security ensures secure software
delivery [11,14,49,53,66,102].

LCP12. Risk Management: Continuously identifies and manages
risks associated with acquisition, development, maintenance, or opera-
tion [11].

Cultural capabilities: Transformational leadership is crucial for man-
aging culture, tools, processes, and practices during the DevOps tran-
sition [11]. DevOps Risk Management, an automated and continuous
process, empowers leaders to identify, analyze, and mitigate risks that
may affect project success [71].

Measurement capabilities: Risk management in DevOps involves con-
tinuous monitoring, vulnerability scanning, and testing within a risk
management framework [53]. Proactive monitoring, observability, au-
toscaling, and visual management capabilities inform business de-
cisions, while working in progress limits manage workflows effec-
tively [11,46,108].

Process capabilities: DevOps risk management focuses on continuous
process improvement, lightweight change approval, and customer feed-
back [108]. Change management is crucial for DevOps adoption, and
stakeholder feedback loops ensure continuous improvement and timely
delivery [11,14].

Technical capabilities: Automation is essential in DevOps for contin-
uous integration, delivery, deployment, and operations [47,48]. Risk
management, QA, testing, and CM play vital roles in building secure
and verifiable systems. Empowering teams to make decisions and ad-
hering to risk management frameworks and processes minimize adverse
effects on the organization and stakeholders [11,14,43,53,79,90,108,
109].

LCP13. Configuration Management: Control and manage system
elements and configurations across the lifecycle [11].

Cultural capabilities: Cross-team collaboration, communication, a
learning culture, and FLOSS adoption are crucial for improving DevOps.
CM reduces errors, improves security, and standardizes environments.

Information and Software Technology 177 (2025) 107583

11

148

R. Amaro et al.

Table 4
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 09–16.

Technical management processes (1 of 2)

LCP09 LCP10 LCP11 LCP12 LCP13 LCP14 LCP015 LCP16

C01 [40,77] [11,40,77] [75,89,114] [11] [11] [17,48,76,87,106]
C02 [81] [14,23] [5,17,80,82,115] [42,58] [53,83] [106]
C03 [14,112,113] [14,66] [42,110,116] [38] [14]
C04 [79] [11,71] [50,71]
C05 [40] [11,22]
C06 [47]
C07

Cu
ltu

ra
l

Ca
pa

bi
lit

ie
s

C08 [40] [14,64] [14,40] [11,53,108] [5,14,21,41,61,77,84,114] [11,21,41,91] [11,14,57,61,75] [11,21,22,39,44,50,79,117]
C09 [11] [5] [17]
C10 [14] [14,41] [46] [14,21,41] [14,41] [11,14,47,99] [14]
C11 [11] [11,118] [11,118]
C12 M

ea
su

re
m

en
t

[11] [23] [108] [66] [11]

C13 [11] [11] [11,23,119] [11,108] [42,68] [16] [11,69]
C14 [14]
C15 [11]
C16 [11,112,113] [14] [11,14] [11,14] [5,11,14] [11,14,41,42] [11] [24,63,79,98]
C17 [23] [11] [47]
C18 [47] [11] [63,114]
C19

Pr
oc

es
s

Ca
pa

bi
lit

ie
s

[11] [11,23,119] [115] [11,24]

C20 [21] [11,21] [49,102] [11,48] [5,21–23,69,72,98] [42] [11,16,22,23,48,50,71,120]
C21 [21] [11,21] [5,66,102,119] [11] [5,11,17,21,66,72,87] [11,42,44,116] [11,16,22,39,66,69,82,106,114,120]
C22 [11] [120] [11] [47] [5,14,22,75,87,100] [14] [11,17,22,23,71,92,100,106,121]
C23 [64,81] [21] [116] [22,106]
C24 [11,77] [11,79,108] [11] [99] [11,17]
C25 [11,14] [14] [14] [14,46] [5,11,14,21,46,65,82,89,93] [11,14,21] [14,61] [11,14,21,48,69]
C26 [53,66] [53] [41,56,93] [66]
C27 [66]
C28 [21] [21] [40] [5,21] [42] [50,57] [21,50,106,117]
C29 [66] [41]
C30 [5,21,23,41,56,65,66,69,80] [91] [50,79,91]
C31 [5,41,65,69,77,80,82] [116] [78] [50,79,120]
C32 [11,40,47] [11,41] [11,14] [11,14,43,47,90,109] [5,11,14,21,41,66,114] [14] [11,99] [11,21,22,50,69,107]
C33 [91]
C34 [110] [42,110]
C35 [11]
C36 [11] [11]
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[23]

Legend: DevOps Capabilities C01–C37 mentioned in Table 3.
Life Cycle Processes LCP09 - Project Planning; LCP10 - Project Assessment and Control; LCP11 - Decision Management; LCP12 - Risk Management; LCP13 - Configuration Management; LCP14 - Information Management;
LCP15 - Measurement; LCP16 - Quality Assurance.

Continuous experimentation and automation are essential for successful
DevOps [5,14,17,66,75,80,82,89,114,115].

Measurement capabilities: CM ensures project integrity using tools
like Puppet and Chef for configuration automation and monitoring [61,
84]. DevOps requires technical skills in log analysis, containerization,
and management skills in planning and time monitoring. Continuous
planning, feedback, and monitoring are essential [14,21,41,77,114].

Process capabilities: Source code management, build, release, de-
ployment engineering, and application lifecycle management are cru-
cial. Configuration audits verify authorized changes, and lightweight,
data-driven change approvals are implemented [115]. CM also in-
cludes managing changes to organizational procedures and business
workflow [5,11,14].

Technical capabilities: CM tools like Chef, Ansible, and Puppet Labs
support platform configuration in cloud computing environments.
Teams improve accessibility to resources for automatic testing, server
configuration, and DevOps practices such as CI/CD [41,80]. CM is in-
trinsic to managing and controlling system elements and configurations
throughout the lifecycle [5,11,14,21,23,46,56,65,66,69,82,89,93,114].

LCP14. Information Management: Generate, obtain, confirm, trans-
form, retain, retrieve, disseminate and dispose of information, to des-
ignated stakeholders [11].

Cultural capabilities: Effective information management requires ap-
propriate tool selection, communication channels [11], and compre-
hensive log analysis platforms. FLOSS like ELK facilitates runtime in-
formation collection and analysis [110,116]. Cross-team collaboration,
a learning culture that supports experimentation, and communication
are essential for successful implementation [42,58].

Measurement capabilities: Proactive monitoring, observability, and
autoscaling ensure peak system performance [11,21,91]. Real-time
system monitoring and data collection enable issue identification and
informed decision-making. These practices improve organizational per-
formance [14,41].

Process capabilities: Continuous improvement, lightweight change
approval, and work visibility are critical for information manage-
ment [23]. Continuous integration between software development and

operational deployment and continuous assessment and improvement
of the link between business strategy and software development are
vital [42,68]. Effective log management and continuous integration
processes adapt to changing requirements [11,14].

Technical capabilities: Information management establishes proce-
dures for handling information products, manages configuration
changes, and implements central logging for runtime behavior anal-
ysis [11,41,110]. It utilizes tools like VCSs, continuous deployment
capabilities, and unified environments [14,21,42,44,91,116].

LCP15. Measurement: Collects and analyzes data to support man-
agement decisions and demonstrate quality [11].

Cultural capabilities: Effective communication, collaboration, and
feedback loops are essential for embedding Quality Management into
DevOps [11]. FLOSS solutions and deterministic metric measurement
enhance performance. Challenges include experiment pre-processing
and ensuring external validity [38,53,83].

Measurement capabilities: Automated checks, tests, and monitoring
measure Service Level Indicators (SLIs) and assess deliverable readi-
ness [57,61,75]. Real-time feedback and measurement-driven design
enable continuous improvement, progress tracking, and meeting Ser-
vice Level Agreements (SLAs). Proper measurement procedures, instru-
mentation, and data integrity support evidence-based decision-making
and quality improvement [14,99,118].

Process capabilities: Measurement is essential for continuous im-
provement in DevOps [16]. Organizations must ensure data quality and
integrity, design and configure instrumentation for metrics collection,
and use measurements to manage changes in the application life cy-
cle. Measurements should be implemented across all roles to support
problem analysis and process improvement [11,14].

Technical capabilities: Measurement processes using test automa-
tion and calibrated verification environments enable system suitabil-
ity [11,14]. Bidirectional traceability is important for requirements
management, architecture, design, CM, and information management.
Measurement and observability systems enable data collection and
processing for decision-making and change management processes [50,
57,61,78,99].

Information and Software Technology 177 (2025) 107583

12

149

R. Amaro et al.

LCP16. Quality Assurance: Ensure the application of the Qual-
ity Management process, as well as the organization’s policies and
procedures [11].

Cultural capabilities: Collaboration, communication, and a learning
culture enhance QA in DevOps [17,48,76,87,106]. Adopting FLOSS,
transformational leadership, and constant experimentation contribute
to higher quality and increased transparency [14,50,71]. Test automa-
tion is crucial to meet QA requirements in dynamic DevOps cycles [11,
22].

Measurement capabilities: Real-time monitoring and automated test-
ing play crucial roles in DevOps QA. Usage and measurement data
enable continuous assessment, test case generation, metric computa-
tion, and result visualization [11,21,22,39,44,50,79,117]. Automated
monitoring and testing identify irregularities, variances, and infor-
mation gaps to ensure SLOs are met and quality is assured [14,17,
118].

Process capabilities: Continuous improvement, customer feedback,
and a data-driven approach are crucial in QA [11,69]. DevOps prac-
tices reduce rework and errors, leading to faster time-to-market and
improved product quality [24,79,98]. Incorporating new tools and
methods addresses risk areas and process gaps [47,63,114].

Technical capabilities: CI and DevOps automation tools enable QA
in software development [16,23,39,48,50,66,69,82,114]. Test automa-
tion, risk management, and testing are emphasized in DevOps to
achieve accelerated velocity and continuous delivery. QA oversees
CI, adapts test automation to DevOps cycles, and ensures code qual-
ity. Continuous QA and testing are essential to reduce rework and
waste [22,79,91,106,107,117,120].

4.1.4. Technical processes
LCP17. Business or Mission Analysis: Focuses on defining prob-

lems, characterizing solutions, and identifying potential solutions [11].
Cultural capabilities: A learning culture and experimentation are

critical in business analysis. Feature analytics evaluate cost, usage, and
return on investment [68]. FLOSS adoption solves performance bottle-
necks, and integrating processes is essential for implementation [40,
84].

Measurement capabilities: Monitoring and mapping software non-
functional requirements to business objectives to inform decision-
making [11,46,58]. Visual management and proactive monitoring guide
business decisions and adapt to system changes. Feedback from opera-
tional monitoring aids customer support [14].

Process capabilities: Capability models drive continuous improve-
ment in Business/Mission Analysis processes. Effective monitoring of
system performance and customer support is crucial. Operational gaps
inform process changes [47,75]. Lightweight change approval supports
continuous improvement [46].

Technical capabilities: Business or mission analysis benefits organi-
zations by identifying key goals and strategies [11,14]. It explores
internal and external factors impacting performance, improves effi-
ciency, effectiveness, and success [47,49,75,108]. Analysis considers
market trends, customer needs, and competitive pressures. The goal
is to develop a clear understanding of the organization’s mission and
identify growth opportunities [40,45,68,84,89].

LCP18. Stakeholder Needs and Requirements Definition: Identifies
requirements for a system to meet users and stakeholders’ needs [11].

Cultural capabilities: Agile methods prioritize teamwork and iterative
delivery. Continuous experimentation through small field experiments
learns about customer needs. FLOSS and adapting to changing customer
needs to ensure stakeholder satisfaction [14,86]. Organizational culture
affects job satisfaction and quality [44,90].

Measurement capabilities: Identifying stakeholder needs and require-
ments is critical [77,86]. Effective communication ensures an under-
standing of stakeholder expectations, leading to solutions that meet
requirements [14]. Gathering and analyzing stakeholder feedback in-
forms decision-making and resource prioritization, increasing stake-
holder satisfaction [14,23].

Process capabilities: Prioritizing people and interactions, customer
collaboration, and responsiveness to change are essential in meet-
ing stakeholder needs and improving processes [23,62]. Data-driven
decision-making and rapid experimentation guide product development
and foster innovation [14,46,62].

Technical capabilities: Understanding stakeholder needs and require-
ments is crucial for project success. Identifying expectations and con-
cerns of stakeholders and incorporating them into planning and devel-
opment processes [23,49]. Effective stakeholder engagement improves
outcomes, builds trust, and fosters relationships [11,14]. Regularly
reviewing stakeholder needs ensures ongoing satisfaction [22,41,67,
77].

LCP19. System/Software Requirements Definition: Transforms
stakeholder views into technical solutions, creating measurable system
requirements [11].

Cultural capabilities: Clear communication, collaboration, and at-
tention to detail are crucial in defining system and software require-
ments [11,40,44,90]. Effective requirements definition ensures project
success and avoids costly errors and delays [23,56,83].

Measurement capabilities: Incorporating measurement capabilities
early in requirements design helps identify and mitigate risks and
discrepancies [14,41,77,86,98,123]. Keeping the project on schedule
and within scope prevents costly changes and rework later in the
development cycle [11,21,51,57]. AI and ML with runtime data are
used in recent projects [119] to translate stakeholder opinions into
measurable system requirements. Levy (2022) suggests that using this
data ensures that needs are based on real operational facts [86].

Process capabilities: Properly defining requirements involves a con-
tinuously improving process of analyzing stakeholders’ needs, set-
ting realistic goals, and facilitating communication among team mem-
bers [23,86,98]. It ensures successful project outcomes and reduces the
risk of errors and misunderstandings [11,14,46].

Technical capabilities: Like the need for CI/CD, proper testing, or CM
are important for successfully transforming views to requirements soft-
ware development, Technical identifying, analyzing, and prioritizing
stakeholders’ needs and constraints, and documenting them clearly [48,
66,68,69,79,124]. Effective requirements definition ensures meeting
user needs, on-time and within-budget delivery of high-quality prod-
ucts. It requires collaboration, communication, and appropriate tech-
niques and tools throughout the development lifecycle [22,23,67,70,
72,84,97,98,104,114]

LCP20. Architecture Definition: Generates system architecture al-
ternatives to satisfy requirements [11].

Cultural capabilities: A learning culture, cross-team collaboration,
and FLOSS adoption enhance the Architecture Definition process [14,
67,77]. Proof-of-Concept experiments and mathematical modeling pro-
vide confidence in system requirements and design [11,41,46,51].

Measurement capabilities: Cloud application architecture design re-
quires integration of coding, testing, packaging, and monitoring ac-
tivities [11,38,41,71,77]. Refactoring monolithic applications based on
DevOps principles improves collaboration, scalability, and observabil-
ity [51,77,86].

Process capabilities: Modularity, scalability, and upgradability ad-
dress stakeholder needs in the Architecture Definition process [14,77].
Customer feedback, data-driven approaches, and integrated processes
facilitate efficient change management [1,47].

Technical capabilities: DevOps practices like CI/CD, Test Automa-
tion [67], CM, Cloud infrastructure, and loosely coupled architecture
improve Architecture Definition [5,11,63,64]. They enhance collabora-
tion, scalability, flexibility, and alignment with business planning [14,
51,56,77,112,113].

LCP21. Design Definition: Provides detailed system and element
data for implementation [11].

Cultural capabilities: Experimentation, FLOSS adoption, blameless
postmortems, and job satisfaction support a learning culture, inno-
vation, agility, and high-quality design and development [23,43,51,

Information and Software Technology 177 (2025) 107583

13

150

R. Amaro et al.

Table 5
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 17–23.

Technical processes

LCP17 LCP18 LCP19 LCP20 LCP21 LCP22 LCP23

C01 [75] [14,40,75,77] [77] [11,47]
C02 [68] [23,83] [11,14,23,46,51,53,56,83] [11,14,41,46,51] [11,14,23,46,66,88,115] [11,14,23,42,46,51,73,88] [38]
C03 [40,84] [14,86] [55,86] [14,67] [43,51,107,111,116,122] [11]
C04 [11] [122]
C05 [44,90] [40,44,90] [47,69,89]
C06 [71]
C07 Cu

ltu
ra

l
Ca

pa
bi

lit
ie

s

[23] [23] [23]

C08 [11,46,58] [11,14,23,77,86] [11,14,21,38,40,41,51,57,58,77,86,98,119,123] [11,38,41,51,71,77,86] [11,14,21,46,51,57,61,71,119,123] [14,50,53,73,110,115,119] [11,38,47]
C09 [11]
C10 [14] [14] [14,40] [77] [21]
C11 [23]
C12 M

ea
su

re
m

en
t

[14] [14,23] [14] [23]

C13 [47,75] [62] [5,62,86,98] [62,69] [46] [69]
C14 [23] [23]
C15 [41] [22] [38,47,90]
C16 [46] [14,23,46,86] [11,14,46,86] [14,77] [111] [11,89]
C17 [11,23] [44,62]
C18 [11] [47] [47,52]
C19 Pr

oc
es

s
Ca

pa
bi

lit
ie

s

[23] [23] [1] [23] [1]

C20 [49,108] [23,49,72] [11,49,65,66,70,72,84,120,123] [64] [21,44,70] [42,71,120,124,125] [11,48,49,95]
C21 [47,75,105,108] [49,72,97,124] [5,23,49,58,65,70,72,79,97,98,120,123,124] [5,11,63] [21,40,44,49,70,71] [42,58,71,115,120,124,125] [11,48,105]
C22 [23] [48,67] [11,48,65,69,122] [67] [23,115,123] [120] [14,50,67]
C23 [66] [59]
C24 [48,75] [40,48,68,75] [49]
C25 [23,41] [14,41] [14,56,69] [14] [11,14,46]
C26 [40,53,57] [95,110] [21,88,119] [53]
C27 [11] [11]
C28 [45,105] [21,40,45,59,104,117] [5,21,51,59,84,86,104] [21,45,49–51,59,73,86,105] [22,42,57,73,117] [105]
C29 [50,95,120]
C30 [11,41,65] [56] [71,82] [17,56]
C31 [105] [65,104] [21,41,51] [21,41,49,51,54,73,119] [51,73,124] [54,95]
C32 [11,14,40,47,68,75,84,89] [11,14,22,41,67,77] [11,14,21,22,40,41,60,65,67,70,77,84,114,123] [11,14,21,77,112,113] [11,14,21,40,109,112,113] [14,74,109,124] [11,14,24,40,47,54,99,107,114,120,125]
C33 [95]
C34 [11,110] [51,110] [42,110] [110]
C35 [11] [11] [11]
C36
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[42] [121]

Legend: DevOps Capabilities C01-C37 mentioned in Table 3.
Life Cycle Processes LCP17 - Business or Mission Analysis; LCP18 - Stakeholder Needs and Requirements Definition; LCP19 - System/Software Requirements Definition; LCP20 - Architecture Definition; LCP21 - Design Definition; LCP22 - System Analysis;
LCP23 - Implementation.

71,111]. Specifically, postmortems are well documented Root Cause
Analysiss (RCAs) that help identify design failures without assigning
blame, promoting innovation, agility, and quality improvement. They
encourage collaboration between designers, developers, and operations
teams.

Measurement capabilities:Monitoring, data collection, and automated
telemetry points are crucial in Design Definition. They support con-
tinuous software and system engineering [21,51,57,61,71,123], and
enable control systems to maintain system goals based on measure-
ments obtained. Smart health monitoring systems enable ubiquitous
monitoring [21,23].

Process capabilities: Continuous improvement, DevOps principles,
lightweight change approval, data-driven approaches, and rapid ex-
perimentation are essential in Design Definition [69,111,119]. Orga-
nizational and technical metrics track continuous improvement, while
work visibility in the value stream defines system design. Rapid and
continuous experimentation accelerates innovation [23,44,62].

Technical capabilities: Continuous integration, deployment practices,
architecture agility, CM, security shifting left, system design, and test-
ing are crucial in Design Definition. They enable rapid continuous
delivery, functionality improvement, and transformation of system de-
sign [14,21,88,119]. CM maintains project integrity, and system design
predicts cloud infrastructure properties [11,41,45,54,73,86,105,109,
113].

LCP22. System Analysis: Supports decision-making with rigorous
data and information [11].

Cultural capabilities: System analysis encompasses mathematical an
analysis, modeling, simulation, and experimentation [11,14,42,73].
It provides confidence in system requirements, architecture, and de-
sign, and aims to understand the trade space and critical quality
characteristics of a system [23,51,88,122].

Measurement capabilities: Monitoring enables dynamic observation
and analysis of system data for runtime and design time [50,73,115].
It provides metrics for system status, and future cloud solution im-
pact, and facilitates debugging and problem-solving for distributed
systems [14,53,110,119].

Process capabilities: Microservices architecture in DevOps and Con-
tinuous Delivery or Deployment (CD) enables frequent software feature
delivery and improves quality attributes. ISO/IEC 29110 reinforces
DevOps processes [46]. Attention is given to quality attributes like ease
of deployment, security, modifiability, and ability to be monitored in
CD architectures [22].

Technical capabilities: System analysis involves various tools and
methodologies, including CI/CD, Test Automation, and Containeriza-
tion [51,58,115,120,125]. Centralizing log management, maintaining
code quality, and implementing early security measures are crucial.
Challenges and specialized analysis techniques for microservices archi-
tecture are discussed [22,42,57,73,74,82,109,124].

LCP23. Implementation: Realizes specified system elements from
requirements and design [11].

Cultural capabilities: Implementing DevOps software and systems
requires a collaborative approach across different teams, adoption of
FLOSS, conducting experiments and fostering a learning culture. How-
ever, success can be hindered by communication problems, team frus-
trations and uncoordinated activities can undermine success [11,38,
47]. Including such challenges like organizational culture, infrastruc-
ture, legacy systems and lack of automation. [47,69,89].

Measurement capabilities: Implementing involves several
Quality Management (QM) procedures like consistent policies, the prac-
tice of evidencing quality in everything and automated code monitoring
to detect non-compliant code [47]. Planning for monitoring, allocation
of resources are relevant activities for developing good quality and
evading issues. Traceability, feedback mechanisms and measurement
are important elements [11,47].

Process capabilities: The tools and teams are integrated by the in-
corporation of all the necessary components for continuous integration
and deployment [69], making them work hand in hand from the
start to the end of an application process. The repetitive tasks are
processed automatically [38,90] and customer feedback contributes to
improvements [47,52]. Data-driven approaches, testing practices, and
change control protocols assure quality and efficiency [1,11,89].

Technical capabilities: A rigorous process is required for DevOps
implementation, which includes continuous integration, testing, and

Information and Software Technology 177 (2025) 107583

14

151

R. Amaro et al.

Table 6
Papers relating DevOps Capabilities [4] to Life Cycle Processes [11] 24–30.

Technical processes

LCP24 LCP25 LCP26 LCP27 LCP28 LCP29 LCP30

C01 [14,92,100,114] [11,47] [48,52,58,75,77,82,94,114] [11,52,66,99] [52,63,66] [11,89]
C02 [23,38,46,51,58,68,81,87,115,128,129] [88,115] [14,38,81,88,115] [101]
C03 [11,40,41,68,116] [14,40,81] [40,41] [24,84,126] [101]
C04 [40,87]
C05 [75,89] [43,89]
C06 [11,47] [11,14] [14]
C07 Cu

ltu
ra

l
Ca

pa
bi

lit
ie

s

[49] [50]

C08 [11,17,23,41,45,57,61,71,114,123,126] [11] [57,71] [11,51,57,61,64,69,95,114,115,119,122,123,128] [5,14,40,41,57,60,72,91,106,108,119,123,128] [11,45,46,57,61,119] [54]
C09 [5,40]
C10 [14,94] [94,119] [47,75,106]
C11 [89,127] [118]
C12 M

ea
su

re
m

en
t

[108]

C13 [11,69] [11] [23,62,94] [43] [11,23] [11]
C14 [40,103] [71] [14,23]
C15 [38,82]
C16 [11,14,42,96] [14,89] [14] [14,41,66,79,98] [40,86,120] [11,14] [11]
C17 [11] [62]
C18 [23,47,83] [47] [58] [11] [38,83,90]
C19 Pr

oc
es

s
Ca

pa
bi

lit
ie

s

[11]

C20 [11,23,40,48,49,68,69,72,91,96,106,118,126,127] [11] [11,23,40,54,65,68,71,81,87,89,94,97,123,125,127,129] [72,118] [11,16,45,72,90,95,97,104,108,126] [66,101]
C21 [11,17,23,48,67,83,91,96,97,103,115,118] [11,23,52,58,62,65,79,87,88,94,97,105,120,123,124,127] [40,66,71,72,86,99,118,119,129] [11,16,17,22,45,63,66,72,90,104,108] [66]
C22 [11,14,67,71,118,125] [11,90] [14] [11,14,78,82,89,95,120,123] [22,23,95,103,115] [11] [78]
C23 [121] [11,125] [64,81,95] [40] [54,58] [54]
C24 [126] [58] [108,129] [63,97,102,109]
C25 [11,14,94] [11,14,48] [11,14] [11,14,94] [14,63] [14] [11,14]
C26 [90] [57,81,107] [40] [41]
C27 [48] [95] [50] [5,38]
C28 [11,49,70,71] [90] [45,50,57] [57] [45,57,72,104] [72]
C29 [66] [93]
C30 [41,69,91] [79] [11,69,82,95] [41,56,99] [11,17,126] [5,54,91]
C31 [42,69,71] [90] [79] [57,65,81] [62,84,111] [57,60,84,104,110,128] [5,54,72,104]
C32 [11,14,40,47,67,70,72,93,103,114,115] [11,14] [47] [11,14,40,46,60,69,70,82,88–90,99,104,109,114,124] [11,14,40,72,87,91,108] [11,14,16,40,72,90,104] [11,14,46,104,109]
C33 [123] [95] [95] [101]
C34 [110] [40] [110]
C35 [11] [11] [11,101,105,111] [93]
C36 [81]
C37

Te
ch

ni
ca

l
Ca

pa
bi

lit
ie

s

[90] [61,95] [88,90]

Legend: DevOps Capabilities C01-C37 mentioned in Table 3.
Life Cycle Processes LCP24 - Integration; LCP25 - Verification; LCP26 - Transition; LCP27 - Validation; LCP28 - Operation; LCP29 - Maintenance; LCP30 - Disposal.

developer feedback. This is consistent with incremental development
processes making effective use of different tools. Automated processes
that are implemented early ensure a well-defined, trackable and com-
pletely automated deployment into production [17,56,99,121,125].
Common processes include version control, CM, containerization and
infrastructure as code, together with testing and design guidelines [24,
40,47,54,59,107,110,114,120].

LCP24. Integration: Synthesizes system elements into a realized
product or service, assembling them and activating interfaces to facili-
tate interoperation and meet system/software requirements [11].

Cultural capabilities: Integration in DevOps enables collaborative
teamwork, process automation, and reduced software delivery cy-
cles [100,114]. Continuous integration, CM, and security capabilities
improve application security [14,92]. Open-source tools like Jenkins
CI facilitate automation and accessibility [11,40,41,49,68,116]

Measurement capabilities: Automated testing, monitoring, and quality
control are vital within the integration process. DevOps tools like
Jenkins and OpenTelemetry aid automation and observability [17,
23,57,61,126]. Integration methods enable rapid modifications and
knowledgeable choices via bidirectional traceability and automated
systems [14,94].

Process capabilities: DevOps integrates Development and Operations
functions for continuous improvement [11,69]. Integration processes
contain continuous integration, deployment, evaluation, and auto-
mated testing to standardize the data system [14,42,96]. Security is
integrated to make sure information protection and privacy [23,47,83].

Technical capabilities: CI automates building and testing of software
components [71,93,114]. CD includes CM, deployment, and verifica-
tion practices [48,49,68,69,96,127]. Test Automation frameworks and
tools speed up the testing process for faster integration and deliv-
ery [17,23,47,70,91,121,126].

LCP25. Verification: Confirms that the system fulfills specified
requirements [11].

Cultural capabilities: Effective collaboration and communication are
crucial for successful verification in DevOps [11]. Knowledge sharing,
automation, and proactive monitoring play essential roles in verifica-
tion [47].

Measurement capabilities: QA involves monitoring project outcomes
using automated tools to measure goal achievement. Testing is per-
formed throughout the system delivery life cycle, while QA ensures
processes are followed competently [11].

Process capabilities: DevOps verification activities comprise peer re-
views, bugs diagnosis and fixing, logging of tests and automated test-
ing [11]. Thus, process improvement and proper application of changes
is driven by collaboration and communication among stakeholders [14,
89].

Technical capabilities: Verification requires establishing performance
baselines, maintaining a repository for artifacts, and developing test
plans and automation from the design process [11,90]. Test scripts pro-
vide a repeatable procedure for verifying requirements [125]. Trans-
ferable test scripts and a library of verification procedures expedite
automatic execution. CM facilitates the verification process [14,48].

LCP26. Transition: Moves the system into operational status, ensur-
ing functionality and compatibility.

Cultural capabilities: Blameless postmortems and minimizing fear of
failing are essential for adequate transition [47]. At this stage, it is
necessary to prioritize and document process improvements based on
system thinking, feedback loops and continuous improvement [11].

Measurement capabilities: Proactive monitoring, observability, as
well as autoscaling are essential for a successful transition [71]. Mon-
itoring gives metrics that help to improve runtime controllers and
also help diagnose operational problems. It also helps in predicting
container group performance [57].

Process capabilities: In DevOps, the transitioning process integrates
activities for managing and designing changes in business processes
to be moved, and validating the system that is transitioning [14].
Therefore, it is important to incorporate customer feedback throughout
the entire process and establish corrective actions plus operational
guidance, while improving testing procedures [47].

Technical capabilities: The issue of transition mainly involves running
new software to different places possible [14]. It is driven by Configu-
ration Management, Verification and QA processes [11]. Essential tools
for project planning include human and technical resources as well as
security tools [47]. The incorporation of automation, containerization

Information and Software Technology 177 (2025) 107583

15

152

R. Amaro et al.

and Infrastructure as Code eases this transition while ensuring security
throughout the application life cycle [79].

LCP27. Validation: Provides evidence that the system achieves its
intended use in operational environments [11].

Cultural Capabilities are all about ensuring that data, communica-
tion, processes and systems are as they should be. Testing, verification
and review discover errors or mistakes [40,46,77,81,87]. In partic-
ular, in the more sensitive industry sectors, it is critical because of
quality standards, assurance of reliability and compliance requirements
adherence [11,14,23,129].

Measurement capabilities: Assessment aims at confirming and check-
ing systems, goods or operations so that the desired criteria and spec-
ifications are fulfilled [114,119,122,123,128]. It encompasses tech-
niques such as testing, examination and accreditation for compliance
attainment and risk mitigation [89,94,119,127].

Process capabilities: Validation verifies accuracy and reliability
through testing, simulation, or comparison with standards [41,66,
79]. It identifies errors, increases confidence, and supports decision-
making [14,58,62,98].

Technical capabilities: Validation ensures systems, processes, or prod-
ucts meet standards and requirements. It verifies functionality, per-
formance, security, and user experience [11,40,61,81,82,90]. Effective
strategies prevent errors and ensure reliable outcomes [23,57,64,70,89,
104,109,129].

LCP28. Operation: Utilizes the system to deliver services while
monitoring performance [11].

Cultural capabilities: Embedding quality management in operations
requires continuous monitoring, communication, and collaboration
[11,52,66,88,99,115]. DevOps enables CI/CD and automation using
FLOSS [40,41,87]. Maturity assessment and procedure implementation
restore normal operations [14,75,89].

Measurement capabilities: Operations involve coordinated efforts,
ranging from systems to business operations [47,75,106]. Planning,
communication, and execution are crucial for success [14,40,108,118,
119,128].

Process capabilities: DevOps prioritizes continuous improvement
through lightweight change approval, customer feedback, and automa-
tion [40,86,120]. Collaboration between operations and development
is important for QA and problem resolution [11,43].

Technical capabilities: DevOps emphasizes fully automated processes
such as CI, delivery, deployment automation, and CM. Security controls
are maintained throughout the application lifecycle [14,40,63,108,
129]. AIOps, streamlined pipelines, real-world testing, and infrastruc-
ture as code enhance operational efficiency [11,14,41,50,56,57,62,84,
99].

LCP29. Maintenance: Maintains the system’s service delivery capa-
bility [11].

Cultural capabilities: Collaboration between operations and develop-
ment teams support a culture of experimentation and learning. FLOSS
adoption and performance-oriented culture improve maintenance [24,
43,50,52,63,81,84,89,115,126].

Measurement capabilities: Monitoring and observability are crucial
for maintenance. Automation and continuous improvement enhance
efficiency [46,57,61]. A continuous maintenance strategy should con-
sider business value and change control procedures [11,45,119].

Process capabilities: DevOps improves maintenance through software
reuse, user feedback, and working in small batches [38,82]. Support-
ing developers with fast change-requests from user feedback reduces
rework [11,14,38,83,90].

Technical capabilities: Maintenance ensures optimal performance
and longevity. Regular audits, repairs, and cleaning prevent prob-
lems. Proper planning, documentation, and coordinated ownership are
essential [14,63,97,102,109]. Technical capabilities include artifacts
management, database change management, Infrastructure as Code,
containerization, and trunk-based development [5,17,38,40,57,60,72,
84,90,93,104,110,128].

LCP30. Disposal: Manages the end of a system’s intended use,
including disposal of elements [11].

Cultural capabilities: Effective disposal in DevOps requires cross-team
communication, collaboration, and supportive learning culture [11,89,
101]. FLOSS adoption and establishing trust among stakeholders are
important [101].

Measurement capabilities: DevOps uses features like container rota-
tion, rolling updates, and autoscaling to make applications resilient.
Proactive monitoring and system observation support the disposal pro-
cess [54].

Process capabilities: Traceability, revising operating procedures, and
CM improve the disposal process. Lightweight change approval and
continuous improvement ensure consistency between products and
their configurations [11].

Technical capabilities: Disposal in DevOps involves CI/CD, Test Au-
tomation, VCSs, and Cloud Computing. Loosely coupled architecture,
Infrastructure as Code, Containerization, and Trunk-based development
requires systematic and secure disposal of obsolete resources [5,54,
78,104]. Test Data Management and Chaos Engineering also demand
proper disposal for security and reliability [41,72,81,93].

4.2. RQ2 - Which categories of DevOps capabilities are most relevant to the
software life cycle processes?

To facilitate answering the second research question,
Table 7 shows the total number of relations between categories of

DevOps Capabilities and the Life Cycle Processes. It is considered a
relation where at least one of the publications in this literature review
is found to be relating a LCP with a DevOps Capability. Cultural capa-
bilities have 100 relations in total, with an average of 14.29 relations
per Life Cycle Process. Measurement capabilities contain a total of 79
relations, with an average of 15.80 relations per Life Cycle Process.
Process capabilities have 101 total relations, with an average of 14.43
relations per Life Cycle Process. Technical capabilities have 309 total
relations, with an average of 16.30 relations per Life Cycle Process.

The Total # of Relations column in Tables 7, 8, 10 and 11 represents
the cumulative number of interactions or connections each category has
with LCPs or capabilities from a quantitative standpoint. On the other
hand, the Average # of Relations column reflects the mean value of these
relations per each capability or process that composes that category, as
expressed in Eq. (1).

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 # 𝑜𝑓 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 𝑆𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 𝑜𝑟 𝑐𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

(1)

For example, there are five ‘‘Measurement Capabilities’’, therefore
the average will be:

30 + 8 + 20 + 6 + 15
5

= 79
5

= 15.80

Per the observed data in Table 7, it is seen that the DevOps capa-
bility category with more relations in the technical one, followed by
process, measurement, and cultural capabilities. The reason could be
attributed to the fact that Technical capabilities are more directly
related to software development and delivery [16,83]. For instance,
CI/CD comprehends Technical capabilities that are essential for the
software development process [21,72]. While Cultural capabilities are
very important to foster a culture of collaboration and communication
within the organization [89]. For example, cross-team collaboration is
a cultural capability that can help to improve the flow of information
between different teams within an organization [103].

On the other hand, the Process capabilities are seen as funda-
mental for software development, while less directly related to coding
itself [4]. Continuous improvement is a process capability essential
to improve the process of developing software over time [23]. Fi-
nally, Measurement capabilities are relevant to understanding the

Information and Software Technology 177 (2025) 107583

16

153

R. Amaro et al.

Table 7
Relation sums and averages for each DevOps Capability category.

DevOps capability category Total # of Relations Average # of Relations

Technical Capabilities 309 16.30
Cultural Capabilities 100 14.29
Process Capabilities 101 14.43
Measurement Capabilities 79 15.80

Table 8
Relation sums and averages for each Life Cycle Process category.

Life Cycle Process category Total # of Relations Average # of Relations

Technical processes 290 20.71
Technical Management processes 150 18.75
Organizational Project-Enabling Processes 102 17.00
Agreement Processes 47 23.50

software development processes performance factors [22,90] as well
as measuring the full life cycle. For example, proactive monitoring
is a measurement capability that can be used to identify and resolve
problems early on.

Overall, the analysis indicates that all four DevOps categories of ca-
pabilities are important for software development. However, technical
capabilities are likely to have the most direct impact on the quality,
speed, and reliability of software delivery.

On the other hand, Table 8 shows the total number of relations and
the average number of relations for each Life Cycle Process category.
The categories analyzed are Technical processes, Technical Manage-
ment processes, Organizational Project-Enabling Processes, and Agree-
ment Processes.

Prevalence of DevOps Technical Processes having the most prac-
tices and principles (290) because it is closest to DevOps Technical
capabilities. The 20.71 relations per technical process indicate a con-
sistent DevOps adherence pattern. A Significant Role of Technical
Management processes, with 150 relations and an average of 18.75,
show that DevOps is important in project technical management. This
implies DevOps aids in technical resources, risk, and quality manage-
ment. The influence on Organizational Project-Enabling Processes
with DevOps integration having 102 relations and an average of 17.00
for Organizational Project-Enabling. By managing resources, making
decisions, and engaging stakeholders, DevOps helps projects succeed.
Agreement Processes have the fewest relations (47), but their high
average number of relations per process (23.50) shows a good DevOps
Capabilities on supply and acquisition processes. DevOps is likely to
play a critical role in ensuring clear internal and external agreements
and good collaboration. This might reflect the critical role of DevOps
in ensuring clear, effective agreements and collaborations both within
the organization and with external parties.

Overall, this table also suggests that there is a significant rela-
tionship between DevOps Capabilities and the Life Cycle Process cat-
egories [11], particularly Technical processes and Technical Manage-
ment processes [22], but less organizational project-enabling and agree-
ment processes. DevOps accelerates software development, delivery,
collaboration, and flexibility throughout the life cycle.

5. Discussion

This research is built upon the knowledge gathered from our pre-
vious studies, with the same aim of enhancing successful DevOps
adoption in organizations. Several authors still point out in recent
studies that there are challenges and unknowns when it comes to an ef-
ficient transformation and implementation of DevOps [86,91,114,130].
As seen in Table 9, this study differs from the previous capabilities
study which did not include the new IEEE DevOps standard [11], thus
enabling us to relate DevOps Capabilities related to LCPs. This brings
refreshed discussion to map and find the impact of the previously

found DevOps Capabilities [4]. In the current SLR, it is seen the actual
opportunity to cross investigate capabilities and DevOps processes,
which, to the best of our knowledge, no one has pursued yet, thus
contributing new knowledge beyond what was previously published.
Furthermore, this study has uncovered important relationships that
were not previously discussed but are standard across some software
development models, including DevOps.

In this section, a discussion is performed, considering two interest-
ing findings as a starting point. First, in Section 4.2, categories with
the lowest total value always seem to have a large average value.
Second, the data gathered from a number of publications contributes to
different concepts under DevOps Capabilities and Life Cycle Processes.

5.1. Categories with fewer relations but high average values

Interesting finding to note in Tables 7 and 8, the last two categories
stand out with the lowest total of relations, but still a large average
value. This implies that even though the concept has a low frequency of
occurrence, it tends to have high importance for the overall score. The
observation happens in the two categories with the smallest number
of capabilities and processes: agreement processes and measurement
capabilities.

To try to explain why they have higher average values in LCPs
despite their lower number of relations, it is first necessary to dive into
what these values mean from a statistical perspective before highlight-
ing their intrinsic qualities and strategic importance in achieving broad
impact across LCPs. Here, a significant individual influence across the
LCPs is denoted when sorting by average and examining each capability
or process within that category. Although the agreement processes and
measurement capabilities have fewer relations, their influence with
LCPs seems particularly effective and meaningful based on the results.
This suggests that while they associate with fewer processes (lower
total relations), their interactions are high-quality (higher average),
indicating a greater impact, raising new suspicions: Could this be a
lead indicator of how to improve LCPs with DevOps Capabilities? Could
there be high impact or even exceptional relationships? A topic for
more debate over the course of this discussion in Section 5.2.

Furthermore, agreement processes, with the highest average of
23.50, hold supply and acquisition. This high number, when compared
to Table 11 denotes the strategic importance of the supply process
(LCP02) to align stakeholder expectations, project scopes, and quality
standards [114]. The reason is that in DevOps, cross-functional collab-
oration is a bit more focused on supplying the customer [4,49] with
29 relations. Which is only 1.6 times more than acquisition process
(LCP01), with 18 relations. Thus, this average is high when comparing
both, but somewhat balanced.

However, when cross-checking the measurement capabilities, which
have a lower average of 15.80, with Table 11, it is seen that the
case is much different here: Proactive Monitoring, Observability, and

Information and Software Technology 177 (2025) 107583

17

154

R. Amaro et al.

Table 9
Comparison of Objectives, Methodology, and Findings between our current and previous studies.

Study Objectives Methodology Findings

The current Study Identify how DevOps Capabilities
map to the software life cycle per
the new IEEE DevOps Standard
[11].

Systematic Literature Review
(SLR) of peer-reviewed
articles.

Identified key DevOps Capabilities across
the software life cycle, highlighting areas
needing further research.

Capabilities and Metrics
in DevOps: A Design
Science Study [3]

Define and classify key DevOps
metrics and capabilities for
promoting effective adoption.

Design Science Research (DSR)
with qualitative methods,
including interviews.

Developed an outcome-based capability
evaluation matrix, emphasizing team
empowerment and organizational culture.

DevOps Metrics and
KPIs: A Multivocal
Literature Review [131]

Provide relevant DevOps metrics
for assessing and enhancing
DevOps implementation
efficiency.

Multivocal Literature Review
(MLR) of a wide range of
sources.

Defined and categorized 22 main DevOps
metrics, offering insights into their
improvement and practical application.

DevOps benefits: A
systematic literature
review [130]

Consolidate the benefits of
DevOps as reported in literature
and empirically validate them
through case studies.

Two systematic literature
reviews to gather benefits and
then map them to case studies.

Identified and validated benefits such as
improved collaboration and faster
delivery, and increased automation.

Capabilities and
Practices in DevOps: A
Multivocal Literature
Review [4]

Explore the relationship between
DevOps Capabilities and practices
to aid in better implementation.

Multivocal Literature Review
(MLR) including books,
articles, white papers, and
conferences.

Presented an organized list of 37
capabilities and their relation to practices,
emphasizing the dynamic nature of
DevOps Capabilities.

Table 10
Categories with fewer relations but high average.

Category Type Total Relations Average

Agreement Processes 2 47 23.50
Measurement Capabilities 5 79 15.80
Organizational Project-Enabling Processes Processes 6 102 17.00
Cultural Capabilities 7 100 14.29
Process Capabilities 7 101 14.43
Technical Management processes Processes 8 150 18.75
Technical processes Processes 14 290 20.71
Technical Capabilities 18 309 16.30

Table 11
Agreement process and Measurement capabilities relation overview.

ID Name Category Relations

LCP02 Supply process Agreement 29
LCP01 Acquisition process Agreement 18

C08 Proactive Monitoring, Observability and autoscaling Measurement 30
C10 Monitor systems to inform business decisions Measurement 20
C12 Visual management Capabilities Measurement 15
C09 Emergency response/proactive failure notification Measurement 8
C11 Working in progress limits Measurement 6

autoscaling capabilities (C08) have 30 mentioned relations, which is
five times more than the lowest working in progress limits (C11) which
have only 6 relations. Further, monitoring systems to inform business
decisions (C08), comes next with 20 relations, which is still 3.3 times
of C11. The notable variation in the spread of relationships among
Measurement Capabilities highlights the strategic focus on those that
directly impact software delivery quality and reliability, thereby also
keeping customer satisfaction in mind.

LCP02, focuses on supply agreements with clients [11]. These
agreements define the scope of work, deliverables, schedule and qual-
ity standards of the software development or system implementation
project [14]. In the context of DevOps, both supply and acquisition
agreements are crucial to ensuring that the teams involved in the
software delivery process are aligned and have clear expectations
about their responsibilities, the scope of the project and the quality
requirements. Teams that adopt DevOps collaborate with different
stakeholders, such as business owners, production teams and external

suppliers, to ensure that everyone is working towards the same goals
and objectives [6,89,102].

Measuring software delivery performance, identifying bottlenecks,
and improving performance are key points in C08 and C10 for orga-
nizations [22,68]. DevOps measurement enables businesses to track
key performance indicators (KPIs) such as deployment frequency, MLT,
MTTR, and CFR [131]. DevOps Measurement Capabilities help organi-
zations collect and analyze software development and delivery data to
identify patterns, trends, and improvement opportunities. A data-driven
approach helps organizations make informed decisions, reduce risks,
and optimize software delivery processes [22,23,120].

In summary, the reason behind the high average values of both
Agreement Processes and Measurement Capabilities, despite their fewer
relations, can indeed be considered their shared ultimate goal of servic-
ing the customer effectively. Through their functions, both categories
reflect the customer-centric nature of DevOps. They express the DevOps

Information and Software Technology 177 (2025) 107583

18

155

R. Amaro et al.

aim of providing efficient customer service by ensuring project com-
pletion and meeting customer expectations (Agreement Processes) and
continuously measuring and monitoring for improving product quality
and delivery (Measurement capabilities). DevOps promotes strategies
and processes that improve the software delivery lifecycle to meet
client expectations. This particularly interesting finding leads to the
next discussion, which explores other capabilities that improve LCPs.

5.2. Improving life cycle processes with DevOps capabilities

For asserting the most influential DevOps Capabilities on LCPs
Activities and Tasks, it is proposed to discuss the results, regarding
the top 3% and 1% most referenced relations, while diving into what
authors are mentioning in Sections 4.1 and 4.2 and demonstrating the
proposed reasoning. To facilitate a structured discussion, a percentile-
based impact scale, seen in, Eq. (2) is used to quantify and compare
the relations found. Previous authors [132,133] also apply a percentile-
based approach to help discussion in qualitative research, while Verner
et al. (2014) [134] use percentiles to understand the distribution of
responses regarding project outcomes and other factors. This statistical
measure represents the value below which a particular percentage of
observations in a dataset falls. Percentiles help in comparing datasets by
indicating the percentage of observations that a given value surpasses,
thus aiding in drawing precise conclusions from the research data [19,
134]. Let 𝑃 be the percentile rank of mentions and 𝑁 the number of
mentions. The classification function, 𝐶(𝑃), can be defined as:

𝐶(𝑃) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Exceptional (Top 1%) if 𝑃 ≥ 99 (𝑁 ≥ 14)
Very High (Top 3% but below 1%) if 97 ≤ 𝑃 < 99 (𝑁 ≥ 11)
High if 90 ≤ 𝑃 < 97 (𝑁 ≥ 6)
Increased if 75 ≤ 𝑃 < 90 (𝑁 ≥ 3)
Medium if 50 ≤ 𝑃 < 75 (𝑁 ≥ 2)
Low if 𝑃 < 50 (𝑁 < 2)

(2)

From Table 12 it can be seen that eight capabilities are classified
as ‘‘Exceptional’’ (Top 1%), and 11 capabilities are classified as ‘‘Very
High’’ (Top 3% to 1%), which is a strong indication from literature of
their relation influencing activities and tasks of the respective LCPs.

5.2.1. Exceptional impact relations
We start by looking at the exceptional relations. There are four

LCPs in this classification.
LCP02 Supply Process is improved by Shifting Left on Security

(C32) and Monitoring, Observability, and Autoscaling (C08), by assur-
ing continuous, secure, and efficient product/service delivery. Alonso
et al. (2022) [60] stress the need for strong monitoring in cloud ser-
vices to help identify and resolve performance issues quickly. Gokarna
et al. (2021) [69] integrate security early in development using open-
source software over the cloud, preventing supply chain disruptions and
maintaining service delivery, while network monitoring and diagnostic
tools [61] improve operational efficiency and dependability through
constant observability and security. On the other hand, vulnerability
scans and monitoring catch flaws and destructive activities early [40].
As an example, Netflix supplies resilient cloud services for its front-end,
monitoring, and payment operations [53].

The addition of C08 and C32 has a direct impact on the LCP19 Sys-
tem/Software Requirement Definition. The AIDOaRt project [119]
utilizes AI and ML to enhance DevOps toolchains and convert stake-
holder views into measurable system needs using runtime data. Levy
et al. (2022) mention that using this information ensures that needs are
based on operational realities rather than theoretical assumptions [86].
According to Gokarna et al. (2021), their continuous security model
incorporates security practices early in development, changing criteria
to include security from the outset [69]. Monitoring can identify issues
and spur modifications in requirements, making them dynamic and
sensitive to real-world conditions [11,60].

Continuous Integration (C20) accelerates the LCP24 Integration
Process by with rapid feedback, failure detection [11] and automated
merges and tests in an early phase. Some authors examine the impact of
CI in DevOps and project management, pointing out software compo-
nents’ improved consistency and quality with less effort [48,93,127].
Fitzgerald et al. (2017) [68] highlight its heterogeneity in definition
but key importance in XP methodologies. Other authors discuss CI in
terms of automating build and testing tasks and improving software
process health through frequent application component merging [40,
126], in pair with Xuan et al. (2021) emphasizing CI responsibility for
guaranteeing security throughout the integration process.

C20, C21, and C32 collectively facilitate the LCP27 Validation pro-
cess. According to Ayerdi et al. (2020) [123], CD plays an important
role in automating the deployment of new software releases, leading
to faster validation. CI involves compiling code, running tests, and
validating code coverage, which is critical for early anomaly identi-
fication [11,68] . As an example, Kumar et al. (2020) [40] discuss
technologies like Maven, Gradle, and Jenkins to automate code in CI,
address bugs quickly, and minimize time to adopt new features, while
the importance of incorporating security tests early in the development
cycle, guarantees a fast security verification process [11,114].

5.2.2. Very high impact relations
Regarding very high impact relations, there are eight LCPs in this

classification, which are not in the top 1% but fall into the top 3%.
Authors mention C28 to improve the modularity, scalability, and

resilience of LCP02 Supply process which expedites development and
deployment [5,51], improve the supply chain by containerizing and
deploying across environments [45] and isolate service failures [51].

C30 simplifies LCP04 Infrastructure Management Process con-
sistency, performance, and security [11] with tools like Puppet, Chef,
and Ansible [23,82] enabling organizations to quickly react to changing
markets and consumer expectations [63,66].

C21 enables LCP19 System/Software Requirements Definition to
fulfill stakeholder needs and customer input by adding new features
and distributing new software quickly [49,123], revealing expectations
conflicts and enabling rapid design and software modifications [23,97].

C32 adds early security in the LCP23 Implementation process,
providing safety and quality [99,114] including traceability and audit
controls [11] mitigating risks, ensuring high security standards [47,54].

C08, C21, and C32 provide a safer, faster, and improved LCP24 In-
tegration. C08 detects production, deployment, and integration prob-
lems during CI/CD to optimize software reliability [11,71]. C21 en-
hances software deployment, feature integration, and customer satis-
faction [48,118] via on-demand deployments [23,70,72]. C32 enforces
continuous security in each phase, resulting in safer integrations [70,
72].

C02 and C08 enhance LCP27 Validation by encouraging continu-
ous learning and adaptive monitoring to assess operational scenarios.
C02 focuses on controlled trials and empirical validation to promote
DevOps innovation [38,58]. With C08, data tracking and observation
allow for real-time validation [11,123].

C08 improves the LCP28 Operation process in real time, allowing
smart infrastructure changes [60,123]. Logging, monitoring, and alert-
ing help operational management notice, respond, and adapt issues and
speed incident response [40,57].

C21 streamlines the LCP29 Maintenance process with consistent,
efficient, and reliable deployments across all environments [11], in-
creased team cooperation [90,108], and rapid response to changes
and customer needs improve the maintenance process with Continuous
Delivery automation [63].

5.2.3. Applying the life cycle concepts
Table 13 shows publications contributing to the concepts seen in the

conceptual map in Fig. 1.

Information and Software Technology 177 (2025) 107583

19

156

R. Amaro et al.

Table 12
Capabilities with exceptional and very high impact on Life Cycle Processes.

LCP02 LCP04 LCP19 LCP23 LCP24 LCP27 LCP28 LCP29

LCP: Supply
Processes

Infrastructure
Management
process

System/Software
Requirements
Definition

Implementation Integration Validation Operation Maintenance

Devops Capability Category Agreement Project Technical

C02 Learning and experiment Cultural 11

C08 Monitoring, Observability
and autoscaling Measurement 16 14 11 13 13

C20 Continuous Integration Technical 14 16
C21 Continuous Delivery Technical 13 12 16 11
C28 Loosely coupled architecture Technical 13
C30 Infrastructure as Code Technical 11
C32 Shift left on security Technical 15 14 11 11 16

Legend: indicates Exceptional impact DevOps Capabilities impact related to Life Cycle Processes (top 1%), and indicates Very high impact DevOps Capabilities impact related to Life Cycle Processes
(top 3%).

Table 13
Publications contributing to this study concepts from Fig. 1.

Concepts Publications Total

Capabilities and Process [1,5,11,14,16,17,21–24,38–129] 102
Teams [1,5,11,16,17,21–24,38,40,43–45,47–52,57,58,60,63–69,72,74–80,82,85–87,89,90,92,95,96,98–100,102–

104,106,108,109,112–115,119–122,124,127,129]
69

Activities and Tasks [11,14,23,24,40,44–48,54,60,62,63,68,69,76–78,82,90,95,99,102,106,109,110,121,122,127] 31
Outcomes [1,11,14,21,22,24,38,45,49,56,61,63,67,73,76,78,81,88,97,99,101,103,104,106,109,110,114,117,120,122] 30
Assessment [14,22,24,38,44,46,49,52,63,67,69,82,83,88,90,94,97,99,101,103,109,111,114,122,124] 25
Skills and Knowledge [5,11,14,17,24,46,47,58,63,75–77,80,87,89,95,102,106,123] 19
Purpose [11,14,23,24,46,53,59,66,88,91,102,110,112,113] 14

The Capabilities and Process concepts, referenced in 102 articles,
focuses on DevOps Capabilities (Fig. 2) connected to software Life
Cycle Processes (Fig. 4). This shows the importance given by authors
of integrating them together when adopting DevOps. 69 publications
have discussed the Teams concept, which incorporates collaboration
and communication among DevOps teams, such as development, oper-
ations, and QA [17,77,89]. The number of publications on the cultural
capacity concept indicates how important teamwork and communi-
cation are for DevOps implementations. Teams do process activities,
develop skills, and drive execution [102,106]. 31 articles identify Ac-
tivities and Tasks as a vital concept for DevOps activities such as testing,
developing, deploying, and monitoring [11] and a growing number
of publications highlight the importance of understanding the activ-
ities and tasks involved in successful DevOps implementations [90].
Outcomes is a concept found in 30 publications examining the ben-
efits of DevOps adoption in the software/systems life cycle [11,89].
Publications highlight DevOps positive effects on efficiency, quality,
and customer satisfaction [23,52]. Amaro et al. [4] define DevOps
Capabilities as providing process outcomes, facilitating task execution,
and requiring specific skills and knowledge. 25 publications on DevOps
Assessment explore various methods for integrating DevOps into Life
Cycle Processes, while providing clarity on how to quantify DevOps
effectiveness. DevOps assessment is critical for connecting expected
objectives with actual achievements [22,97]. Furthermore, it examines
DevOps skills to improve process outcomes [14,24]. The successful
implementation of DevOps principles in the software/systems life cycle
is dependent on Skills and Knowledge, as highlighted in 19 articles.
Research underlines the necessity of continuous learning and experi-
mentation in DevOps, highlighting the need for individuals and teams
to increase skills and knowledge to traverse complexities [5,63,77].
Finally, Purpose emphasizes each LCP intention to employ DevOps to
achieve their objectives. 14 papers discuss the rationale and goals of
DevOps adoption. Integrating DevOps into Life Cycle Processes ne-
cessitates understanding its goal of connecting actions and strategies
to intended outcomes [11,88,102]. The reviewed articles explain how
DevOps Capabilities improve software/systems life cycle collaboration,
efficiency, and outcomes.

In order to show this relevance, Fig. 9 highlights and graphically
demonstrates these approaches to improve DevOps adoption through
capabilities, integrating the Conceptual Map overview (Fig. 1) and
Exceptional Impact Relations (Table 12), and focusing on LCP outcomes
derived from capabilities.

The conceptual map in Section 1 highlights capabilities in DevOps
connected to desired improvements, while Table 13 quantifies key con-
cepts for successful implementations. Fig. 9 shows how the exceptional
impact of relations in conceptual map flows might achieve desired
outcomes. We do this for exceptional ones in order to be concise and
to focus on the top 1% which will return best results, but the same
could be done for very high impact relations or even high. Apply
DevOps Capabilities to Life Cycle Processes they affect, describe output
generation pathways, and highlight benefits. This diagram illustrates
how implementing the best DevOps skills can improve the SDLC and
achieve desired results. It shows how DevOps adoption directly im-
proves software development and delivery processes, helping people
comprehend its potential benefits.

5.3. Impact and practical applications on the field of DevOps

This work advances the understanding of DevOps Capabilities and
how they work with LCPs, which makes it possible to design methods
for DevOps adoption that are more successful. This increase in knowl-
edge helps businesses identify capabilities that are vital and require
attention, especially when they significantly affect their processes.
The methodology targets the most pressing areas for organizations by
identifying capabilities with Exceptional, Very High, and High impacts.
However, the literature review indicates that the expected benefits of
focusing on smaller impact capabilities are still unclear, thus further
research like a case study is needed to validate the findings.

The integration of Monitoring, Observability, and Autoscaling (C08),
alongside Shifting Left on Security (C32), Continuous Integration (C20)
and Continuous Delivery (C21), significantly enhances various LCPs,
including Supply Process (LCP02), System/Software Requirements Def-
inition (LCP19), Integration Process (LCP24), and Validation Process
(LCP27). According to these findings, integrating C08, C32, C20 and
C21 improves operational security and efficiency while ensuring that

Information and Software Technology 177 (2025) 107583

20

157

R. Amaro et al.

Fig. 9. Improving LCP outcomes with exceptional DevOps Capabilities.

products and services are appropriately engineered to perform in
operational settings.

6. Conclusion

6.1. Contributions

This study is part of a broader set that aims to improve the success-
ful adoption of DevOps by examining the problems and uncertainties
in adopting DevOps. It distinguishes itself from our previous work by
conducting an extensive systematic literature review, focusing on the
cross-research of DevOps Capabilities and processes. The study also
explored the connections between Life Cycle Processes (LCPs) and the
capabilities that drive process improvements. The inclusion of the IEEE
DevOps standard provides a refreshed discussion on the impact of the
most important DevOps Capabilities.

The 102 publications analyzed discuss capabilities and processes,
teams, activities and tasks, results, tools and techniques, according to
the analysis. The main contributions are made, emphasizing software
development capabilities and processes:

∙ This paper maps 37 DevOps Capabilities to 30 Life Cycle Pro-
cess (LCP), demonstrating their application throughout various
stages of software development and maintenance. By mapping
the pre-existing categorization of capabilities and LCPs, the paper
provides valuable insights on improving efficiency and achieving
better results through DevOps in each Life Cycle Process.

∙ Technical DevOps Capabilities and Technical processes show the
most relations and impact, highlighting a significant connection
between DevOps Capabilities and LCPs in these Technical groups.

∙ The paper identifies and discusses DevOps Measurement Capabil-
ities and Agreement Processes as having fewer direct relations but
influencing multiple SDLC aspects or capabilities. This insight em-
phasizes the importance of these categories in achieving DevOps
success.

∙ For improving LCP with DevOps Capabilities, an impact scale
classification is found that identifies and explains exceptional and
very high impact relations. Based on the publications and the
conceptual map, it is shown how exceptional DevOps Capabilities
can improve LCP outcomes in a diagram of concepts (Fig. 9).

∙ The paper explores applying the life cycle concept map, demon-
strating the flow of improving LCP outcomes with exceptional
DevOps Capabilities, while also pointing out agreement, organiza-
tional project-enabling, and technical LCPs. The analysis reveals
that both Life Cycle Processes and DevOps Capabilities achieve
desired outcomes through the activities and tasks mentioned in
the literature.

This paper improves understanding of DevOps and LCPs. It dis-
cusses life cycle concepts, DevOps implementations, and a framework
for integrating DevOps Capabilities into software development and
maintenance.

6.2. Limitations

This SLR acknowledges potential threats to its validity. External
validity concerns related to the limited scope of the selected scientific
databases may have led to the exclusion of pertinent articles. However,
efforts were done to address this by reviewing the references and to
make sure that important research was added through snowballing.
Internal validity, meaning how well the study design and execution
prevents systematic error, was safeguarded through a predefined pro-
cedure and established quality evaluation guidelines by Kitchenham
& Charters (2007) [34]. A possible selection bias was minimized by
a broad inclusion and exclusion criteria and more than two reviewers
participated, ensuring a rigorous study selection process. Limiting the
search to studies in English may exclude relevant studies in other
languages. Also, setting time limits for inclusion may exclude relevant
research published before or after the time-frame. Finally, address
construct validity and content validity by reviewing a large number
of documents. Construct validity is ensuring accurate capture and

Information and Software Technology 177 (2025) 107583

21

158

R. Amaro et al.

synthesizing of key concepts. Content validity is improving coverage
of relevant research. A comprehensive approach provides nuanced
understanding and a comprehensive overview of the domain, making
these findings robust and reliable. The study is using secondary sources
to understand relationships, thus conclusions could be strengthened by
exploratory case studies in the industry. Finally, monitoring and secu-
rity technologies change quickly, so the findings may need a periodic
refresh.

6.3. Future work

The results and findings revealed in this study will assist to feed
new research so that future studies can be put into practice. Focusing
on an assessment model composed of the interconnected dimensions of
DevOps Capabilities, DevOps metrics [3], and LCPs.

Future work can also provide applicable guidelines and practices
for DevOps integrating into LCPs. Such as empirical and exploratory
research on how DevOps Capabilities affect LCPs would be useful.
These guidelines can improve software development and maintenance
by providing step-by-step instructions, frameworks, and recommenda-
tions. These studies could assess how specific capabilities influence
software quality, development speed, reliability, and cost-effectiveness.
Cultural, measurement, process, and technical capabilities can be ex-
plored further. Investigating specific practices, techniques, and tools
within each category can improve LCPs and DevOps implementations.
DevOps adoption and implementation depend on organizational and
cultural factors. Researching the obstacles organizations face in adopt-
ing DevOps Capabilities and ways to promote collaboration, continuous
learning, and innovation. Long-term DevOps evaluations can reveal
their sustainability and scalability by tracking DevOps Capabilities
and their extended effects on software development. Case studies of
DevOps Capabilities adoption in various industries are needed. Lastly,
future research could integrate DevOps with AI, machine learning,
and blockchain. Researching how these technologies improve LCPs and
DevOps implementations would be interesting.

CRediT authorship contribution statement

Ricardo Amaro: Writing – review & editing, Writing – origi-
nal draft, Visualization, Validation, Supervision, Software, Resources,
Project administration, Methodology, Investigation, Funding acquisi-
tion, Formal analysis,Data curation, Conceptualization. Rúben Pereira:
Writing – review & editing, Writing – original draft, Visualization,
Validation, Supervision, Software, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Miguel Mira da Silva: Writing – re-
view & editing, Writing – original draft, Visualization, Validation,
Supervision, Software, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Formal analysis, Data curation,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] P. Tell, J. Klunder, S. Kupper, D. Raffo, S.G. Macdonell, J. Munch, D. Pfahl,
O. Linssen, M. Kuhrmann, What are hybrid development methods made of? An
evidence-based characterization, in: Proceedings - 2019 IEEE/ACM International
Conference on Software and System Processes, ICSSP 2019, IEEE, 2019, pp.
105–114, http://dx.doi.org/10.1109/ICSSP.2019.00022.

[2] D. Solajić, A. Petrović, Devops and modern software delivery, in: Proceedings of
the International Scientific Conference - Sinteza 2019, Singidunum University,
Novi Sad, Serbia, 2019, pp. 360–368, http://dx.doi.org/10.15308/Sinteza-
2019-360-368.

[3] R. Amaro, R. Pereira, M.M. da Silva, Capabilities and metrics in DevOps: a
design science study, Inf. Manag. (2023) 32, http://dx.doi.org/10.1016/j.im.
2023.103809.

[4] R. Amaro, R. Pereira, M. Mira da Silva, Capabilities and practices in DevOps:
A multivocal literature review, IEEE Trans. Softw. Eng. 1 (2022) 20, http:
//dx.doi.org/10.1109/TSE.2022.3166626.

[5] L. Leite, C. Rocha, F. Kon, D. Milojicic, P. Meirelles, A survey of DevOps
concepts and challenges, ACM Comput. Surv. 52 (6) (2019) 35, http://dx.doi.
org/10.1145/3359981.

[6] N. Azad, S. Hyrynsalmi, DevOps critical success factors — A systematic
literature review, Inf. Softw. Technol. 157 (2023) 107150, http://dx.doi.org/
10.1016/j.infsof.2023.107150.

[7] K. Maroukian, S. R. Gulliver, Synthesis of a leadership model for DevOps
adoption, in: 2021 2nd European Symposium on Software Engineering, in: ESSE
2021, Association for Computing Machinery, New York, NY, USA, 2021, pp.
58–66, http://dx.doi.org/10.1145/3501774.3501783.

[8] R.N. Rajapakse, M. Zahedi, M.A. Babar, H. Shen, Challenges and solutions when
adopting DevSecOps: A systematic review, Inf. Softw. Technol. 141 (2022)
106700, http://dx.doi.org/10.1016/j.infsof.2021.106700.

[9] S. Sharma, The DevOps Adoption Playbook: A Guide to Adopting DevOps in
a Multi-Speed IT Enterprise, IBM Press, John Wiley & Sons, Inc., Indianapolis,
Indiana, 2017, http://dx.doi.org/10.1002/9781119310778.

[10] G. Kim, J. Humble, P. Debois, J. Willis, The DevOps Handbook : How to Create
World-Class Agility, Reliability, and Security in Technology Organizations,
IT Revolution Press, USA, 2016, https://www.amazon.com/DevOps-Handbook-
World-Class-Reliability-Organizations/dp/1942788002.

[11] IEEE, IEEE Standard for DevOps: Building reliable and secure systems including
application build, package, and deployment: IEEE Standard 2675-2021, IEEE Std
2675-2021, 1 (16 Apr 2021) (2021) 91, http://dx.doi.org/10.1109/IEEESTD.
2021.9415476.

[12] IEEE, ISO/IEC/IEEE International Standard - Systems and software engineering
– System life cycle processes, ISO/IEC/IEEE 15288 First edition 2015-05-15,
2015, p. 118, http://dx.doi.org/10.1109/IEEESTD.2015.7106435.

[13] IEEE Standards Association, IEEE Standard for configuration management in
systems and software engineering: IEEE Std 828™-2012 (Revision of IEEE Std
828-2005), IEEE Std 828-2012 (Revision of IEEE Std 828-2005), 2012, (March)
2012, http://dx.doi.org/10.1109/IEEESTD.2012.6170935.

[14] IEEE Standard, ISO/IEC/IEEE international standard - systems and software
engineering – Software life cycle processes, ISO/IEC/IEEE 12207:2017(E)
First edition 2017-11, 2017, p. 157, http://dx.doi.org/10.1109/IEEESTD.2017.
8100771.

[15] J. Díaz, D. López-Fernández, J. Pérez, Á. González-Prieto, Why are many
businesses installing a DevOps culture into their organization? Empir. Softw.
Eng. 26 (2) (2021) 50, http://dx.doi.org/10.1007/s10664-020-09919-3.

[16] C. Jones, A proposal for integrating DevOps into software engineering curricula,
in: B. Meyer, M. Mazzara, J.-M. Bruel (Eds.), Software Engineering Aspects
of Continuous Development and New Paradigms of Software Production and
Deployment, DEVOPS 2018, vol. 11350 LNCS, Springer Verlag, 2019, pp.
33–47, http://dx.doi.org/10.1007/978-3-030-06019-0_3.

[17] M. Senapathi, J. Buchan, H. Osman, DevOps capabilities, practices, and chal-
lenges: insights from a case study, in: Proceedings of the 22nd International
Conference on Evaluation and Assessment in Software Engineering 2018 -
EASE’18, in: EASE’18, (June) ACM, Association for Computing Machinery, New
York, USA, 2018, pp. 57–67, http://dx.doi.org/10.1145/3210459.3210465.

[18] N. Forsgren, J. Humble, G. Kim, Accelerate: The Science of Lean Software and
Devops: Building and Scaling High Performing Technology Organizations, IT
Revolution, USA, 2018, URL https://itrevolution.com/accelerate-book/.

[19] L. Bass, I. Weber, L. Zhu, DevOps: A software architect’s perspective, in:
SEI Series in Software Engineering, Addison-Wesley, New York, 2015, URL
http://my.safaribooksonline.com/9780134049847.

[20] P. Debois, Agile infrastructure and operations: How infra-gile are you? in:
Proceedings - Agile 2008 Conference, 2008, pp. 202–207, http://dx.doi.org/
10.1109/Agile.2008.42.

[21] M. Waseem, P. Liang, M. Shahin, A systematic mapping study on microservices
architecture in DevOps, J. Syst. Softw. 170 (2020) http://dx.doi.org/10.1016/
j.jss.2020.110798.

[22] A. Mishra, Z. Otaiwi, Devops and software quality: a systematic mapping, Comp.
Sci. Rev. 38 (1) (2020) 14, http://dx.doi.org/10.1016/j.cosrev.2020.100308.

[23] P. Rodríguez, M. Mäntylä, M. Oivo, L.E. Lwakatare, P. Seppänen, P. Kuvaja,
Advances in using agile and lean processes for software development, in: A.
Memon (Ed.), Advances in Computers, vol. 113, Academic Press Inc., Faculty of
Information Technology and Electrical Engineering, University of Oulu, Finland,
2019, pp. 135–224, http://dx.doi.org/10.1016/bs.adcom.2018.03.014.

[24] R. Kneuper, Software Processes and Life Cycle Models: An Introduction to
Modelling, Using and Managing Agile, Plan-Driven and Hybrid Processes,
Springer International Publishing, Cham, 2018, http://dx.doi.org/10.1007/978-
3-319-98845-0.

Information and Software Technology 177 (2025) 107583

22

159

R. Amaro et al.

[25] H.D. Benington, Production of large computer programs, Ann. Hist. Comput. 5
(4) (1983) 350–361, http://dx.doi.org/10.1109/MAHC.1983.10102.

[26] W.W. Royce, Managing the development of large software systems: Concepts
and techniques, in: Proceedings of the 9th International Conference on Software
Engineering, in: ICSE ’87, IEEE Computer Society Press, Washington, DC, USA,
1987, pp. 328–338.

[27] T.E. Bell, T.A. Thayer, Software requirements: Are they really a problem? in:
Proceedings of the 2nd International Conference on Software Engineering, in:
ICSE ’76, IEEE Computer Society Press, Washington, DC, USA, 1976, pp. 61–68.

[28] B.W. Boehm, Software Engineering Economics, first ed., Prentice Hall,
Englewood Cliffs, N.J, 1981.

[29] J. Münch, O. Armbrust, M. Kowalczyk, M. Soto, Software process definition and
management, The Fraunhofer IESE Series on Software and Systems Engineering,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, http://dx.doi.org/10.
1007/978-3-642-24291-5.

[30] B.W. Boehm, Guidelines for verifying and validating software requirements and
design specifications, in: P.A. Samet (Ed.), Euro IFIP 79, North Holland, 1979,
pp. 711–719.

[31] C. Larman, V. Basili, Iterative and incremental developments. a brief history,
Computer 36 (6) (2003) 47–56, http://dx.doi.org/10.1109/MC.2003.1204375.

[32] C. Floyd, A systematic look at prototyping, in: R. Budde, K. Kuhlenkamp, L.
Mathiassen, H. Züllighoven (Eds.), Approaches To Prototyping, Springer, Berlin,
Heidelberg, 1984, p. 18, http://dx.doi.org/10.1007/978-3-642-69796-8_1.

[33] B.W. Boehm, A spiral model of software development and enhancement,
Computer 21 (5) (1988) 61–72, http://dx.doi.org/10.1109/2.59.

[34] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering, Tech. rep., Technical report, ver. 2.3 ebse
technical report. ebse, 2007.

[35] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK, Keele
University 33 (2004) 26.

[36] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, T.P. Group, Preferred report-
ing items for systematic reviews and meta-analyses: The PRISMA statement,
PLOS Med. 6 (7) (2009) e1000097, http://dx.doi.org/10.1371/journal.pmed.
1000097.

[37] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering, in: EASE
’14, Association for Computing Machinery, New York, NY, USA, 2014, p. 10,
http://dx.doi.org/10.1145/2601248.2601268.

[38] N. Ali, H. Daneth, J.-E. Hong, A hybrid DevOps process supporting software
reuse: A pilot project, J. Softw.: Evol. Process 32 (7) (2020) e2248, http:
//dx.doi.org/10.1002/smr.2248.

[39] M. Sánchez-Gordón, R. Colomo-Palacios, Characterizing DevOps culture: A
systematic literature review, in: I. Stamelos, T. Rout, R. O’Connor, A. Dorling
(Eds.), 18th International Conference on Software Process Improvement and
Capability Determination, SPICE 2018, vol. 918, Springer Verlag, Østfold
University College, Halden, 1757, Norway, 2018, pp. 3–15, http://dx.doi.org/
10.1007/978-3-030-00623-5_1.

[40] R. Kumar, R. Goyal, Modeling continuous security: A conceptual model for
automated DevSecOps using open-source software over cloud (ADOC), Comput.
Secur. 97 (2020) 101967, http://dx.doi.org/10.1016/j.cose.2020.101967.

[41] I. Al-Surmi, B. Raddwan, I. Al-Baltah, Next generation mobile core resource
orchestration: comprehensive survey, challenges and perspectives, Wirel. Pers.
Commun. 120 (2) (2021) 1341–1415, http://dx.doi.org/10.1007/s11277-021-
08517-w.

[42] D. Yang, D. Wang, D. Yang, Q. Dong, Y. Wang, H. Zhou, H. Daocheng,
DevOps in practice for education management information system at ECNU,
in: M. Cristani, C. Toro, C. Zanni-Merk, R.J. Howlett, L.C. Jain (Eds.), Procedia
Computer Science, Vol. 176, 2020, pp. 1382–1391, http://dx.doi.org/10.1016/
j.procs.2020.09.148.

[43] A.W. Miller, R.E. Giachetti, D.L. Van Bossuyt, Challenges of adopting devops
for the combat systems development environment, Def. Acquis. Res. J.: Publ.
Def. Acquisit. Univ. 29 (1) (2022) 22–49, http://dx.doi.org/10.22594/dau.21-
870.29.01.

[44] N.M. Noorani, A.T. Zamani, M. Alenezi, M. Shameem, P. Singh, Factor
prioritization for effectively implementing DevOps in software development
organizations: A SWOT-AHP approach, Axioms (2075-1680) 11 (10) (2022)
N.PAG–N.PAG.

[45] C.E. da Silva, Y.d. Justino, E. Adachi, SPReaD: Service-oriented process for
reengineering and DevOps, Serv. Orient. Comput. Appl. 16 (1) (2022) 16,
http://dx.doi.org/10.1007/s11761-021-00329-x.

[46] ISO/IEC/IEEE15288, 21840–2019 - ISO/IEC/IEEE International Standard - Sys-
tems and software engineering – Guidelines for the utilization of ISO/IEC/IEEE
15288 in the context of system of systems (S0S), ISO/IEC/IEEE 15288, 2019,
http://dx.doi.org/10.1109/IEEESTD.2019.8929110.

[47] M. Muñoz, M.N. Rodríguez, A guidance to implement or reinforce a DevOps
approach in organizations: A case study, J. Softw.: Evol. Process 1 (2021) 21,
http://dx.doi.org/10.1002/smr.2342.

[48] C. Baron, V. Louis, Towards a continuous certification of safety-critical avionics
software, Comput. Ind. 125 (2021) http://dx.doi.org/10.1016/j.compind.2020.
103382.

[49] F. Helwani, J. Jahić, ACIA: A methodology for identification of architectural
design patterns that support continuous integration based on continuous
assessment, in: 2022 IEEE 19th International Conference on Software Architec-
ture Companion (ICSA-C), 2022, pp. 198–205, http://dx.doi.org/10.1109/ICSA-
C54293.2022.00046.

[50] D. Pianini, A. Neri, Breaking down monoliths with Microservices and DevOps:
An industrial experience report, in: 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 2021, pp. 505–514, http://dx.
doi.org/10.1109/ICSME52107.2021.00051.

[51] L.J. Pérez, J. Salvachúa, L.J. Perez, J. Salvachua, An approach to build E-health
IoT Reactive Multi-Services based on technologies around cloud computing
for elderly care in smart city homes, Appl. Sci.-Basel 11 (11) (2021) http:
//dx.doi.org/10.3390/app11115172.

[52] S. Rafi, M.A. Akbar, A.A. AlSanad, L. AlSuwaidan, H. Abdulaziz AL-ALShaikh,
H.S. AlSagri, Decision-making taxonomy of DevOps success factors using prefer-
ence ranking organization method of enrichment evaluation, Math. Probl. Eng.
(2022) 15, http://dx.doi.org/10.1155/2022/2600160.

[53] N. Herbst, A. Bauer, S. Kounev, G. Oikonomou, E. Van Eyk, G. Kousiouris,
A. Evangelinou, R. Krebs, T. Brecht, C.L. Abad, A. Iosup, Quantifying cloud
performance and dependability: Taxonomy, metric design, and emerging chal-
lenges, ACM Trans. Model. Perform. Eval. Comput. Syst. 3 (4) (2018) 36,
http://dx.doi.org/10.1145/3236332.

[54] A. Poniszewska-Marańda, E. Czechowska, Y.-S. Chen, Kubernetes cluster for au-
tomating software production environment, Sensors (14248220) 21 (5) (2021)
1910, http://dx.doi.org/10.3390/s21051910.

[55] S. Leech, J. Dunne, D. Malone, A framework to model bursty electronic data
interchange messages for queueing systems†, Fut. Int. 14 (5) (2022) 149,
http://dx.doi.org/10.3390/fi14050149.

[56] H. Zhou, Y. Hu, X. Ouyang, J. Su, S. Koulouzis, C. de Laat, Z. Zhao,
CloudsStorm: A framework for seamlessly programming and controlling virtual
infrastructure functions during the DevOps lifecycle of cloud applications,
Softw. - Pract. Exp. 49 (10) (2019) 1421–1447, http://dx.doi.org/10.1002/spe.
2741.

[57] M. Usman, S. Ferlin, A. Brunstrom, J. Taheri, A survey on observability
of distributed edge & container-based microservices, IEEE Access 10 (2022)
86904–86919, http://dx.doi.org/10.1109/ACCESS.2022.3193102.

[58] P. Haindl, R. Plosch, Focus areas, themes, and objectives of non-functional
requirements in DevOps: A systematic mapping study, in: A. Martini, M.
Wimmer, A. Skavhaug (Eds.), Proceedings - 46th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2020, Institute of
Electrical and Electronics Engineers Inc., Johannes Kepler University Linz,
Institute of Business Informatics - Software Engineering, Linz, Austria, 2020,
pp. 394–403, http://dx.doi.org/10.1109/SEAA51224.2020.00071.

[59] E. Grunewald, P. Wille, F. Pallas, M. Borges, M.-R. Ulbricht, TIRA: An Ope-
nAPI extension and toolbox for GDPR transparency in RESTful architectures,
in: Proceedings - 2021 IEEE European Symposium on Security and Privacy
Workshops, Euro S and PW 2021, 2021, pp. 312–319, http://dx.doi.org/10.
1109/EuroSPW54576.2021.00039.

[60] J. Alonso, L. Orue-Echevarria, M. Huarte, CloudOps: Towards the opera-
tionalization of the cloud continuum: Concepts, challenges and a reference
framework, Appl. Sci. (Switzerland) 12 (9) (2022) http://dx.doi.org/10.3390/
app12094347.

[61] W. John, G. Marchetto, F. Nemeth, P. Skoldstrom, R. Steinert, C. Meirosu, I.
Papafili, K. Pentikousis, Service provider DevOps, IEEE Commun. Mag. 55 (1)
(2017) 204–211, http://dx.doi.org/10.1109/MCOM.2017.1500803CM.

[62] J. Dobaj, A. Riel, T. Krug, M. Seidl, G. Macher, M. Egretzberger, Towards digital
twin-enabled DevOps for CPS providing architecture-based service adaptation
& verification at runtime, in: Proceedings of the 17th Symposium on Software
Engineering for Adaptive and Self-Managing Systems, in: SEAMS ’22, Asso-
ciation for Computing Machinery, New York, NY, USA, 2022, pp. 132–143,
http://dx.doi.org/10.1145/3524844.3528057.

[63] A.A. Khan, M. Shameem, Multicriteria decision-making taxonomy for DevOps
challenging factors using analytical hierarchy process, J. Softw.: Evol. Process
32 (10) (2020) http://dx.doi.org/10.1002/smr.2263.

[64] V. Singh, A. Singh, A. Aggarwal, S. Aggarwal, DevOps based migration
aspects from legacy version control system to advanced distributed VCS for
deploying micro-services, in: CSITSS 2021 - 2021 5th International Conference
on Computational Systems and Information Technology for Sustainable Solu-
tions, Proceedings, 2021, p. 5, http://dx.doi.org/10.1109/CSITSS54238.2021.
9683718.

[65] Z. Sampedro, A. Holt, T. Hauser, Continuous integration and delivery for HPC:
Using singularity and Jenkins, in: ACM International Conference Proceeding
Series, Association for Computing Machinery, New York, NY, USA, 2018, p. 6,
http://dx.doi.org/10.1145/3219104.3219147.

[66] M. Airaj, Enable cloud DevOps approach for industry and higher education,
Concurr. Comput.-Pract. Exp. 29 (5) (2017) http://dx.doi.org/10.1002/cpe.
3937.

[67] Y. Wang, M. Pyhäjärvi, M.V. Mäntylä, Test automation process improvement
in a DevOps team: Experience report, in: 2020 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), 2020, pp.
314–321, http://dx.doi.org/10.1109/ICSTW50294.2020.00057.

Information and Software Technology 177 (2025) 107583

23

160

R. Amaro et al.

[68] B. Fitzgerald, K.-J. Stol, Continuous software engineering: A roadmap and
agenda, J. Syst. Softw. 123 (2017) 176–189, http://dx.doi.org/10.1016/j.jss.
2015.06.063.

[69] M. Gokarna, R. Singh, DevOps: A historical review and future works, in: P.
Astya, M. Singh, N. Roy, G. Raj (Eds.), 2021 IEEE International Conference
on Computing, Communication, and Intelligent Systems, ICCCIS 2021, Institute
of Electrical and Electronics Engineers Inc., IEEE, IBM India Pvt Ltd, Manyata
Tech Park, Bangalore, India, 2021, pp. 366–371, http://dx.doi.org/10.1109/
ICCCIS51004.2021.9397235.

[70] A. Saboor, M. Hassan, R. Akbar, E. Susanto, S. Shah, M. Siddiqui, S. Magsi,
Root-of-trust for continuous integration and continuous deployment pipeline
in cloud computing, Comput. Mater. Contin. 73 (2) (2022) 2223–2239, http:
//dx.doi.org/10.32604/cmc.2022.028382.

[71] A. Alnafessah, A.U. Gias, R. Wang, L. Zhu, G. Casale, A. Filieri, Quality-aware
DevOps research: Where do we stand? IEEE Access: Pract. Innov. Open Solutions
9 (2021) 44476–44489, http://dx.doi.org/10.1109/ACCESS.2021.3064867.

[72] J. Xuan, T. Duan, Q. Guo, F. Gao, J. Li, X. Qiu, S. Wu, Microservice publishing
technology based on DevOps architecture, in: 2021 IEEE 5th Information
Technology,Networking,Electronic and Automation Control Conference (ITNEC),
Vol. 5, 2021, pp. 1310–1314, http://dx.doi.org/10.1109/ITNEC52019.2021.
9586904.

[73] I. Kohyarnejadfard, D. Aloise, S.V. Azhari, M.R. Dagenais, Anomaly detection in
microservice environments using distributed tracing data analysis and NLP, J.
Cloud Comput. 11 (1) (2022) http://dx.doi.org/10.1186/s13677-022-00296-4.

[74] B. Snyder, B. Curtis, Using analytics to guide improvement during an Agile-
DevOps transformation, IEEE Softw. 35 (1) (2017) 78–83, http://dx.doi.org/
10.1109/MS.2017.4541032.

[75] M. Munoz, M. Negrete, M. Arcilla-Cobian, Using a platform based on the Basic
profile of ISO/IEC 29110 to reinforce DevOps environments, J. Univ. Comput.
Sci. 27 (2) (2020) 91–110, http://dx.doi.org/10.3897/jucs.65080.

[76] X. Chen, D. Badampudi, M. Usman, Reuse in contemporary software engineering
practices-an exploratory case study in A medium-sized company, E-Inf. Softw.
Eng. J. 16 (1) (2022) 220110, http://dx.doi.org/10.37190/e-Inf220110.

[77] A. Hemon, B. Lyonnet, F. Rowe, B. Fitzgerald, From Agile to DevOps: Smart
skills and collaborations, Inf. Syst. Front. 22 (4) (2020) 927–945, http://dx.doi.
org/10.1007/s10796-019-09905-1.

[78] S. Rafi, M.A. Akbar, W. Yu, A. Alsanad, A. Gumaei, M.U. Sarwar, Exploration
of DevOps testing process capabilities: An ISM and fuzzy TOPSIS analysis,
Appl. Soft Comput. 116 (2022) 108377, http://dx.doi.org/10.1016/j.asoc.2021.
108377.

[79] L. Banica, M. Radulescu, D. Rosca, A. Hagiu, Is DevOps another project
management methodology? Inf. Econ. 21 (3) (2017) 39–51, http://dx.doi.org/
10.12948/issn14531305/21.3.2017.04.

[80] A. Hemon, B. Fitzgerald, B. Lyonnet, F. Rowe, Innovative practices for knowl-
edge sharing in large-scale DevOps, IEEE Softw. 37 (3) (2020) 30–37, http:
//dx.doi.org/10.1109/MS.2019.2958900.

[81] I. Jimenez, M. Sevilla, N. Watkins, C. Maltzahn, J. Lofstead, K. Mohror,
A. Arpaci-Dusseau, R. Arpaci-Dusseau, The Popper convention: Making re-
producible systems evaluation practical, in: Proceedings - 2017 IEEE 31st
International Parallel and Distributed Processing Symposium Workshops,
IPDPSW 2017, 2017, pp. 1561–1570, http://dx.doi.org/10.1109/IPDPSW.2017.
157.

[82] I. Kumara, M. Garriga, A.U. Romeu, D. Di Nucci, F. Palomba, D.A. Tamburri,
W.-J. van den Heuvel, The do’s and don’ts of infrastructure code: A systematic
gray literature review, Inf. Softw. Technol. 137 (2021) 106593, http://dx.doi.
org/10.1016/j.infsof.2021.106593.

[83] Y. Zhou, Y. Su, T. Chen, Z. Huang, H.C. Gall, S. Panichella, User review-based
change file localization for mobile applications, IEEE Trans. Softw. Eng. (2020)
1, http://dx.doi.org/10.1109/TSE.2020.2967383.

[84] M. Chen, W. Yao, J. Chen, H. Liang, Y. Chen, H. Qiao, C. Yang, M. Li,
J. Tong, Critical challenges and solutions for an ultra-large-scale enterprise
DevOps platform, in: 2022 7th International Conference on Cloud Computing
and Big Data Analytics (ICCCBDA), 2022, pp. 167–171, http://dx.doi.org/10.
1109/ICCCBDA55098.2022.9778937.

[85] L. Firdaouss, B. Ayoub, B. Manal, Y. Ikrame, Automated VPN configuration
using DevOps, in: Procedia Computer Science, in: 12th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks / 11th International
Conference on Current and Future Trends of Information and Communication
Technologies in Healthcare, 198, 2022, pp. 632–637, http://dx.doi.org/10.
1016/j.procs.2021.12.298.

[86] L.-N. Lévy, J. Bosom, G. Guerard, S. Amor, M. Bui, H. Tran, DevOps model
appproach for monitoring smart energy systems, Energies 15 (15) (2022) 27,
http://dx.doi.org/10.3390/en15155516.

[87] R. Jabbari, N. bin Ali, K. Petersen, B. Tanveer, Towards a benefits dependency
network for DevOps based on a systematic literature review, J. Softw.: Evol.
Process 30 (11) (2018) 26, http://dx.doi.org/10.1002/smr.1957.

[88] J. Sandobalin, E. Insfran, S. Abrahao, J. Sandobalín, E. Insfran, S. Abrahão, On
the effectiveness of tools to support infrastructure as code: model-driven versus
code-centric, IEEE Access 8 (2020) 17734–17761, http://dx.doi.org/10.1109/
ACCESS.2020.2966597.

[89] A. Trigo, J. Varajão, L. Sousa, DevOps adoption: Insights from a large European
Telco, Cogent Eng. 9 (1) (2022) http://dx.doi.org/10.1080/23311916.2022.
2083474.

[90] M.F. Lie, M. Sanchez-Gordon, R. Colomo-Palacios, DevOps in an ISO 13485
regulated environment: A multivocal literature review, in: International Sym-
posium on Empirical Software Engineering and Measurement, ACM, New York,
NY, USA, 2020, p. 11, http://dx.doi.org/10.1145/3382494.3410679.

[91] E.E. Romero, C.D. Camacho, C.E. Montenegro, Ó.E. Acosta, R.G. Crespo, E.E.
Gaona, M.H. Martínez, Integration of DevOps practices on a noise monitor
system with CircleCI and Terraform, ACM Trans. Manag. Inf. Syst. 13 (4) (2022)
36:1–36:24, http://dx.doi.org/10.1145/3505228.

[92] F. Almeida, J. Simões, S. Lopes, Exploring the benefits of combining DevOps
and Agile, Fut. Int. 14 (2) (2022) 63, http://dx.doi.org/10.3390/fi14020063.

[93] M.A.A. Alamin, G. Uddin, S. Malakar, S. Afroz, T. Haider, A. Iqbal, Developer
discussion topics on the adoption and barriers of low code software develop-
ment platforms, Empir. Softw. Eng. 28 (1) (2022) http://dx.doi.org/10.1007/
s10664-022-10244-0.

[94] S. Badshah, A.A. Khan, B. Khan, Towards process improvement in DevOps: A
systematic literature review, in: 24th Evaluation and Assessment in Software
Engineering Conference, EASE 2020, ACM, Association for Computing Machin-
ery, Comsats University Islamabad, Islamabad, Pakistan, 2020, pp. 427–433,
http://dx.doi.org/10.1145/3383219.3383280.

[95] L.E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä, J. Itkonen, P.
Kuvaja, T. Mikkonen, M. Oivo, C. Lassenius, DevOps in practice: A multiple
case study of five companies, Inf. Softw. Technol. 114 (March 2017) (2019)
217–230, http://dx.doi.org/10.1016/j.infsof.2019.06.010.

[96] I.-C. Donca, O.P. Stan, M. Misaros, D. Gota, L. Miclea, Method for continuous
integration and deployment using a pipeline generator for agile software
projects, Sensors (Basel, Switzerland) 22 (12) (2022) http://dx.doi.org/10.
3390/s22124637.

[97] S. Rafi, W. Yu, M.A. Akbar, A. Alsanad, A. Gumaei, Multicriteria based decision
making of DevOps data quality assessment challenges using fuzzy TOPSIS, IEEE
Access 8 (1) (2020) 46958–46980, http://dx.doi.org/10.1109/ACCESS.2020.
2976803.

[98] P. Perera, R. Silva, I. Perera, Improve software quality through practicing
DevOps, in: 17th International Conference on Advances in ICT for Emerging
Regions, ICTer 2017 - Proceedings, 2018-Janua, IEEE, Institute of Electrical
and Electronics Engineers Inc., Department of Computer Science aSoftware
Development model nd Engineering, University of Moratuwa, Moratuwa, Sri
Lanka, 2017, pp. 13–18, http://dx.doi.org/10.1109/ICTER.2017.8257807.

[99] S. Rafi, W. Yu, M. Akbar, A. Alsanad, A. Gumaei, Prioritization based taxonomy
of DevOps Security Challenges Using PROMETHEE, IEEE Access 8 (2020)
105426–105446, http://dx.doi.org/10.1109/ACCESS.2020.2998819.

[100] M.A. Akbar, S. Rafi, A.A. Alsanad, S.F. Qadri, A. Alsanad, A. Alothaim, Toward
successful DevOps: A decision-making framework, IEEE Access: Pract. Innov.
Open Solutions 10 (2022) 51343–51362, http://dx.doi.org/10.1109/ACCESS.
2022.3174094.

[101] S. Dallapalma, D. Di Nucci, F. Palomba, D.A. Tamburri, Within-project defect
prediction of infrastructure-as-code using product and process metrics, IEEE
Trans. Softw. Eng. (2021) 1, http://dx.doi.org/10.1109/TSE.2021.3051492.

[102] A. Wiedemann, M. Wiesche, H. Gewald, H. Krcmar, Understanding how DevOps
aligns development and operations: A tripartite model of intra-IT alignment,
Eur. J. Inf. Syst. 29 (5) (2020) 458–473, http://dx.doi.org/10.1080/0960085X.
2020.1782277.

[103] S. Rafi, M.A. Akbar, S. Mahmood, A. Alsanad, A. Alothaim, Selection of DevOps
best test practices: A hybrid approach using ISM and fuzzy TOPSIS analysis, J.
Softw.: Evol. Process 34 (5) (2022) e2448, http://dx.doi.org/10.1002/smr.2448.

[104] S. Throner, H. Hutter, N. Sanger, M. Schneider, S. Hanselmann, P. Petrovic, S.
Abeck, An advanced DevOps environment for microservice-based applications,
in: 2021 IEEE International Conference on Service-Oriented System Engineer-
ing (SOSE), 2021, pp. 134–143, http://dx.doi.org/10.1109/SOSE52839.2021.
00020.

[105] O. Zimmermann, Microservices tenets, Comput. Sci. - Res. Dev. 32 (3–4) (2017)
301–310, http://dx.doi.org/10.1007/s00450-016-0337-0.

[106] W.P. Luz, G. Pinto, B. Bonifacio, Building a collaborative culture: a grounded
theory of well succeeded DevOps adoption in practice, in: Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM 2018), Oulu, Finland, 2018, p. 11, http://dx.doi.org/
10.1145/3239235.3240299.

[107] A. Al-marsy, P. Chaudhary, J. Rodger, A model for examining challenges and
opportunities in use of cloud computing for health information systems, Appl.
Syst. Innov. 4 (1) (2021) 20, http://dx.doi.org/10.3390/asi4010015.

[108] A. Premchand, M. Sandhya, S. Sankar, Simplification of application operations
using cloud and DevOps, Indonesian J. Electr. Eng. Comput. Sci. 13 (1) (2019)
85–93, http://dx.doi.org/10.11591/ijeecs.v13.i1.pp85-93.

[109] K. Tuma, C. Sandberg, U. Thorsson, M. Widman, T. Herpel, R. Scandariato,
Finding security threats that matter: Two industrial case studies, J. Syst. Softw.
179 (2021) 111003, http://dx.doi.org/10.1016/j.jss.2021.111003.

[110] B.Y. Chen, Z.M. Jiang, A survey of software log instrumentation, ACM Comput.
Surv. 54 (4) (2021) http://dx.doi.org/10.1145/3448976.

Information and Software Technology 177 (2025) 107583

24

161

R. Amaro et al.

[111] Y. Liu, Z. Ling, B. Huo, B. Wang, T. Chen, E. Mouine, Building A platform
for machine learning operations from open source frameworks, in: IFAC-
PapersOnLine, in: 3rd IFAC Workshop on Cyber-Physical & Human Systems
CPHS 2020, Vol. 53, 2020, pp. 704–709, http://dx.doi.org/10.1016/j.ifacol.
2021.04.161.

[112] H. Topi, G. Spurrier, Invited paper: a generalized, enterprise-level systems
development process framework for systems analysis and design education, J.
Inf. Syst. Educ. 30 (4) (2019) 253–265.

[113] H. Topi, G. Spurrier, A generalized, enterprise-level systems development
process framework for systems analysis and design education, J. Inf. Syst. Educ.
30 (4) (2019) 253–265.

[114] M.A. Akbar, K. Smolander, S. Mahmood, A. Alsanad, Toward successful DevSec-
Ops in software development organizations: A decision-making framework, Inf.
Softw. Technol. 147 (2022) 106894, http://dx.doi.org/10.1016/j.infsof.2022.
106894.

[115] R. Ranawana, A.S. Karunananda, An agile software development life cycle
model for machine learning application development, in: 2021 5th SLAAI
International Conference on Artificial Intelligence (SLAAI-ICAI), 2021, p. 6,
http://dx.doi.org/10.1109/SLAAI-ICAI54477.2021.9664736.

[116] H. Liu, Q. Han, Y. Wang, F. He, Z. Mao, C. Li, An analysis of DevOps
architecture for EMIS based on jBPM, in: 2020 International Conference on
Service Science (ICSS), 2020-Augus, IEEE, 2020, pp. 96–101, http://dx.doi.org/
10.1109/ICSS50103.2020.00023.

[117] M. Camilli, A. Guerriero, A. Janes, B. Russo, S. Russo, Microservices integrated
performance and reliability testing, in: Proceedings of the 3rd ACM/IEEE
International Conference on Automation of Software Test, in: AST ’22, As-
sociation for Computing Machinery, New York, NY, USA, 2022, pp. 29–39,
http://dx.doi.org/10.1145/3524481.3527233.

[118] S.T. Lai, F.Y. Leu, A micro services quality measurement model for improving
the efficiency and quality of DevOps, in: L. Barolli, F. Xhafa, N. Javaid,
T. Enokido (Eds.), Advances in Intelligent Systems and Computing, Vol.
773, Springer International Publishing AG, Gewerbestrasse 11, CHAM, CH-
6330, SWITZERLAND, 2019, pp. 565–575, http://dx.doi.org/10.1007/978-3-
319-93554-6_55.

[119] R. Eramo, V. Muttillo, L. Berardinelli, H. Bruneliere, A. Gomez, A. Bagnato,
A. Sadovykh, A. Cicchetti, AIDOaRt: AI-augmented automation for DevOps, a
model-based framework for continuous development in cyber-physical systems,
in: 2021 24th Euromicro Conference on Digital System Design (DSD), 2021, pp.
303–310, http://dx.doi.org/10.1109/DSD53832.2021.00053.

[120] M. Pardo, H. Erazo, C. Lozada, Documenting and implementing DevOps
good practices with test automation and continuous deployment tools through
software refinement, Period. Eng. Nat. Sci. 9 (4) (2021) 854–863, http://dx.
doi.org/10.21533/pen.v9i4.2239.

[121] C. Vassallo, F. Zampetti, D. Romano, M. Beller, A. Panichella, M. Di Penta,
A. Zaidman, Continuous delivery practices in a large financial organization, in:
Proceedings - 2016 IEEE International Conference on Software Maintenance and
Evolution, ICSME 2016, 2017, pp. 519–528, http://dx.doi.org/10.1109/ICSME.
2016.72.

[122] J. Chen, Performance regression detection in DevOps, in: Proceedings - 2020
ACM/IEEE 42nd International Conference on Software Engineering: Compan-
ion, ICSE-Companion 2020, 2020, pp. 206–209, http://dx.doi.org/10.1145/
3377812.3381386.

[123] J. Ayerdi, A. Garciandia, A. Arrieta, W. Afzal, E. Enoiu, A. Agirre, G. Sagardui,
M. Arratibel, O. Sellin, Towards a taxonomy for eliciting design-operation
continuum requirements of cyber-physical systems, in: Proceedings of the IEEE
International Conference on Requirements Engineering, 2020-August, 2020, pp.
280–290, http://dx.doi.org/10.1109/RE48521.2020.00038.

[124] C. Paule, T.F. Dullmann, A. Van Hoorn, Vulnerabilities in continuous delivery
pipelines? a case study, in: Proceedings - 2019 IEEE International Conference
on Software Architecture - Companion, ICSA-C 2019, 2019, pp. 102–108,
http://dx.doi.org/10.1109/ICSA-C.2019.00026.

[125] M. Wöhrer, U. Zdun, DevOps for ethereum blockchain smart contracts, in: 2021
IEEE International Conference on Blockchain (Blockchain), 2021, pp. 244–251,
http://dx.doi.org/10.1109/Blockchain53845.2021.00040.

[126] I.D. Rubasinghe, D.A. Meedeniya, I. Perera, Towards traceability management
in continuous integration with sat-analyzer, in: ACM International Conference
Proceeding Series, Association for Computing Machinery, New York, NY, USA,
2017, pp. 77–81, http://dx.doi.org/10.1145/3162957.3162985.

[127] J. Bergelin, A. Cicchetti, Towards continuous modelling to enable DevOps: A
preliminary study with practitioners, in: Proceedings of the 25th International
Conference on Model Driven Engineering Languages and Systems: Companion
Proceedings, in: MODELS ’22, Association for Computing Machinery, New York,
NY, USA, 2022, pp. 774–783, http://dx.doi.org/10.1145/3550356.3561582.

[128] C. Castellanos, C.A. Varela, D. Correal, ACCORDANT: A domain specific-model
and DevOps approach for big data analytics architectures, J. Syst. Softw. 172
(2021) http://dx.doi.org/10.1016/j.jss.2020.110869.

[129] R. Subramanya, S. Sierla, V. Vyatkin, From DevOps to MLOps: Overview and
application to electricity market forecasting, Appl. Sci. (Switzerland) 12 (19)
(2022) http://dx.doi.org/10.3390/app12199851.

[130] J. Faustino, R. Amaro, D. Adriano, R. Pereira, M.M. da Silva, DevOps benefits:
A systematic literature review, Softw. - Pract. Exp. 52 (9) (2022) 1905–1926,
http://dx.doi.org/10.1002/spe.3096.

[131] R. Amaro, R. Pereira, M.M. da Silva, DevOps Metrics and KPIs: A multivo-
cal literature review, ACM Comput. Surv. (2024) http://dx.doi.org/10.1145/
3652508.

[132] G. Guest, E. Namey, M. Chen, A simple method to assess and report thematic
saturation in qualitative research, PLOS ONE 15 (5) (2020) e0232076, http:
//dx.doi.org/10.1371/journal.pone.0232076.

[133] V. Garousi Yusifoğlu, Y. Amannejad, A. Betin Can, Software test-code en-
gineering: A systematic mapping, Inf. Softw. Technol. 58 (2015) 123–147,
http://dx.doi.org/10.1016/j.infsof.2014.06.009.

[134] J.M. Verner, M.A. Babar, N. Cerpa, T. Hall, S. Beecham, Factors that motivate
software engineering teams: A four country empirical study, J. Syst. Softw. 92
(1) (2014) 115–127, http://dx.doi.org/10.1016/j.jss.2014.01.008.

Information and Software Technology 177 (2025) 107583

25

162

CHAPTER 7

Article #6

The final article (A6) explores the adoption of DevOps in a private software company by ob-
serving the factors, challenges, and strategies, and identifying significant relationships between
capabilities, metrics, and Life Cycle Processes (LCPs). Information about strategies and capa-
bilities used, challenges and benefits obtained, and ways of measuring them has been provided
in the article. The findings are useful for better understanding the application of DevOps capa-
bilities and practices in a real-world environment and obtaining helpful information for applying
these practices in other organizations.

As far as the results and findings of the study are concerned, the study identifies 38 symbiotic
relations between capabilities, metrics, and lifecycle processes in DevOps adoption. Moreover,
the importance of a self-service repository management to increasing the internal efficiency
and accountability of the company is clear. It is also noted the central role of the internal
catalog in improving internal efficiency and accountability with microservices management.
While adopting DevOps, the organization states that releases increased, while escaped defects in
production reduced, confirming significant benefits in software quality and operational efficiency.
Cloud-native and open-source technologies were beneficial to infrastructure capabilities, while
enhanced support for microservices was a strong factor in the case. The conclusion confirms that
product prioritization, information, automation, standardization, and visibility are supportive
factors for DevOps adoption.

Article details:

– Title: Exploring DevOps Success: A Case Study on Key Capabilities, Metrics, and
Lifecycle Processes

– Date submitted: September 2024

– Journal: Journal of Systems and Software

– Scimago Journal Rank: Q1

– Publisher: Elsevier B.V.

163

Exploring DevOps Success: A Case Study
on Key Capabilities, Metrics, and Lifecycle Processes

Ricardo Amaroa,∗, Rúben Pereirab, Miguel Mira da Silvac

aInstituto Universitário de Lisboa (ISCTE-IUL), INOV
bInstituto Universitário de Lisboa (ISCTE-IUL), INOV

cInstituto Superior Técnico, Universidade de Lisboa, INOV

Abstract

In the context of Information Technology (IT), companies are adopting DevOps to meet customer
demands and to improve collaboration, among teams, and streamline software delivery. However, some
organizations still find implementation challenges.

The objective is to examine the factors influencing the adoption of DevOps in a software company,
collecting challenges, and strategies to ensure a successful transition. These factors are DevOps capabilities,
metrics, and lifecycle processes. Qualitative research methods drive this case study, incorporating analytical
methodologies, triangulation, with multiple data sources, like interviews, focus groups and document analysis,
for validity and reliability.

Results include 38 symbiotic relations between capabilities, metrics, and lifecycle processes, as well
as 16 key initiatives, benefits, and challenges. Self-service repository management improves efficiency and
accountability. Internal catalog is crucial for evaluating maturity and managing (micro)services. Releases
increased, while escaped defects and Mean Time To Recover/Restore (MTTR) reduced. Cloud native, and
open source, improves efficient infrastructure management.

In conclusion, product prioritization, information visibility, automation and standardization are validated
as key to support a successful adoption of DevOps. The findings enrich the body of knowledge, providing
organizations meaningful recommendations for implementation.

Keywords: DevOps, Metrics, Performance, Adoption, Software, Information Systems

1. Introduction

In the current industry context, IT organizations are adopting the DevOps approach to meet market,
customer, and internal needs [10, 29, 30, 34]. DevOps is becoming more popular in the software business
because organizations want to improve software development and its delivery [21, 27, 39, 48]. Traditional silos
between software development and operations caused engineering inefficiencies, delays, and restricted team
cooperation. foundational to DevOps [19, 30]. By solving the gap between development and operations, the
adoption of DevOps aims to improve software delivery processes and rectify these long-standing issues [6, 43].
The significance of this movement in the industry is evident in the following aspects: Firstly, DevOps
empowers organizations to accelerate their time to market through a focus on automation and streamlined
workflows. This rapid software release cycle enables a company to quickly adapt to market demands, thereby
securing a competitive edge [27]. Second, DevOps fosters improved collaboration and communication between
cross-functional teams, breaking down silos, and promoting a culture of transparency and accountability [6, 36].
Furthermore, DevOps capabilities and metrics [3–5] contribute to improved software quality and stability

∗Corresponding author
Email addresses: ricardo_amaro@iscte-iul.pt (Ricardo Amaro), ruben.filipe.pereira@iscte-iul.pt (Rúben Pereira),

mms@tecnico.ulisboa.pt (Miguel Mira da Silva)

Preprint submitted to Journal of Systems & Software September 14, 2024

164

through Continuous Integration & Delivery or Deployment (CI/CD), automated testing, and monitoring,
resulting in increased velocity and greater customer satisfaction [48]. Finally, DevOps encourages continuous
improvement by gathering and analyzing data throughout the software lifecycle. This allows businesses
to make data-informed decisions and iterate on procedures and capabilities [22]. Overall, because DevOps
improves software quality, time to market, efficiency, and continuous improvement, the software industry
considers it essential. By embracing DevOps principles and practices, businesses can navigate the evolving
landscape, deliver high-quality software products efficiently [13], and meet the ever-changing demands of
customers and markets [10, 29]. But how are companies adopting DevOps metrics and capabilities? What
obstacles do they face, and what variables help DevOps adoption?

Research Problem: Despite the growing consensus on DevOps as a key factor in improving software
development and efficiency, there is still a lack of empirical evidence on how already existing capabilities [3]
and metrics [5] influence the successful adoption of DevOps in software organizations. Additionally, the
lack of comprehension of the subtle effect of these factors on the software lifecycle processes [22] prevents
organizations from implementing DevOps effectively. As a result, more research is needed to determine the
specific capabilities and metrics that contribute to successful DevOps adoption, as well as how these practices
impact different stages of the software development lifecycle.

Objective: To address these shortcomings, this study aims to identify and analyze DevOps capabilities
and metrics that significantly impact DevOps adoption in a software company. This research uses a case
study to investigate deeper into how these factors affect software lifecycle processes in practice. This
narrower approach allows the research to provide actionable insights that can help organizations prioritize
and implement DevOps practices most likely to succeed. Organizations can then improve their efforts and
increase the probability of adopting DevOps successfully.

The research questions in Table 1 can assist in identifying the factors that influence DevOps adoption in
a software company. By addressing these research questions, the case study aims to provide insight into

Table 1: Research questions

RQ1 What DevOps capabilities, metrics and Lifecycle processes play a key role in enhancing DevOps adoption?

RQ2 Are there any significant correlations in DevOps capabilities, metrics, and lifecycle processes?

RQ3 How are key strategies, or initiatives, facilitating the adoption of DevOps?

RQ4 During the adoption of DevOps, which key benefits and challenges stand out and why?

the critical aspects of successful DevOps adoption, how DevOps capabilities and metrics affect successful
adoption by examining how these aspects connect to various activities in the software lifecycle.

Article structure: Section 1 is the introduction, in Section 2 the research background and related
work review is presented together with a proposed conceptual framework, Section 3 describes the research
methodology, Section 4 presents the results, in Section 5 a discussion is done, and Section 6 concludes with
final remarks, limitations, and future work.

2. Background and Related Work

The framework for this DevOps adoption case study is based on a wide range of sources, including those
from software development, operations, and management. Examines the adoption of DevOps, its benefits,
challenges, and impact on software companies. With a clear guiding structure, the provided framework helps
to understand and explain the specific phenomenon and problem being addressed.

2.1. DevOps Capabilities and Metrics

DevOps refers to the collaboration between Developers (Dev) and Operations (Ops) teams to eliminate
engineering silos, shorten the development lifecycle, deliver high-quality software continuously and improve
reliability [4, 43]. While DevOps had no universal definition, the IEEE DevOps Standard 2675 (2021) [22, p.
23] brought a definition, stating that DevOps methods promote stakeholder communication and collaboration
to develop, build, improve, and operate software and systems products and services. According to Amaro

2

165

et al. [4], DevOps emphasizes empathy and cross-functional collaboration in software development teams[11].
The components of DevOps are often summarized as CALMS: Culture, Automation, Lean, Measurement,
and Sharing[21]. DevOps evolved from agile IT service management [9], focusing on new processes to deliver
fast-changing software [6, 21].

This study builds on top of two previous Multivocal Literature Reviews (MLRs), and an Systematic
Literature Review (SLR) in Section 2.3, published by the authors [3, 5], following the guidelines proposed by
Garousi et al. (2019) [16] and Kitchenham et al. (2007) [26], where the capabilities and metrics of DevOps
were found, synthesized and discussed, followed by a Design Science Research (DSR) which validated the
capabilities and metrics, while proposing an evaluation artifact [4] showing DevOps capabilities influencing
main metrics. The grand objective of the preceding research, which this work continues, is to find, explore
and validate the key factors that improve DevOps adoption success. The authors identified the need for a
via case study, given the lack of empirical evidence in exploring successful DevOps adoption in a software
organization. As other previous authors have mentioned, understanding DevOps capabilities and metrics
in practice is crucial for DevOps adoption [3, 5, 14, 38, 43, 45]. Since the purpose of this investigation
is to explore how these concepts contribute to overcome researched challenges (Section 2.3) leading to a
successful implementation of DevOps in a software company, this study uses the DevOps capabilities vector
researched in the previous literature review [3], as shown in Figure 1. Similarly, while DevOps capabilities are

Cultural

· Cross team collaboration
· Support learning and experimentation
· Open source software adoption
· Transformational leadership
· Westrum organizational culture
· Blameless Postmortems
· Job satisfaction

Measurement

· Monitoring, Observability and autoscaling
· Emergency response
· Monitor systems to inform business decisions
· Working in progress limits
· Visual management Capabilities

Process

· Continuous Improvement of processes
· Focus on people, process, and technology
· Working in small batches
· Lightweight change approval
· Visibility of work in the value stream
· Customer focus/feedback
· Data-driven approach for improvements

Technical

· Continuous Integration
· Continuous Delivery automation
· Test automation and environments
· Version Control System
· Empower teams to make decisions
· Configuration Management
· Cloud infrastructure and cloud native
· Artifacts versioning and registry
· Loosely coupled architecture
· Database change management
· Infrastructure as Code
· Containerization
· Shift left on security
· Trunk based development
· Centralized log management
· Test data management
· Chaos Engineering
· Code maintainability

Figure 1: Categorization of DevOps Capabilities, adapted [3].

fundamental, to gain a comprehensive understanding of DevOps adoption, it is equally important to measure
and monitor various metrics that reflect DevOps performance [21, 41]. As part of the authors’ research, the
DevOps metrics were also elicited, synthesized and discussed in a recent literature review by Amaro et al. [5],
these investigated metrics were also categorized to provide practical evidence of the effectiveness in DevOps
adoption. In the previous research, it was identified that future work should address how DevOps capabilities
relate to metrics in a real life situation, which is being addressed in this article. Figure 2 provides a detailed
categorization of these metrics [5].

Both DevOps capabilities and metrics, as shown in Figures 1 and 2, provide valuable material for
discussing the adoption of DevOps in this case study.

3

166

Change

· Mean Lead-time for Changes (MLT)
· Deployment Frequency (DF)
· Change Failure Rate (CFR)
· Deployment Duration Time
· Defect Escape Rate
· Cycle Time Value (CTV)
· Deployment Size
· Mean time to Failure (MTTF)
· Pipeline Automated Tests Success Rate
· Automated Test Code Coverage

Business

· Customer Tickets Volume and Feedback
· Customer Usage and Traffic

Operational

· Mean Time To Recover/Restore (MTTR)
· Service Availability and Uptime
· Mean Time To Detection (MTTD)
· Application Response Time
· Service Level Agreements (SLAs) and Objectives (SLOs)
· Production Error and Incident Rate
· Work in Progress (WIP) /Load
· Unplanned Work Rate (UWR)
· Wait Time

Cultural

· Westrum Organizational Culture Measures
· Team Happiness
· Talent retention

Figure 2: Categorization of DevOps Metrics, adapted [5].

2.2. DevOps Life Cycle Processes

The ISO/IEC/IEEE 12207:2017 standard provides a reference model for structuring the software life
cycle into different processes, known as Software Life Cycle Processes (LCPs). It addresses the requirements
of software engineering approaches, accommodating the incremental and iterative nature of DevOps in
IEEE Standard 2675-2021 [22]. The standard establishes common terminology and serves as a reference for
activities like process definition, modeling, and assessment within its 30 LCPs, as seen in Figure 3. The
framework categorizes DevOps capabilities into cultural, measurement, process, and technical domains, and
links them to specific metrics and LCPs as seen in Figure 4. Agreement processes are concerned with

Organizational project-enabling processes

· Life Cycle Model Management Process
· Infrastructure Management Process
· Portfolio Management Process
· Resource Management process
· Quality Management Process
· Knowledge Management Process

Technical management processes

· Project Planning Process
· Project Assessment and Control Process
· Decision Management Process
· Risk Management Process
· Configuration Management Process
· Information Management Process
· Measurement Process
· Quality Assurance Process

Agreement processes

· Acquisition
· Supply

Technical processes

· Business or Mission Analysis Process
· Stakeholder Needs and Requirements Definition Process
· Systems/Software Requirements Definition Process
· Architecture Definition Process
· Design Definition Process
· System Analysis Process
· Implementation Process
· Integration Process
· Verification Process
· Transition Process
· Validation Process
· Operation Process
· Maintenance Process
· Disposal Process

Figure 3: Software Life cycle processes, adapted [46].

collaboration and agreements with other organizations. Organizational project-enabling processes
offer the environment required for project execution. Technical management processes refer to many
facets of project management and are therefore executed at the project level. Technical processes describe
the many processes or phases of a software product’s life cycle, from defining stakeholder needs to software
development. This life cycle framework of processes and activities is concerned with the all life cycle, acting
as a common reference for communication and alignment between stakeholders [46].

4

167

2.3. DevOps Adoption Benefits and Challenges

In another previous Systematic Literature Review (SLR) done by the authors, following the guidelines
proposed by Kitchenham et al. [26], the benefits of DevOps were collected and synthesized [13]. A research
protocol, inclusion and exclusion criteria, using well-known scientific databases, and search strings were
defined. Inclusion and exclusion criteria were based on language (English and Portuguese), only scientific
publications (journals, conferences, and books) and publication date (after 2008). In the initial analysis of
the 98 publications found, a noticeable lack of synthesis of DevOps benefits was seen. The authors then
performed a second literature review in which an additional 36 publications related to case studies were
found, analyzed, and synthesized. This second review was able to consolidate the benefits found, map these
challenges faced by organizations, and gather empirical evidence to support the findings, aimed to provide
practitioners with a clear understanding of what to expect when adopting DevOps. This was crucial to
providing a comprehensive overview of the benefits and challenges seen in Tables 2 and 3 associated with
DevOps adoption. Furthermore, some case studies reviewed did not present any benefits, indicating a gap
that the authors identified as a potential area for future work. The combination of this research with a case
study in which adoption challenges are addressed will help new DevOps practitioners clarify what is expected
to be achieved with DevOps and how to go about its successful adoption.

Several studies have explored DevOps adoption [1, 28, 48], revealing its capabilities, benefits, challenges,
and impacts. Waseem et al. [51] conducted a systematic mapping study on DevOps, highlighting current
research in this area. Hemon-Hildgen et al. [20], Lévy et al. [31], Perez et al. [37] presented case studies on
DevOps adoption in several organizations, clearly highlighting implementation benefits, but also adoption
challenges.

Understanding DevOps benefits and challenges is essential before conducting this case study, since the
benefits lead to DevOps adoption and set a standard for success [1, 38, 45]. The challenges provide insight
into potential obstacles during adoption [39, 48, 49]. Mitigating risks and managing expectations can be
achieved by incorporating these challenges into DevOps adoption strategies [2, 12, 34]. To summarize,
according to the author’s previous Systematic Literature Review (SLR) [13], tables 2 and 3 list a number of
challenges and benefits that were validated by the 36 adoption cases.

Table 2: Benefits of DevOps Adoption

Cross-team collaboration and
Efficiency

Cross-team collaboration and communication, faster time to market, faster and better feedback loops,
and increase of team performance. Often lead to faster development cycles and delivery performance.

Quality and Reliability
Improvements

Increase of code quality, improvement of system reliability, and less mean time to recover. Contribute
to the overall robustness and reliability of products.

Cost Efficiency, Automation and
Delivery Improvements

Costs reduction, decrease of manual work, less failed changes, and better deployment management.
Relate to operational efficiencies and cost benefits.

Value, Culture and Customer
Satisfaction

The increase in value, organizational culture, and customer satisfaction is related to organizational
shifts toward a DevOps culture, which puts customer satisfaction first.

Innovation and Skill
Maximization

More innovation, maximization of competences, and processes and tools standardization

Security and Motivation
Improvements

Less security issues and increase of employees’ motivation. Shift left security techniques boost
confidence and empowerment, employees are more motivated.

The literature Table 2 highlights the prevalent benefits of DevOps adoption in software development.
Research suggests that DevOps adoption can be challenging (Table 3), despite its many benefits.

Finally, knowing the benefits and challenges of adopting DevOps gives a full picture of what to expect
when a software company starts using it. Benefits show possible improvements, and challenges show possible
problems. Software companies can use this information to make smart decisions, come up with good DevOps
adoption plans, and add to the body of DevOps knowledge.

2.4. Conceptual Framework

The conceptual framework for this study illustrated in Figure 4 is derived from the research background
and related work review done in this section and is designed to show the relationships between the different
variables in the study. This will help in understanding and interpreting the specific phenomenon and problem

5

168

Table 3: Challenges of DevOps Adoption

Industry Constraints
Industry-specific restrictions can hinder DevOps adoption. This challenge requires flexible approaches
that consider industry-specific laws, standards, and safety measures to establish appropriate security
and compliance controls in the DevOps pipeline.

Deep-Seated Company Culture
Dysfunctional culture can hinder DevOps adoption. The biggest obstacle is an embedded company
culture that rarely changes and requires cultural transformation to support development operations.

Insufficient Communication
The lack of effective communication within teams, can severely impact the DevOps adoption process,
emphasizing the importance of improving communication channels and practices.

Lack of Clarity
The implementation, dissemination of knowledge across teams and geographic dispersion among team
members, indicates a crucial need for education and clear articulation of DevOps capabilities accross
the organization.

DevOps Capabilities DevOps Metrics

DevOps Life
Cycle Processes

DevOps Benefits
and Challenges

Figure 4: Proposed Conceptual Framework of DevOps Adoption.

being addressed. The proposed framework is categorized into four main components: DevOps Capabilities,
DevOps Metrics, DevOps LCPs, leading to DevOps Benefits and Challenges. The relationships between
these components are explained in Table 4. The conceptual framework guides the case study as it looks at

Table 4: Relations in the Conceptual Framework of DevOps Adoption

DevOps Capabilities
Influence both the DevOps Metrics and DevOps Life Cycle Processes [3, 22, 30, 48]. These
capabilities, which are categorized into Cultural, Measurement, Process, and Technical, provide the
necessary skills and tools for implementing and managing DevOps capabilities [3].

DevOps Metrics
Provide the means to measure the effectiveness and impact of the DevOps Capabilities and
LCPs [4, 8, 38, 49]. These metrics are categorized into Change, Business, Operational, and
Cultural [4, 5].

DevOps Life Cycle
Processes

As defined by the IEEE Standard 2675-2021[22] standard, are influenced by the DevOps Capabilities
and provide the structure and activities for implementing DevOps capabilities[6, 33, 49].

DevOps Benefits and
Challenges

All concepts contribute to the outcomes. Benefits provide a clear understanding of the potential
improvements that can be achieved through DevOps, while the challenges offer insights into the
potential obstacles that may be encountered during the adoption process [11–13, 17, 48, 54].

the current state of DevOps adoption and the role of DevOps capabilities and metrics in making adoption
successful in a software company. The arrows in Figure 4 represent the influence and direction of the
relationships between the components. The DevOps Capabilities affect DevOps metrics and LCPs. These, in
turn, influence DevOps benefits and challenges.

3. Research Methodology

This study uses qualitative research to analyze the contextual and human factors that affect DevOps
adoption. The sample consists of 28 semi-structured interviews, archival documents and focus groups from
a software company. Data were collected to understand the impact of DevOps on software quality and
team collaboration. Thematic analysis was used to map interview data to predefined DevOps concepts of
capabilities, metrics and LCPs.

This method covers the subjective experiences, motivations, and challenges of software engineering, a
complex and people-oriented field [7]. Case study research [55], specifically, can explore the practical context
of DevOps adoption, like organizational and cultural changes. The case shows how DevOps capabilities
influence metrics and LCPs in organizations [3, 4, 22]. Case study model can analyze individual, group,

6

169

organizational or social phenomena. In Figure 5, six phases make up the sequential and iterative investigation,
as explained in Table 5.

1
Planning

2
Designing

3
Preparing

4
Collecting

5
Analyzing

6
Sharing

Figure 5: The Case Study Research process, adapted [55].

This method collects data, finds patterns and draws conclusions to better understand DevOps in software
engineering. A case study is carried out to evaluate and confirm the performance of DevOps in relation to
the concepts presented in the conceptual framework Figure 4. According to Runeson and Höst [42], these are
crucial for software development. This case study shows how DevOps affects complex and dynamic software
development. The case study research process is both linear and iterative, allowing for improvements in the

Table 5: Six Phases of a Case Study.

1. Planning
Determine the case study relevant situation, compared with other research methods. Know what a case study
inquiry is and how it works. Decide whether to do a case study.

2. Designing
Case definition, theory development, and design discovery. Test validity against construct, internal, external, and
reliability criteria. Single-case, multiple-case, holistic, and embedded designs are major. Define case study selection,
methodologies, and procedures.

3. Preparing
Refine researcher skills, train for specific cases if required, and develop a rigorous case study protocol. Conduct a
pilot case and address procedural uncertainties.

4. Collecting
Follow the case study protocol, establish a case study database, and maintain a transparent chain of evidence.
Gather data from multiple sources, including interviews, documentation, archival data, and focus groups. Be
cautious of social aspects when collecting and presenting data.

5. Analyzing
Structured data is separated from interpretations. A data analysis method like pattern matching, explanation
building, time series analysis, logic models, or cross-case synthesis is necessary. Review current research and apply
broad strategies to specific methods.

6. Sharing
Meaningful results are presented to ensure completeness and importance. Considerations of alternative viewpoints
provide enough evidence for reader interpretation. Focusing on report flow and involvement, and iterating the
report-writing process for quality.

design and data collection based on the initial findings illustrated in Figure 5. After the first round of data
collection and analysis, adjustments can be made to improve the overall study.

3.0.1. Case Definition

This case study focuses on a private software company, here referred to as the ”Company” or ”Organiza-
tion”, which operates in the computer software industry. Founded in 2007, the company has established its
headquarters in the United States and serves a worldwide market. The company relies on more than 1,200
people and is ranked as a leader in the Gartner’s 2020 Magic Quadrant for Digital Experience Platforms1.
The company offers enterprise products, services, and technical support for Drupal, an open-source Web
Content Management Platform2, through its software-as-a-service offerings. Venture capital backing and
industry benchmarks show its rapid growth and transformation.

1https://www.gartner.com/reviews/market/digital-experience-platforms
2https://drupal.org

7

170

3.0.2. Case Study Protocol

This study uses an exploratory case study approach [55] to examine the company’s adoption of DevOps.
This type of case study examines phenomena with no clear outcomes. A case study approach [42, 55] enables
in-depth analysis of complex phenomena in real-life contexts. The exploratory nature of this study allows it
to understand DevOps adoption in ways that quantitative methods cannot. Its ability to examine real-world
situations makes it suitable for software engineering research.

Construction validity: In this case study, data triangulation is used, interviews are analyzed, and a
logical chain of events is defined, using multiple sources of evidence and methods to mitigate the impact of
any single interpretation of data and validate the findings[42]. According to several authors [15, 55], data
triangulation is essential for evaluating methodological rigor. Yin [55] suggests four types of triangulation:
data through multiple sources, researcher through multiple evaluators, theory through multiple perspectives
on the same data set, and methodological through complementary methods. Interviews and historical data
are used during triangulation to retain high-quality data and teach readers about the study’s procedure [15].
Without the ability to replicate a case study, triangulation proves its reliability, as detailed in Section 3.3.

Data Collection and Analysis Procedures: The Figure 7 case study protocol collects data using
multiple methods for triangulation: Semi-structured interviews: [40] with key personnel involved in the
DevOps transition were conducted, along with archival documents and metrics [42] like DORA assessments,
process descriptions, and performance reports [40]. Engage in focus group discussions with multiple teams
to gather diverse perspectives and validate findings. From coding and thematic analysis of qualitative data
to cross-analysis to identify patterns and correlations, data analysis will follow a systematic approach [15, 35].
All participants received informed consent forms for confidentiality and withdrawal. Data is anonymized to
protect individuals and the company. The study follows ethical research standards [42] to ensure transparency
and integrity.

Triangulation
in this Research

Document
Collection

Semi-Structured
Interviews

Focus Group

Data Analysis

Comprehensive
Findings

Figure 6: Validation using triangulation of methods and
data in this study.

Results +
Answer Research

Questions

DORA results

Summary tables

Final tables

Analysis and
Synthesis

Invite and interview
participants

Focus Group

Select participantsDiscussion
topics

Focus Group
interview InvitesAnalysis and

SynthesisDocuments

Case identification

Conclusions
and Sharing

Semi-structured Interviews

Extract data

Document Collection

Figure 7: Case Study Protocol Process, adapted from Runeson and
Höst [42].

The sequence of research activities, from case identification, data collection, focus groups, and analysis,
to study conclusions and dissemination, is visualized by the diagram protocol in Figure 7. The triangulation
approach [15], as described in Case Study Protocol, is supported through multiple methods and data sources,
which also give a detailed account of the DevOps adoption process within the software company.

3.1. Data Collection

Before data collection, preparation is crucial to ensure relevance, reliability, and validity. This phase
involves selecting participants, establishing study objectives, and defining data collection tools.

8

171

3.1.1. Semi-structured Interviews

Appendix Appendix A outlines an interview guide with open-ended questions to gather in-depth responses
on DevOps capabilities, metrics, lifecycle processes, and correlations. A DevOps-experienced volunteer was
interviewed for a pilot. The session’s feedback improved interview questions’ clarity and relevance to research
questions. Semi-structured videoconference interviews were held. All practitioners in the organization could
sign up for 45-minute slot interviews at their preferred time and date between June and September 2023 on a
webpage. Table 6 lists all participants, a diverse sample of engineers, team leads, managers, and stakeholders
who agreed to be interviewed. The invitation letter Appendix B explains the study’s purpose and expected
contributions of interviewees. The decision to stop conducting semi-structured interviews is because everyone
who agreed to be interviewed had been interviewed. The entire process is documented, along with the

Table 6: List of semi-structure interviews

ID Date Position Location Familiar with DevOps

I01 2023-06-23 Staff Engineer Canada More than 3 years

I02 2023-06-23 Indvidual contributor Canada More than 3 years

I03 2023-06-27 Team Lead Canada Between 1 year and 3 years

I04 2023-06-29 Manager USA Between 1 year and 3 years

I05 2023-06-30 Manager USA More than 3 years

I06 2023-07-03 Indvidual contributor India Between 1 year and 3 years

I07 2023-07-03 Manager France More than 3 years

I08 2023-07-04 Indvidual contributor India Less than 1 year

I09 2023-07-04 Director Canada More than 3 years

I10 2023-07-07 Manager Canada More than 3 years

I11 2023-07-07 Team Lead USA More than 3 years

I12 2023-07-10 Team Lead USA More than 3 years

I13 2023-07-13 Indvidual contributor India More than 3 years

I14 2023-07-13 Manager USA More than 3 years

I15 2023-07-14 Indvidual contributor India More than 3 years

I16 2023-07-14 Indvidual contributor India Between 1 year and 3 years

I17 2023-07-14 Indvidual contributor USA More than 3 years

I18 2023-07-20 Indvidual contributor India Between 1 year and 3 years

I19 2023-07-21 Team Lead USA More than 3 years

I20 2023-08-08 Indvidual contributor Netherlands More than 3 years

I21 2023-08-09 Indvidual contributor India Between 1 year and 3 years

I22 2023-08-11 Director USA More than 3 years

I23 2023-08-21 Indvidual contributor USA Between 1 year and 3 years

I24 2023-08-21 Team Lead USA More than 3 years

I25 2023-08-21 Indvidual contributor USA More than 3 years

I26 2023-08-25 Indvidual contributor India Between 1 year and 3 years

I27 2023-09-08 Director USA More than 3 years

I28 2023-09-08 Director USA More than 3 years

interview guide in Appendix Appendix A, the invitation in Appendix Appendix B, the execution of the
interviews in Section 3.2, and the analysis of results Section 4, to ensure the transparency and reproducibility
of the study.

3.1.2. Document Collection

The documents analyzed are in most part assessments, diagrams, presentations, and performance metrics.
All relevant documents are listed in Table 7, constituted of archival data and metrics that were identified,
including DevOps Research and Assessment (DORA) assessment reports from 2021 to 2023, flow diagrams
related to the CI/CD pipeline, and presentations on DevOps culture, engineering, and automation. Access to
these documents was secured with the necessary permissions. A plan was created to analyze the documents.
This included creating a template to record the document’s purpose, DevOps capabilities, and data or metrics.
Data was extracted from documents using systematic data retrieval and analysis. This was achieved by

9

172

Table 7: List of relevant documents
ID Title Description Pages Type Date

D01 DORA Assessment DORA Assessment from 2021 17 Assessment 2021

D02 DORA Assessment DORA Assessment from 2022 17 Assessment 2022

D03 DORA Assessment DORA Assessment from 2023 17 Assessment 2023

D04 DevOps culture presentation Journey kickoff presentation from 2020 42 Presentation 2020

D05 DevOps CI/CD pipeline diagram Transformation leadership Vision 5 Presentation 2021

D06 DORA Presentation High Performance Software Delivery by DORA 45 Presentation 2022

D07 Pipeline Onboarding status Progress of DevOps pipeline adoption over time 1 Metrics 2023

D08 Escaped Defects Escaped Defects over DevOps adoption time 1 Metrics 2023

D09 Release success rate Release Success Rate over DevOps adoption time 1 Metrics 2023

employing QualCoder3 for thematic coding and other Free/Libre/Open Source Software (FLOSS) [32], such
as Zotero4, Calc Spreadsheets5 and Python6 with Pandas7, to facilitate data manipulation.

3.1.3. Focus Group

The focus group validated findings and gathered diverse perspectives. Focus groups are a valuable
qualitative research method that can be used in case study research. They are particularly helpful in
analyzing complex issues since they provide insightful information on the experiences, perceptions, opinions,
beliefs, and attitudes of the participants [15, 55]. Focus groups, a form of triangulation, improve the
credibility and validity of case study findings by allowing researchers to verify data from various sources,
such as interviews, observations, and document analysis [35]. This methodological triangulation strengthens
the research outcomes’ consistency and robustness, making them more reliable. The literature on qualitative
research methodologies, notably Denzin’s triangulation, suggests that focus groups can reduce biases and
improve study understanding [15]. The design of the focus group sessions followed the guidelines provided
by McDonagh [35] and Teixeira et al. [48]. The focus group was designed for open discussions. The session
covered DevOps adoption topics, with questions and suggestions that encouraged discussion. A moderator was
selected based on experience in facilitating group discussions and knowledge of DevOps capabilities, metrics,
and LCPs. Seven participants were selected to represent a range of roles and experiences with DevOps within
the Company listed in Table 8. Invitations were sent with clear information about the session’s objectives
and the importance of their contributions. As in the interviews, the focus group participants received

Table 8: List of focus group panel participants

ID Date Position Location Familiar with DevOps

G01 2023-10-27 Indvidual contributor India Between 1 year and 3 years

G02 2023-10-27 Manager USA More than 3 years

G03 2023-10-27 Manager USA Between 1 year and 3 years

G04 2023-10-27 Director USA More than 3 years

G05 2023-10-27 DORA Expert USA More than 3 years

G06 2023-10-27 Manager USA More than 3 years

G07 2023-10-27 Team Lead Canada Between 1 year and 3 years

informed consent forms, and the confidentiality of the discussions was emphasized [42]. With participant
consent, the focus group was recorded and thorough notes were collected to capture the discussions. Ethics
and data protection were followed when recording and taking notes. Results were analyzed by recording

3https://github.com/ccbogel/QualCoder
4https://www.zotero.org/
5https://www.libreoffice.org/discover/calc/
6https://www.python.org/
7https://pandas.pydata.org/

10

173

discussions, coding data with QualCoder, and using spreadsheets to find patterns and themes. This was
done with a summary of cross-referenced interview and document findings and focus group observations and
recommendations.

3.2. Data Analysis

To analyze the interview data, thematic analysis of the interview data was used with a coding scheme
based on research questions, the framework of Section 2 and the themes that emerged from the data. Analysis
was performed using FLOSS tools freely available, such as QualCoder, Zotero and LibreOffice. The results
of the qualitative analysis of interview data, focus group and documents reveal significant patterns and
insights presented in Section 4 to answer the research questions. Coding was done involving thematic analysis
of interviews and focus group transcripts. Using pattern matching and direct questions, correlations were
identified between DevOps capabilities, metrics, and lifecycle processes.

This case used data from various sources, as shown in this section.

3.2.1. Semi-structured Interviews

A total of 28 semi-structured interviews were conducted with various people, covering the spectrum of
the key roles involved in the DevOps adoption process in the company. The sample includes engineers, team
leads, managers, and other stakeholders. One of the authors conducted interviews. The 45-minute interviews
sought to obtain diverse perspectives on DevOps adoption challenges, benefits, along with strategies outlined
in Section 3.1 and Appendix Appendix A. Data were collected through semi-structured interviews with
permission to take notes and record. The decision to stop conducting semi-structured interviews is based on
research questions, sample size, and exhaustion of interviewees, which are also explained in this section. Next,
a short summary of each interview is presented, accompanied by the identification of some codes extracted
from the text, analyzed, for which the results are presented in more detail in Section 4.

I01 : The first interviewee emphasized ”the benefit seen from the CI/CD pipeline implementation on
software teams”, including enhanced collaboration (C01) and standardization in the Software Development Life
Cycle (SDLC). With new teams joining DevOps, capabilities have grown. The interviewee evaluated various
capabilities and metrics, indicating varying levels of success in areas such as Continuous Integration (CI)
(C20), configuration management (C25), and centralized log management (C34). DevOps automates processes
to improve team happiness, deployment duration, and recovery time (M21, M04). DF (M02) was identified
as a key metric for improvement. It was stated that collaboration standardizing DevOps tooling improved
delivery, and cost savings despite team dependencies, and resistance to change (C21,L02,M02).

I02 : The second interview covered stack-wide networking and code deployment. We test, compile, build,
and deploy packages in L28 test and production environments. The interviewee favored the new CI/CD
pipeline for its simplicity, structure, and detailed documentation (L08). DevOps metrics like monitoring,
observability, and engineering notifications to address issues early (C08,M09). The interviewee also highlighted
”the need for a better knowledge management and observability” as automation increases, to ensure trust in
automated processes (C12, L08). The team member concluded with DevOps’ pros and cons, including (M10)
automated testing and deployment pipeline confidence.

I03 : In I03 DevOps adoption discusses moving from Jenkins struggles for CI (C20) and deployment
(C21) to automated processes with a dedicated team (C21). This change helps to code, to tests, and to
deploy automatically (M10). DevOps capabilities (C01, C02) and metrics (M01, M02, M03, M11) are
examined for their impact on the software lifecycle (L08), with a certain focus on experimentation (C02),
cross-team communication (C01), and proactive monitoring (C08). The interviewee also notes the importance
of DevOps in supporting a learning culture (C02), improving job satisfaction (C07), and keeping up with
best practices. Acknowledged that ”migrations and training are challenges”, along with benefits such as
efficiency, automation (C21) and alignment with the latest methodologies.

I04 : The fourth interview was about the adherence to DevOps in the organization, and the implementation
of the CI/CD pipeline (C20, C21) as well as tools such as Jfrog (C32) and SonarQube (C22). The main
obstacles include ”resistance to change and a lack of understanding of DevOps as a culture rather than
a team”. The benefits of adopting DevOps are noted as consistency, scalability, and improved workflows

11

174

(C13), which facilitate team transitions and issue diagnosis. The importance of visual management (C12) and
data analysis (C19) in enhancing organizational capabilities. However, there are struggles with cross-team
collaboration and communication (C01), as well as a ”fear of committing to dates”, which hinders several
definition and quality processes (L07,L18,L19). Finally, a cultural shift towards continuous improvement
(C13) and a more constructive approach to addressing workflow inefficiencies is needed.

I05 : Organizational culture (C05), practices, and issues were discussed in the fifth interview. Participant
noted progress in ”breaking down the silos” and improving collaboration (C01), but complex projects with
multiple teams require more growth (C14). After years of focus, DevOps improved job satisfaction (C07).
He also praised the company’s (C03) open source software adoption. After reviewing measurement practices,
centralized logging (C34) and monitoring tools were implemented, but automated problem detection and
notification (C09) needed improvement. For sprint management, teams with (C11) WIP limits were advised.
Finally, the interviewee highlighted the importance of visualizing dependencies (C12) and monitoring software
versions and usage (M24), acknowledging recent improvements, but recognizing the need for ongoing progress.

I06 : In the sixth interview, it was mentioned that the company uses open source software and is
DevOps-focused. The implementation requires collaboration and communication (C01). Applications are
”closely monitored to ensure quality and customer satisfaction” (C08, M18). The interviewee highlighted
deployment procedures (C21), continuous integration (C20), and continuous delivery (M02) improvements
in DevOps capabilities and practices. Additional topics discussed included talent retention (M22), project
planning (L09), and information management (L14). The interviewee emphasized the need of Agile methods
and information management (L14) for cross-team cooperation. Addressed both the challenges in transferring
applications to the CI/CD pipeline (C21) and the benefits of open communication and knowledge sharing
(L08). The ideas of the participant shows that the DevOps capabilities and metrics can enhance IT.

I07 : The DevOps expert talks about the company’s DevOps progress in the seventh interview. The
participant evaluated DevOps resources and metrics, finding good progress in the CI/CD pipeline (C20, C21)
and familiarity with containerization (C31). Explaining the vision and purpose of these changes to the team
could be improved (C04). The participant notes that open source tools (C03) and proactive monitoring
(C08) are widely used, but sometimes the need for them is unclear. Participant also mentions the use of a
platform (L04) for better observation and decision-making (M12, M14). Challenges include resistance to
change and the need for better communication and explanation of DevOps capabilities and culture. The
participant suggests that ”with time and as the benefits become clearer, the adoption should increase from
its current level”.

I08 : The engineer discusses ”DevOps evolution” and how it ”affects the software lifecycle”. DevOps
capabilities and metrics are evaluated, with cross-team collaboration and communication (C01) scoring
well due to significant improvements. Also, highly rated are proactive monitoring (C08) and deployment
automation (C21), indicating their importance in DevOps. The participant suggested visual aids (L12) to help
new team members learn DevOps. Participants’ evaluations and comments statec that DevOps capabilities
improve collaboration (C01), monitoring (C08), and automation (C21), but they also highlight areas that
need more clarity and communication. Assessing the effectiveness of these practices requires metrics such as
DF (M02) and mean lead time for changes (M01). Quality Management (L07) and Architecture Definition
(L20) help DevOps adoption continuously.

I09 : Interview nine discusses SDLC and DevOps metrics. The interviewee said team collaboration and
communication (C01) is moderately effective, ”showing progress but room for improvement”. Containerization
(C31) and release automation (C21) are growing in importance. Proactive failure notification (C09) and
emergency response are also effective. The participant highlights the significance of visual management
capabilities (C12), featuring the Cortex8 tool that significantly exposes operations. Although continuous
improvement processes (C13) have been well received, smoother change control is needed. Key metrics for
operational efficiency include deployment size (M07), CFR (M03), and automated test code coverage (M10).
Standardization is essential for collaboration and security, but prioritization, visibility, and standardization
are major issues. The interview is optimistic but cautious about the adoption of DevOps, with some
well-implemented capabilities and others for improvement.

8https://cortex.io

12

175

I10 : Interview 10 explores how metrics affect software lifecycles. In DevOps culture, people work together
and talk to each other (C01) The organization uses open source software (C03) because it is open source.
Variant levels of certainty among the teams (M21) regarding the implementation and testing of ideas, indicate
the ”necessity for a more uniform culture”. Emergencies and proactive failure notification need improvement
(C09). Utilizing tools like CNCF9 and ArgoCD10 can enhance continuous process and workflow” improvement
(C13). Participant praises emphasis on people, process, and technology (C14) and change approval process
improvements (C16). Onboarding and training for CI/CD tools, operational standards, validation (L27), and
understanding change downstream are discussed. Adopting DevOps benefits from automation and security
(C32).

I11 : The interviewee assessed the adoption and capabilities of DevOps in the company. Cross-team
collaboration and communication (C01) were highly evaluated, stating a ”strong culture of cooperation”,
but ”information is still scattered”. Positive support for learning, culture, and experimentation (C02)
indicated an innovative environment. The DevOps stack and CI/CD (C20, C21) use open source extensively.
Despite better implementation, package management issues with low visibility and governance over certain
repositories and packages hampered developer operations (L23). While observability tools were in place,
project health metrics (M01) and proactive monitoring (C08) improved. Critics cite emergency response
(C09) security issues. Participant highly rates DevOps capabilities like CI (C20), deployment, test automation
(C22), and version control (C23). Team empowerment (C24) and loosely coupled architecture (C28) were
appreciated, but talent retention (M22) and culture were concerns. According to the interview, DevOps
adoption has ”strong technical capabilities and a focus on process improvement”, but governance, monitoring,
and organizational culture need improvement.

I12 : Team collaboration (C01) was the most impactful aspect of DevOps in the next interview, as
it maintains product confidence and guides issue resolution. The coordination of internal services and
third-party vendors can create challenges (C03). The CI/CD pipeline innovations encourage learning and
experimentation (C02, C20, C21). Open source software is popular and constantly improved (C03). Positive
transformation leadership contributes to a generative culture, but ”some processes can be frustrating” (C04).
Nice monitoring and observability, but poor proactive monitoring (C08). Improving DF (M02), size (M07),
and defect escape rate (M05) requires ongoing integration and deployment. Implement security shift-left
(C32) ”without slowing development”. The interview emphasizes DevOps for service availability (M12),
quality (L16), and operations (L28).

I13 : The interviewee stresses DevOps collaboration and communication for team and organizational
success (C01). Open-source Kubernetes and Docker are needed to test new methods. Leadership transfor-
mation is essential for team direction (C04). The participant (C05, C06) said ”blameless postmortems and
DevOps culture are encouraging communication and innovation to help learning from production incidents”.
Monitoring and autoscaling ensure operational stability and a relaxing on-call experience (C08). Proactive
failure notifications are necessary to maintain SLA (M15). Monitoring system usage may reduce costs, but
the impact is unknown (M24). Visual management and work in progress limits help to improve focus (C11,
C14). DevOps emphasizes continuous delivery and integration. Automated and data-driven testing, team
empowerment, configuration management and customer focus (M23). The interview (M02, M03) highlights
high DF and low CFR in implementation, log management and chaos engineering. The importance of MTTR
in production is evident (M11). It was stated last, that ”DevOps simplifies processes, reduces errors and
allows you to focus on new automation instead of manual work” (L09-L23).

I14 : Next, a six-year DevOps veteran discusses the shift from manual quality assurance to a strong culture.
The senior engineer emphasized the ”shift from reactive to proactive” quality measures like test automation
(C22) and shift-left, growing the quality team from three to over 20 engineers. The implementation of
DevOps has led to increased DF (M02), improved incident rates (M16), and reduced defects (M05). Manual
errors are ”reduced by our automation, as speed improved, along efficiency, and collaboration” (C01).
DevOps participant emphasizes executive support for cultural change (C04), learning, and experimentation.
Continuous integration (C20) enhances quality and efficiency. Automation increases job satisfaction and

9https://www.cncf.io
10https://argoproj.github.io

13

176

helps teams solve complex problems (C07). DevOps enhances customer experiences by tackling issues faster
and boosting service reliability and stability. (M16).

I15 : The interview stressed the significance of DevOps adoption on Software Life Cycle Process (SLCPs),
emphasizing collaboration, communication, and proactive monitoring (C01, C08). The engineer interviewed
reported improved DF (M02), incident management, and quality assurance (L16) with automation. Adopting
CI/CD (C20,C21) has helped maintain service availability (M12) and team happiness (M21). The participant
also notes the ”importance of blameless postmortems” (C06) in reducing fear of failure and fostering a culture
of continuous improvement (C13). The challenges faced include ”adapting to new tools and the need for
better documentation” to facilitate the implementation of the quality management process (L07, C22, M09,
M10, M05), where the service catalog is helpful. In general, the participant highly evaluates various DevOps
capabilities and metrics, indicating the critical role in improving observability (C08), reducing unplanned
work (M18), and ensuring talent retention (M22) within the team.

I16 : The next participant values collaboration and communication for learning and job satisfaction (C01,
C02, C07). Saying ”learning from mistakes in blameless postmortems builds team trust” (C06). Monitoring
and observability are needed to prove DevOps’ efficacy and maintain system stability (C08,M12). For
successful DevOps adoption, the participant emphasizes visual management, value stream transparency,
and people, processes, and technology (C12, C14, C17, L10). Continuous integration, delivery, deployment,
test automation, version control, and a loosely coupled architecture are all critical project technicalities.
Metrics like DF, CFR, and mean time-to-failure are crucial for measuring DevOps success (M02, M03, M08).
Resistance to change and the need for cross-team collaboration are acknowledged, as are the benefits of faster
deployments, automation, and a blameless culture that contributes to team happiness (M21).

I17 : The interview discusses DevOps adoption and the shift from startup to metrics-driven culture
(M05, M12, and L15). Workload management using priority support (L10, L17) and collaboration and
communication (C01). He stresses ”transparency and truthfulness in reporting” to aid decision-making
(C04,C19). The participant also stresses job satisfaction (C07) and its relationship to DevOps capabilities.
Resistance to change, competitive advantage, and incident management (C08), especially across time zones,
are mentioned. The interview shows a shift to a more mature, measurement-focused organization that values
data-driven approaches (C19), continuous integration (C20), customer focus (C18), and proactive resource
management to boost profitability and service availability (M12, L04, L05).

I18 : The participant discusses DevOps adoption, including its challenges and successes, in the interview.
Participant evaluates DevOps capabilities like learning support (C02), transformational leadership (C04), and
blameless postmortems (C06), demonstrating ”strong leadership and an experimentation-friendly culture”
(C05). Time zone differences and overreliance on senior members hinder collaboration and progress (C01).
While metrics like lead time for changes (M01) and MTTR (M08) are mentioned, areas like alert response and
emergency response still need improvement. Visual management (C12) with Cortex, proactive monitoring
(C08), and working in small batches (C15) are also discussed. Finally, stated that ”Jenkins focuses on process
automation” (C20) and test automation improvement (C22).

I19 : The participant praised the organization’s DevOps capabilities, especially open source software
adoption (C03) and version control (C23), indicating recent adoption of new practices and tools. However,
”not built here meant rejecting outside solutions”. Moderate ratings for collaboration (C01), cost management,
and proactive monitoring (C08) suggest improvement. Testing and monitoring procedures should be more
secure, standardized, and consistent. Quality and efficiency are indicated by high ratings for CFR (M03),
pipeline automation (M09), and test coverage (M10). C07 and M21 addressed employee turnover, frequent
tool changes, and job satisfaction.

I20 : The interviewee emphasized the importance of DevOps capabilities and metrics in the SLCP.
Participant considers collaboration (C01) and open source adoption (C03) high-impact skills. Emergency
response (C09) and autoscaling (C08) affect teamwork. Customer-focused feedback (C18) and working in
small batches (C15) affect many aspects of the participant’s context. Containerization (C31) created a
”clean environment and reduced regressions and bugs”, changing engineers’ views on components in three
years. Participant emphasized the significance of DF (M02) for promoting smaller, frequent releases. Talent
retention (M22) and job satisfaction (C07) affect DevOps adoption and organizational success.

I21 : The interview highlights DevOps’ benefits for team collaboration, communication (C01), and

14

177

application development over infrastructure management (L04). DevOps allows more frequent feature
delivery (C21), better integration (C20), and infrastructure-free work. The stakeholder says ”DevOps
improved programming, quality control, and operations coordination” (C01). Teams have adopted new
methods through experience and learning (C02,C03,L01). Open-source C03 pipelines find vulnerabilities.
M04 and M02 ”deployment duration and frequency accelerated feature releases and correction”. Product
development speed, quality, and security improved by overcoming documentation and learning curves.
Implementing DevOps in the software lifecycle improved decision-making (L11), team motivation (M21), and
customer follow-up (M23).

I22 : The interviewee evaluates DevOps adoption, including capabilities and metrics, across the software
lifecycle. Open source technology (C03) and Kubernetes accelerate progress. Participant acknowledges
continuous improvement (C13) but note a lack of business perspective in monitoring systems (C10). Contin-
uous integration (C20), delivery (C21), and configuration management (C25) are regarded as critical, while
containerization (C31) and cloud infrastructure (C26) are deemed essential. Improve ”test automation and
trunk-based development” (C22, C33). Quick incident response requires metrics like DF (M02) and MTTF
(M13). Acquisitions (L01) impact DevOps more than project planning (L09). Managing decisions (L11) is
valued. The interview describes the company’s critical but optimistic DevOps journey, which emphasizes
continuous improvement and strategic use of open source (C03) and cloud native technologies.

I23 : Customer-driven feature requests (C18) and team learning (L08,C01) are discussed in the interview
as DevOps adoption and practices affect the company. Cultural factors like blameless postmortems (C06)
boost high job satisfaction (C07). The participant suggests tracking more metrics to improve observability,
proactive monitoring (C08), and emergency response (C09). Customer feedback (C18), people, process, and
technology (C14) are also discussed in DevOps success. Continuous integration (C20) and deployment, code
infrastructure (C30), and security (C32) are well implemented, but ”metrics tracking and documentation could
be improved”. Participant stresses the ”importance of service availability” (M12), uptime, and adherence to
SLAs and Service Level Objectives (SLOs) (M15).

I24 : The interviewee discusses how LCPs, capabilities and metrics affect DevOps adoption. The
participant appreciates open source software adoption (C03) and controlling more with fewer manual
work. Cross-team collaboration (C01) and transformational leadership (C04) were questioned, suggesting
organizational culture is limiting progress. Change approval issues (C16) and value stream visibility (C17),
especially for products, are also mentioned. Participant questions progress despite positive metrics like DF
(M02) and service availability (M12) due to ”testing issues”.

I25 : The interview highlights the importance of enhancing DevOps adoption through better team
collaboration and communication, along with fostering a cultural shift. Despite using open source software
(C03), the company could make more contributions. Progressive monitoring, observability, and auto-scaling
(C08) are well implemented, but value stream visibility (C17) and customer focus (C18) are not. Continuous
integration (C20) and deployment are in place, but the quality varies. Test automation (C22) and environment
provisioning are both average. Decision-making empowerment (C24) and configuration management (C25)
are relatively strong, but ”manual processes remain”. Cloud native infrastructure, particularly ”Kubernetes,
has streamlined deployment, monitoring, and recovery”. However, there are significant gaps in test data
management (C35), chaos engineering (C36), and distributed tracing.

I26 : In the interview, the participant discusses the experience with DevOps adoption, highlighting
the migration from a Jenkins system to a cloud-based solution with the help of a platform engineer (C01).
”This migration saved us significant time by hosting a private Jenkins instance and copying the existing
job configurations”. The participant notes a gap in the team’s CI/CD pipeline, specifically the lack of an
automated process for deployment and subsequent test triggering (C21). Metrics such as response time to
issues (M14), job satisfaction (M21), and emergency response (M08) are highly evaluated, while continuous
delivery and deployment are noted as areas that ”need improvement due to manual intervention” requirements
(C21). The participant expresses a desire to establish a proper CI/CD pipeline and recognizes the importance
of capabilities such as version control (C23), automated testing (C22), and collaboration for successful
DevOps implementation.

I27 : The interviewee discusses DevOps adoption factors and the importance of certain capabilities and
metrics throughout the software life cycle. Job satisfaction (C07), learning culture (C02), and cross-project

15

178

collaboration (C01) are crucial to DevOps adoption. For DevOps success, the participant emphasizes
proactive monitoring (C08) and continuous improvement (C13). The metrics DF (M02), CFR (M03),
and service availability (M12) are crucial for assessing DevOps performance. Feature parity, deterministic
builds, and output parsing in CI/CD hinder DevOps adoption. The participant said, ”successful DevOps
capabilities are characterized by standardization and reliability, which can increase job satisfaction” (C07)
and organizational efficiency. Integration and management of DevOps capabilities also require acquisition
(L01) and infrastructure management (L03).

I28 : The interview discussed the organization’s adoption of DevOps, as well as its preference for
open source tools (C03) and cultural shift toward more engaging technologies. During evaluation, the
organization led in release quality (M03) and proactive response and uptime (M12) throughout the software
lifecycle. In particular, people-centric focus (C14), loosely coupled architecture, and software acquisition
need improvement. The participant discusses CI/CD pipeline setup and SRE practices (C08), ”despite
challenges in prioritization and DevOps implementation”. The organization also aims to deploy continuously
and standardize tools and processes to ”promote observability and shared knowledge” in DevOps.

Finalizing Interviews: The last interview took place in September 2023, as everyone who agreed to
be interviewed within the organization had been interviewed. There is a noticeable repetition of themes
with residual appearances in subsequent interviews, as seen in Tables 11, 12 and 13. The consistency in
the capabilities, metrics, processes, initiatives, challenges, and benefits mentioned suggests that additional
interviews would not yield significantly different insights. In qualitative research, it is crucial to recognize
when additional data do not improve the questions [18], while requiring multiple stakeholder perspectives.

3.2.2. Relevant Documents

The documents collected include DORA assessment surveys, DevOps vision documents, and historical
performance metrics (refer to Table 7). The adoption process is better understood with these qualitative and
quantitative DevOps performance and practice data. Transformational engineering culture, high-performance
software delivery, and platform automation roadmaps. These documents allow interviewees’ feedback to be
cross-checked and triangulated. Engineering culture transformation, high-performance software delivery, and
platform automation roadmaps. Document analysis cross-checks and triangulates feedback.

D01,2,3 - DORA 2021 to 2023 assessments: The DORA assessments from 2021, 2022, and 2023
provide a comprehensive analysis of the organization’s main business unit DevOps capabilities and capabilities
over a three-year period. These assessments measure key metrics such as Deployment Frequency (DF), Mean
Lead-time for Changes (MLT), Mean Time To Recover/Restore (MTTR), and Change Failure Rate (CFR),
indicating the level of performance of the software delivery. They are crucial for tracking and evaluating
DevOps deployment, detecting trends, improvements, and opportunities for improvement. Continuous
evaluation over three years provides insights and lessons for software delivery optimization. The 2021
assessment establishes a baseline for the maturity of DevOps in the organization at the outset of the adoption
process. Identifies areas for improvement and helps set goals for the DevOps transformation journey. The
2022 assessment shows the progress made after a year of adopting DevOps capabilities. Provides information
on the effectiveness of the strategies implemented, highlights successes, and pinpoints ongoing challenges
derived from the change of processes. The 2023 assessment provides an overview of DevOps capabilities,
highlighting sustained improvements, consolidation of gains, and increased maturity. It also helps highlight
areas that need greater attention or new initiatives to develop DevOps. These assessments provide a
comprehensive timeline of an organization’s journey, enabling stakeholders to evaluate return on investment,
make data-driven decisions, and benchmark against industry standards for software delivery and operational
capabilities (see Figure 8). DORA assessments help organizations make strategic decisions, evaluate DevOps
impact on software delivery efficiency, and analyze performance metrics to determine its effects on release
frequency, time-to-market, and software quality.

D04 - DevOps culture presentation Transformation and adoption begin with the presentation of
the DevOps 2020 culture. This talk introduces DevOps concepts such as collaboration, automation, and
continuous improvement to help organizations transform. The presentation teaches new members the DevOps
culture in training materials. It ensures that everyone is aware of the organization’s vision and strategy. New

16

179

2021 2022 2023
40

60

80

100

P
er
ce
n
ta
ge

(%
)

IT Performance and System Availability

IT Performance
Availability

2021 2022 2023
0

20

40

60

80

P
er
ce
n
ta
ge

(l
ow

er
is

b
et
te
r)

Change Failure Rate and Staff Burnout

Change Fail
Burnout

2021 2022 2023

6 months

1 month

1 week

1 day

1 hour

On demand

T
im

e
(l
ow

er
is

b
et
te
r)

Lead Time, MTTR, Deployment Frequency

Lead Time
MTTR

Deployment Frequency

Figure 8: DORA assessment results from 2021 to 2023.

processes, tools, and functions are explained throughout the slides. Explaining the DevOps culture helps
educate and unite the company, providing the basis for structural and procedural changes.

D05 - DevOps CI/CD pipeline diagrams In 2020, the organization began its DevOps journey. The
2021 document is an improvement. The report provides strategic ideas for implementing a CI/CD pipeline
within a unified Platform Engineering (PE) vision. The organization’s transformational leadership and
commitment are shown in this key component of the DevOps adoption plan. Additionally, it lists pipeline
stages, engineering responsibilities, and quality, compliance, and reliability tools. A vision for integrating
DevOps into the ever-changing organization’s workflow. It emphasizes the need of a ”north star” vision for
driving the transformation towards improved DevOps culture and provides a full overview and conceptual
framework for displaying code flow from development to production. Overall, this architecture diagram
aimed to standardize CI/CD and release automation. The DevOps adoption strategy focuses on a successful
standard pipeline that adheres to DevOps principles.

D06 - DORA Presentation - ”High-Performance Software Delivery” The DevOps Research
and Assessment (DORA) team’s 2022 presentation promotes DevOps and Site Reliability Engineering (SRE)
best practices for high-performance software delivery. In this presentation, the DORA team shares their
insights and best practices to help the organization improve software delivery quality. In a fast-changing
technology landscape, it motivates the company to innovate. The presentation presents the latest study
from DORA on the impact of DevOps on software delivery performance. The key performance measures are
DF, MLT, MTTR, and CFR. It also advises on DevOps and SRE implementation, including cultural shifts,
automation, pipelines, and monitoring and observability.

D07,8,9 - Relevant Metrics D07, D08, and D09 indicators are crucial for this case study since they
give measurable data on DevOps adoption and integration. Absolute numbers have been excluded to protect
data confidentiality, since scales and percentages provide enough insights for this case study.

D07) Adoption progress of DevOps and theCI/CD pipeline. A pipeline is a system that automates
various software processes, allowing for timeline visibility into the organization’s source code repositories
and encouraging more efficient, standardized, compliant, and automated workflows. The steady increase
in this metric indicates positive adoption. Figure 9 shows repository management, including integration
into CI/CD pipelines, archiving outdated repositories, and monitoring their active and ownership status.
These graphs illustrate the company’s DevOps-enhanced repository management efforts. The standard
CI/CD has improved code awareness and determined repository ownership. The number of repositories
increased significantly in 2022, while the number of unowned repositories was reduced by more than 88%,
demonstrating the increased efficiency of the version control system.

D08,D09) Escaped defects (D08) are usually found in development companies. See Figure 10 for mea-
surements. Accordingly, excaped defects are issues found during production. Implementing DevOps should
reduce defects, improving software quality and reliability. The Release success rate (D09) measures the
percentage of releases pushed to production without incidents, errors, or failures. Figure 10 indicates a
rise in successful releases. Successful updates highlight the organization’s capacity to roll out new updates
without disruptions, credited to DevOps practices like automated testing and Continuous Integration (CI).
These metrics document the company’s DevOps adoption experience, emphasizing successes and areas for
improvement. The amount of escaped bugs and pipeline onboarding state imply that DevOps is improving

17

180

2021 2022 2023

G
it
R
ep

os
it
or
ie
s

In CI/CD
Archived
Active

2021 2022 2023

No Owner
Active

Figure 9: CI/CD Pipeline onboarding and repositories with no clear owner over time.

2021 2022 2023

#
D
ef
ec
ts

Total
Critical
Urgent

2021 2022 2023

R
el
ea
se

V
ol
u
m
e

Successful
Failed

95

96

97

98

99

100

R
at
e
(%

)

Success Rate

Figure 10: Escaped defects and Release volume over time.

software delivery efficiency and quality. Before adoption or baseline performance, these measures can be
compared to industry norms. This lets the company define measurable goals. This complete view can help
other organizations transform.

3.2.3. Focus Group

An expert focus group discussed and validated the interviews and documents findings. The focus group
was led by the lead researcher, encouraged participatory discussion and idea sharing, enriching data for
analysis (see Figure 7). Company employees and a Google DORA observer examined DevOps capabilities,
metrics, lifecycle processes, and their relationships. Key themes included the importance of cross-team
collaboration, proactive monitoring, continuous improvement, and integration of the CI/CD pipeline which
are in line with the IEEE Standard for DevOps [22] and the 37 identified DevOps capabilities [3] and 24
metrics [4] from previous research. The most notable initiatives identified within the company were the
adoption of the CI/CD pipeline, the implementation of an internal catalog with maturity assessment, and
the establishment of a common cloud native platform. In addition to confirming the interview findings, the
participants identified challenges such as resistance to change, the need for prioritization, and improved
communication. The panel agreed that DevOps improved velocity, efficiency, and delivery performance and
that customer success and team happiness were essential. This was consistent with the findings of a systematic
literature review that emphasizes better collaboration and faster delivery. The discussion concluded that
DevOps initiatives should fit organizational goals and value continual learning and experimentation. The
focus group validated and refined the interviews, papers, and metrics to correctly reflect the thoughts and
experiences of various roles in DevOps adoption.

3.3. Case Study Validity

Per Yin [55] four tests are considered to validate the reliability of case studies, including Construct
Validity, Internal Validity, External Validity, and Reliability. In this particular case study, all these tests were
performed except for internal validity, as Yin [55] suggests that it is not applicable to exploratory research.
The construct validity test used multiple data sources, such as semi-structured interviews, document analysis,
and a focus group. To check for external validity, a review of the existing literature was done in Section 2.

18

181

This strongly suggests that there needs to be continuity in the study of certain DevOps capabilities, metrics,
and LCPs [3, 4, 22], which makes this research stand out. Replicability was addressed in the research
methodology, which provides the required reliability of the case study.

By utilizing multiple data sources, triangulation enhances the validity and reliability of this exploratory
case study, thereby enhancing the credibility and adaptability [42]. Specifically, under Methodological
triangulation, a semi-structured interview approach, archival documents, measures, and a focus group were
the sources of data collection. Cross-referencing this interview data with archival text and focus group
discussions made triangulation possible, thus achieving fuller comprehension of the DevOps adoption process.
A spreadsheet was employed for the analysis and correction of missing data with notes. Member checking
entailed disseminating the findings to the subjects that were involved in this research so as to ascertain
the precision of the details and interpretations. Rich description offered in this study identifies the context
and individuals involved in them while ensuring confidentiality. This has made it possible for the reader to
compare with other similar contexts, thus facilitating evaluation of the findings in terms of transferability
and taking into account any external variables that may affect the outcomes. Analytical methods and a
diverse sample of interviewees provided clarification of bias, including those inherent to qualitative methods
and related to participant organizations, improving generalization of findings. Peer Review includes other
researchers and experts to review the process and the findings to provide an external check. An Audit Trail
was kept via documenting research procedures (data collection & analysis) to bolster transparency as well as
responsibility. A Case Study Database was created to consolidate notes, papers and other information for
enhancing the dependability of the case study. Prolonged Engagement with participants and maintaining
ongoing communication during the study helped to understand their perspectives and ensure that all results,
including unexpected ones, were fully captured and considered.

4. Results

The findings of the research question are presented here, along with the corresponding results, without
any interpretation or discussion at this stage.

4.1. Main Findings

The research findings, as seen in Table 9, provide a summarized view of the study, highlighting the
importance of DevOps in improving software quality and reducing delivery times. The study highlights the
importance of leadership in driving, managing and assessing DevOps adoption maturity.

These findings collectively demonstrate the multifaceted impact of DevOps integration, emphasizing
the need for a well-orchestrated approach to realize operational efficiencies and enhance software delivery
outcomes.

4.2. Measuring DevOps adoption Impact Results

A percentile-based impact scale (Table 10) is adopted in this case study to quantify and compare findings
across research questions, facilitating structured discussion. According to Guest et al. [18], a percentile-based
approach is used to estimate the likelihood of themes in qualitative research, while Verner et al. [50] uses
percentiles to analyze the distribution of responses on motivational factors and project outcomes. A percentile
is a statistical measure of the percentage of dataset observations below a certain value. By dividing a data set
into 100 equal parts, percentiles can be used to compare scores or values with the rest of the data [47]. The
use of percentiles allows researchers to compare and evaluate data, as noted by several authors [6, 50]. This
is useful for understanding a value’s position in a distribution and comparing data points to the whole set,
helping researchers draw more accurate conclusions. Percentile scales are crucial in technology research and
industry for assessing innovation impact on market share, adoption rates, and revenue, revealing technology
effectiveness and company success [10]. These tools are also used to compare data in finance, healthcare,
and demographics. Disparities and inequalities are compared in this analysis. Inequality is often measured
by comparing two opposite percentiles in the scale [18]. The ratios above and below the 90th and 10th
percentiles of interviewees’ sum and average ratings in Tables 11, 12, and 13 indicate the impact disparity

19

182

Table 9: A summary of the main findings in this research

ID Main finding Main source Confirmed by References

F1 Exceptional and High Impact Capabilities Interviews Docs, Focus Group Listed in Section 4.3

F2 Exceptional and High Impact Metrics Interviews Docs, Focus Group Listed in Section 4.4

F3 Exceptional and High Impact LCP Interviews Docs, Focus Group Listed in Section 4.5

F4 23 Key relationships in capabilities and metrics Interviews Docs, Focus Group Listed in Section 4.4

F5 11 Key relationships in capabilities and LCPs Interviews Docs, Focus Group Listed in Section 4.4

F6 4 Key relationships in metrics and LCPs Interviews Docs, Focus Group Listed in Section 4.4

F7 6 Most acknowledged strategies and initiatives Interviews Docs, Focus Group Listed in Section 4.5

F8 5 Most acknowledged benefits Interviews Docs, Focus Group Listed in Section 4.6

F9 5 Most acknowledged challenges Interviews Docs, Focus Group Listed in Section 4.6

F10
DevOps CI/CD Pipeline Adoption is driven by
Transformational leadership

Interviews Docs, Focus Group
Ref. in I12, I13, I18, I24,
D04, D05

F11
Lesson: Document baseline metrics before and during
DevOps adoption

Document
(DORA)

Focus group
Ref. in D01, D02, D03,
D07, D08, D09

F12
Moving repository management to a controlled self-service
system speeds up the archival of old repositories and
increased clear ownership by 88%

Document
(CI/CD)

Focus group, Metrics
Ref. in D05, D07, D08,
D09

F13
Having an Internal Catalog is essential for Maturity
Assessment and reduce time to identify ownership of
microservices

Interviews Docs, Focus Group
Ref. in I12, I15, I17, I22,
I25, D07

F14

While releases increased, escaped defects and MTTR have
decreased. Quality Assurance (QA), CI/CD Pipeline,
Automated Tests, and Code Coverage have contributed to
this

Interviews
DORA, Metrics, Focus
group

Ref. in I02, I06, I14, I18,
I23, D05, D07, D08, D09
and Section 4.4

F15
Acquiring FLOSS is key to improving DevOps adoption. In
this case study, Cloud Native represents a well-structured
example for infrastructure management

Interviews Docs, Focus Group
Ref. in Section 4.3,
Section 4.5 and
Section 4.4

F16
Less relations were found between Metrics and LCPs
indicating a possible field of further investigation

Interviews Focus group Ref. in Section 4.4

between two points of the distribution. The distribution is more unequal with a higher ratio. This ratio lets
us compare the case study’s inequality of capabilities, metrics, and lifecycle processes. The 90–10 percentile

Table 10: Percentile-Based Impact Classification for Thematic Ranking.

Impact Level Percentile Range Impact Definition

Exceptional > 90th Represents values exceeding the 90th percentile, indicating an exceptionally higher sum or average within the dataset.

High 75th < 90th Covers values between the 75th and 90th percentiles, denoting a high impact that is not quite at the peak of the scale.

Increased 50th < 75th Encompasses values between the median and the 75th percentile, showing a higher impact than average.

Reduced 25th < 50th Includes values between the 25th and 50th percentiles, indicating a moderate impact that is less than the median.

Low 10th < 25th Reflects values between the 10th and 25th percentiles, suggesting a lower level of impact.

Minimal < 10th Shows values below the 10th percentile, representing the minimal impact within the dataset.

ratio should be considered when considering inequality. The 90 to 50 percentile ratio may reveal inequality
in the upper half of the income distribution. The 50th percentile (median) represents the value below which
50% of data points fall [47].

4.3. RQ1: What DevOps capabilities, metrics, and Lifecycle processes play a key role in enhancing DevOps
adoption?

The influence of DevOps capabilities on the Company’s adoption is presented first. Table 11 is showing
results from 28 interviews. How often was each relation mentioned in interviews. Presenting the main
DevOps capabilities identified as having the most positive impact on DevOps adoption. Supported by direct
quotes from interviewees, focus group discussions and documentation. Table 11 provides an overview of
DevOps capabilities, including Cultural, Measurement, Process, and Technical categories, their important
findings, familiarity, and impact.

20

183

Table 11: Impact of DevOps Capabilities [3] in DevOps adoption.

Freq. Impact Level Familiarity

Category ID Capability # SUM AV G
max

SUM ∪AV G
freqC(#)

C
u
lt
u
ra
l

C01 Cross team collaboration and communication 26 204 7.85 Exceptional Exceptional

C02 Support learning culture and experimentation 14 99 7.07 Reduced Increased

C03 Open source software adoption 17 133 7.82 High High

C04 Transformational leadership 14 112 8.00 Increased Increased

C05 Performance/Westrum organizational culture 8 54 6.75 Low Low

C06 Blameless Postmortems/reduced fear of failure 15 114 7.60 Increased Increased

C07 Job satisfaction 14 111 7.93 Increased Increased

M
ea

su
re
m
en

t C08 Proactive Monitoring, Observability and autoscaling 24 198 8.25 Exceptional Exceptional

C09 Emergency response/proactive failure notification 20 168 8.40 High High

C10 Monitor systems to inform business decisions 11 79 7.18 Reduced Low

C11 Working in progress limits 8 53 6.63 Low Low

C12 Visual management Capabilities 13 101 7.77 Increased Reduced

P
ro
ce
ss

C13 Continuous Improvement of processes/workflows 24 180 7.50 High Exceptional

C14 Focus on people, process and technology 17 131 7.71 Increased High

C15 Working in small batches 12 85 7.08 Reduced Reduced

C16 Lightweight change approval 16 114 7.13 Increased Increased

C17 Visibility of work in the value stream 12 82 6.83 Low Reduced

C18 Customer focus/feedback 15 102 6.80 Reduced Increased

C19 Data-driven approach for improvements 12 89 7.42 Reduced Reduced

T
ec
h
n
ic
a
l

C20 Continuous Integration 24 207 8.63 Exceptional Exceptional

C21 Continuous Delivery/Deployment automation 23 188 8.17 Exceptional High

C22 Test Automation and environments 20 156 7.80 High High

C23 Version Control System 19 180 9.47 Exceptional High

C24 Empower teams to make decisions/changes 12 97 8.08 Increased Reduced

C25 Configuration Management 15 130 8.67 Exceptional Increased

C26 Cloud infrastructure and cloud native 12 108 9.00 Exceptional Reduced

C27 Artifacts versioning and registry 15 123 8.20 High Increased

C28 Loosely coupled architecture 13 100 7.69 Reduced Reduced

C29 Database change management 7 45 6.43 Minimal Minimal

C30 Infrastructure as Code 16 133 8.31 High Increased

C31 Containerization 18 155 8.61 High High

C32 Shift left on security 16 117 7.31 Increased Increased

C33 Trunk based development 11 94 8.55 High Low

C34 Centralized log management 11 90 8.18 Increased Low

C35 Test data management 7 39 5.57 Minimal Minimal

C36 Chaos Engineering 7 34 4.86 Minimal Minimal

C37 Code maintainability 6 41 6.83 Low Minimal

Legend: Frequency: (#) Number of interviews mentioning this item;
Impact Level: (SUM) Sum of evaluations given in interviews; (AVG) Average evaluations from inter-
views; max(SUM ∪ AVG) The maximum level from the union of SUM and AVG.
Familiarity: (freqC(#)) The familiarity of the item given the frequency of mentions.

The Cultural category emphasizes the strong impact and familiarity of cross-team collaboration and
communication (C01) in DevOps adoption. Open source software adoption (C03) and transformational
leadership (C04) also have high influence and familiarity, contributing to a DevOps culture.

In the Measurement domain, Proactive Monitoring, Observability, and Autoscaling (C08) excels
in impact and familiarity, highlighting the significance of monitoring in DevOps success. Emergency
response/proactive failure notice (C09) has significant impact and familiarity.

For the Process category, Continuous Improvement of processes/workflows (C13) is identified as having
high impact and exceptional familiarity, highlighting the essence of continuous improvement in successful
DevOps implementation. Focus on people, process, and technology (C14) also demonstrates high impact and
familiarity, pointing towards its importance in DevOps processes.

In Technical, capabilities such as Continuous Integration (C20) and Version Control System (C23)
receive exceptional ratings in both impact and familiarity, indicating their foundational role in DevOps
capabilities. Additionally, Configuration Management (C25) and Cloud infrastructure and cloud native (C26)
are marked as exceptionally impactful. Overall, the analysis underlines the importance of collaboration
Cross team collaboration and communication (C01), Proactive Monitoring, Observability, and autoscaling

21

184

(C08), continuous improvement of processes/workflows (C13), and core technical practices like Continuous
Integration (C20) and Cloud infrastructure and cloud native (C26) in driving DevOps adoption. It also
highlights areas with potential for growth or improvement, such as database change management (C29)
and chaos engineering (C36), suggesting these as areas where DevOps capabilities could evolve further to
maximize success.

The study also provides findings related to the impact of DevOps capabilities and metrics on the company’s
DevOps adoption journey. Table 12 shows the results of 28 interviews, with the number of mentions for each
relation.

Table 12: Impact of DevOps Metrics [5] in DevOps adoption.

Freq. Impact Level Familiarity

Category ID Metric # SUM AV G
max

SUM ∪AV G
freqC(#)

C
h
a
n
g
e

M01 Mean Lead-time for Changes (MLT) 14 112 8.00 High Increased

M02 Deployment Frequency (DF) 21 168 8.00 High High

M03 Change Failure Rate (CFR) 13 106 8.15 Exceptional Reduced

M04 Deployment Duration Time 18 143 7.94 High Increased

M05 Defect Escape Rate 12 93 7.75 Increased Reduced

M06 Cycle Time Value (CTV) 7 43 6.14 Minimal Minimal

M07 Deployment Size 10 71 7.10 Reduced Reduced

M08 Mean time to failure (MTTF) 11 78 7.09 Reduced Reduced

M09 Pipeline Automated Tests Success Rate 17 134 7.88 Increased Increased

M10 Automated Test Code Coverage 19 159 8.37 Exceptional High

O
p
er
a
ti
o
n
a
l

M11 Mean Time To Recover/Restore (MTTR) 14 112 8.00 High Increased

M12 Service Availability and Uptime 22 190 8.64 Exceptional Exceptional

M13 Mean Time To Detection (MTTD) 11 84 7.64 Reduced Reduced

M14 Application Response Time 8 65 8.13 High Minimal

M15 SLAs and SLOs 17 130 7.65 Increased Increased

M16 Production Error and Incident Rate 10 77 7.70 Reduced Reduced

M17 Work in Progress (WIP) /Load 7 43 6.14 Minimal Minimal

M18 Unplanned Work Rate (UWR) 9 47 5.22 Minimal Low

M19 Wait Time 9 62 6.89 Low Low

Cultural

M20 Westrum Organizational Culture Measures 14 94 6.71 Reduced Increased

M21 Team Happiness 24 185 7.71 Exceptional Exceptional

M22 Talent retention 19 143 7.53 High High

Business
M23 Customer Tickets Volume and Feedback 24 175 7.29 Exceptional Exceptional

M24 Customer Usage and Traffic 11 88 8.00 High Reduced

Legend: Same as in Table 11.

Change category, which includes metrics M01 through M10, emphasizes the importance of deployment
and change management in DevOps capabilities. Change Failure Rate (M03) and Automated Test Code
Coverage (M10) have a particularly strong impact, for minimizing failures and ensuring high coverage through
automated testing. Metrics such as DF (M02) and Deployment Duration Time (M04) emphasize deployment
efficiency and frequency. Additional metrics like MLT (M01) and Pipeline Automated Tests Success Rate
(M09) are increasingly valued by DevOps professionals. Focus is needed on lesser-known areas like CTV
(M06) and MTTF (M08).

Operational Metrics M11-M19 show the functional excellence and stability needed for successful DevOps
adoption. Availability and Uptime (M12) is very impactful and well known, emphasizing its necessity
for service reliability. MTTR (M11) and Application Response Time (M14) point out fast recovery and
responsive applications. However, indicators such as work in progress/load (M17) and the rate of unplanned
work (M18) are still unfamiliar, offering potential for growth.

Cultural M20-M22 metrics emphasize the importance of a positive organizational culture for successful
DevOps adoption. Strong and familiar team happiness (M21) shows that DevOps productivity depends on
team happiness. Retaining qualified individuals to maintain DevOps capabilities is also important (M22).
The Westrum [52] measures (M20) are becoming more know, but still need improvement.

Business Metrics such as Customer Tickets Volume and Feedback (M23) and Customer Usage and
Traffic (M24) show how DevOps capabilities affect customer happiness and engagement. Customer feedback

22

185

improves DevOps, as shown in Customer ticket volume and feedback (M23). Customer engagement is crucial
to the company’s success, as shown by the Customer Usage and Traffic (M24). The high ratings for these
measures suggest that DevOps skills increase business performance, underlining the necessity to monitor and
adapt to consumer needs.

The impact levels of lifecycle processes in DevOps adoption are provided in Table 11.

Table 13: Impact of DevOps Life Cycle Processes [22] in DevOps adoption.

Freq. Impact Level Familiarity

Category ID Life Cycle Process # SUM AV G
max

SUM ∪AV G
freqL(#)

Agreement
L01 Acquisition process 19 138 7.26 Exceptional Exceptional

L02 Supply process 11 78 7.09 Increased Increased

O
rg
a
n
iz
a
ti
o
n
a
l

P
ro

je
ct
-E

n
a
b
li
n
g L03 Life Cycle Model Management process 6 49 8.17 Exceptional Low

L04 Infrastructure Management process 17 137 8.06 Exceptional Exceptional

L05 Portfolio Management process 6 44 7.33 Reduced Low

L06 Human Resource Management process 7 44 6.29 Low Reduced

L07 Quality Management process 14 107 7.64 Exceptional Exceptional

L08 Knowledge Management process 10 79 7.90 High Increased

T
ec
h
n
ic
a
l

M
a
n
a
g
em

en
t

L09 Project Planning 13 93 7.15 High High

L10 Project Assessment and Control 8 54 6.75 Reduced Reduced

L11 Decision Management 9 61 6.78 Reduced Reduced

L12 Risk Management 13 85 6.54 Increased High

L13 Configuration Management 7 57 8.14 Exceptional Reduced

L14 Information Management 6 46 7.67 Increased Low

L15 Measurement 9 68 7.56 Increased Reduced

L16 Quality Assurance 16 131 8.19 Exceptional Exceptional

T
ec
h
n
ic
a
l

L17 Business or Mission Analysis 6 37 6.17 Minimal Low

L18 Stakeholder Needs and Requirements Definition 12 80 6.67 Increased Increased

L19 System/Software Requirements Definition 7 41 5.86 Low Reduced

L20 Architecture Definition 14 104 7.43 High Exceptional

L21 Design Definition 4 22 5.50 Minimal Minimal

L22 System Analysis 6 41 6.83 Reduced Low

L23 Implementation 18 143 7.94 Exceptional Exceptional

L24 Integration 12 90 7.50 Increased Increased

L25 Verification 11 85 7.73 High Increased

L26 Transition 8 62 7.75 High Reduced

L27 Validation 8 53 6.63 Reduced Reduced

L28 Operation 11 83 7.55 Increased Increased

L29 Maintenance 13 98 7.54 High High

L30 Disposal 3 20 6.67 Reduced Minimal

Legend: Same as in Table 11.

In Agreement, Acquisition process (L01) and Supply process (L02) highlight the importance of pro-
curement and supply in the DevOps life cycle. The emergence of the acquisition process (L01) shows how
important acquisition is in ensuring successful adoption and implementation of DevOps capabilities. The
supply process (L02), while also important, exhibits increased impact and familiarity, indicating a recognition
of the supply process’s role in supporting DevOps environments.

The Organizational Project-Enabling category, featuring processes L03 through L08, considers the
management aspects crucial for fostering a conducive DevOps ecosystem. An exceptional impact is observed
in the Management process (L04) and Quality Management process (L07), pointing to the paramount
importance of robust infrastructure and quality oversight in DevOps. Knowledge Management process (L08)
is highly regarded, emphasizing the value of effectively managing knowledge for DevOps success.

In the Technical Management sphere, processes L09 through L16 explore the technical oversight
necessary for DevOps. Configuration Management (L13) and Quality Assurance (L16) stand out with
exceptional impact, highlighting their indispensable roles in maintaining system integrity and ensuring
quality within DevOps capabilities. The high impact of Project Planning (L09) and Risk Management (L12)
highlights the importance of meticulous planning and risk mitigation in the successful execution of DevOps
projects.

Finally, the Technical category, encompassing processes L17 through L30, addresses the core technical
activities integral to DevOps. Implementation (L23) has an exceptional impact and familiarity, highlighting

23

186

efficient implementation practices in the adoption of DevOps. Architecture Definition (L20) and Maintenance
(L29) are highly impactful, stressing architectural practices and ongoing maintenance to support DevOps
efforts.

4.4. RQ2: Are there any significant correlations in DevOps capabilities, metrics, and lifecycle processes?

This research question describes the top 10% correlations between DevOps capabilities, metrics, and
lifecycle processes found in the case study. The data analysis identifies these links, as shown in Tables 14, 16,
and 18. From interviews and a focus group, the Capabilities and LCPs relations are described here.

Table 14: Top correlations mentioned between Capabilities and Metrics.
ID M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20 M21 M22 M23 M24

C01 0 1 1 1 0 2 0 1 0 0 2 3 0 0 0 1 0 2 1 1 4 0 2 2

C02 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 1 0

C03 1 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 2 0 0 0

C04 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 0 0 3 1 5 0 0

C05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 5 0 2 0 0

C06 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0

C07 0 0 0 2 0 0 0 0 2 1 0 0 0 0 0 0 1 0 0 1 9 5 0 0

C08 1 0 0 0 0 0 0 0 0 1 6 11 3 2 3 3 0 0 0 0 1 0 0 2

C09 1 1 1 0 0 0 0 0 0 0 2 4 3 0 4 1 0 0 0 0 1 0 1 1

C10 1

C11 0 1 0

C12 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

C13 1 1 4 2 1 0 0 1 1 2 1 0 0 0 0 0 0 1 1 1 2 3 2 1

C14 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 2 0 0

C15 1 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C16 2 3 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C17 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 1 0 0

C18 1 0 0 0 0 0 0 0 0 0 0 1 1 0 2 0 0 1 0 0 1 0 12 2

C19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

C20 7 7 1 4 1 1 0 2 5 3 3 1 1 0 2 1 0 0 2 0 0 0 1 0

C21 5 10 1 8 2 2 3 1 3 3 6 2 0 0 0 0 1 0 2 0 0 0 1 0

C22 2 2 0 2 2 1 0 2 5 7 0 2 1 0 0 1 0 0 0 0 0 0 2 0

C23 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

C24 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0

C25 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0

C26 1 1 1 1 1 1 1 1 1 1 1 2 0 0 1 0 0 0 0 0 0 0 0 0

C27 0

C28 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

C29 0

C30 0 1 1 0 0 0 0 0 0 0 0 2 0 0 3 0 0 0 0 0 0 0 0 0

C31 1 1 0 1 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C32 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

C33 2 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C34 0

C35 0 0 0 0 0 0 0 1 2 1 0 0 1 0 0 0 0 0 0 0 0 0 1 0

C36 0

C37 0

Legend: Same Capabilities IDs from Table 11 and Metrics IDs from Table 12.

Other noteworthy findings stand out when associating Table 18 with the metrics in documents D07, D08,
D09 from Section 3.2.2, which also share insightful data related to escaped defects, QA, and the adoption of
a standard CI/CD pipeline. A clear relation is observed: although the release volume increased significantly,
escaped defects decreased over time, as did the MTTR after a period of adaptation. For such an improvement,
Quality Assurance (L16), Pipeline Automated Tests Success Rate (M09), Automated Test Code Coverage
(M10) have had a positive contribution to Defect Escape Rate (M05). The graphs from Figure 9 show a
substantial and determined effort of the organization to improve its version control system (C23) capabilities
for repository management over a three-year period. The organization has made a significant effort, with an
increase 88%, to ensure proper ownership of services, restructuring its repository portfolio, and implementing
CI/CD practices to improve efficiency and quality management (L07). These efforts reflect a mature approach
to software development and project management (L09), which is likely to lead to higher productivity, better
code quality (L16), and a more effective use of resources [30]. These efforts resulted in more releases and
better code quality, as previously seen in Figure 10. The SDLC has become more efficient and of higher
quality since CI/CD pipeline and other DevOps capabilities were implemented.

24

187

Table 15: Relations summary for Capabilities and Metrics.

Capability Metrics relations Interviews

C01: Cross-team
collaboration and
communication

Linked to Team Happiness (M21) and Service availability and uptime (M12). Effective
collaboration and communication can lead to a more satisfied and cohesive team [43], which in turn can
improve the reliability and availability of services

I01, I03, I09, I15, I16,
I19, I26

C02: Support for
learning culture and
experimentation

Associated with Team happiness (M21). A culture that encourages learning and experimentation can
contribute to a more engaging and fulfilling work environment, leading to higher team happiness

I03, I16, I18, I21

C04:
Transformational
leadership

Related to Talent retention (M22) and Westrum Organizational Culture (M20) [52].
Transformational leaders can foster a positive culture that aligns with Westrum’s typology of generative
cultures, which can help retain talent by creating a supportive and innovative work environment

I08, I09, I13, I18, I20, I25

C05: Perfor-
mance/Westrum
organizational culture

The Westrum [52] model assesses the cultural aspects that contribute to high performance, such as
cooperation, trust, and information flow, naturally related to measuring Organizational Culture (M20)

I05, I08, I13, I15, I18

C07: Job satisfaction
Related to Team Happiness (M21) and Talent retention (M22). Job satisfaction is a key factor in
team happiness and can significantly impact an organization’s ability to retain skilled employees

I02, I03, I05, I08, I10, I11,
I13, I14, I18, I20, I22, I23

C08: Proactive
Monitoring,
Observability, and
Autoscaling

Related to Service Availability and Uptime (M12), MTTR (M11), MTTD (M13), SLAs and
SLOs (M15), and M16 Production Error and Incident Rate Proactive monitoring and observability
help identify service availability issues. This accelerates discovery and resolution, lowering MTTR. While
autoscaling ensures service continuity during workload fluctuations. Observability and monitoring [4] are
essential for meeting SLAs and SLOs in consistent performance levels, resulting in shorter MTTD

I02, I11, I12, I14, I15,
I16, I18, I21, I22, I23,
I24, I25, I26, I27

C09: Emergency
Response/Proactive
Failure Notification

Connected to SLAs and SLOs (M15), Service Availability and Uptime (M12), and MTTD (M13).
Emergency response strategies are vital for upholding SLAs and SLOs when unforeseen failures occur and
must be addressed swiftly. Emergency response systems need automated detection functions to speed up
failure detection

I08, I09, I12, I18, I19,
I22, I23

C13: Continuous
Improvement of
processes/workflows

Related to CFR (M03) and Talent retention (M22) continuously enhancing processes and workflow can
reduce change failures. Continuous improvement can boost work satisfaction and retention by involving
employees in significant process improvements.

I08, I09, I14, I16, I19, I22

C14: Focus on people,
process, and
technology

Affects Team Happiness (M21) with balanced focus on people, processes, and technology contributes to a
positive work environment, which can increase team happiness and productivity

I23, I25, I26, I28

C16: Lightweight
change approval

Relates to DF (M02): Lightweight change approval processes can streamline deployments, allowing for
more frequent and efficient release cycles

I01, I13, I18

C18: Customer
focus/feedback

Measured by Customer Tickets Volume and Feedback (M23) Focusing on customers provides
actionable input that can be utilized to improve products and services, minimizing customer tickets over time

I02, I04, I08, I10, I11, I13,
I14, I15, I18, I19, I20, I23

C20: Continuous
Integration

DF(M02) is likely to increase since CI allows frequent and smaller batches of code to be integrated and
tested. MLT (M01) can reduce due to the streamlined process of integrating and testing changes.
Pipeline Automated Tests Success Rate (M09) is an indicator of integration process quality because
it shows the percentage of automated tests that pass during CI. Deployment Duration Time (M04) can
be shortened as the CI process often includes automated deployment steps. MTTR (M11) may improve,
as the CI process helps to quickly identify and address problems. Automated Test Code Coverage
(M10) is an important metric that can be positively impacted by CI, as it encourages the creation of tests
alongside new code commits

I01, I02, I07, I10, I11,
I12, I13, I14, I15, I16,
I18, I20, I21, I22, I23

C21: Continuous
Delivery/Deployment
automation

Improves DF (M02) by allowing a more consistent and reliable deployment process. Deployment
Duration Time (M04) is often reduced due to automation of deployment tasks. MTTR (M11) can be
improved because automated deployments allow faster recovery processes. MLT (M01) is likely to decrease
as the path from code commit to deployment is automated and simplified. Automated Test Code
Coverage (M10) can increase as the delivery process can enforce the requirement for sufficient test
coverage before deployment. The Pipeline Automated Tests Success Rate (M09) should improve as
the deployment process is automated, ensuring that only changes that pass all tests are deployed.
Deployment Size (M07) can be managed more effectively, as the Continuous Delivery or
Deployment (CD) process allows for smaller and more frequent deployments

I01, I02, I07, I08, I09,
I11, I12, I13, I14, I15,
I16, I18, I21, I22, I23,
I25, I26, I27

C22: Test
Automation and
Environments

Automated Test Code Coverage (M10), as it involves creating a comprehensive suite of automated
tests that cover a significant portion of the codebase. The Pipeline Automated Tests Success Rate
(M09) is also related, as a robust test automation strategy should result in a higher success rate of tests in
the CI/CD pipeline

I10, I11, I13, I14, I15,
I16, I22, I26

C30: Infrastructure
as Code

SLAs and SLOs (M15), as it allows consistent and reliable provisioning and management of
infrastructure, which can lead to improved system reliability and performance

I07, I13, I19

C31: Containerization
Deployment Size (M07), as it allows more granular control over the resources and dependencies of
applications, potentially leading to smaller and more efficient deployments

I09, I13, I16

4.5. RQ3: How are key strategies, or initiatives, facilitating the adoption of DevOps?

This section answers the research question by looking at the main strategies, initiatives, or engineering
drivers that the participants said had an effect on the adoption of DevOps. These are shown in Table 20.
The analysis reveals several key strategies and initiatives that drive the adoption of DevOps within the
organization. The implementation of the CI/CD pipeline significantly improves software delivery and reduces
time to market. Internal catalog creation and maturity assessments help discover areas for growth and
enable continual improvement. DevOps concepts, scalability, and agility are promoted by adopting a shared

25

188

Table 16: Top correlations mentioned between Capabilities and Life Cycle Processes.
ID L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L26 L27 L28 L29 L30

C01 0 0 0 0 1 0 0 4 3 2 2 1 1 2 1 1 1 4 1 5 1 0 1 0 0 0 0 1 0 0

C02 0 0 0 2 0 0 0 3 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

C03 6 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

C04 1 0 0 0 0 1 0 0 2 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C05 0 0 0 0 0 0 0 1 0

C06 0 0 0 0 0 0 1 0 1 0

C07 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 0

C08 2 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 3 2 0

C09 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C10 1 0 1 0 0 0 0 0 1 0

C11 0 0 0 0 0 0 0 0 1 0

C12 2 0 1 0 4 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C13 1 1 1 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0

C14 0 1 0 0 0 2 0 1 2 2 0 0 0 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 1 0

C15 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

C16 1 0 1 0 0 0 0 0 0 0

C17 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

C18 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 1 0 0

C19 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

C20 1 1 0 0 0 0 4 0 0 0 0 0 0 0 0 2 0 0 0 1 0 0 3 5 1 2 1 0 0 0

C21 1 2 0 1 0 0 1 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 2 3 1 2 0 2 0 0

C22 0 0 0 1 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 1 1 5 0 1 0 0 0

C23 0 0 0 2 0 0 0 1 0 1 0 0 2 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 0 0

C24 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C25 0 0 0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

C26 1 1 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 1 0 0 0 1 1 0 0

C27 0 0 0 1 0

C28 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0

C29 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C30 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 2 0 0 0 0 1 0 0

C31 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0

C32 3 0 0 0 1 0 1 0 0 0 0 3 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0

C33 0 1 0 1 0 0 0 0 0 0 0

C34 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C35 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C36 0

C37 0

Legend: Same Capabilities IDs from Table 11 and Life Cycle Processes (LCPs) IDs from Table 13.

cloud native platform. Monitoring and observability practices provide system performance insight and assist
ongoing improvement, while automated test code coverage maintains program reliability. Teams collaborate
better when the tool chain is automated and integrated, promoting automation and continual development
[23]. Furthermore, a strong DevOps culture requires security and compliance, leadership support, and
service-level objectives. Scaling the SRE practice and configuration as code provides growth opportunities
[25]. This helps identify DevOps adoption strategies and practices in this case study. DevOps maturity,
workflow efficiency, and software development practice improvement can be achieved by emphasizing these
strategies and initiatives [4].

4.6. RQ4: During the adoption of DevOps, which key benefits and challenges stand out and why?

In this section, the main benefits and challenges of DevOps adoption are discussed. Table 21 provides a
comprehensive overview of key benefits, while Table 22 provides challenges observed during the adoption of
DevOps within the organization.

26

189

Table 17: Relations summary for Capabilities and LCPs.

Capability LCPs relations Interviews

C01: Cross team
collaboration and
communication

Essential for Architecture Definition (L20), requiring stakeholder involvement and consensus. Effective
communication across teams is critical for effectively capturing and understanding Stakeholder Needs
and Requirements Definition (L18). In the Knowledge Management process (L08), cross-team
collaboration enhances knowledge exchange and management. Aids in Project Planning (L09)
cooperation

I02, I04, I06, I09, I11, I13,
I18, I19, I20, I22, I23, I25

C02: Support
learning culture and
experimentation

Fosters an environment where knowledge is continuously updated and shared, which is directly related to
Knowledge Management process (L08). A learning culture encourages people to learn and share
information, which is important for improving DevOps capabilities

I02, I06, I16

C03: Open source
software adoption

Referred to as a strategic move in the Acquisition process (L01), as it offers cost-effective, flexible, and
community-supported solutions that can be integrated into the DevOps lifecycle

I02, I05, I06, I14, I21, I22

C04:
Transformational
leadership

Important for Decision Management (L11), as it involves guiding and inspiring teams to embrace
change and innovation, which is essential for effective decision-making within the DevOps lifecycle

I09, I20, I22

C08: Proactive
Monitoring,
Observability and
autoscaling

Related to Operation (L28), as it enables active management and automatic adjustment of system
resources to maintain optimal performance and reliability during operation

I06, I12, I25

C12: Visual
management
Capabilities

Support Portfolio Management process (L05) by providing visual tools and dashboards that help track
the progress, status, and health of various projects within a portfolio, facilitating maturity assessment,
better decision-making and resource allocation

I01, I05, I09, I17

C14: Focus on people,
process and
technology

Integral to Stakeholder Needs and Requirements Definition (L18), ensuring that the needs of all
stakeholders are considered and that the processes and technology are aligned to meet those needs effectively

I11, I16, I18

C18: Customer
focus/feedback

Vital for Stakeholder Needs and Requirements Definition (L18), as it ensures that the products or
services being developed are closely aligned with customer expectations and market demands

I11, I16, I18

C20: Continuous
Integration

Fundamental to Integration (L24), of frequent code changes into a shared repository, with automated tests.
It also supports Quality Management process (L07) by ensuring that quality is maintained through
automated testing and Implementation (L23) by enabling smoother transitions of code into production

I01, I06, I11, I13, I14,
I15, I18, I19, I21, I25, I26

C21: Continuous
Delivery/Deployment
automation

Streamlines Integration (L24) by automating the deployment process, ensuring that new features can be
released quickly and reliably

I06, I14, I21

C22: Test
Automation and
environments

Crucial for Verification (L25) and Quality Assurance (L16), as it allows consistent and efficient
product testing. It also supports Quality Management process (L07) by ensuring that testing is an
integral part of the development lifecycle

I04, I05, I12, I13, I14,
I15, I16, I25, I26

C25: Configuration
Management

Related to Configuration Management (L13) and Infrastructure Management process (L04), as it
involves maintenance and control of the product’s configuration and infrastructure, ensuring consistency and
reliability

I05, I12, I13, I14, I22

C26: Cloud
infrastructure and
cloud native

Improves Infrastructure Management process (L04) by providing scalable, flexible and resilient cloud
infrastructure solutions

I06, I10, I14, I22, I25, I28

C30: Infrastructure
as Code

Supports Infrastructure Management process (L04) by allowing infrastructure to be managed and
provisioned through code, which increases efficiency and consistency

I06, I12, I14, I19, I25

C32: Shift left on
security

Integrating security in early development relates to Risk Management (L12) by proactively managing
security risks, and Acquisition process (L01) ensuring security considerations from the acquisition phase

I03, I04, I05, I07, I12, I23

Table 21: List of key benefits found.

Known Benefits Mentions Level

Velocity, Efficiency, and Delivery Performance 18 Exceptional

Customer success, Reliability and Quality 13 Exceptional

Consistency, Standardization, and Best Practices 12 Exceptional

Job satisfaction, Automation and reduced errors 10 High

Security and Compliance 4 High

Cost Reduction, Savings and Value 3 Increased

Monitoring and Observability 3 Increased

Improved Collaboration and Communication 2 Increased

Mindset Transformation for Growth 2 Increased

Diagnose problems 1 Reduced

Reducing Silos 1 Reduced

Sharing knowledge 1 Reduced

Simplify software delivery 1 Reduced

Start being mature on DevOps 1 Reduced

Transparency 1 Reduced

Understand failures easier 1 Reduced

Table 22: List of key challenges found.

Known Challenges Mentions Level

Resistance to Change 13 Exceptional

Prioritization of Capabilities and Tools 12 Exceptional

Skills and Knowledge 10 High

Cross dependency of teams 6 High

Documentation Gaps, Examples, and Videos 4 High

Pipeline migration from old methods 3 Increased

Experimenting Tooling 2 Increased

Human resourcing 2 Increased

Lack of understanding of the culture 2 Increased

Understanding DevOps concepts 2 Increased

Versatile Problem Solving for Unique Use Cases 2 Increased

Communication 1 Reduced

Deterministic builds 1 Reduced

Fear of failure 1 Reduced

Friction on security issues 1 Reduced

Integration tests 1 Reduced

Lack of distributed tracing 1 Reduced

Lack of visibility over resource consuming apps 1 Reduced

Parsing Output 1 Reduced

Understanding changes impact 1 Reduced

Visibility of new features 1 Reduced27

190

Table 18: Top correlations mentioned between Metrics and Life Cycle Processes.
ID L01 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23 L24 L25 L26 L27 L28 L29 L30

M02 0 2 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 1 0 1 1 0 0 0

M03 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

M04 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0

M05 1 0 0 0 0 0 2 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M06 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

M07 0 1 0 0 0 0 0 0 0

M08 0

M09 0 0 0 0 0 0 5 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0

M10 1 1 0 0 0 0 4 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 1 0 0 0 0 0

M11 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 2 0

M12 2 0 0 2 0 0 1 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 2 0

M13 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 2 1 0

M14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M15 0 0 0 0 1 0 0 0 1 0 0 2 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 2 0 0

M16 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

M17 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

M18 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0

M19 0

M20 1 0

M21 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

M22 1 0 0 0 0 2 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0

M23 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0

M24 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Legend: Same Life Cycle Processes (LCPs) IDs from Table 13 and Metrics IDs from Table 12.

Table 19: Relations summary for Metrics and LCPs.

Metric LCPs relations Interviews

M05: Defect Escape
Rate

Related to Quality Assurance (L16) as it measures the rate at which defects pass through the QA
process and are discovered only after the product is released. [27, 48] It is an indicator of the effectiveness of
the QA process in identifying and solving issues prior to release

I02, I04, I14, I15, I17

M09: Pipeline
Automated Tests
Success Rate

Associated with Quality Management process (L07). It indicates the percentage of automated tests
that pass successfully and reflects the health and reliability of the codebase. A high success rate suggests
that the quality management processes are effectively catching defects

I04, I14, I15, I19, I25

M10: Automated Test
Code Coverage

Quality Assurance (L16) and Quality Management process (L07). It measures the extent to which
the codebase is covered by automated tests. High code coverage is indicative of a thorough testing process,
which is crucial to both ensuring quality [27] and managing it throughout the development lifecycle

I02, I09, I13, I14, I15,
I19, I25, I26

Table 20: Main Strategies and Initiatives.

Known Strategies and Initiatives Mentions Level

CI/CD Pipeline Adoption 25 Exceptional

Internal Catalog & Maturity Assessment 9 Exceptional

Common Cloud Native Platform 7 High

Automated Test Code Coverage 5 High

Monitoring and Observability 5 High

Toolchain Automation and Integration 5 High

Security and Compliance 4 Increased

Artifact Registry 3 Increased

Executive Support and Leadership 3 Increased

SLOs and Dashboards 3 Increased

Blameless postmortems 1 Reduced

Configuration as code 1 Reduced

Continuous Learning 1 Reduced

Dedicated chat channel 1 Reduced

DORA 1 Reduced

Scale SRE practice 1 Reduced

The adoption of DevOps within an organization presents both significant benefits and challenges. An
increase in customer success, reliability, and quality are some of the benefits that can be found in the
analysis of both tables. These improvements show that the company can make software faster and better.
Customers are happier and the product is improved [10, 13]. Placing an emphasis on consistency and
standardization can lead to more efficient, better software development and deployment processes overall,
which in turn leads to improvement of operational efficiencies [53]. On the flip side, an organization has
to face several challenges while adopting DevOps [43]. Poor culture and organizational transformation are
among the primary ones [4, 38]. A company must train staff and collaborate across domains because of skills
and knowledge gaps [24]. Furthermore, it is difficult to break old habits and adopt new tools. Recruiting
and training staff, as well as fostering a collaborative and continuous improvement culture, are significant

28

191

challenges in DevOps [30]. In addition, it is important to have effective communication channels and an
organizational culture that facilitates learning and innovation [24]. In summary, DevOps benefits companies
but requires them to change culture, learn new skills, and use new tools. To achieve sustainable growth and
competitiveness in today’s dynamic business landscape, organizations must effectively address challenges and
leverage DevOps benefits [32].

5. Discussion

The following discussion of the IT company’s DevOps adoption journey is based on the proposed conceptual
framework in Section 2.4. It aims to give an overview of how the capabilities, metrics, LCPs, benefits, and
challenges of DevOps adoption all affect its success with contributions to scientific knowledge.

DevOps Capabilities: The organization’s main goals, such as CI/CD pipeline adoption, internal
catalog, and maturity assessment, are in line with the conceptual framework’s focus on DevOps skills that
affect metrics and LCPs. These capabilities, particularly in the cultural and technical domains, were crucial
in addressing the need for increased velocity, efficiency, and delivery performance [3, 14]. Resistance to
change and the difficulty of integrating DevOps into existing processes highlight the importance of effective
communication and follow-up skills. Senapathi et al. [43] proposed guided experimentation and continuous
learning, which is strongly supported by open source [32], such as Cloud Native [4].

DevOps Metrics: The case study emphasizes the importance of DevOps metrics to assess the efficiency
of the capabilities and processes implemented. The increase in the number of releases, the decrease in defects
despite the increase in the number of releases, and the improvement in operational efficiency and software
quality [5] These metrics, classified as change, operational, and business, provided tangible evidence of the
benefits of DevOps adoption, which is consistent with the framework’s categorization and the cited literature
[4, 8]. Efforts to improve version control system capabilities for repository management led to an 88%
improvement in service ownership and repository portfolio management, indicating a mature approach to
software development and project management.

DevOps Life Cycle Processes: The adoption of standard CI/CD pipelines shows the influence of
DevOps capabilities on lifecycle processes [46]. These projects made the SDLC more efficient and better,
in line with the theory that DevOps skills shape LCPs and are important for using DevOps capabilities
well. This approach, which aligns with Jabbari et al. [23], Shahin et al. [44], emphasizes the relevance of
collaboration, constant improvement and commitment to operational excellence.

DevOps Benefits and Challenges: This case study presents the benefits and challenges of DevOps
adoption [12, 13, 54]. Strategic actions improved efficiency, quality, and customer satisfaction [10], but also
faced challenges like resistance to change and integration complexity. The results strongly suggest that there
is a direct relationship between LCPs, metrics, and DevOps benefits and challenges. This gives us a good
picture of what could be better and what could get in the way of adoption [41, 45].

Finally, the journey of DevOps adoption within this IT organization, as analyzed through the lens of
the proposed conceptual framework, offers significant insights into the dynamics of DevOps adoption. The
interdependencies between DevOps capabilities, metrics, LCPs and the resultant benefits and challenges
highlight the need for product prioritization, information visibility, automation, and standardization to
successfully adopt DevOps should be highly considered by organizations and their leaders.

6. Conclusion

This study analyzed the complexities of DevOps adoption in a software company, addressed the research
problem — understanding the real-world application and interconnection of DevOps capabilities, metrics,
and software lifecycle processes — and provided insights that improve our understanding of effective DevOps
adoption. Also revealed key findings: high-impact DevOps capabilities and metrics are indispensable for
success; lifecycle processes significantly influence DevOps outcomes; there were 38 symbiotic relationships
between capabilities, metrics, and lifecycle processes found. Identified 16 major initiatives, benefits, challenges,
and the fundamental role of transformational leadership in driving adoption. The findings also include:

29

192

self-service repository management increases efficiency and ownership; an internal catalog is vital for maturity
assessment and microservice management; increased releases with decreased defects and MTTR; Open source,
namely Cloud Native, is key for infrastructure management; And finally, the relationship between metrics
and LCPs requires more investigation. These findings have broad implications. They provide guidance
for organizations on their DevOps journey, emphasizing the need to prioritize high-impact capabilities
and metrics. They also advocate for a holistic approach to DevOps adoption, stressing the importance of
understanding and leveraging the relationship between DevOps capabilities, metrics, and lifecycle processes.
Additionally, by acknowledging key challenges and benefits, organizations can prepare for potential issues
while aligning their expectations with realistic outcomes.

6.1. Validity and limitations

Important methods were used to raise the reliability and solidity of the qualitative research. Methodological
Triangulation: For findings verification, the researchers rely on semi-structured interviews, document analysis,
and focus groups. Correction as well as completeness of data via annotations and member checking.
Focus Group Discussion: To validate and refine interviews and document observations, an expert focus
group was held. Data triangulation and reliability : Research consistency and reliability were achieved by
triangulating interview, focus group, and document data. Audits and peer review for research transparency
and accountability. Validity : The researchers focused on construct validity, external validity, and reliability
to assure study accuracy, applicability, and consistency. Construct validity via a relevant example and
writing detailed interview questions, and external validity on context-specific insights to avoid generalization.
Limitations and Ethical Considerations: The study was conducted within one of the authors’ organizations,
offering unique insights that may not be found in external investigations. A rigorous methodology that
ensures objectivity and dependability helps to reduce the potential conflict of interest. Other potential
biases, company context, and sample size were noted in the study. To assure ethics, the researchers acquired
informed consent, maintained confidentiality, and triangulated data to better understand the research.

6.2. Future work

Future research could build on this work in a number of areas relevant to improving the understanding
and application of DevOps. In future evaluations, it should be explored how companies can overcome cultural
resistance during DevOps changes. Align metrics and LCPs: The differences between metrics and LCPs are
worthy of investigation. Research in the future could deepen on adoption of DevOps influencing productivity,
customer satisfaction and innovation. Open source for DevOps success: Open source, particularly Cloud
Native technologies, is essential for infrastructure management. Future studies could therefore focus on
optimizing the impact of open source tools. Standardization and collaboration: DevOps priorities such as
visibility, standardization issues and benefits should be studied.

References

[1] Akbar, M.A., Rafi, S., Alsanad, A.A., Qadri, S.F., Alsanad, A., Alothaim, A., 2022. Toward successful DevOps: A decision-
making framework. IEEE access : practical innovations, open solutions 10, 51343–51362. doi:10.1109/ACCESS.2022.3174094.

[2] Alamin, M.A.A., Uddin, G., Malakar, S., Afroz, S., Haider, T., Iqbal, A., 2022. Developer discussion topics on the adoption
and barriers of low code software development platforms. Empirical Software Engineering 28. doi:10.1007/s10664-022-
10244-0.

[3] Amaro, R., Pereira, R., Mira da Silva, M., 2022. Capabilities and Practices in DevOps: A Multivocal Literature Review.
IEEE Transactions on Software Engineering 1, 20. doi:10.1109/TSE.2022.3166626.

[4] Amaro, R., Pereira, R., da Silva, M.M., 2023. Capabilities and Metrics in DevOps: A Design Science Study. Information &
Management , 32doi:10.1016/j.im.2023.103809.

[5] Amaro, R., Pereira, R., da Silva, M.M., 2024. DevOps Metrics and KPIs: A Multivocal Literature Review. ACM Computing
Surveys doi:10.1145/3652508.

[6] Bass, L., Weber, I., Zhu, L., 2015. DevOps: A Software Architect’s Perspective. SEI Series in Software Engineering,
Addison-Wesley, New York. URL: http://my.safaribooksonline.com/9780134049847.

[7] Budgen, D., Brereton, P., 2006. Performing systematic literature reviews in software engineering, in: Proceedings of the
28th International Conference on Software Engineering, Keele University and Durham University Joint Report, New York,
NY, USA. pp. 1051–1052. doi:10.1145/1134285.1134500.

30

193

[8] Davis, J., Daniels, R., 2016. Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling at Scale. ”O’Reilly
Media, Inc.”, USA.

[9] Debois, P., 2011. DevOps from a Sysadmin Perspective. Login - The Usenix Magazine 36, 3.
[10] Di Gangi, P., Wasko, M., Hooker, R., 2010. Getting Customers’ Ideas to Work for You: Learning from Dell how to Succeed

with Online User Innovation Communities. MIS Quarterly Executive 9. URL: https://aisel.aisnet.org/misqe/vol9/
iss4/4.

[11] Dı́az, J., Almaraz, R., Pérez, J., Garbajosa, J., 2018. DevOps in practice - An exploratory case study, in: Proceedings of
the 19th International Conference on Agile Software Development: Companion, Agile Alliance; Agile Portugal; ScaleUp
Porto, Universidad Politécnica de Madrid, CITSEM, Madrid, Spain. p. 3. doi:10.1145/3234152.3234199.

[12] Dı́az, J., López-Fernández, D., Pérez, J., González-Prieto, Á., 2021. Why are many businesses installing a DevOps culture
into their organization? Empirical Software Engineering 26, 50. doi:10.1007/s10664-020-09919-3, arXiv:2005.10388.

[13] Faustino, J., Adriano, D., Amaro, R., Pereira, R., da Silva, M.M., 2022. DevOps benefits: A systematic literature review.
Software: Practice and Experience 52, 1905–1926. doi:10.1002/spe.3096.

[14] Forsgren, N., Kersten, M., 2018. DevOps Metrics. Communications of the ACM 61, 44–48. doi:10.1145/3159169.
[15] Fusch, P., Fusch, G., Ness, L., 2018. Denzin’s Paradigm Shift: Revisiting Triangulation in Qualitative Research. Journal of

Sustainable Social Change 10. doi:10.5590/JOSC.2018.10.1.02.
[16] Garousi, V., Felderer, M., Mäntylä, M.V., 2019. Guidelines for including grey literature and conducting multivocal literature

reviews in software engineering. Information and Software Technology 106, 101–121. doi:10.1016/j.infsof.2018.09.006,
arXiv:1707.02553.

[17] Ghantous, G.B., Gill, A.Q., 2017. DevOps: Concepts, practices, tools, benefits and challenges, in: 21st Pacific Asia
Conference on Information Systems: Societal Transformation Through IS/IT, PACIS 2017, Association for Information
Systems, School of Software, University of Technology Sydney, Ultimo, NSW 2007, Australia. p. 12. URL: https://www.
scopus.com/inward/record.uri?eid=2-s2.0-85075594314&partnerID=40&md5=dd1517b2fb59b692caf9f3099a61aa1b.

[18] Guest, G., Namey, E., Chen, M., 2020. A simple method to assess and report thematic saturation in qualitative research.
PLOS ONE 15, e0232076. doi:10.1371/journal.pone.0232076.

[19] Hemon, A., Lyonnet, B., Rowe, F., Fitzgerald, B., 2020. From Agile to DevOps: Smart Skills and Collaborations.
Information Systems Frontiers 22, 927–945. doi:10.1007/s10796-019-09905-1.

[20] Hemon-Hildgen, A., Rowe, F., Monnier-Senicourt, L., 2020. Orchestrating automation and sharing in DevOps teams: A
revelatory case of job satisfaction factors, risk and work conditions. European Journal of Information Systems 29, 474–499.
doi:10.1080/0960085X.2020.1782276.

[21] Humble, J., Molesky, J., 2011. Why enterprises must adopt devops to enable continuous delivery. Cutter IT Journal 24,
6–12.

[22] IEEE, 2021. IEEE Standard for DevOps: Building Reliable and Secure Systems Including Application Build, Package, and
Deployment: IEEE Standard 2675-2021. IEEE Std 2675-2021 1, 91. doi:10.1109/IEEESTD.2021.9415476.

[23] Jabbari, R., bin Ali, N., Petersen, K., Tanveer, B., 2016. What is DevOps? A Systematic Mapping Study on Definitions
and Practices, in: Proceedings of the Scientific Workshop Proceedings of XP2016, ACM, New York, NY, USA. p. 11.
doi:10.1145/2962695.2962707.

[24] Kankanhalli, A., Tan, B.C., Wei, K.K., 2005. Contributing knowledge to electronic knowledge repositories: An empirical
investigation. MIS Quarterly: Management Information Systems 29, 113–143. doi:10.2307/25148670.

[25] Kim, G., Humble, J., Debois, P., Willis, J., 2016. The DevOps Handbook : How to Create World-Class Agility, Reliability,
and Security in Technology Organizations. IT Revolution Press, USA. URL: https://www.amazon.com/DevOps-Handbook-
World-Class-Reliability-Organizations/dp/1942788002.

[26] Kitchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Literature Reviews in Software Engineering.
Technical Report. Technical report, ver. 2.3 ebse technical report. ebse.

[27] Kumar, R., Goyal, R., 2020. Modeling continuous security: A conceptual model for automated DevSecOps using open-source
software over cloud (ADOC). Computers and Security 97, 101967. doi:10.1016/j.cose.2020.101967.

[28] Kumara, I., Garriga, M., Romeu, A.U., Di Nucci, D., Palomba, F., Tamburri, D.A., van den Heuvel, W.J., 2021. The do’s
and don’ts of infrastructure code: A systematic gray literature review. Information and Software Technology 137, 106593.
doi:10.1016/j.infsof.2021.106593.

[29] Laudon, J.P.L..K.C., 2017. Management Information Systems: Managing the Digital Firm, Global Edition. Pearson
Education, USA.

[30] Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P., 2019. A survey of DevOps concepts and challenges. ACM
Computing Surveys 52, 35. doi:10.1145/3359981, arXiv:1909.05409.

[31] Lévy, L.N., Bosom, J., Guerard, G., Amor, S., Bui, M., Tran, H., 2022. DevOps Model Appproach for Monitoring Smart
Energy Systems. Energies 15, 27. doi:10.3390/en15155516.

[32] Lindberg, A., Schecter, A., Berente, N., Hennel, P., Lyytinen, K., 2024. The Entrainment of Task Allocation and Release
Cycles in Open Source Software Development: MIS Quarterly. MIS Quarterly 48, 67–93. doi:10.25300/MISQ/2023/16789.

[33] Lopez-Fernandez, D., Diaz, J., Garcia-Martin, J., Perez, J., Gonzalez-Prieto, A., 2021. DevOps Team Structures: Characteri-
zation and Implications. IEEE Transactions on Software Engineering , 1doi:10.1109/TSE.2021.3102982, arXiv:2101.02361.

[34] Luz, W.P., Pinto, G., Bonifácio, R., 2019. Adopting DevOps in the real world: A theory, a model, and a case study.
Journal of Systems and Software 157, 110384. doi:10.1016/j.jss.2019.07.083.

[35] McDonagh, Deana, J.L., 2019. Focus Groups: Supporting Effective Product Development. CRC Press, London. doi:10.
4324/9780203302743.

[36] Mishra, A., Otaiwi, Z., 2020. Devops and Software Quality: A Systematic Mapping. Computer Science Review 38, 14.
doi:10.1016/j.cosrev.2020.100308.

31

194

[37] Perez, J., Gonzalez-Prieto, A., Diaz, J., Lopez-Fernandez, D., Garcia-Martin, J., Yague, A., 2022. DevOps Research-based
Teaching Using Qualitative Research and Inter-Coder Agreement. IEEE Transactions on Software Engineering 48, 3378–3393.
doi:10.1109/TSE.2021.3092705.

[38] Rafi, S., Akbar, M.A., Yu, W., Alsanad, A., Gumaei, A., Sarwar, M.U., 2022. Exploration of DevOps testing process
capabilities: An ISM and fuzzy TOPSIS analysis. Applied Soft Computing 116, 108377. doi:10.1016/j.asoc.2021.108377.

[39] Rafi, S., Yu, W., Akbar, M.A., Alsanad, A., Gumaei, A., 2020. Multicriteria based decision making of DevOps data quality
assessment challenges using fuzzy TOPSIS. IEEE Access 8, 46958–46980. doi:10.1109/ACCESS.2020.2976803.

[40] Raworth, K., Sweetman, C., Narayan, S., Rowlands, J., Hopkins, A., 2012. Conducting Semi-Structured Interviews. Oxfam.
[41] Rodŕıguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T., Eskeli, J., Karvonen, T., Kuvaja, P.,

Verner, J.M., Oivo, M., 2017. Continuous deployment of software intensive products and services: A systematic mapping
study. Journal of Systems and Software 123, 263–291. doi:10.1016/j.jss.2015.12.015.

[42] Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study research in software engineering. Empirical
Software Engineering 14, 131. doi:10.1007/s10664-008-9102-8.

[43] Senapathi, M., Buchan, J., Osman, H., 2018. DevOps Capabilities, Practices, and Challenges: Insights from a Case
Study, in: Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering 2018 -
EASE’18, ACM. Association for Computing Machinery, New York, USA. pp. 57–67. doi:10.1145/3210459.3210465.

[44] Shahin, M., Ali Babar, M., Zhu, L., 2017. Continuous Integration, Delivery and Deployment: A Systematic Review on
Approaches, Tools, Challenges and Practices. IEEE Access 5, 3909–3943. doi:10.1109/ACCESS.2017.2685629.

[45] Smeds, J., Nybom, K., Porres, I., 2015. DevOps: A Definition and Perceived Adoption Impediments, in: Lecture Notes in
Business Information Processing. Springer, USA. volume 212, pp. 166–177. doi:10.1007/978-3-319-18612-2_14.

[46] Standard, I., 2017. ISO/IEC/IEEE International Standard - Systems and software engineering – Software life cycle
processes. ISO/IEC/IEEE 12207:2017(E) First edition 2017-11 , 157doi:10.1109/IEEESTD.2017.8100771.

[47] Stephen Eldridge, 2024. Percentile | Definition, Quartile, & Facts | Britannica. URL: https://www.britannica.com/topic/
percentile.

[48] Teixeira, D., Pereira, R., Henriques, T., Silva, M.M.D., Faustino, J., 2020. A maturity model for DevOps. International
Journal of Agile Systems and Management 13, 464. doi:10.1504/IJASM.2020.112343.

[49] Trigo, A., Varajão, J., Sousa, L., 2022. DevOps adoption: Insights from a large European Telco. Cogent Engineering 9.
doi:10.1080/23311916.2022.2083474.

[50] Verner, J.M., Babar, M.A., Cerpa, N., Hall, T., Beecham, S., 2014. Factors that motivate software engineering teams: A
four country empirical study. Journal of Systems and Software 92, 115–127. doi:10.1016/j.jss.2014.01.008.

[51] Waseem, M., Liang, P., Shahin, M., 2020. A Systematic Mapping Study on Microservices Architecture in DevOps. Journal
of Systems and Software 170. doi:10.1016/j.jss.2020.110798.

[52] Westrum, R., 2004. A typology of organisational cultures. Quality and Safety in Health Care 13, 22–27. doi:10.1136/qshc.
2003.009522.

[53] Wiedemann, A., Wiesche, M., Gewald, H., Krcmar, H., 2020. Understanding how DevOps aligns development and
operations: A tripartite model of intra-IT alignment. European Journal of Information Systems 29, 458–473. doi:10.1080/
0960085X.2020.1782277.

[54] Winkler, F., Westner, M., 2023. A Systematic Literature Review of DevOps Success Factors and Adoption Models,
in: Proceedings of the 12th International Symposium on Information and Communication Technology, Association for
Computing Machinery, New York, NY, USA. pp. 525–532. doi:10.1145/3628797.3628883.

[55] Yin, R.K., 2018. Case Study Research and Applications: Design and Methods. Sixth edition ed., SAGE, Los Angeles.

32

195

Appendix A. Interview Guide

Table A.23: Questions used in the Semi-structured interviews

ID
Related
RQs

Type Question

1 Background Information

1.1 - Open-ended Can you please describe your role in the organization and your experience?

1.2 - Open-ended How do you see your current DevOps adoption?

2 DevOps Capabilities Impact

2.1 RQ1 Closed-ended
What DevOps capabilities have the most positive impact on the company’s DevOps
Adoption?

2.2 RQ1 Open-ended Please describe those capabilities.

2.3 RQ1 Open-ended Do you know how they are implemented, and evaluated?

3 DevOp Metrics Impact

3.1 RQ1 Closed-ended
What DevOps metrics have the most positive impact on the company’s DevOps
Adoption?

3.2 RQ1 Open-ended Please describe those metrics.

3.3 RQ1 Open-ended Do you know how they are implemented, and evaluated?

3.4 RQ2 Closed-ended What DevOps metrics have a direct correlation to main capabilities?

3.5 RQ2 Open-ended Why are they correlated?

4 Life Cycle Processes Impact

4.1 RQ1 Closed-ended
What Life Cycle Processes (LCPs) had the most positive impact on the DevOps
adoption?

4.2 RQ1 Open-ended Please describe those LCPs.

4.3 RQ1 Open-ended Do you know how they are implemented, and evaluated?

4.4 RQ2 Closed-ended What LCPs have a direct correlation to main capabilities?

4.5 RQ2 Closed-ended What LCPs have a direct correlation to main metrics?

4.6 RQ2 Open-ended Why are they correlated?

5 Strategies and initiatives for DevOps adoption

5.1 RQ3 Closed-ended Do you know what strategies or initiatives have been implemented for DevOps adoption?

5.2 RQ3 Open-ended Which inititiatives most impact your day-to-day work?

6 DevOps adoption Challenges and Benefits

6.1 RQ4 Open-ended What are the main benefits and challenges of DevOps in the organization?

6.2 RQ4 Open-ended How do these benefits and challenges impact your daily work?

7 Ending

7.1 - Closed-ended On a scale of 1-10, how would you rate the DevOps adoption effort in the organization?

7.2 - Open-ended Do you have any last comments?

33

196

Appendix B. Invitation Letter

Invitation to participate in a case study research.

Hello {name},
I am excited to invite you to participate in an interview for our case study research project within the context of
our DevOps adoption.
Your insights and experiences will be invaluable in helping us better understand the adoption of DevOps Capa-
bilities and Metrics within the organization’s Software Life Cycle Processes. I will conduct the interview, which
will last for about 45 minutes, via videoconference. Please consider using the following link to schedule the inter-
view: {link}
If you know of anyone else who might be interested in attending, please forward this invitation to them as well.
Best regards,
{researcher name}

Figure B.11: Invitation letter to participate in the case study research.

34

197

198

CHAPTER 8

Conclusion

This last chapter contains a summary of the key contributions based on the considerations in
Section 1.3. The key takeaways are broken down into four sections that provide guidance and
potential directions for future research. The summary and discussion section explains the results
of the articles in accordance with addressing our main research question and the key problem for
this thesis, stated in Section 1.2. It also discusses the key concepts and presents a framework for
improving DevOps adoption success in Table 8.1 aimed to address the observed key challenges
of DevOps adoption. This provides, at the same time, a practical and comprehensive overview
of the key results. The closing remarks provide valuable insights and contributions regarding
the practical and theoretical applications of these findings. In Section 8.3 the limitations of this
work are explained and mitigations are given. The final section of the chapter, titled future work
outlines potential areas for further research and topics that should be explored after this work.

8.1 Summary and Discussion

This thesis aims to propose and evaluate solutions to achieving successful DevOps adoption
in IT Organizations. Considering this main goal, in this section, the research questions of this
thesis are summarized and discussed.

8.1.1 RQ1: What are the key DevOps capabilities, metrics, and processes that have the

most positive impact on DevOps adoption?

In order to summarize the research conducted to address this question, an overview is provided
for each of the three key vectors, detailing the individual contributions made by each study to
advance the research and knowledge for this thesis.

Key DevOps Capabilities The resulting key capabilities are listed, categorized and discussed
in Article 1 of Chapter 2 DevOps capabilities are stated as essential skills and knowledge
required to perform specific practices effectively within DevOps. In Tables 2.7 and 2.8 a
comprehensive list of 37 Capabilities, their definitions, and their dynamic nature over time. The
information about capabilities can be found in key figures and tables including the definition
of DevOps capability in Table 2.10, conceptual map proposed in Figure 2.10, as well as the
relationship among capabilities, practices and outcomes provided in Figure 2.12. In addition, it
highlights that capabilities are dynamic through some findings from both academic and industry
perspectives to reach a consensus.

199

Article 2 (Chapter 3) discusses DevOps capabilities through the improvement of key perfor-
mance indicators and highlights the need to use appropriate DevOps Metrics to determine the
performance of these capabilities.

In Article 3 (Chapter 4) the DevOps capabilities are approached through Design Science
Research (DSR) methodology building on top of MLR and semi-structured interviews, leading
to 37 DevOps capabilities classified, and validated. Table 4.13 summarizes the relations between
capabilities and metrics, while Table 4.17 proposes a validated artifact with categorized DevOps
capabilities influencing main metrics.

DevOps capabilities in Article 4, are discussed from foundational areas including culture,
automation, lean methods, measurement and sharing. Important points to note include enhanced
collaboration, quicker time to market, more automation improved management of deployment
environment, better stability as well as increased security. These challenges are mainly related
to cultural preparedness, communication problems, and automation technology complexities.

In Article 5 (Chapter 6) DevOps capabilities are approached by identifying, classifying, and
mapping them to the 30 Life Cycle Processes (LCPs) in the IEEE DevOps standard [23]. This is
shown in Table 6.7 for the total number of relations between categories of DevOps Capabilities
and LCPs and in Table 6.7 with the total number of relations and average number of relations for
each LCP category. A strong correlation was found between Technical DevOps capabilities and
technical LCPs. It was found significant impact of Measurement Capabilities and Agreement
Processes shown in Table 6.10 and exceptional impact in eight relations, other eleven have very
high impact from Table 6.12 The study highlights and tries to address challenges in adopting
DevOps Capabilities effectively.

Finally, Article 6 (Chapter 7) defines DevOps capabilities as essential elements that facilitate
the adoption of DevOps practices within an organization. DevOps Capabilities are approached
through the CALMS framework: Culture, Automation, Lean, Measurement, and Sharing. The
conceptual framework in Figure 7.4 and Table 7.4 illustrates the relationships between DevOps
capabilities, metrics, LCPs, and benefits/challenges. Capabilities such as cross-team collabora-
tion (C01), proactive monitoring (C08), continuous improvement (C13), continuous integration
(C20), and cloud infrastructure (C26) are highlighted as being crucial for successful DevOps
adoption in this case study. The study also identifies areas for improvement, like database change
management (C29) and chaos engineering (C36). DevOps capabilities are highlighted by im-
proved collaboration, monitoring, continuous improvement, and technical practices. While the
most important challenges are Resistance to Change, Prioritization of Capabilities and Tools,
Skills and Knowledge, Cross dependency of teams, and Documentation Gaps. The Key strategies
observed that contributed to successful DevOps adoption are CI/CD Pipeline, Internal Catalog
& Maturity Assessment, Common Cloud Native Platform, Automated Test Code Coverage,
Monitoring and Observability and Tool chain Automation and Integrations.

200

Key DevOps metrics In Article 1 (Chapter 2) DevOps metrics are briefly discussed as means
of assessing maturity levels, visualize management processes, and understand relationships
between concepts. Metrics can be used to face DevOps adoption challenges by providing
visual management tools, assessing maturity levels, ensuring continuous improvement through
feedback loops, and making informed business decisions.

The main article focusing on DevOps metrics is Article 2 (Chapter 3). Here a DevOps
metrics definition is proposed as a "Quantifiable, business-relevant, trustworthy, actionable,
and traceable indicators that aid organizations in making data-driven decisions to continuously
improve their DevOps and software delivery process". In Figure 3.7 Key 22 DevOps Metrics
are elicited from the MLR, while Figure 3.9 proposes steps to put DevOps metrics into practice.

Article 3 (Chapter 4) validates 37 DevOps capabilities and 24 metrics. The study emphasizes
the importance of these metrics for management to attain the success and efficiency in imple-
menting DevOps. While the MLR identified 22 key metrics out of an initial 58, the interviews
strongly emphasized two additional metrics, resulting in 24 listed in Table 4.14. The relation of
key metrics like MLT, DF, CFR, MTTR, between others with key capabilities are described per
their significant importance in this regard. Details on each metric relevance and importance,
examples, and categories are provided. All key DevOps metrics are identified and validated.

Article 4 of Chapter 5 goes into detail on measuring tasks and finding the improvements.
It discusses the importance of measurement and monitoring within DevOps. The utilization
of infrastructure as code and monitoring tools facilitates the management and identification of
issues within teams.

In Article 5 (Chapter 6) metrics are primarily seen under the umbrella of "Measurement
capabilities", defined as those focusing on collecting and analyzing data about software devel-
opment and delivery. Key aspects of measurement capabilities include proactive monitoring,
observability, autoscaling, emergency response, visual management (dashboards), real-time an-
alytics for tracking application health and usage metrics. DevOps metrics are important for
a variety of processes: acquisition, supply, infrastructure management, portfolio management,
resource management, and quality management. The study states that real-time feedback and
measurement-driven design should be practiced for these processes. Measures relevant to this
process included automated checks for Service level Indicators (SLIs) and tests that ensure that
the service is ready to deliver.

In Article 6 (Chapter 6) DevOps metrics are approached as crucial factors for adoption,
categorized into change, operational, business and cultural metrics. The detailed categorization
of metrics is seen Figure 7.2, and in Table 7.12 interview results related to metrics are synthesized,
and Figure 9 (graphs showing improvements in version control system capabilities).2 Metrics
provide tangible evidence of benefits such as increased release frequency, decreased escaped
defects, improved operational efficiency, and better software quality. The study highlights
specific metrics such as DF, MTTR, CFR, and Automated Test Code Coverage among others.
In this case study, metrics help identify the bottlenecks to address first. Promoting a culture of

201

shared responsibility, teamwork and departmental efficiency, speeding up features and bug fixes.

Key DevOps processes In Article 1 (Chapter 2) DevOps Life Cycle Processes are approached
indirectly through a framework that emphasizes collaboration, continuous improvement, and
visual management. Key figures and tables about Life Cycle Processes include Figures 2.10
and 2.12. Life Cycle Processes can be used to face DevOps adoption challenges by enhancing
team skills, improving continuous integration, and using visual management to assess maturity
levels. The main takeaways from this reading are that collaboration, continuous improvement,
and specific capabilities help in the achievement of the desired outcomes.

In Article 2 (Chapter 3), monitoring process is referred to by the authors who present the
process through an eight-step process forming a continuous feedback loop. In the particular
case provided in the article, the monitoring process is reflected in the DevOps infinity loop in
Figure 3.9. Process is considered a way to face the DevOps adoption challenges by applying a
serious procedure providing a mechanism to measure, a systematic approach to measuring the
performance, identifying needs, automating to decrease human error, and ensuring continuous
feedback and collaboration.

The Article 3 (Chapter 4) approaches process by evaluating and improving organizational
practices through an improvement roadmap, while not explicitly mentioning LCPs. Provides a
understanding of the planning process of using DevOps capabilities and metrics, for the success
of DevOps adoption.

In Article 4 (Chapter 5) processes focus on improving collaboration between development
and operations teams through culture, automation, lean methodologies, measurement, and shar-
ing. Using CI/CD, operations teams are involved early on, automation, continuous monitoring,
and infrastructure-as-code. These factors help solve challenges by reducing manual errors,
ensuring stability, detecting issues early, and standardizing configurations.

In Article 5 (Chapter 6) Life Cycle Processes (LCPs) are introduced by mapping 37 identified
DevOps capabilities to the 30 Life Cycle Processes (LCPs) defined in the IEEE 2675-2021
standard [23]. The mappings of DevOps capabilities to LCPs in Tables 6.3 to 6.6, the impact
scale classifications in Table 6.12, and the conceptual maps showing relationships between
capabilities and processes Figures 6.1 and 6.9 reveal that ways that LCPs together with the
positively impactful capabilities can be used to face DevOps adoption challenges. In other
words, by determining which capabilities enhance specific LCPs, organizations can commit to
the implementation of these capabilities to enhance processes and reap the benefits of software
delivery, quality, and reliability. Nonetheless, the anticipated challenges in terms of cultural,
technical, measurement, and process capabilities suggest the significance of guidelines, ongoing
reflection and adaptation.

Article 6 (Chapter 7) is a case study research using a three-vector approach including DevOps
LCPs, capabilities, and metrics. It builds upon the IEEE Standard 2675-2021 standard [23] to
organize LCPs and stresses the value of LCPs in defining, modeling, and assessing software

202

processes, underscoring the conclusions of the previous research in this thesis about the incre-
mental and iterative approach of DevOps. The case study provides in-depth knowledge about the
benefits and challenges of a real world adoption of DevOps, as well as the factors, such as the im-
plementation of a full scale standard CI/CD pipeline, Configuration Management, or Automated
Test Code Coverage. Additionally, it demonstrates how DevOps capabilities affect LCPs. The
challenges, such as resistance to change, integration complexity, or prioritization, necessitate
the implementation of capabilities. These include transformational leadership, CI/CD or visual
management capabilities for improved SDLC efficiency and quality. The study concludes that
DevOps capabilities affect metrics and LCPs, which in turn influence benefits and challenges.

8.1.2 RQ2: How can organizations effectively apply key DevOps capabilities, metrics,

and processes to overcome adoption challenges?

The studies have shown that successful DevOps adoption in organizations is possible through
team effort, best practices, technical and cultural aspects, team ownership, tool chain usage, man-
agement commitment, and process improvement models [87, 92–94]. However, the challenges,
according to new studies in adopting DevOps, mention them as related to the technology, people
and, most importantly, the inability to communicate in the organization [17, 38, 52, 67, 95, 96].
In addition, the analysis from the studies in Chapters 2 to 7 reveal that various challenges are
regularly faced in DevOps adoption, like resistance to change, cultural transformation, skill &
knowledge gaps, integration complexity, tooling & automation prioritization, security concerns,
communication & collaboration, cross dependency of teams, and measurement & monitoring.

However, it is also observed, mainly from Chapters 4 and 7, that drawbacks can be con-
trolled or even overcome with the right strategies in place, like the implementation of CI/CD
pipeline for establishing a continuous integration and continuous delivery to automate the soft-
ware delivery process. An internal catalog and maturity assessment for improving ownership,
communication, and conducting maturity assessments to identify areas for growth and enable
continuous improvement. A common Cloud Native platform to promote microservices, scal-
ability, and agility between teams. Monitoring and observability practices are used to gain
insight into system performance and encourage continuous improvement. Ensuring automated
test code coverage to maintain software quality and reliability. A tool chain automation and
integration to enhance collaboration and promote continuous development. Emphasizing se-
curity and compliance to build a robust DevOps culture. Gaining strong leadership support
to drive the DevOps transformation. Establishing Service level Objectives (SLOs) in pair with
scaling Site Reliability Engineering (SRE) practice to support growth, ensuring operational
excellence and reliability. Implementing Configuration as Code to manage infrastructure and
application configurations efficiently.

203

Improving DevOps Adoption Success The broader answer to this fundamental question lies
within the findings and proposal across the research done in the several articles presented.
The most important concepts from the research done in the previous chapters revolve around
DevOps capabilities, metrics, life cycle processes, benefits, challenges and strategies, which
are relationships captured in of Figure 1.2. Therefore, this thesis proposes a Framework for
Improving DevOps Adoption Success in Figure 8.1 based on these concepts and substantiated
by the research presented.

Challenges in DevOps Adoption

Strategies for Overcoming Challenges

DevOps Outcomes and Benefits

DevOps Capabilities

DevOps Metrics Life Cycle
Processes

Relational
Vectors

DevOps Assessment

Evaluation
Feedback Loop

Figure 8.1: Proposed Framework for Improving DevOps Adoption Success

A framework typically offers a systematic way to understand and address complex issues
like the DevOps adoption challenges. This framework has the specific purpose of gaining an
overview of these challenges, translating them into implementable strategies, while justifying
actions based on their impact. In accordance to the nature of DevOps, the framework is iterative
and includes a DevOps assessment on each iteration, leading to an evaluation feedback loop. In
each iteration, one or more vectors should be utilized to address a specific challenge, depending
on the objective and resources available, while keeping it to a low number of vectors in order to
reduce the task complexity.

The most important and related key takeaways from what has been studied can now be
synthesized using the proposed framework of DevOps adoption. The resulting instantiation of
the framework is shown in Table 8.1 aiming to improve successful DevOps adoption success. It
provides a structured approach to addressing specific challenges found in DevOps adoption by
linking them to relevant vectors of capabilities, metrics, or life cycle processes, supported by
empirical evidence from the studies in Chapters 2 to 7.

The framework’s strategies and justifications are based on a careful examination of results

204

Table 8.1: Instantiation of the Framework for Improving DevOps Adoption Success
Challenge Vector Strategy Justification Source
Resistance to
change Capability Transformational

Leadership (C04)
Promotes empowerment according to Westrum [97], fostering a
supportive and innovative work environment for talent retention.

A1, A3,
A4, A6

Metric Team Happiness (M21) A culture that encourages learning and experimentation contributes
to an engaging and fulfilling work environment.

A3, A4,
A6

Life Cycle Process Project Planning (L09) Helps manage and mitigate resistance to change by setting clear
expectations and providing structured guidance. A5, A6

Integration
complexity Capability

Continuous Integration and
Delivery (CI/CD)
(C20,C21)

Building and testing software components are automated, reducing
the complexities of integration of code changes by many
contributors and delivering them.

A1, A3,
A6

Metric Mean Lead-time for
Changes (MLT) (M02)

Lead time for changes is measured and reduced highlighting and
remedying integration bottleneck A2, A6

Life Cycle Process Configuration Management
(L13)

Configuration Management ensures that all elements are controlled
and managed across the life cycle, reducing complexity. A5, A6

Skills and
knowledge gaps Capability Support Learning Culture

and Experimentation (C02)

Encouraging a learning culture and experimentation helps close
skills and knowledge gaps by promoting continuous learning and
improvement.

A1, A3,
A4, A6

Metric Talent Retention (M22) A supportive learning culture can help retain talent by providing
opportunities for growth and development. A3, A6

Life Cycle Process Knowledge Management
Process (L08)

Ensures team members have access to the information and training
they need. A5, A6

Cultural
transformation Capability Cross-team Collaboration

and Communication (C01)
Effective collaboration and communication lead to a more satisfied
and cohesive team, essential for cultural transformation.

A1, A3,
A6

Metric Team Happiness (M21) Measuring and improving team happiness can indicate a positive
cultural transformation. A2, A6

Life Cycle Process Quality Management
Process (L07)

Ensures products, services, and implementations meet quality goals
and satisfy customers, which accelerates cultural change. A5, A6

Tooling and
automation
challenges

Capability Cloud infrastructure and
cloud native (C26)

Ensures highly automated microservices platform, reducing manual
effort and improving reliability.

A3, A4,
A6

Capability
Proactive Monitoring,
Observability, and
Autoscaling (C08)

Help to identify and resolve issues earlier, for effective tooling and
automation.

A1, A3,
A6

Metric Automated Test Code
Coverage (M10)

Automated test code coverage ensures that code is automatically
tested reducing any manual test effort, increasing quaility and
reliability.

A3, A6

Life Cycle Process Configuration Management
(L13) Ensures tools and environments are consistent and reliable. A5, A6

Prioritization
and visibility
issues

Capability Visual Management
Capabilities (C37)

Visual management helps the organization communicate goals,
change, and prioritize improvements.

A1, A3,
A4, A6

Metric Work in Progress (WIP)
Limits (M20)

Setting and monitoring Work in Progress (WIP) limits helps teams
focus on key work and avoid overload. A2, A6

Life Cycle Process Project Planning (L09) The principle of project planning and creating a workable plan is
important to prioritize and for visibility. A5, A6

Security
concerns Capability Shift Left on Security (C20) Security is best integrated earlier reducing vulnerabilities and

problems.
A1, A3,
A4, A6

Metric Change Failure Rate (CFR)
(M04)

Security vulnerabilities can be known if the change failure rate is
continuously monitored.

A2, A3,
A6

Life Cycle Process Risk Management (L12) Knowing how to consistently handle development and operational
risks, ensures system security can be addressed. A5, A6

Communication
and
collaboration

Capability Cross-team Collaboration
and Communication (C01)

Enhances collaboration and communication, while breaking down
the silos.

A1, A3,
A4, A6

Metric Team Happiness (M21) Improved communication and collaboration lead to higher team
happiness and job satisfaction.

A2, A3,
A6

Life Cycle Process
Stakeholder Needs and
Requirements Definition
(L18)

Ensures that all stakeholders’ needs and requirements are clearly
defined and communicated, facilitating better collaboration. A5, A6

Measurement
and monitoring Capability

Proactive Monitoring,
Observability, and
Autoscaling (C08)

Ensures continuous monitoring and observability of systems to
detect and resolve issues proactively.

A1, A3,
A4, A6

Metric Mean Time To Detection
(MTTD) (M07)

Reducing the time to detect issues helps in quicker resolution and
maintaining system reliability.

A2, A3,
A6

Life Cycle Process Information Management
(L14)

Generates, obtains, confirms, transforms, retains, retrieves,
disseminates, and disposes of relevant information for stakeholders. A5, A6

205

and findings, in order to ensure its solidity and credibility. Its main purpose is to tackle the
research issue through providing applicability advice for organizations that want to adopt DevOps
effectively, which serves as the most central feature of this framework.

This instantiation uses the data obtained from the research to provide a structured approach
to addressing the identified challenges in the context of DevOps adoption. As such, it includes
the relational vectors that are capabilities, metrics, and life cycle processes, and uses strategies
that allow addressing the identified DevOps challenges as well as justification and sources for
each proposed strategy.

In order to mitigate the discovered challenges of resistance to change, the development
of transformational leadership capability (C04) that promotes empowerment and work friendly
atmosphere should become a key focus area as noted by Westrum (2004) [97]. Additionally,
measuring team happiness metric (M21) shows how a culture of learning and experimentation
can affect someone, while project planning (L09) helps mitigate resistance to change through
setting reasonable expectations. The challenge of integration complexity is addressed through
CI/CD (C20,C21) that is related to integration issues caused by building and testing automation
while focusing on faster delivery. The MLT metric is vital in addressing the identified challenge
since it highlights the bottlenecks for remediation, while configuration management (L13)
ensures control of what is involved in the life cycle in all phases. The gap in skills and
knowledge is addressed through supporting a learning culture and experimentation (C02) by
leveraging a knowledge management (L08) life cycle process that ensures access to the required
training and information and can be measured by the talent retention (M22) metric. The
challenge of cultural transformation is addressed through the life cycle process of cross-team
collaboration and communication (C01) that is followed by the team happiness (M21) metric,
while quality management (L07) ensures the product meets quality goals.

The challenges of tooling and automation are addressed through a common Cloud Native
platform (C26), proactive monitoring (C08) and automated test code coverage (M10). Notably,
in this case based on the findings of Chapter 7, we start by using two capabilities in the
first iteration of the framework to tackle this challenge, which can be re-evaluated in the next
framework’s feedback loop. The use of tooling configuration management (L13) is essential for
ensuring the reliability of the tools and environments to reduce variability. Prioritization and
visibility are addressed through visual management capabilities (C37) while WIP limits (M20)
are used to allow the developers to focus on the work ahead. Project planning (L09) because
it is essential to prioritize and visibility. Security concerns are accounted for by security left
(C20) and monitoring CFR (M04), where risk management (L12) is responsible for treating
development risks as operational risks also in a unified way. Improving on Communication
and collaboration though cross-team collaboration (C01) as well as defining stakeholders needs
and requirements definitions (L18) increases team happiness (M21).

Finally, measurement and monitoring are addressed through proactive monitoring (C08)
and reduced Mean Time To Detection (MTTD) (M07) by following the information management

206

(L14) life cycle process to properly manage the information required by the stakeholders. This
framework instantiation demonstrates various ways in which specific related capabilities, met-
rics, and life cycle processes are used to incorporate specific strategies for successful DevOps
successful strategies.

8.2 Closing Remarks

At the end of this research, It can be stated that it is possible to improve DevOps adoption by
using the implementation strategies that are supported by the 37 capabilities [90] and 24 metrics
[28], along with the 30 life cycle processes [23]. The relationships explored and analyzed,
increase the theoretical and practical knowledge in the field of this discipline and clearly point
out drivers that make it easier for organizations to adopt DevOps more effectively, quickly, and
in a way that can be consolidated.

A few important factors are transversal to the research, like visual management commu-
nication [90], together with a continuous feedback loop is an effective mean for monitoring
and evaluating the maturity and adoption of DevOps, making it possible to identify processes
within the software delivery life cycle that are suitable or in need of improvement. The im-
portance of planning with careful preparation and strategy are needed before starting to adopt
DevOps. Good planning requires a good knowledge of the organization and its challenges, as
seen in Chapter 7. The idea is that a thorough understanding of the organization’s own capa-
bilities when compared to the full scope of available DevOps capabilities [90] is essential for
success. The organization must be flexible and able to adapt itself and its teams to changes in
the environment, security, and market challenges. Hence, it is imperative for leaders to exhibit
transformative qualities, have appreciation for generative culture, as exemplified by Westrum
(2004) [97], and exhibit fluidity in their decisions and strategies. The quality of leadership is
considered a critical factor for success. A good leader is described as wise, sincere, benevolent,
courageous, and determined. On the other hand, organizations adopting DevOps should keep a
check on resource optimization to avoid unnecessary expenditure of resources. Go straight to
the supporting capabilities based on existing metrics and processes has discussed in Chapters 3
and 6. In this sense, knowledgeable and strategic use of automation is essential to optimize
time and investment. Finally, it is seen in Chapter 7 that cross team collaboration is a basis for
performance and quality, where speed of development and delivery is a significant advantage.
While keeping quality factors at high standards avoids situations such as failures in production,
critical vulnerabilities and to minimize the need for incident response which has a consider-
able negative impact on job satisfaction leading to a fall in talent retention. In the end, this
essential collaboration may require a strong cultural shift undertaking. However, maintaining
a generative organizational culture and collaboration between teams is decisive for successful
DevOps adoption. This thesis explores three fundamental vectors of DevOps: capabilities,
metrics and processes, while providing new insights and proposing key strategies for adopting

207

DevOps successfully in organizations.

8.3 Limitations

Most of the identified limitations of this study are explained at the end of each article, since each
one has its own particular limitations. The case study is based on a single case, which could
not be generalized to other organizations or other industries in particular. In order to overcome
this limitation, triangulation is performed and future research on other case studies should be
conducted in a number of other industries with diverse background and locations to validate
and generalize the findings even more. Two of the literature review studies are based on gray
literature, which is less rigorous compared to peer-reviewed research. For that, the guidelines
by Garousi et al. (2019) [98] were used, and more empirical research was done to validate
the capabilities and metrics identified in the MLRs. The study may have limitations because
of the inability to reflect the dynamic nature of DevOps capabilities and metrics and the rapid
pace of development of the latter. To address this limitation, future research should conduct
longitudinal studies that would imply regular tracking of DevOps capabilities and metrics and
constant updating of results. Another study limitation is the generalizability of the framework
for improving the success of DevOps adoption. In the future, the research should adapt the
framework to various organizational types on the basis of pilot implementation and feedback
collection for further adjustments. Finally, the inclusion of sources in English could impact the
outcomes because relevant research in other languages was not considered.

8.4 Future work

In this section, are mentioned several possible areas for further research. Future work ideas for
DevOps research can encompass the following:

Integration of microservices and DevOps: Future research might explore how DevOps
could be incorporated into microservices architectures. Microservices currently increase scal-
ability and enhance performance, and hence they help to reduce time taken in continuous
integration and delivery process. Case studies could be done in many industries, whether the
microservices bring explicit benefits, restrictions, and limitations.

Cloud-Native DevOps practices: Future research may investigate cloud-native technolo-
gies’ adoption in a DevOps environment. The study may focus on determining how platforms and
tools like Kubernetes, Docker, Istio, ArgoCD etc., that are cloud-native can facilitate automation
of infrastructure provisioning, resource utilization as well as operational reliability.

Artificial intelligence application in DevOps: Another area to look into is how AI/ML is
used in DevOps. Such studies may focus on the utilization of AI/ML algorithms for resource
allocation optimizations, anticipating future system failures, or automating tasks. Furthermore,
research may be conducted into the application of AI-based monitoring and alert systems that

208

detect anomalies and make notifications about them.
Cross-country case studies: Case studies on DevOps acceptance in various countries are

possible areas for future investigation. In this light, the role played by cultural, legal and
financial factors within the jurisdiction has to be given priority in making such considerations.
It is important to note that comparative analyses can also be done amongst developed as well as
developing nations.

Industry-specific DevOps practices: The studies in industry-related practices such as
DevOps in healthcare, DevOps in finance, DevOps in manufacturing, and others may also be an
interesting research topic for future work. The development of Devops framework for each of
such industries and the case studies conducted at enterprise, SME and startup levels may give a
vast picture of DevOps performance in these environments

Longitudinal Studies of DevOps Maturity: It may be interesting and beneficial to conduct
a longitudinal study of DevOps maturity with periodic interval time comparing research results.
Future research could be focused on the stages that the various DevOps maturity has in an
organization and the movement of the organization from stage to stage. The study could analyze
the impact of the continued improvements and the effect of the leadership of the organization
on the organizational culture.

Lastly, Security and compliance in DevOps: May be a future research field to explore,
such as security protocols in which are sometimes called DevSecOps. The focus of studies
may be placed on the shifted-left security practices, automated commission control strategies,
and secure data handling and management in cloud-native environment. Case studies focusing
on DevSecOps implementations may highlight both successful cases and almost nonexistent
adoption of such practices in highly regulated industries.

209

210

References

[1] P. Debois, “Agile infrastructure and operations: How infra-gile are you?” in Proceedings
- Agile 2008 Conference, 2008, pp. 202–207.

[2] A. Mishra and Z. Otaiwi, “Devops and Software Quality: A Systematic Mapping,” Com-
puter Science Review, vol. 38, no. 1, p. 14, Nov. 2020.

[3] J. P. L. . K. C. Laudon, Management Information Systems: Managing the Digital Firm,
Global Edition. USA: Pearson Education, 2017.

[4] M. Senapathi, J. Buchan, and H. Osman, “DevOps Capabilities, Practices, and Challenges:
Insights from a Case Study,” in Proceedings of the 22nd International Conference on
Evaluation and Assessment in Software Engineering 2018 - EASE’18, ser. EASE’18, no.
June, ACM. New York, USA: Association for Computing Machinery, Jun. 2018, pp.
57–67.

[5] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases Through Build,
Test, and Deployment Automation. USA: Addison-Wesley Professional, Dec. 2010.

[6] D. N. Blank-edelman, Seeking SRE: Conversations About Running Production Systems at
Scale. USA: O’Reilly Media, Inc., 2018.

[7] P. Rodríguez, M. Mäntylä, M. Oivo, L. E. Lwakatare, P. Seppänen, and P. Kuvaja, “Ad-
vances in Using Agile and Lean Processes for Software Development,” in Advances in
Computers, M. A.M., Ed. Faculty of Information Technology and Electrical Engineering,
University of Oulu, Finland: Academic Press Inc., 2019, vol. 113, pp. 135–224.

[8] P. Perera, M. Bandara, I. Perera, and IEEE, “Evaluating the Impact of DevOps Practice in Sri
Lankan Software Development Organizations,” in 2016 SIXTEENTH INTERNATIONAL
CONFERENCE ON ADVANCES IN ICT FOR EMERGING REGIONS (ICTER) - 2016,
no. 16th International Conference on Advances in ICT for Emerging Regions (ICTer).
Institute of Electrical and Electronics Engineers Inc., 2016, pp. 281–287.

[9] E. Diel, S. Marczak, and D. S. Cruzes, “Communication challenges and strategies in
distributed DevOps,” in Proceedings - 11th IEEE International Conference on Global
Software Engineering, ICGSE 2016. Computer Science School, PUCRS, Porto Alegre,
RS, Brazil: Institute of Electrical and Electronics Engineers Inc., Aug. 2016, pp. 24–28.

[10] G. Kim, K. Behr, K. Spafford, and G. Spafford, The Phoenix Project: A Novel about
IT, DevOps, and Helping Your Business Win. USA: IT Revolution, 2014. [Online].
Available: https://books.google.pt/books?id=H6x-DwAAQBA

[11] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “An Exploratory Study of DevOps Extending
the Dimensions of DevOps with Practices,” in ICSEA 2016 : The Eleventh International
Conference on Software Engineering Advances, 2016.

[12] J. Smeds, K. Nybom, and I. Porres, “DevOps: A Definition and Perceived Adoption
Impediments,” in Lecture Notes in Business Information Processing. USA: Springer,
2015, vol. 212, pp. 166–177.

211

https://books.google.pt/books?id=H6x-DwAAQBA

[13] I. Bucena and M. Kirikova, “Simplifying the DevOps Adoption Process Challenges of
DevOps Adoption. In BIR Workshoops.” Simplifying the DevOps Adoption Process, 2017.

[14] D. Teixeira, R. Pereira, T. A. Henriques, M. Silva, and J. Faustino, “A Systematic Literature
Review on DevOps Capabilities and Areas,” International Journal of Human Capital and
Information Technology Professionals, vol. 11, no. 2, p. 22, Apr. 2020.

[15] M. A. Akbar, S. Mahmood, M. Shafiq, A. Alsanad, A. A. A. Alsanad, and A. Gumaei,
“Identification and prioritization of DevOps success factors using fuzzy-AHP approach,”
Soft Computing, 2020.

[16] A. Qumer Gill, A. Loumish, I. Riyat, and S. Han, “DevOps for information management
systems,” VINE Journal of Information and Knowledge Management Systems, vol. 48,
no. 1, pp. 122–139, Jan. 2018.

[17] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of DevOps concepts
and challenges,” ACM Computing Surveys, vol. 52, no. 6, p. 35, Nov. 2019.

[18] L. E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V. Heikkilä, J. Itkonen, P. Kuvaja,
T. Mikkonen, M. Oivo, and C. Lassenius, “DevOps in practice: A multiple case study
of five companies,” Information and Software Technology, vol. 114, no. March 2017, pp.
217–230, 2019.

[19] J. Díaz, D. López-Fernández, J. Pérez, and Á. González-Prieto, “Why are many businesses
installing a DevOps culture into their organization?” Empirical Software Engineering,
vol. 26, no. 2, p. 50, 2021.

[20] M. Muñoz and M. N. Rodríguez, “A guidance to implement or reinforce a DevOps approach
in organizations: A case study,” Journal of Software: Evolution and Process, vol. 1, p. 21,
2021.

[21] N. Forsgren, M. C. Tremblay, D. VanderMeer, and J. Humble, “DORA Platform: DevOps
Assessment and Benchmarking,” in Designing the Digital Transformation, A. Maedche,
J. vom Brocke, and A. Hevner, Eds. Cham: Springer International Publishing, 2017, pp.
436–440.

[22] N. Forsgren and M. Kersten, “DevOps Metrics,” Communications of the ACM, vol. 61,
no. 4, pp. 44–48, Dec. 2018.

[23] IEEE, “IEEE Standard for DevOps: Building Reliable and Secure Systems Including
Application Build, Package, and Deployment: IEEE Standard 2675-2021,” IEEE Std
2675-2021, vol. 1, no. 16 Apr 2021, p. 91, 2021.

[24] L. Riungu-Kalliosaari, S. Mäkinen, L. E. Lwakatare, J. Tiihonen, and T. Männistö,
“DevOps adoption benefits and challenges in practice: A case study,” in Product-Focused
Software Process Improvement, vol. 10027 LNCS. Department of Computer Science,
University of Helsinki, Gustaf Hällströmin katu 2b, P.O. Box 68, Helsinki, 00014, Finland:
Springer International Publishing, 2016, pp. 590–597.

[25] W. P. Luz, G. Pinto, and R. Bonifácio, “Adopting DevOps in the real world: A theory, a
model, and a case study,” Journal of Systems and Software, vol. 157, no. July, p. 110384,
Nov. 2019.

212

[26] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “Towards a benefits dependency network
for DevOps based on a systematic literature review,” Journal of Software: Evolution and
Process, vol. 30, no. 11, p. 26, Nov. 2018.

[27] J. Faustino, R. Amaro, D. Adriano, Daniel, R. Pereira, and M. M. da Silva, “DevOps
benefits: A systematic literature review,” Software: Practice and Experience, vol. 52,
no. 9, pp. 1905–1926, 2022.

[28] R. Amaro, R. Pereira, and M. M. da Silva, “Capabilities and Metrics in DevOps: A Design
Science Study,” Information & Management, p. 32, May 2023.

[29] G. Kim, J. Humble, P. Debois, and J. Willis, The DevOps Handbook : How to
Create World-Class Agility, Reliability, and Security in Technology Organizations.
USA: IT Revolution Press, 2016. [Online]. Available: https://www.amazon.com/
DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002

[30] J. Davis and R. Daniels, Effective DevOps: Building a Culture of Collaboration, Affinity,
and Tooling at Scale. USA: "O’Reilly Media, Inc.", May 2016.

[31] R. Jabbari, N. bin Ali, K. Petersen, and B. Tanveer, “What is DevOps? A Systematic
Mapping Study on Definitions and Practices,” in Proceedings of the Scientific Workshop
Proceedings of XP2016. New York, NY, USA: ACM, May 2016, p. 11.

[32] R. Kneuper, Software Processes and Life Cycle Models: An Introduction to Modelling,
Using and Managing Agile, Plan-Driven and Hybrid Processes. Cham: Springer Inter-
national Publishing, 2018.

[33] F. M. A. Erich, C. Amrit, and M. Daneva, “A Qualitative Study of Devops Usage in
Practice,” Journal of Software: Evolution and Process, vol. 29, no. 6, p. e1885, 2017.

[34] M. Rodriguez, L. J. P. De Araújo, and M. Mazzara, “Good practices for the adoption
of DataOps in the software industry,” in Journal of Physics: Conference Series, A. K.
Kruglov A., Ed., vol. 1694. IOP Publishing Ltd, 2020.

[35] R. W. Macarthy and J. M. Bass, “An Empirical Taxonomy of DevOps in Practice,” in
Proceedings - 46th Euromicro Conference on Software Engineering and Advanced Ap-
plications, SEAA 2020, M. A., W. M., and S. A., Eds., IEEE. University of Salford,
School of Science, Engineering and Environment, Manchester, United Kingdom: Institute
of Electrical and Electronics Engineers Inc., Aug. 2020, pp. 221–228.

[36] K. Maroukian, “Towards practice and principle adoption through continuous DevOps
leadership.” Journal of Software. Ruanjian Xuebao, vol. 16, no. 1, p. 13, 2021.

[37] D. Teixeira, R. Pereira, T. Henriques, M. M. D. Silva, and J. Faustino, “A maturity model
for DevOps,” International Journal of Agile Systems and Management, vol. 13, no. 4, p.
464, 2020.

[38] S. Rafi, W. Yu, M. A. Akbar, A. Alsanad, and A. Gumaei, “Multicriteria based decision
making of DevOps data quality assessment challenges using fuzzy TOPSIS,” IEEE Access,
vol. 8, no. 1, pp. 46 958–46 980, 2020.

213

https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002
https://www.amazon.com/DevOps-Handbook-World-Class-Reliability-Organizations/dp/1942788002

[39] K. Maroukian and S. R. Gulliver, “Leading DevOps Practice and Principle Adoption,”
in 9th International Conference on Information Technology Convergence and Services
(ITCSE 2020), vol. 13. AIRCC Publishing Corporation, May 2020, pp. 41–56.

[40] M. F. Lie, M. Sanchez-Gordon, and R. Colomo-Palacios, “DevOps in an ISO 13485
regulated environment: A multivocal literature review,” in International Symposium on
Empirical Software Engineering and Measurement. New York, NY, USA: ACM, Oct.
2020, p. 11.

[41] L. Yin and V. Filkov, “Team Discussions and Dynamics during DevOps Tool Adoptions
in OSS Projects,” in Proceedings - 2020 35th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2020. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 697–708.

[42] M. Zarour, N. Alhammad, M. Alenezi, and K. Alsarayrah, “A research on DevOps maturity
models,” International Journal of Recent Technology and Engineering, vol. 8, no. 3, pp.
4854–4862, Sep. 2019.

[43] J. Perez, A. Gonzalez-Prieto, J. Diaz, D. Lopez-Fernandez, J. Garcia-Martin, and A. Yague,
“DevOps Research-based Teaching Using Qualitative Research and Inter-Coder Agree-
ment,” IEEE Transactions on Software Engineering, vol. 48, no. 9, pp. 3378–3393, Sep.
2022.

[44] R. Kumar and R. Goyal, “Modeling continuous security: A conceptual model for automated
DevSecOps using open-source software over cloud (ADOC),” Computers and Security,
vol. 97, p. 101967, Oct. 2020.

[45] R. Cherinka, S. Foote, and J. Prezzama, “Lessons learned in adopting agile software
development at enterprise scale,” in WMSCI 2020 - 24th World Multi-Conference
on Systemics, Cybernetics and Informatics, Proceedings, S. B. S. M. Baracho R.
Callaos N.C., Ed., vol. 1. International Institute of Informatics and Systemics, IIIS,
2020, pp. 68–73. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85096545508&partnerID=40&md5=2774e8455ae5129ec7d46edcaf8c1022

[46] U. Zdun, E. Wittern, and P. Leitner, “Emerging Trends, Challenges, and Experiences in
DevOps and Microservice APIs,” IEEE Software, vol. 37, no. 1, pp. 87–91, 2020.

[47] DevOps Research and Assessment (DORA), “State of DevOps 2019 - DORA,” DORA,
Tech. Rep. DORA2019, 2019. [Online]. Available: https://services.google.com/fh/files/
misc/state-of-devops-2019.pdf

[48] Puppet Labs, “2019 State of DevOps Report,” Puppet Labs, Tech. Rep. 2019, 2019.
[Online]. Available: https://puppet.com/resources/report/2019-state-of-devops-report

[49] ——, “2020 State of DevOps Report,” Puppet Labs, Tech. Rep. 2020, 2020. [Online].
Available: https://puppet.com/resources/report/2020-state-of-devops-report/

[50] C. Bansal, S. Renganathan, A. Asudani, O. Midy, and M. Janakiraman, “DeCaf: Diag-
nosing and triaging performance issues in large-scale cloud services,” in Proceedings -
International Conference on Software Engineering. Microsoft Research, Redmond, WA,
United States: IEEE Computer Society, 2020, pp. 201–210.

214

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096545508&partnerID=40&md5=2774e8455ae5129ec7d46edcaf8c1022
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096545508&partnerID=40&md5=2774e8455ae5129ec7d46edcaf8c1022
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf
https://puppet.com/resources/report/2019-state-of-devops-report
https://puppet.com/resources/report/2020-state-of-devops-report/

[51] E. Bernard, F. Ambert, and B. Legeard, “Supporting efficient test automation using
lightweight MBT,” in Proceedings - 2020 IEEE 13th International Conference on Software
Testing, Verification and Validation Workshops, ICSTW 2020. 345 E 47TH ST, NEW
YORK, NY 10017 USA: IEEE; IEEE Comp Soc; Farfetech; Facebook; VMWare; Msg
Life; Google; New Work Se, 2020, pp. 84–94.

[52] M. A. Akbar, W. Naveed, S. Mahmood, A. A. Alsanad, A. Alsanad, A. Gumaei, and
A. Mateen, “Prioritization Based Taxonomy of DevOps Challenges Using Fuzzy AHP
Analysis,” IEEE Access, vol. 8, pp. 202 487–202 507, 2020.

[53] S. Li, Q. Xu, P. Hou, X. Chen, Y. Wang, H. Zhang, and G. Rong, “Exploring the Challenges
of Developing and Operating Consortium Blockchains: A Case Study,” in ACM Interna-
tional Conference Proceeding Series. New York, NY, USA: Association for Computing
Machinery, 2020, pp. 398–404.

[54] R. Colomo-Palacios, E. Fernandes, P. Soto-Acosta, and X. Larrucea, “A case analysis of
enabling continuous software deployment through knowledge management,” International
Journal of Information Management, vol. 40, pp. 186–189, Jun. 2018.

[55] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspective, ser. SEI
Series in Software Engineering. New York: Addison-Wesley, 2015. [Online]. Available:
http://my.safaribooksonline.com/9780134049847

[56] A. Alnafessah, A. U. Gias, R. Wang, L. Zhu, G. Casale, and A. Filieri, “Quality-aware
DevOps research: Where do we stand?” IEEE access : practical innovations, open
solutions, vol. 9, pp. 44 476–44 489, 2021.

[57] J. Roche, “Adopting DevOps practices in quality assurance,” Communications of the ACM,
vol. 56, no. 11, pp. 38–43, Nov. 2013.

[58] B. Snyder and B. Curtis, “Using Analytics to Guide Improvement during an Agile-DevOps
Transformation,” IEEE Software, vol. 35, no. 1, pp. 78–83, Jan. 2017.

[59] N. Forsgren, J. Humble, and G. Kim, Accelerate: The Science of Lean Software and
Devops: Building and Scaling High Performing Technology Organizations. USA: IT
Revolution, 2018. [Online]. Available: https://itrevolution.com/accelerate-book/

[60] A. Ravichandran, K. Taylor, and P. Waterhouse, DevOps for Digital Leaders: Reignite
Business with a Modern DevOps-Enabled Software Factory. USA: Springer Nature,
2016.

[61] M. Farshchi, J. G. Schneider, I. Weber, and J. Grundy, “Metric selection and anomaly
detection for cloud operations using log and metric correlation analysis,” Journal of Systems
and Software, vol. 137, pp. 531–549, 2018.

[62] D. Sun, M. Fu, L. Zhu, G. Li, and Q. Lu, “Non-Intrusive Anomaly Detection with Streaming
Performance Metrics and Logs for DevOps in Public Clouds: A Case Study in AWS,” IEEE
Transactions on Emerging Topics in Computing, vol. 4, no. 2, pp. 278–289, Apr. 2016.

[63] M. A. Akbar, K. Smolander, S. Mahmood, and A. Alsanad, “Toward successful DevSecOps
in software development organizations: A decision-making framework,” Information and
Software Technology, vol. 147, p. 106894, Jul. 2022.

215

http://my.safaribooksonline.com/9780134049847
https://itrevolution.com/accelerate-book/

[64] M. Waseem, P. Liang, and M. Shahin, “A Systematic Mapping Study on Microservices
Architecture in DevOps,” Journal of Systems and Software, vol. 170, 2020.

[65] W. John, G. Marchetto, F. Nemeth, P. Skoldstrom, R. Steinert, C. Meirosu, I. Papafili, and
K. Pentikousis, “Service provider DevOps,” IEEE Communications Magazine, vol. 55,
no. 1, pp. 204–211, Jan. 2017.

[66] T. Laukkarinen, K. Kuusinen, and T. Mikkonen, “DevOps in regulated software devel-
opment: Case medical devices,” in Proceedings - 2017 IEEE/ACM 39th International
Conference on Software Engineering: New Ideas and Emerging Results Track, ICSE-
NIER 2017. Tampere University of Technology, Tampere, Finland: Institute of Electrical
and Electronics Engineers Inc., 2017, pp. 15–18.

[67] R. Anandya, T. Raharjo, and A. Suhanto, “Challenges of DevOps Implementation : A
Case Study from Technology Companies in Indonesia,” in 2021 International Conference
on Informatics, Multimedia, Cyber and Information System (ICIMCIS, Oct. 2021, pp.
108–113.

[68] A. W. Miller, R. E. Giachetti, and D. L. Van Bossuyt, “Challenges of Adopting Devops for
the Combat Systems Development Environment,” Defense Acquisition Research Journal:
A Publication of the Defense Acquisition University, vol. 29, no. 1, pp. 22–49, Jan. 2022.

[69] A. A. Ur Rahman, L. Williams, A. A. U. Rahman, and L. Williams, “Software security
in DevOps: Synthesizing practitioners’ perceptions and practices,” in 1st International
Workshop on Continuous Software Evolution and Delivery, CSED 2016. New York, NY,
USA: Association for Computing Machinery, May 2016, pp. 70–76.

[70] H. Myrbakken and R. Colomo-Palacios, “DevSecOps: A multivocal literature review,”
Communications in Computer and Information Science, vol. 770, no. 1, pp. 17–29, 2017.

[71] A. Al-marsy, P. Chaudhary, and J. Rodger, “A model for examining challenges and op-
portunities in use of cloud computing for health information systems,” Applied System
Innovation, vol. 4, no. 1, p. 20, 2021.

[72] C. P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich, P. Jamshidi, W. Shang,
A. Van Hoorn, M. Villavicencio, J. Walter, and F. Willnecker, “How is performance
addressed in DevOps? A survey on industrial practices,” in ICPE 2019 - Proceedings of
the 2019 ACM/SPEC International Conference on Performance Engineering. New York,
NY, USA: Association for Computing Machinery, 2019, pp. 45–50.

[73] A. Hemon, B. Fitzgerald, B. Lyonnet, and F. Rowe, “Innovative Practices for Knowledge
Sharing in Large-Scale DevOps,” IEEE Software, vol. 37, no. 3, pp. 30–37, 2020.

[74] I. Kumara, M. Garriga, A. U. Romeu, D. Di Nucci, F. Palomba, D. A. Tamburri, and W.-J.
van den Heuvel, “The do’s and don’ts of infrastructure code: A systematic gray literature
review,” Information and Software Technology, vol. 137, p. 106593, Sep. 2021.

[75] N. Forsgren and J. Humble, “DevOps: Profiles in ITSM Performance and Contributing
Factors,” SSRN Electronic Journal, p. 25, 2015.

[76] J. Díaz, J. E. Pérez, M. A. Lopez-Peña, G. A. Mena, and A. Yagüe, “Self-service cybersecu-
rity monitoring as enabler for DevSecops,” IEEE Access, vol. 7, no. 1, pp. 100 283–100 295,
2019.

216

[77] E. E. Romero, C. D. Camacho, C. E. Montenegro, Ó. E. Acosta, R. G. Crespo, E. E. Gaona,
and M. H. Martínez, “Integration of DevOps Practices on a Noise Monitor System with
CircleCI and Terraform,” ACM Transactions on Management Information Systems, vol. 13,
no. 4, pp. 36:1–36:24, Aug. 2022.

[78] F. Erich, C. Amrit, and M. Daneva, “Cooperation between information system development
and operations: A literature review,” in Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, ser. ESEM ’14. New
York, NY, USA: Association for Computing Machinery, Sep. 2014.

[79] A. Trigo, J. Varajão, and L. Sousa, “DevOps adoption: Insights from a large European
Telco,” Cogent Engineering, vol. 9, no. 1, 2022.

[80] Cambridge, “CULTURE | meaning in the Cambridge English Dictionary,” 2021. [Online].
Available: https://dictionary.cambridge.org/dictionary/english/culture

[81] João Faustino, Rúben Pereira, Bráulio Alturas, and Miguel Mira Da Silva, “Agile informa-
tion technology service management with DevOps: An incident management case study,”
International Journal of Agile Systems and Management, vol. 13, no. 4, p. 339, 2020.

[82] A. Hemon-Hildgen, F. Rowe, and L. Monnier-Senicourt, “Orchestrating automation and
sharing in DevOps teams: A revelatory case of job satisfaction factors, risk and work
conditions,” European Journal of Information Systems, vol. 29, no. 5, pp. 474–499, Sep.
2020.

[83] W. P. Luz, G. Pinto, and B. Bonifacio, “Building a Collaborative Culture: A Grounded
Theory of Well Succeeded DevOps Adoption in Practice,” in PROCEEDINGS OF THE
12TH ACM/IEEE INTERNATIONAL SYMPOSIUM ON EMPIRICAL SOFTWARE ENGI-
NEERING AND MEASUREMENT (ESEM 2018), Oulu, Finland, 2018, p. 11.

[84] A. A. Khan and M. Shameem, “Multicriteria decision-making taxonomy for DevOps
challenging factors using analytical hierarchy process,” Journal of Software: Evolution
and Process, vol. 32, no. 10, Oct. 2020.

[85] B. Fitzgerald and K.-J. Stol, “Continuous software engineering: A roadmap and agenda,”
Journal of Systems and Software, vol. 123, pp. 176–189, Jan. 2017.

[86] J. Angara, S. Gutta, and S. Prasad, “Devops with Continuous Testing Architecture and
Its Metrics Model,” in Advances in Intelligent Systems and Computing, vol. 709. K.L.
University, Vijayawada, AP, India: Springer Verlag, 2018, pp. 271–281.

[87] L. Marrero and H. Astudillo, “DevOps-RAF: An assessment framework to measure
DevOps readiness in software organizations,” in 2021 40th International Conference of the
Chilean Computer Science Society (SCCC). Chile: IEEE, Nov. 2021, p. 8.

[88] F. Helwani and J. Jahić, “ACIA: A methodology for identification of architectural design
patterns that support continuous integration based on continuous assessment,” in 2022
IEEE 19th International Conference on Software Architecture Companion (ICSA-C), Mar.
2022, pp. 198–205.

[89] K. Kuusinen, V. Balakumar, S. C. Jepsen, S. H. Larsen, T. A. Lemqvist, A. Muric, A. Ø. O.
Nielsen, and O. Vestergaard, “A large agile organization on its journey towards DevOps,”

217

https://dictionary.cambridge.org/dictionary/english/culture

in Proceedings - 44th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA 2018, B. T. and A. L., Eds. University of Southern Denmark,
Odense, Denmark: Institute of Electrical and Electronics Engineers Inc., Aug. 2018, pp.
60–63.

[90] R. Amaro, R. Pereira, and M. Mira da Silva, “Capabilities and Practices in DevOps: A
Multivocal Literature Review,” IEEE Transactions on Software Engineering, vol. 1, p. 20,
2022.

[91] R. Amaro, R. Pereira, and M. M. da Silva, “DevOps Metrics and KPIs: A Multivocal
Literature Review,” ACM Computing Surveys, Mar. 2024.

[92] S. Martínez-Fernández, A. M. Vollmer, A. Jedlitschka, X. Franch, L. López, P. Ram, P. Ro-
dríguez, S. Aaramaa, A. Bagnato, M. Choraś, and J. Partanen, “Continuously Assessing
and Improving Software Quality With Software Analytics Tools: A Case Study,” IEEE
Access, vol. 7, pp. 68 219–68 239, 2019.

[93] S. Rafi, W. Yu, M. A. Akbar, S. Mahmood, A. Alsanad, and A. Gumaei, “Readiness model
for DevOps implementation in software organizations,” Journal of Software: Evolution
and Process, vol. 33, no. 4, Oct. 2021.

[94] G. Rong, H. Zhang, and D. Shao, “CMMI guided process improvement for DevOps
projects: An exploratory case study,” in Proceedings - International Conference on Soft-
ware and System Process, ICSSP 2016. New York, NY, USA: Association for Computing
Machinery, 2016, pp. 76–85.

[95] S. Baškarada, V. Nguyen, and A. Koronios, “Architecting Microservices: Practical Op-
portunities and Challenges,” Journal of Computer Information Systems, vol. 60, no. 5, pp.
428–436, 2020/09/02/Number 5/September 2020.

[96] J. A. V. M. K. Jayakody and W. Wijayanayake, “Challenges for adopting DevOps in
information technology projects,” in 2021 International Research Conference on Smart
Computing and Systems Engineering (SCSE). Colombo, Sri Lanka: IEEE, Sep. 2021,
pp. 203–210.

[97] R. Westrum, “A typology of organisational cultures,” Quality and Safety in Health Care,
vol. 13, no. SUPPL. 2, pp. 22–27, 2004.

[98] V. Garousi, M. Felderer, and M. V. Mäntylä, “Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering,” Information and
Software Technology, vol. 106, no. September 2018, pp. 101–121, Feb. 2019.

218

	Acknowledgment
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of Code
	List of Acronyms
	Introduction
	Motivation
	Research Problem
	Objective
	Research Background
	DevOps Adoption
	DevOps Capabilities and Practices
	DevOps Metrics
	DevOps Life Cycle Processes
	DevOps Challenges and Benefits
	DevOps Outcomes
	DevOps Culture

	Research Communication
	Thesis Organization

	Article #1
	Introduction
	DevOps
	Multivocal Literature Review
	Research Design and Implementation
	Conducting the MLR
	Reporting the MLR
	Conclusion

	Article #2
	Introduction
	DevOps
	Multivocal Literature Review
	Conducting the MLR
	Reporting the MLR
	Discussion and Findings
	Conclusion

	Article #3
	Introduction
	Related Work
	Research Methodology
	Capabilities and metrics multivocal literature reviews
	Research proposal
	Evaluation
	Conclusion

	Article #4
	Introduction
	Research Background
	Research Methodology
	First SLR: List of Benefits
	Second SLR: Empirical Evidences of DevOps Benefits
	Results and Discussion of DevOps Empirical Evidences
	Challenges in DevOps Adoption: The Other Side of the Coin
	Validity of the SLRs
	Conclusion

	Article #5
	Introduction
	Research Background
	Systematic Literature Review
	Reporting the Literature Review
	Discussion
	Conclusion

	Article #6
	Introduction
	Background and Related Work
	Research Methodology
	Results
	Discussion
	Conclusion

	Conclusion
	Summary and Discussion
	RQ1: What are the key DevOps capabilities, metrics, and processes that have the most positive impact on DevOps adoption?
	RQ2: How can organizations effectively apply key DevOps capabilities, metrics, and processes to overcome adoption challenges?

	Closing Remarks
	Limitations
	Future work

	References

