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"This result 1s too beautiful to be false; it is more important to have beauty in one’s
equations than to have them fit experiment.”
-Paul Dirac (1963)
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Resumo

Esta tese oferece solugoes novas para avaliar caps e floors de maturidades perpétuas
e finitas em fluxos continuos considerando receitas e custos estocasticos. Primeiramente,
apresentamos o trabalho de Margrabe (1978) e McDonald & Siegel (1985) sobre opgoes de
troca do tipo europeu, assumindo que ambos os ativos pagam dividendos, e de seguida,
seguindo as ideias de Shackleton & Wojakowski (2007), ampliamos a literatura anterior
sobre caps e floors ao fornecer novas formulas analiticas para avaliar caps e floors de ma-
turidade finita que sao contingentes a fluxos continuos usando o método da decomposi¢ao

temporal.






Abstract

This thesis offers novel analytical solutions for evaluating perpetual and finite maturity
caps and floors on continuous flows where both the revenue and the cost are stochastic.
We first present the work of Margrabe (1978) and McDonald & Siegel (1985) on European
exchange options, assuming both assets pay dividends, and then, following the insights
of Shackleton & Wojakowski (2007) we extend the previous literature on caps and floors
arrangements by providing new analytical formulae for valuing finite maturity caps and

floors that are contingent on continuous flows using the time decomposition method.
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CHAPTER 1

Introduction

In finance, a cap is a type of interest rate (or commodity) derivative in which the
buyer receives payments at the end of each (predetermined) period when the interest rate
exceeds the agreed strike price. An example of a cap would be an agreement to receive a
payment at the end of every month when the Secured Overnight Financing Rate (SOFR)
rate exceeds 3% over the next 3 years. Similarly, an interest rate floor is a derivative
contract in which the buyer receives payments at the end of each period when the interest
rate is below the agreed strike price. Some caps and floors offer a fixed payment, but some
can offer the difference between the underlying rate (or commodity price) and the agreed
strike price. These derivatives can be analysed as a series of Black & Scholes (1973) and
Merton (1973) European call (or put options), known as caplets (or floorlets), that offer
the difference between the underlying rate (or commodity cost) and the strike price at
maturities corresponding to the end of each period where the cap (or floor) is in existence.
Thus, a cap or floor can be seen as the sum of a series of caplets (or floorlets) over the
horizon of the cap’s (or floor’s) maturity.

The interest rate and commodity literature has valued discrete caplets and floorlets
using Black (1976) model and their summation. In the limit, as the time between maturi-
ties of each caplet (or floorlet) becomes increasingly small, caps and floors on continuous
flows can be described. These instruments have been studied in the work of Shackleton &
Wojakowski (2007) where each caplet (or floorlet) is a Black & Scholes (1973) and Merton
(1973) European call (or put) option.

Other streams of the literature have also studied contingent flows. Within real options,
to name a few, McDonald & Siegel (1985) and Dixit & Pindyck (1994), all motivate,
discuss and value, the perpetual continuous cash flow from a project that captures the
positive part of a stochastic net profit while avoiding losses.

Using terminology from the real options literature, we now treat the interest rate
(or commodity price) as the revenue process S of a project that generates cash at an
instantaneous rate of flow Sdt. The literature above, now describes a flexible project as a
sum of the instantaneous net profit, S — K (revenue S less cost K), where the project can,
at anytime and without a cost, cease operation for as long as the net profit is negative, and
at anytime and without a cost, resume operation when the net profit is positive. Over an
infinite horizon, these papers evaluate continuous perpetual cash flows which are the sum
of an infinite continuum of European style options (caplets or floorlets), while Shackleton
& Wojakowski (2007), study the finite horizon case. Analytical solutions for (perpetual

and finite) caps and floors on continuous exchange flows have recently been given in Dias,
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Nunes & Silva (2024). This thesis will offer analytical formulae for evaluating (perpetual
and finite) caps and floors on continuous flows using the time decomposition technique of
Shackleton & Wojakowski (2007), though we will consider not only the revenue process
S (hereafter S7) to be stochastic but also the cost process K (hereafter Sy) to be also
stochastic by nature. This will imply that the continuous cash flows are now not a sum
of an infinite continuum of European style options but a sum of an infinite continuum
of European exchange options, which are studied in the works of Margrabe (1978) and
McDonald & Siegel (1985).

The thesis is organized as follows. In chapter 2 we will layout the model presented by
Margrabe (1978) and McDonald & Siegel (1985) for valuing European exchange options
assuming that both risky assets continuously pay dividends. In chapter 3 we will derive
the analytical formulae for evaluating (perpetual and finite) caps and floors on continuous

flows. Finally, chapter 4 concludes.



CHAPTER 2

Exchange options on dividend paying assets

We begin our work by laying out the model to price a claim to exchange an asset S
for another asset Sy at time T', where these assets pay dividends continuously over time
and can be correlated. Margrabe (1978) valued the claim where the assets do not pay
dividends and McDonald & Siegel (1985) valued the claim where assets pay dividends. We
will then value the claim using the change of martingale measure approach and present a

closed form solution.

2.1. Model specification under the physical measure

Following Margrabe (1978) and McDonald & Siegel (1985) models, we suppose two P-
measured standard Brownian processes (W7,);>0 and (W3,)i>0, which are defined on a
filtered probability space (2,4, F,P). We assume that the price of the risky assets S

follows a geometric Brownian motion, that is

as
L — (g — 6y)dt + o dWT, (2.1)
St ’
and the price of the risky asset Sy also follows a geometric Brownian motion, that is
ds
S 2t = (/,LQ — 52)dt -+ O'gdet, (22)
2,

with covariance

(dsu dSs,
U )

St Say
where the constants p; and uo are the expected rates of return on the risky asset S

) = p1’20'10'2dt, (23)

and S5, 0; and &9 are the corresponding dividend yields, o; and o, are the corresponding

standard deviations and p; o is the correlation between S; and Ss.

2.2. Model specification under the risk-neutral measure

For pricing purposes, equations (2.1) and (2.2) must be rewritten under measure Q,
that is a martingale measure associated to the numéraire money-market account.
We define \; = “;—:T, where r is the risk-free interest rate, \; is the risk-premium and
o; the standard deviation of the asset S;. Replacing this in equations (2.1) and (2.2)
yields the risk-neutral processes for the risky assets prices:
dSz t P .
= = (r —0;)dt + o, (dW;, + Nidt), 1 € {1,2}
S ’ (2.4)
= (r—6,)dt + o;dW5, i€ {1,2}.




The Brownian processes dWi(% = dW}, + N\idt are the new Q-measured Brownian motions

(with the same standard filtration as dWW},).
2.3. Orthogonalization of the pricing system

For our approach it is more convenient to work not with correlated Brownian motions
Wl(% and Wgt, but rather with standard Q—independent Brownian motions Z% and Z%.
Given the correlation structure of equations (2.1) and (2.2), Wg and W;% can be

rewritten as a linear combination of Z;th and Z%. We define:

AWE, = p12dZ3, +\/1— p? ,dZY, (2.5)

AWy, = dZ3,. (2.6)

Then (W%)tzo and (Wé%)tzo are a continuous martingale with Wi% =0 and WSO =0 and

dWl@tdW% = P%QdZ;thdZ;th + 2:01,2\/ - p%,2dZintdZ(2th +(1— p%,Q)dZ(letdZ(let
= P%,z dt +0+ (1 - Piz) dt
=dt
AWEdWy, = dZ3,dZ3,
= dt,
because according to the one-dimensional Lévy’s theorem (W%)tzo and (W%)tzo are
Brownian motions under Q.

The Brownian motions (W%)tzo and (W;%)tzo are correlated. According to Ito’s

product rule,
AWEWE) = WEAWS, + Wi dW, + dWE,dWy,
= WEAWR, + WEAWE + py odt
Integrating, we obtain
t t
0 0
By definition, the It6 integrals on the right-hand of the previous equation have expec-
tation zero, so the covariance of (W%)tzo and (W;%)tzo is
E[W%Wé%] = pl,gt.

Because both (Wl(%)tzg and (W;th)tzo have standard deviation v/#, the constant p, 5 is
the correlation between (W%)tzo and (W;%)tzg.
Therefore, using equation (2.4), the model can be restated, under measure Q, as

ds
T == adt+ o (12028, + \J1 = p3, 025,

dSs,
Say

(2.7)

= (’I“ — 52)(# + 02 ngt



2.4. European exchange options

We will now define a claim to exchange an asset S; for another S, at maturity 7'

DEFINITION 2.1. The time-T value of a European-style exchange option on the asset

S1, with strike price So and expiry at time T is:

mr (Sl,Ta 527T7 T) = max (Sl,T — Sg}T, 0) . (28)

We will price this option as the time-t expectation value of its discounted cash-flows:
my(Sy, So4, T) = ¢ "B [maz (S10 — Sar, 0) |F], (2.9)

where the probability measure Q is the risk-neutral probability for the pricing problem
and 7 =T —t.
We could analytically solve the expectation problem, but we will use a change of

numéraire measure to simplify it.

2.4.1. Change of numéraire approach

Applying the logarithm transformation for S, under the risk-neutral probability

measure Q, results that:

0_2 T
SQ’T = Sgyt exXp |:(7’ — 52 — 72) T+ (72/ ngu:|
t

2 - (2.10)
= SZ,te(r_‘b)T exp |:(—?2) T+ 0'2/ dZSu:| .
t
we now define the Radon-Nikodym derivative as
dQ* ( o3 /T @>
=exp | ——=7T+o0 dZs, | (2.11)
dQ 2 2], T
or in matrix form
dQSQ 1 T ) T
= —= — .dZ2 2.12
i —ow (g [ lelpa- [Ce.azg), (212)

where Z9 = (Z(Su, Z(z@u) is a multidimensional Brownian motion on a probability space

(Q,F,Q) and © = (0, —03).

We can verify the Novikov condition:

2 o (5 [ 1017 ) | =2 [exp (ot - )]
= exp (%O‘%T) < 00,

so we can apply the two dimensional Girsanov’s theorem to prove that the new measure
Q% is equivalent to Q and we can define the relation between Z% and Zi@f * as well as
5



between Z;% and Z(QQE *
dz%” = dz2, (2.13)
dZ2” = dZY, — ondt. (2.14)
The process Zi@SQ = (Z?f 2,dZ@ ®) is a 2-dimensional Brownian motion under the new
measure Q%2, hence the component processes ZZ(%SZ are independent under Q2.

With this and equations (2.10) and (2.11) we can rewrite the pricing equation (2.9)

under the new measure Q°:

me(S1t, S2.4,T) = e "TREQ [max(Sy 1 — Sa.r,0)]

= ¢ ""EQ [max (S’ZT (E —1 O))}
So,r

(2.15)
_ _ Sir dQ®
— e TS (r 62)7—EQ = 1.0
e 9.1€ max S , a0
= Sy "E®™ [max (Cr — 1,0)] .
We still need to find the distribution for the ratio process C; = 22t under Q2. For this,

we begin by writing the equation for the ratio process C; under the risk-neutral measure

Q. By Ito’s product rule:

oC, aC,
dC, = ——tdt + d
Co=— a&t&t
dC, 1 [0%C, ) d*C, *C,
- 9~ —°
* 955,00+ 3 {asit R o e T Tl G
1 S
=0+ = [(r — 01)S1pdt + 01 S1, dWE] — T35 [( — 05) St + 722, dWY]
5215 S2t
17 2
+ 0 + 5 {—@ ((7” - (Sl)Slﬂgdt + 0'1517tdW{%) ((7“ — 52)527tdt + O—QSQ,tdWé%:)}

1128
- —317t ((7” — 02)S2¢dt + 0255 tdWQQt)2
2 s, | -

= Cy(r — 81)dt + CyodW, — Cy(r — 82)dt — CroadWyl, — Cho109p1 2dt + Cro3dt.

Hence, under the risk-neutral probability measure QQ, we have:

ac,
Ft = ((52 - 51 + 0'% - 0'10'2p172) dt -+ JldW{% — O'QdWQ(%. (216)
t

We can rewrite this equation under the new measure Q2. Using equations (2.5) and (2.6)
we have that:
e

C (52 61 ‘l‘O'g —0'102p172) dt—FUldet —UgdWSt
t

= (52 - (51 -+ O'g — 0'10'2p172) dt + O'l(pl,QdZSt + z/ 1— pide%) — Ugdzgt.



Using equations (2.13) and (2.14) we have that:

dC

—_— = (52 — 51 + 0'% — 0'10‘2p172) dt
C

+ 01(pra(dZ87 + oadt) + /1 — p3,dZ87) — 02(dZ2) + odt) (2.17)

So / So
= ((52 — (51) dt + (p1,20'1 — Ug)dZéth + 01 1— piQdZ;th s

where Z(l@f * and Z;@ts * are independent under Q2. Moreover, we have
S S. S S S
E?” [(P1,201 - 02)dZ§t2 + 014/ 1- pizdzgf} = (01,201 - UQ)EQ ’ [dzé%ﬂ

+oy/1—pi, E®" [dZ%SQ}

=0
and

SQ SQ SQ
Var (p1720'1 — Jg)dZSt + 014/ 1-— pide(let :| = (pLQO’l — O'2)2 Var [dZéth :|

2
+ (O'M /1— pi2) Var [dZ%SQ]

= (O’% + 03 — 2p1,20f<7§) dt

Therefore, as ((p1201 — 0'2)ng52 +o14/1— piQdZ%%) ~ N(0,02dt), we can rewrite

equation (2.17) as

dC
Et = (0 — 61) dt + o, de%SZ (2.18)
(01,201—02)dZ§Qf2 +o1 mdzg?

Oc

So .
where 0. = \/07 + 03 — 2p120703 and WS = is a Brown-

ian motion! under Q%2.

2.4.2. Pricing formula

The next proposition shows, the closed-form solution of a European-style exchange option.

PROPOSITION 2.1. The price of a European-style exchange option at time t < T" where
T=T —1, is given by:

my (Sl,t> S2,t> T) = Sl,teiéﬁq)(dl(sl,b S2,t, T)) - 82,t€7627q)(d0(51,t7 52,15» 7)) (2-19)

S S
IThis can be proven using Lévy’s Theorem knowing that alZﬁlQit2 and dZ;Qitz are independent Brownian
motions under Q%z.

7



where:
T=T-—1,

e
do(Sve, Sa7) = 2 () +U<fj; o) |

dl(Sl,t; 5271:, 7') = d2(51,t7 S2,t, T) + O-C\/;a

— 2 2
O, = \/0'1 + 0y — 2p1,20'10'27

and ®(x) is the cumulative standard normal distribution.

PRroOF. ;
mi(Se, Sop, T) = 526_527E9 : max (Cr — 1,0) | F]

L (2.20)
= S BT [(Cr — 1) Lyepsy | Fe] -

We may write

] o2 . o
[ 0_2 WCQSQ o Wé@SZ
= Ciexp (52_51_7(:)7'4-00 ,T\/? v
2

= Crexp | (0 — 01 — %)7’ — O'CY\/F:|

\/F] (2.21)

w2 %2

where Y = —C’TTT” is a standard normal random variable independent of F; since

WCQ? — ng2 is independent of F;.

Therefore, with C; = x, equation (2.20) can be rewritten as

my(Sy, Sa0, T) = Spe TEL™ [(Cr — 1) Loy | ]

o2
= Sge"SZTlE;QS2 Kme(‘b‘sl?”"cyﬁ — 1) ]l{CTzl}‘—F;‘,‘|

= Sge_(szTL e $e(52—51—§)7—acyﬁ _1 * 6_%y2dy
V2T J oo .

2
c

The integrand
_l’_
<xe(626102)7—0'3y\/‘? _ 1>

is positive if and only if

y < do(,1,7) = giﬁ {m () + <52 - %) T} . (2.22)




Therefore,

( ) N R & 2
my(S1, S24, 1) = Spe™ " —= xel%2 0= T)TIOUVT ] ) emal gy
7 ’ V2T J o

2526—527L do(z,1,7) xe(&—&—é)’r—ocyﬁ 6_%y2dy
V2T J-owo

1 do(z,1,7)
- 526_52T—27T / 6_%y2dy

o gen-inr_L (O iorrisamid

= 826_ 2T pp(02—01)7 _ — e~ 2(0eTH20cyVTHy dy
v 2T /_oo

— Sye” 7D (dy(z,1,7))

1 do(z,1,7) ) )

R T —— e~ 2 (WFoeVT) dy
V2T J oo

— Soe 2D (dy(x, 1, 7)).

With the change of variable z = y + 0.4/7, where d;(z,7) = do(x, 1, 7) + 0c/7, then
d (171177—)"!‘0%\/77'
m (S, Sa, T') = 526_627xe(52_51)7L/ ’ e 2 dy
7 7 V2T J oo

= S2e7"®(do(w, 1,7))
= Soe 27227007 D(dy (2,1, 7)) — Spe 27 ®(dy(x, 1,7)).

Finally, since x = C; = %
my(Sy 4, o, T) = Sape” 7wV (dy (2,1,7)) — Sape " ®(do(, 1, 7)) (2.23)
2.23
= S, D(dy (S14, So, 7)) — Sa4e 27 ®(do(S1 4, Sat, 7))
]






CHAPTER 3

Finite maturity caps for exchange options

We will now define the real options problem of this thesis, the model assumption and
then derive the formulae for the perpetual case, the forward starting perpetual case and

finally combine the two to get the finite case.

3.1. Real options problem
Following Dixit & Pindyck (1994, pages 186-195) and Shackleton & Wojakowski

(2007), we consider a continuous price or revenue process S; that generates cash at an
instantaneous rate of flow S;dt. The risk-neutral dynamics are described as:

dShy
S1

where the constant r is the risk free interest rate, ¢; is the dividend yields of asset S

= (r—6p)dt + Ulde, (3.1)

and o is the corresponding standard deviation and (Wl(%)tzg is a standard Brownian
motion under the risk-neutral measure Q. We will also assume that operation of the
project entails a flow cost Sy, but that the operation can be temporarily and costlessly
suspended when S falls below S5, and costlessly resumed later if S; rises above S;. In
Dixit & Pindyck (1994, pages 186-195) and Shackleton & Wojakowski (2007) the flow
cost S5 is constant and known. For our work, we will consider that it follows the following

risk-neutral dynamics:

dSay
So
where the constant r is the risk free interest rate, d5 is the dividend yields of asset Sy and

= (T‘ — 52)dt + O'QdWé%, (32)

09 is the corresponding standard deviation and (Wé%)tzo is a standard Brownian motion
under the risk-neutral measure Q. We also assume that S; and Sy can be correlated, that

18

dSip dSa
: = | = dt. 3.3
cov ( Sl,t ) S2,t ) P1,20102 ( )

Therefore, at any instant ¢, the profit flow from this project is given by:
7r(Sl,ltv S2,t> = max [Sl,t — Sat, 0]. (3.4)

Let V'(S1, So, T') be the time-t value of a flexible finitely lived project (or profit spread

cap). This value can be derived from a perpetual cash flow based on the maximum

11



instantaneous flow rate, m(S1 ¢, S2¢)dt. Under the risk-neutral measure, this is given by:

T
Vi(Si4, S04, T) = / e "IER [7(S1us S2.u) | Fi] du
t (3.5)

T
- / mt(SLu s SZu s u)du,
t

where m(S1, 52+, u) is interpreted as the time-¢ price of a exchange option (or caplet)
on an asset S7 with exercise price of another asset S,, and with expiry date at time u(> t),
with fair price derived in chapter 2.

Even though it is possible to solve the integral (3.5) numerically, we will follow the
insight of Shackleton and Wojakowski (2007) to evaluate this problem using the time
decomposition method:

Vt(SLt, Sz,m T) = Vt(SLt, 52,15, OO) — e "R [VT(Sl,Ta SQ,T: OO)|~7:t] . (36)

To accomplish this, we will first derive the perpetual real options solution of this problem
in the Section 3.2 and then the corresponding forward start perpetuity will be derived in
the Section 3.3. Finally, in the Section 3.4, we will combine the two solutions to provide
a formula for the finite problem above.

3.2. Perpetual case
3.2.1. Perpetual real options problem

The time-t value of an infinitely lived project or profit spread cap, V (S, Sa,00), is the
”continuous and perpetual sum” of instantaneous maximum flows, 7(S};, Sa.)dt, where
7(S1.4, S24) = max(Sy s — Sa4,0), over a stochastic revenue S, and a stochastic cost Sa .
Its expected value computed under the risk-neutral measure Q, and conditional to the

information available until time t, is given by:

Vi(Shs, Sy 00) — / e IES [1(S, ., o) | 1] du

t
= mt(SLt, Sg7t,u)du. (37)
t

The perpetual real options problem under analysis needs to be specialized in each
of the cases S1; < S+ and S;; > Sp,;. For the range of prices where S7; < Sy the
(perpetual) claim V(S 4, Say, 00) must satisfy the following partial differential equation
(PDE):

1 0%V, 0%V,
- O'%S%t—; +2p1 20’10’251 tSQt + JSSSt—Qt -+
2 oSt ’ T 0853,
’ ’ (3.8)
+ (T — 51) Sl t

+ (T_52)82t

12



For the range of prices where S;; > Sy, the (perpetual) claim V;(S), S, 00) must
satisfy a similar PDE, but now containing the profit flow (S;; — Ss;), that is:
1 0?V, 0%V,
— <O’%S2 -t +2,01,20'10'251,t52,t + 0'352 t) +

3 \“1%iigs, 0953, )

+ (r —d2) So¢ —7"‘/}-1”(51,1:—52,::):0-

We can solve these PDEs in each of the ranges, S1; < S3; and S;; > Sy, under
some conditions and then ”stitch them together” using the respective value matching and
smooth pasting conditions.

3.2.2. Perpetual caps

Next proposition produces a formula for valuing the perpetual claim using the usual
PDE theory with the appropriate constraints.

PROPOSITION 3.1. The time-t value of a perpetual cap on continuous flows is given
by:

B+
1 B_—1 B S1,t
V(S . g BBy [ T E} St (E) 191 < Sy 510
) = , )
( 1ts P2t ) 1 [Bemt By g Sue B— N Sie Sau ¢ >3 ( )
B——B+ 61 d2 2t Sa.t o 0o s D1t = P2t

where the constants, B, > 1 and f_ < 0, are given by:

(1 -0 5 —01  1\° 26
= (500 (B2 1) 2 1)

ProoOF. We let Vi(z,y) = lim, ., Vi(x,y,7) denote the value of the perpetual cap

at time ¢, if the underlying assets at that time are x = 57, and y = Sy, and that this
(perpetual) cap follows the following PDE:

1 2 2

— afxza Vi +2p1 201022y + onga Vi +

2 0x? 0y? (3.12)
+ (r—dl)x%—l— (r—t@y%—‘j — rV; + max(z — y,0) = 0.

We first note that, as stated by Margrabe (1978), the pricing formula of an option to
exchange an asset for another, m;, is homogeneous of degree 1 in x and y and therefore

V' (z,y) is also homogeneous of degree 1. Hence, we can define Vi(z,y) = yfi(c) where ¢ =

13



% to simplify the problem to a 1-dimensional case. Successive differentiation yields:

OVi(x,y)  dfi(c)

oxr de’
Vi(x,y) dft( )
PViwy) _ PR 1
ox? Az y’
PVi(w,y) _ 0Vilz,y) _ dfile) ¢
oxdy  Oyor dc2 vy’
*V(x,y.t) _ d*fi(c) ¢
0%y de?  y’

Substituting this in the PDE (3.12) yields:

d2 4 d2 t d2 ; 9
o (2 ) e ((£43) (24
+ [(7’ —61)w <%) + (r —62)y (ft - C%) —r(yfi) + ymax(c — 1, O)} =0.

Dividing both sides by y (> 0):

2 2 2
% {0%02 (Cfl—cf;) + 2p120102¢ ( (jiét) +ojc (Cflét)]
+ [(7‘ — d1)c (%) + (r — 09) (ft - c£> —rf, + max(c — 1,0)} =0.

Simplifying the equation and grouping the terms yields:
2 & i

2 2
01 + Oy — 2p1’20'10'2:| C —=

de2
+ [(52 — 51)0% — o fr + max(c — 1, O)} = 0.

5l

Defining 02 = 0% + 03 — 2p; 20102 we have:

0'(2302 d2ft dft
) + (09 — 51)0% — dofy + max(c —1,0) = 0. (3.13)

We note that the homogeneous part of the ordinary diferential equation (ODE) (3.13) is

one of Euler type:

o2c?  d> d

% (5 s Gf =0, (3.14)
which by the usual ODE theory has solutions of the form f,(c) = ¢, where 3 is a constant
to be determined. Substituting this solution into the equation (3.14) we see that the

solution satisfies the equation provided f is the root of the quadratic equation, ¢(3) = 0,
with ¢(5):

4(B) = 50°(8 1)+ (52—~ 81) — b (315)

14



The equation above has two roots, By (> 1) and f_ (< 0) given by:

(1 &4 & —0  1\* 25
e (50 (B2 1) 2 3.1

Hence, the solution of equation (3.14) must have the following form:

file) = Kicd®* + Kac®~. (3.17)

Since the profit flow max(c — 1,0) of the equation (3.13) is defined differently when
¢ > 1 and ¢ < 0, we solve the equation separately for ¢ > 1 and ¢ < 1, and then, "we
stitch together” the two solutions at the point ¢ = 1 where the two regions meet.

In the region ¢ < 1, we have that the profit flow is zero, and only the homogeneous
part of the equation remains. Therefore, the general solution on this region is given by
equation (3.17).

In the region ¢ > 1 the profit flow of the equation (3.13) is present so the general
solution is equal to (3.17) plus any particular solution of the full equation. A simple
substitution shows that ( — %) satisfies the equation.

Therefore, the general solution for the equation (3.13) is of the form:

KB+ 4+ KycP- ,e<1
fi(Cr) = . (3.18)

Kic" + Kicf- + 5 — 5 ,e>1
The constants in the solutions are determined using considerations that apply at the
boundaries of the regions. In the region ¢ > 1, when ¢ becomes very large, the suspension
option is unlikely to be invoked except perhaps in the very remote future, so its value
should be zero. For this we should rule out the positive power of ¢ in the solution, by
making K7 = 0. In the region ¢ < 1, as ¢ nears zero the expected present value of future
profits should then go to zero, and so should the value of the project. For this we should
rule out the negative power of ¢ in the solution, by making Ky = 0. Hence the solution is

of the form:
KB+ ,c<1
K505—+£—é ,c2>1

This still leaves two constants, for which we consider the point ¢ = 1 where the two regions
meet. Using the value-matching and smooth-pasting conditions, the constants K and
K7 must solve the following system:

K361 4 b = K e

(3.20)
Kic’ + i é = K cP+

15



with c =1

(3.21)
* 1 1 _
Ki+5 —5 =K
1 B+—1 B *
= [ T Tﬂ = K;
& (3.22)
1 -1 _ p-| _
B——B+ [ T 52] = I
Substituting this in (3.19) yields:
1 f_—1 B—
R [ T 5_2} r o<1
file) = U Th 5 1 (3.23)
= 4 - c
ﬂf—m[él _E]C tn s ezl

We can now unwind the change of variable to get the solution of equation (3.12). Given

that W(:L‘,y) — yft(C), Sl,t =2z, 527t =y and %:: =C

_ » B+
/g_iﬁ_'_ |:6751 L 65_;} S2,t (%) 751,1& < Sg’t
W(Sl,b 82,1:7 OO) = . (324)

B_
1 Br—1 B+ S1,t S1,t Sa,t
B——B+ [ o E} Szt <E) t35 -5 S = S

O

Before proceeding to the next section, we will rewrite equation (3.10) under a different
notation that will facilitate the derivation of the forward starting perpetuity of the problem
at hand:

DEFINITION 3.1. We define a mapping function B(z) expressed as:

(1 B—1 _ B —
ﬁf—m[ 51 _E] @ =By

Blz)={ &7 N (3.25)
1 _
E , U = 1
1
L g , r = 0

Using Definition 3.1 and the indicator function, we can rewrite equation (3.10) as:

S B+
Vt(Sl,t, S2,t> OO) = B<5+)52,t (%) ]1{51,15<S2,t}+
¢

)

o\ (3.26)
+ (B(I)SM — B(0)Sy + B(8_)Ss, (f) ) L5y ,55.)-

2,t
3.3. Forward start perpetual case
3.3.1. Forward start perpetual real options problem

Since the caplets contained within the integral (3.5) are of European-style, we can compute
the finite cap integral from the perpetial cap by subtracting the risk-neutral expectation
16



of the forward start perpetual cap, that is
W(Sl,h S2,t>T) = Vt(sl,t, Sats 00) — e "TE® [VT(SLT, So.r, o) |, (3.27)

where the risk-neutral expectation of the forward starting perpetual cap can be expressed

as

€7TTEQ [VT(Sl,Ta SgyT, OO)’.Ft] = / 67T(T*t)EQ [mT(SLT, SQ’T7 u)\]—"t] du (328)

T
= mt(SLt, 527,5, u)du (329)
T

using equation (3.7) and Fubini’s theorem.

3.3.2. Forward start perpetual caps

Next proposition produces a formula for valuing the forward expectation of a perpetual
claim using the risk-neutral pricing theory.

PROPOSITION 3.2. The time-t value of a perpetual claim starting at time T is given
by:

IS B+
e ""ER Vi (Si7, Sor, 00)| Fi] = B(By)Sas (%) o (_d5+<Sl,ta Sat, T))
2t

+ B(1)e 7S, 7®(dy (S 4, Sa4, 7))

s (3.30)
— B(O)e 2TSQ,T(I)<d0<SLt, 527,5, 7'))
St o
+ B(5-)S2, S, @ (d,B_<Sl,ta So.ts T)) ;
2.t
where
I (5) + (02— 81+ 02 (B 3)) 7
_ 2, 31
ds( Sty S2,0,T) /T (3.31)
PROOF. Let us first write equation (3.26) at the forward time 7"
B+
Sir
Vi(S1,1, Sa.r,00) = B(B4)Sa,r Sor Lis, p<Sor)t
’ G\ (3.32)
+ (B(l)sl,:r — B(0)Ser + B(B-)S.r (S—T) ) Lisir2r)-
2T
The t-time expected value of this T-time expectation is then, given by:
—rrQ —rrQ Sl T o
€ E [VT<SLT7 SQ,T? OO)‘E] - B(/B+)e E SQ,T S_’T ]‘{SI,T<S2,T}‘E
2,
+ B(1)e "EQ [S) 71, 155, 01| Fi
[ {S1,7>52,r} } (3.33)

— B(O)Q_TT]EQ [SQ,T]l{SLTESz,T} ’E}

] Sur\”
+ B(ﬁ*)e "R SQ,T (S;’T> ]1{51,T252,T}’E] :
2, T

17



We note that B(3y), B(1), B(0) and B(f_) are constants. Using the change of numéraire
used in Chapter 2:

77"7']EQ
dQ

= S5 B [ O] Loy ey |7 (3.34)

S Q=
SZ T (Sl ;) 1{51 7<S2 T}“Ft] ~° TTS e o TEQ |: @ C H{CT<1}‘ft1
2,

e"TEY (S 1S, p35, 3 1) = € TR [Sy0Crliersn ] =
4Q®:
dQ
= S2,t€_62TIF‘4QS2 [Crlic,>131F] (3.35)

= e_TTSQ,te(T_JQ)T]EQ { Crlicr= |]:t]

dQ*>
dQ
= Sp0e B2 [Lycyo1y| 7] (3.36)

e ""EY [SQ,TI]'{SLTZSZ,T}|-F25:| = e_TTS2,t€(r_52)TEQ [ 1{0T21}|}-t}

—TTEQ

S —rr r—=082)T dQS2 -
SQT (S;;) ]1{51,T252,T} |‘Ft] =€ 52’te( ) ]EQ |: d(@ Cg ﬂ{CTzl}"’t;f] =

= S5, B [Cf Lyopan (3.37)
To calculate these expectations we first note that all of these are the expectations of
the ratio process C’g with § = f, in equation (3.34), # = 1 in equation (3.35), f = 0 in

equation (3.36) and § = _ in equation (3.37), thus we can solve the expectations for the
process C’? with a general elasticity [,

E® | cran | 7] (3.38)
and

E®™ [Cf10pen)| ] (3.39)
and then use them with the appropriated elasticity to solve the expectations (3.34), (3.35),
(3.36) and (3.37).

We will solve the expectation (3.38). The solution of the expectation (3.39) is analo-
gous. Equation (2.21) implies that:

CP = Cf exp [((52 — 0 — %‘%)57 — BUCY\/F] , (3.40)

S2 S2
we?-wg,

where Y = —T" is a standard normal random variable independent of F;. Sub-

stituting this in equation (3.38):

0-3 —pPao, T
E®™ Cgﬂ{cTzl}’}—t} = C/E” [662612)& ’ Cyfﬂ{cTzl}\}—t} (3.41)

18



and we have that:

WG+ (6 -8~ %) 7
Cr> 16 do(Cy,1,7) = >,

o\ T -
With C} = a:

1 do(z,1,7) »2
]EQS2 [C]B’H{CT21}|ft] = ?/ xﬁe(tszfél77),377ﬁacy\/?e,%y2dy

2
S2—61-%

xﬂe( 3 )5 /do(mT)

—Boeyy/T o~ 39’ dy

do(z,1,7)
_ / o4 (028 4280y Ty )+ T

Let 2 = y + 0.6+/7, then:

A

S
]EQ 2 051{0T21}‘E:| = \/% N

_ 5, |@s03+ 5 86-0) -

2
§2—61)B+2£B(8-1) |
e B [Oiﬁ“ﬂ{cTzl}U"t] = 67627-56'56{( SRR )}

(GRS R

Since x = C;,
e~ S2TEQ” [cg ﬂ{cTzl}yft} = 1D (dy(Cy, 1, 7)) |
where

&+ (-6 +o2(B-1))r

dﬂ(Oﬁ 1,7—) o \/F

and

o(B) = 5?55~ 1)+ (5= 0.)5 — 6

It can be shown analogously

B (O Liopany || = 97 C0 (~ds(C, 1, 7))

e_%(y”CBﬁfd .

/d0(17177)+acﬁ\/; 1

q>(d0($7 17 T) + Ocﬁ\/;)'

Now, we can include the discount factor e=°2" in equation (3.43) which yields:
b (do(w,1,7) + 0eV/T)

O(dy(z,1,7) + 0.8vT).

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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We can now use the general equations (3.45) and (3.48) to solve equations (3.34),
(3.35), (3.36) and (3.37). Using equation (3.48) with g = B, for equation (3.34):

. g B+
527t6_627EQS [C?+1{CT<1}|E] = S27t (ﬁ) d <—d6+ (Sl,t> 52775, ’7')) (349)
2,t
using equation (3.45) with 5 = 1 for equation (3.35):
SQ¢€762TEQS2 [CTE{CTZI}LFJ = 67617—517,5(1) (d1<Sl,t7 S2,t7 7')) (350)
using equation (3.45) with 5 = 0 for equation (3.36):
Sa1e " BY [Ticyon | F] = €77 85, (do( S, S, 7)) (3.51)
using equation (3.45) with 5 = §_ for equation (3.37):
yrQS2 [ B S "
527,56 TR [OT ]]-{CT21}|E] = S?,t S—’ P (d57 (Sl,ta 827,5,7')) . (352)
2.t

Finally combining equations (3.34), (3.35), (3.36), (3.37), (3.49), (3.50), (3.51) and
(3.52), equation (3.33) becomes:

g B+
B Wr(Sur, Sur, o)) = B (5 )@ (~dny (i Sae7)
2.t

+ B(1)e 7S 1
— B(0)e %7 Sy p®

Sit

B
+ B(B-)Sa, (E) © (ds_(Svs, S21,7)) -

dy
do

Sl,ta S2,t, 7'))

(3.53)
Sl,t; SQ,tu T))

(
(

3.4. Finite caps

Finally we will combine the results from Section 3.2.2 and Section 3.3.2 to obtain the

formula for the finite case.

PROPOSITION 3.3. The t-value of the finite-lived claim is:

S\
VilS1s0 S0, T) = BE IS0 (52 Hisirosa — s (St Soe 7))
2t
+ B(l)SLt [:H‘{SI,TZSZ,T} - 6_617—@(d1 (Sl,tv SQ,t7 T))] (3 54)
- B(O)SQ,t []]‘{Sl,TZS2,T} - e_équ)(dO(Sl,tv S?,tv T))] ‘
S, B+
- B(ﬁ-ﬁ-)S?,t g; [1{51,T252,T} - (I)(d5+(517ta S27ta T))]
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PROOF. Substituting equations (3.26) and equation (3.30) into equation (3.6):
Vi(S1t, So.6, T) = Vi(S1, Sa,00) — e ""E® [Vr(Si,r, Sa7,00)]

S\
= 505w (54) Lisyrssin — 0 (Sue Sen )]
+ B(l)Sl,t [:H‘{SI,TZSQ,T} - e_équ)(dl (Sl,tv SQ,tv T))] (355)
- B(O)SQ,t [1{5112521} - 6_62T(I)(d0(51,t’ SZ,t’ T))]
Sl,t B+
+ B(f+)S24 5, [Lisy r<8s 7y — P(—dp, (S14, Sa, 7))]-

Using the relationship

1{51,T<S2,T} - (I)(_dﬁ<sl,t> S2,t7 T)) = _(1{51,T252,T} - (I)(dﬁ<sl,t> S2,t7 T))) (356)

we get
St o
Vi(Si, 824, T) = B(B-)Sa2y S_ (118, p>50} — P(ds_ (S, S, 7))]
2
+ B(l)SLt [:H'{SI,TZS2,T} - e_élT(I)(dl (Sl,t7 S2,t7 7—))] (3 57)
- B(O)Slt [:H'{Sl,TZSQ,T} - 6_62T(I)(d0(51,t7 82,t7 T))] ‘
Sy, B+
- B(E-I—)SQJ? g []‘{Sl,TZS2,T} - @(dﬂ+<slvt’ SQ,t’ 7_))]
U

3.5. Finite floors
The difference between the cap and the floor is the swap (a result that depends on caplet

and floorlet parity). Thus floors Fi(Si4, S2s, T') are valued as a function of the corre-
sponding cap less a swap of the revenues associated with S} ; against those with Sy, both

over a finite horizon 7. Using equation (3.54) and the relationship (3.56)
Fy(S1, 824, T) = Vi(S14, S20, T) — B(1)S14(1 — €7'7) + B(2)S,(1 — e7*7)

St

B—
= B398 () [Lisipesion — O(da (51, Saes 7))
it

— B(D)S14 [Usypesary — € TO(=di(S1s, S0, 7))
+ B(0) S, [1{51,T<52,T} - 6762”1)(—030(51,& Sat,7))]

g B+

+ B(6+)527t (i) []1{51,T<S2,T} - (I)(_dﬁJr (Sl,tv 52,157 T))] (358>

It is also interesting to note that, the value of the floor is the same the cap on Ss;,
with strike Sy 4

Ft(Sl,hSQ,taT) = ‘/;5(52,15; Sl,taT)- (3-59)

In this case, the numéraire to price Vi(Say, S1+,T), will be Sy, instead of Sy ;.
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CHAPTER 4

Conclusions

We began this thesis by exploring the key concepts of an option to exchange one asset
for another where the assets pay dividends, the orthogonalization of the pricing problem
and the change of numéraire to reduce the problem to the one dimensional case. We
then tackled the problem of the continuous sum of such exchange options using the time
decomposition technique presented by Shackleton & Wojakowski (2007) to reach closed-
form solutions.

The valuation of finite maturity caps, floors, and collars on continuous flows has
typically been addressed using methods inspired by real options literature, which often
focus on perpetual solutions. In our approach, the problem is initially solved for the
perpetual case, and then the finite maturity case is derived. This is done by subtracting
the risk-neutral expectation of the forward start perpetual solution from the corresponding
current perpetual solution. Dias, Nunes & Silva (2024) have solved this problem solving
the integral (3.5) using the process of integration by parts.

As prospects of future research, one could apply the framework developed in this thesis
to price finite horizon situations where switching can occur frequently and repeatedly
between two randomly variable flows: One use case of this framework would be a project
to generate energy, where the price of energy and the fuel to generate it are traded assets.
In this framework one could stop production of energy if the price of the fuel would be
higher then the profit of selling that energy. This could be done instantaneously, at any
moment, and with no cost. One could use the close form solutions of this thesis to derive
the so-called Greeks to find hedging strategies for these projects. Another topic of future

research would be to value the option to invest in such a project.
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