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”This result is too beautiful to be false; it is more important to have beauty in one’s

equations than to have them fit experiment.”

-Paul Dirac (1963)
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Resumo

Esta tese oferece soluções novas para avaliar caps e floors de maturidades perpétuas

e finitas em fluxos cont́ınuos considerando receitas e custos estocásticos. Primeiramente,

apresentamos o trabalho de Margrabe (1978) e McDonald & Siegel (1985) sobre opções de

troca do tipo europeu, assumindo que ambos os ativos pagam dividendos, e de seguida,

seguindo as ideias de Shackleton & Wojakowski (2007), ampliamos a literatura anterior

sobre caps e floors ao fornecer novas fórmulas anaĺıticas para avaliar caps e floors de ma-

turidade finita que são contingentes a fluxos cont́ınuos usando o método da decomposição

temporal.
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Abstract

This thesis offers novel analytical solutions for evaluating perpetual and finite maturity

caps and floors on continuous flows where both the revenue and the cost are stochastic.

We first present the work of Margrabe (1978) and McDonald & Siegel (1985) on European

exchange options, assuming both assets pay dividends, and then, following the insights

of Shackleton & Wojakowski (2007) we extend the previous literature on caps and floors

arrangements by providing new analytical formulae for valuing finite maturity caps and

floors that are contingent on continuous flows using the time decomposition method.
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CHAPTER 1

Introduction

In finance, a cap is a type of interest rate (or commodity) derivative in which the

buyer receives payments at the end of each (predetermined) period when the interest rate

exceeds the agreed strike price. An example of a cap would be an agreement to receive a

payment at the end of every month when the Secured Overnight Financing Rate (SOFR)

rate exceeds 3% over the next 3 years. Similarly, an interest rate floor is a derivative

contract in which the buyer receives payments at the end of each period when the interest

rate is below the agreed strike price. Some caps and floors offer a fixed payment, but some

can offer the difference between the underlying rate (or commodity price) and the agreed

strike price. These derivatives can be analysed as a series of Black & Scholes (1973) and

Merton (1973) European call (or put options), known as caplets (or floorlets), that offer

the difference between the underlying rate (or commodity cost) and the strike price at

maturities corresponding to the end of each period where the cap (or floor) is in existence.

Thus, a cap or floor can be seen as the sum of a series of caplets (or floorlets) over the

horizon of the cap’s (or floor’s) maturity.

The interest rate and commodity literature has valued discrete caplets and floorlets

using Black (1976) model and their summation. In the limit, as the time between maturi-

ties of each caplet (or floorlet) becomes increasingly small, caps and floors on continuous

flows can be described. These instruments have been studied in the work of Shackleton &

Wojakowski (2007) where each caplet (or floorlet) is a Black & Scholes (1973) and Merton

(1973) European call (or put) option.

Other streams of the literature have also studied contingent flows. Within real options,

to name a few, McDonald & Siegel (1985) and Dixit & Pindyck (1994), all motivate,

discuss and value, the perpetual continuous cash flow from a project that captures the

positive part of a stochastic net profit while avoiding losses.

Using terminology from the real options literature, we now treat the interest rate

(or commodity price) as the revenue process S of a project that generates cash at an

instantaneous rate of flow Sdt. The literature above, now describes a flexible project as a

sum of the instantaneous net profit, S−K (revenue S less cost K), where the project can,

at anytime and without a cost, cease operation for as long as the net profit is negative, and

at anytime and without a cost, resume operation when the net profit is positive. Over an

infinite horizon, these papers evaluate continuous perpetual cash flows which are the sum

of an infinite continuum of European style options (caplets or floorlets), while Shackleton

& Wojakowski (2007), study the finite horizon case. Analytical solutions for (perpetual

and finite) caps and floors on continuous exchange flows have recently been given in Dias,
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Nunes & Silva (2024). This thesis will offer analytical formulae for evaluating (perpetual

and finite) caps and floors on continuous flows using the time decomposition technique of

Shackleton & Wojakowski (2007), though we will consider not only the revenue process

S (hereafter S1) to be stochastic but also the cost process K (hereafter S2) to be also

stochastic by nature. This will imply that the continuous cash flows are now not a sum

of an infinite continuum of European style options but a sum of an infinite continuum

of European exchange options, which are studied in the works of Margrabe (1978) and

McDonald & Siegel (1985).

The thesis is organized as follows. In chapter 2 we will layout the model presented by

Margrabe (1978) and McDonald & Siegel (1985) for valuing European exchange options

assuming that both risky assets continuously pay dividends. In chapter 3 we will derive

the analytical formulae for evaluating (perpetual and finite) caps and floors on continuous

flows. Finally, chapter 4 concludes.
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CHAPTER 2

Exchange options on dividend paying assets

We begin our work by laying out the model to price a claim to exchange an asset S1

for another asset S2 at time T , where these assets pay dividends continuously over time

and can be correlated. Margrabe (1978) valued the claim where the assets do not pay

dividends and McDonald & Siegel (1985) valued the claim where assets pay dividends. We

will then value the claim using the change of martingale measure approach and present a

closed form solution.

2.1. Model specification under the physical measure

Following Margrabe (1978) and McDonald & Siegel (1985) models, we suppose two P-
measured standard Brownian processes (W P

1,t)t≥0 and (W P
2,t)t≥0, which are defined on a

filtered probability space (Ω,A,F ,P). We assume that the price of the risky assets S1

follows a geometric Brownian motion, that is

dS1,t

S1,t

= (µ1 − δ1)dt+ σ1dW
P
1,t (2.1)

and the price of the risky asset S2 also follows a geometric Brownian motion, that is

dS2,t

S2,t

= (µ2 − δ2)dt+ σ2dW
P
2,t, (2.2)

with covariance

cov

(
dS1,t

S1,t

,
dS2,t

S2,t

)
= ρ1,2σ1σ2dt, (2.3)

where the constants µ1 and µ2 are the expected rates of return on the risky asset S1

and S2, δ1 and δ2 are the corresponding dividend yields, σ1 and σ2 are the corresponding

standard deviations and ρ1,2 is the correlation between S1 and S2.

2.2. Model specification under the risk-neutral measure

For pricing purposes, equations (2.1) and (2.2) must be rewritten under measure Q,

that is a martingale measure associated to the numéraire money-market account.

We define λi =
µi−r
σi

, where r is the risk-free interest rate, λi is the risk-premium and

σi the standard deviation of the asset Si. Replacing this in equations (2.1) and (2.2)

yields the risk-neutral processes for the risky assets prices:

dSi,t

Si,t

= (r − δi)dt+ σi(dW
P
i,t + λidt), i ∈ {1, 2}

= (r − δi)dt+ σidW
Q
i,t, i ∈ {1, 2}.

(2.4)
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The Brownian processes dWQ
i,t ≡ dW P

i,t + λidt are the new Q-measured Brownian motions

(with the same standard filtration as dW P
i,t).

2.3. Orthogonalization of the pricing system

For our approach it is more convenient to work not with correlated Brownian motions

WQ
1,t and WQ

2,t, but rather with standard Q−independent Brownian motions ZQ
1,t and ZQ

2,t.

Given the correlation structure of equations (2.1) and (2.2), WQ
1,t and WQ

2,t can be

rewritten as a linear combination of ZQ
1,t and ZQ

2,t. We define:

dWQ
1,t = ρ1,2 dZ

Q
2,t +

√
1− ρ21,2 dZ

Q
1,t (2.5)

dWQ
2,t = dZQ

2,t. (2.6)

Then (WQ
1,t)t≥0 and (WQ

2,t)t≥0 are a continuous martingale with WQ
1,0 = 0 and WQ

2,0 = 0 and

dWQ
1,tdW

Q
1,t = ρ21,2dZ

Q
2,tdZ

Q
2,t + 2ρ1,2

√
1− ρ21,2dZ

Q
1,tdZ

Q
2,t + (1− ρ21,2)dZ

Q
1,tdZ

Q
1,t

= ρ21,2 dt+ 0 + (1− ρ21,2) dt

= dt

dWQ
2,tdW

Q
2,t = dZQ

2,tdZ
Q
2,t

= dt,

because according to the one-dimensional Lévy’s theorem (WQ
1,t)t≥0 and (WQ

2,t)t≥0 are

Brownian motions under Q.

The Brownian motions (WQ
1,t)t≥0 and (WQ

2,t)t≥0 are correlated. According to Itô’s

product rule,

d(WQ
1,tW

Q
2,t) = WQ

1,tdW
Q
2,t +WQ

2,tdW
Q
1,t + dWQ

1,tdW
Q
2,t

= WQ
1,tdW

Q
2,t +WQ

2,tdW
Q
1,t + ρ1,2dt

Integrating, we obtain

WQ
1,tW

Q
2,t =

∫ t

0

WQ
1,tdW

Q
2,t +

∫ t

0

WQ
2,tdW

Q
1,t + ρ1,2t

By definition, the Itô integrals on the right-hand of the previous equation have expec-

tation zero, so the covariance of (WQ
1,t)t≥0 and (WQ

2,t)t≥0 is

E[WQ
1,tW

Q
2,t] = ρ1,2t.

Because both (WQ
1,t)t≥0 and (WQ

2,t)t≥0 have standard deviation
√
t, the constant ρ1,2 is

the correlation between (WQ
1,t)t≥0 and (WQ

2,t)t≥0.

Therefore, using equation (2.4), the model can be restated, under measure Q, as

dS1,t

S1,t

= (r − δ1)dt+ σ1

(
ρ1,2 dZ

Q
2,t +

√
1− ρ21,2 dZ

Q
1,t

)
dS2,t

S2,t

= (r − δ2)dt+ σ2 dZ
Q
2,t

(2.7)
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2.4. European exchange options

We will now define a claim to exchange an asset S1 for another S2 at maturity T .

Definition 2.1. The time-T value of a European-style exchange option on the asset

S1, with strike price S2 and expiry at time T is:

mT (S1,T , S2,T , T ) = max (S1,T − S2,T , 0) . (2.8)

We will price this option as the time-t expectation value of its discounted cash-flows:

mt(S1,t, S2,t, T ) = e−rτEQ
t [max (S1,T − S2,T , 0) |Ft] , (2.9)

where the probability measure Q is the risk-neutral probability for the pricing problem

and τ = T − t.

We could analytically solve the expectation problem, but we will use a change of

numéraire measure to simplify it.

2.4.1. Change of numéraire approach

Applying the logarithm transformation for S2,t, under the risk-neutral probability

measure Q, results that:

S2,T = S2,t exp

[(
r − δ2 −

σ2
2

2

)
τ + σ2

∫ T

t

dZQ
2,u

]
= S2,te

(r−δ2)τ exp

[(
−σ2

2

2

)
τ + σ2

∫ T

t

dZQ
2,u

]
.

(2.10)

we now define the Radon-Nikodým derivative as

dQS2

dQ
:= exp

(
−σ2

2

2
τ + σ2

∫ T

t

dZQ
2,u

)
, (2.11)

or in matrix form

dQS2

dQ
:= exp

(
−1

2

∫ T

t

||Θ||2du−
∫ T

t

Θ . dZQ
u

)
, (2.12)

where ZQ
u = (ZQ

1,u, Z
Q
2,u) is a multidimensional Brownian motion on a probability space

(Ω,F ,Q) and Θ = (0,−σ2).

We can verify the Novikov condition:

EQ
[
exp

(
1

2

∫ T

t

||Θ||2du
)]

= EQ
[
exp

(
1

2
σ2
2(T − t)

)]
= exp

(
1

2
σ2
2τ

)
< ∞,

so we can apply the two dimensional Girsanov’s theorem to prove that the new measure

QS2 is equivalent to Q and we can define the relation between ZQ
1,t and ZQS2

1,t as well as
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between ZQ
2,t and ZQS2

2,t :

dZQS2

1,t = dZQ
1,t (2.13)

dZQS2

2,t = dZQ
2,t − σ2dt. (2.14)

The process ZQS2

t = (ZQS2

1,t , dZQS2

2,t ) is a 2-dimensional Brownian motion under the new

measure QS2 , hence the component processes ZQS2

i,t are independent under QS2 .

With this and equations (2.10) and (2.11) we can rewrite the pricing equation (2.9)

under the new measure QS2 :

mt(S1,t, S2,t, T ) = e−rτEQ [max(S1,T − S2,T , 0)]

= e−rτEQ
[
max

(
S2,T

(
S1,T

S2,T

− 1, 0

))]
= e−rτS2,te

(r−δ2)τEQ
[
max

((
S1,T

S2,T

− 1, 0

)
dQS2

dQ

)]
= S2e

−δ2τEQS2 [max (CT − 1, 0)] .

(2.15)

We still need to find the distribution for the ratio process Ct =
S1,t

S2,t
under QS2 . For this,

we begin by writing the equation for the ratio process Ct under the risk-neutral measure

Q. By Itô’s product rule:

dCt =
∂Ct

∂t
dt+

∂Ct

∂S1,t

dS1,t

+
∂Ct

∂S2,t

dS2,t +
1

2

[
∂2Ct

∂S2
1,t

(dS1,t)
2 + 2

∂2Ct

∂S1,t∂S2,t

dS1,tdS2,t +
∂2Ct

∂S2
2,t

(dS2,t)
2

]
= 0 +

1

S2,t

[
(r − δ1)S1,tdt+ σ1S1,tdW

Q
1,t

]
− S1,t

S2
2,t

[
(r − δ2)S2,tdt+ σ2S2,tdW

Q
2,t

]
+ 0 +

1

2

[
− 2

S2
2,t

(
(r − δ1)S1,tdt+ σ1S1,tdW

Q
1,t

) (
(r − δ2)S2,tdt+ σ2S2,tdW

Q
2,t

)]
+

1

2

[
2S1,t

S3
2,t

(
(r − δ2)S2,tdt+ σ2S2,tdW

Q
2,t

)2]
= Ct(r − δ1)dt+ Ctσ1dW

Q
1,t − Ct(r − δ2)dt− Ctσ2dW

Q
2,t − Ctσ1σ2ρ1,2dt+ Ctσ

2
2dt.

Hence, under the risk-neutral probability measure Q, we have:

dCt

Ct

=
(
δ2 − δ1 + σ2

2 − σ1σ2ρ1,2
)
dt+ σ1dW

Q
1,t − σ2dW

Q
2,t. (2.16)

We can rewrite this equation under the new measure QS2 . Using equations (2.5) and (2.6)

we have that:

dCt

Ct

=
(
δ2 − δ1 + σ2

2 − σ1σ2ρ1,2
)
dt+ σ1dW

Q
1,t − σ2dW

Q
2,t

=
(
δ2 − δ1 + σ2

2 − σ1σ2ρ1,2
)
dt+ σ1(ρ1,2dZ

Q
2,t +

√
1− ρ21,2dZ

Q
1,t)− σ2dZ

Q
2,t.

6



Using equations (2.13) and (2.14) we have that:

dCt

Ct

=
(
δ2 − δ1 + σ2

2 − σ1σ2ρ1,2
)
dt

+ σ1(ρ1,2(dZ
QS2

2,t + σ2dt) +
√

1− ρ21,2dZ
QS2

1,t )− σ2(dZ
QS2

2,t + σ2dt)

= (δ2 − δ1) dt+ (ρ1,2σ1 − σ2)dZ
QS2

2,t + σ1

√
1− ρ21,2dZ

QS2

1,t ,

(2.17)

where ZQS2

1,t and ZQS2

2,t are independent under QS2 . Moreover, we have

EQS2
[
(ρ1,2σ1 − σ2)dZ

QS2

2,t + σ1

√
1− ρ21,2dZ

QS2

1,t

]
= (ρ1,2σ1 − σ2)EQS2

[
dZQS2

2,t

]
+ σ1

√
1− ρ21,2 EQS2

[
dZQS2

1,t

]
= 0

and

V ar
[
(ρ1,2σ1 − σ2)dZ

QS2

2,t + σ1

√
1− ρ21,2dZ

QS2

1,t

]
= (ρ1,2σ1 − σ2)

2 V ar
[
dZQS2

2,t

]
+
(
σ1

√
1− ρ21,2

)2
V ar

[
dZQS2

1,t

]
=
(
σ2
1 + σ2

2 − 2ρ1,2σ
2
1σ

2
2

)
dt

Therefore, as ((ρ1,2σ1 − σ2)dZ
QS2

2,t + σ1

√
1− ρ21,2dZ

QS2

1,t ) ∼ N (0, σ2
cdt), we can rewrite

equation (2.17) as
dCt

Ct

= (δ2 − δ1) dt+ σc dW
QS2

c,t (2.18)

where σc =
√
σ2
1 + σ2

2 − 2ρ1,2σ2
1σ

2
2 and WQS2

c,t =
(ρ1,2σ1−σ2)dZ

QS2
2,t +σ1

√
1−ρ21,2dZ

QS2
1,t

σc
is a Brown-

ian motion1 under QS2 .

2.4.2. Pricing formula

The next proposition shows, the closed-form solution of a European-style exchange option.

Proposition 2.1. The price of a European-style exchange option at time t < T where

τ = T − t, is given by:

mt (S1,t, S2,t, T ) = S1,te
−δ1τΦ(d1(S1,t, S2,t, τ))− S2,te

−δ2τΦ(d0(S1,t, S2,t, τ)) (2.19)

1This can be proven using Lévy’s Theorem knowing that dZQS2

1,t and dZQS2

2,t are independent Brownian

motions under QS2 .
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where:

τ = T − t ,

d0(S1,t, S2,t, τ) =
log
(

S1,t

S2,t

)
+
(
δ2 − δ1 − σ2

c

2

)
τ

σc

√
τ

,

d1(S1,t, S2,t, τ) = d2(S1,t, S2,t, τ) + σc

√
τ ,

σc =
√
σ2
1 + σ2

2 − 2ρ1,2σ1σ2 ,

and Φ(∗) is the cumulative standard normal distribution.

Proof.
mt(S1,t, S2,t, T ) = S2e

−δ2τEQS2

t [max (CT − 1, 0) |Ft]

= S2e
−δ2τEQS2

t

[
(CT − 1)1{CT≥1}|Ft

]
.

(2.20)

We may write

CT = Ct exp

[
(δ2 − δ1 −

σ2
c

2
)(T − t) + σc

(
WQS2

c,T −WQS2

c,t

)]
= Ct exp

[
(δ2 − δ1 −

σ2
c

2
)τ + σc

WQS2

c,T −WQS2

c,t√
τ

√
τ

]

= Ct exp

[
(δ2 − δ1 −

σ2
c

2
)τ − σcY

√
τ

] (2.21)

where Y = −WQS2
c,T −WQS2

c,t√
τ

is a standard normal random variable independent of Ft since

WQS2

c,T −WQS2

c,t is independent of Ft.

Therefore, with Ct = x, equation (2.20) can be rewritten as

mt(S1,t, S2,t, T ) = S2e
−δ2τEQS2

t

[
(CT − 1)1{CT≥1}|Ft

]
= S2e

−δ2τEQS2

t

[(
xe(δ2−δ1−

σ2
c
2
)τ−σcY

√
τ − 1

)
1{CT≥1}|Ft

]
= S2e

−δ2τ
1√
2π

∫ +∞

−∞

(
xe(δ2−δ1−

σ2
c
2
)τ−σcy

√
τ − 1

)+

e−
1
2
y2dy.

The integrand (
xe(δ2−δ1−

σ2
c
2
)τ−σcy

√
τ − 1

)+

is positive if and only if

y ≤ d0(x, 1, τ) =
1

σc

√
τ

[
ln
(x
1

)
+

(
δ2 − δ1 −

σ2
c

2

)
τ

]
. (2.22)
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Therefore,

mt(S1,t, S2,t, T ) = S2e
−δ2τ

1√
2π

∫ d0(x,1,τ)

−∞

(
xe(δ2−δ1−

σ2
c
2
)τ−σcy

√
τ − 1

)
e−

1
2
y2dy

= S2e
−δ2τ

1√
2π

∫ d0(x,1,τ)

−∞

(
xe(δ2−δ1−

σ2
c
2
)τ−σcy

√
τ

)
e−

1
2
y2dy

− S2e
−δ2τ

1√
2π

∫ d0(x,1,τ)

−∞
e−

1
2
y2dy

= S2e
−δ2τxe(δ2−δ1)τ

1√
2π

∫ d0(x,1,τ)

−∞
e−

1
2
(σ2

cτ+2σcy
√
τ+y2)dy

− S2e
−δ2τΦ(d0(x, 1, τ))

= S2e
−δ2τxe(δ2−δ1)τ

1√
2π

∫ d0(x,1,τ)

−∞
e−

1
2
(y+σc

√
τ)2dy

− S2e
−δ2τΦ(d0(x, 1, τ)).

With the change of variable z = y + σc

√
τ , where d1(x, τ) = d0(x, 1, τ) + σc

√
τ , then

mt(S1,t, S2,t, T ) = S2e
−δ2τxe(δ2−δ1)τ

1√
2π

∫ d0(x,1,τ)+σc
√
τ

−∞
e−

1
2
(z)2dy

− S2e
−δ2τΦ(d0(x, 1, τ))

= S2e
−δ2τxe(δ2−δ1)τΦ(d1(x, 1, τ))− S2e

−δ2τΦ(d0(x, 1, τ)).

Finally, since x = Ct =
S1,t

S2,t

mt(S1,t, S2,t, T ) = S2,te
−δ2τxe(δ2−δ1)τΦ(d1(x, 1, τ))− S2,te

−δ2τΦ(d0(x, 1, τ))

= S1,te
−δ1τΦ(d1(S1,t, S2,t, τ))− S2,te

−δ2τΦ(d0(S1,t, S2,t, τ)).
(2.23)

□
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CHAPTER 3

Finite maturity caps for exchange options

We will now define the real options problem of this thesis, the model assumption and

then derive the formulae for the perpetual case, the forward starting perpetual case and

finally combine the two to get the finite case.

3.1. Real options problem

Following Dixit & Pindyck (1994, pages 186-195) and Shackleton & Wojakowski

(2007), we consider a continuous price or revenue process S1 that generates cash at an

instantaneous rate of flow S1dt. The risk-neutral dynamics are described as:

dS1,t

S1,t

= (r − δ1)dt+ σ1dW
Q
1,t, (3.1)

where the constant r is the risk free interest rate, δ1 is the dividend yields of asset S1

and σ1 is the corresponding standard deviation and (WQ
1,t)t≥0 is a standard Brownian

motion under the risk-neutral measure Q. We will also assume that operation of the

project entails a flow cost S2, but that the operation can be temporarily and costlessly

suspended when S1 falls below S2, and costlessly resumed later if S1 rises above S2. In

Dixit & Pindyck (1994, pages 186-195) and Shackleton & Wojakowski (2007) the flow

cost S2 is constant and known. For our work, we will consider that it follows the following

risk-neutral dynamics:
dS2,t

S2,t

= (r − δ2)dt+ σ2dW
Q
2,t, (3.2)

where the constant r is the risk free interest rate, δ2 is the dividend yields of asset S2 and

σ2 is the corresponding standard deviation and (WQ
2,t)t≥0 is a standard Brownian motion

under the risk-neutral measure Q. We also assume that S1 and S2 can be correlated, that

is

cov

(
dS1,t

S1,t

,
dS2,t

S2,t

)
= ρ1,2σ1σ2dt. (3.3)

Therefore, at any instant t, the profit flow from this project is given by:

π(S1,t, S2,t) = max [S1,t − S2,t, 0] . (3.4)

Let V (S1, S2, T ) be the time-t value of a flexible finitely lived project (or profit spread

cap). This value can be derived from a perpetual cash flow based on the maximum
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instantaneous flow rate, π(S1,t, S2,t)dt. Under the risk-neutral measure, this is given by:

Vt(S1,t, S2,t, T ) =

∫ T

t

e−r(u−t)EQ [π(S1,u, S2,u)|Ft] du

=

∫ T

t

mt(S1,u , S2,u , u)du,

(3.5)

where mt(S1,t , S2,t , u) is interpreted as the time-t price of a exchange option (or caplet)

on an asset S1 with exercise price of another asset S2, and with expiry date at time u(≥ t),

with fair price derived in chapter 2.

Even though it is possible to solve the integral (3.5) numerically, we will follow the

insight of Shackleton and Wojakowski (2007) to evaluate this problem using the time

decomposition method:

Vt(S1,t, S2,t, T ) = Vt(S1,t, S2,t,∞)− e−rTEQ [VT (S1,T , S2,T ,∞)|Ft] . (3.6)

To accomplish this, we will first derive the perpetual real options solution of this problem

in the Section 3.2 and then the corresponding forward start perpetuity will be derived in

the Section 3.3. Finally, in the Section 3.4, we will combine the two solutions to provide

a formula for the finite problem above.

3.2. Perpetual case

3.2.1. Perpetual real options problem

The time-t value of an infinitely lived project or profit spread cap, V (S1, S2,∞), is the

”continuous and perpetual sum” of instantaneous maximum flows, π(S1,t, S2,t)dt, where

π(S1,t, S2,t) = max(S1,t − S2,t, 0), over a stochastic revenue S1,t and a stochastic cost S2,t.

Its expected value computed under the risk-neutral measure Q, and conditional to the

information available until time t, is given by:

Vt(S1,t, S2,t,∞) =

∫ ∞

t

e−r(u−t)EQ [π(S1,u, S2,u)|Ft] du

=

∫ ∞

t

mt(S1,t, S2,t, u)du. (3.7)

The perpetual real options problem under analysis needs to be specialized in each

of the cases S1,t < S2,t and S1,t ≥ S2,t. For the range of prices where S1,t < S2,t the

(perpetual) claim V (S1,t, S2,t,∞) must satisfy the following partial differential equation

(PDE):

1

2

(
σ2
1S

2
1,t

∂2Vt

∂S2
1,t

+2ρ1,2σ1σ2S1,tS2,t + σ2
2S

2
2,t

∂2Vt

∂S2
2,t

)
+

+ (r − δ1)S1,t
∂Vt

∂S1,t

+ (r − δ2)S2,t
∂Vt

∂S2,t

− rVt = 0.

(3.8)
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For the range of prices where S1,t ≥ S2,t the (perpetual) claim Vt(S1,t, S2,t,∞) must

satisfy a similar PDE, but now containing the profit flow (S1,t − S2,t), that is:

1

2

(
σ2
1S

2
1,t

∂2Vt

∂S2
1,t

+2ρ1,2σ1σ2S1,tS2,t + σ2
2S

2
2,t

∂2Vt

∂S2
2,t

)
+

+ (r − δ1)S1,t
∂Vt

∂S1,t

+ (r − δ2)S2,t
∂Vt

∂S2,t

− rVt + (S1,t − S2,t) = 0.

(3.9)

We can solve these PDEs in each of the ranges, S1,t < S2,t and S1,t ≥ S2,t under

some conditions and then ”stitch them together” using the respective value matching and

smooth pasting conditions.

3.2.2. Perpetual caps

Next proposition produces a formula for valuing the perpetual claim using the usual

PDE theory with the appropriate constraints.

Proposition 3.1. The time-t value of a perpetual cap on continuous flows is given

by:

V (S1,t, S2,t,∞) =


1

β−−β+

[
β−−1
δ1

− β−
δ2

]
S2,t

(
S1,t

S2,t

)β+

, S1,t < S2,t

1
β−−β+

[
β+−1
δ1

− β+

δ2

]
S2,t

(
S1,t

S2,t

)β−
+ S1,t

δ1
− S2,t

δ2
, S1,t ≥ S2,t

, (3.10)

where the constants, β+ > 1 and β− < 0, are given by:

β± =

(
1

2
− δ2 − δ1

σ2
c

)
±

√(
δ2 − δ1
σ2
c

− 1

2

)2

+
2δ2
σ2
c

. (3.11)

Proof. We let Vt(x, y) = limτ→∞ Vt(x, y, τ) denote the value of the perpetual cap

at time t, if the underlying assets at that time are x = S1,t and y = S2,t, and that this

(perpetual) cap follows the following PDE:

1

2

(
σ2
1x

2∂
2Vt

∂x2
+2ρ1,2σ1σ2xy + σ2

2y
2∂

2Vt

∂y2

)
+

+ (r − δ1)x
∂Vt

∂x
+ (r − δ2) y

∂Vt

∂y
− rVt +max(x− y, 0) = 0.

(3.12)

We first note that, as stated by Margrabe (1978), the pricing formula of an option to

exchange an asset for another, mt, is homogeneous of degree 1 in x and y and therefore

V (x, y) is also homogeneous of degree 1. Hence, we can define Vt(x, y) = yft(c) where c =

13



x
y
to simplify the problem to a 1-dimensional case. Successive differentiation yields:

∂Vt(x, y)

∂x
=

dft(c)

dc
,

∂Vt(x, y)

∂y
= ft(c)−

dft(c)

dc
· c,

∂2Vt(x, y)

∂x2
=

d2ft(c)

dc2
· 1
y
,

∂2Vt(x, y)

∂x∂y
=

∂2Vt(x, y)

∂y∂x
= −d2ft(c)

dc2
· c
y
,

∂2V (x, y, t)

∂2y
=

d2ft(c)

dc2
· c

2

y
.

Substituting this in the PDE (3.12) yields:

1

2

[
σ2
1x

2

(
d2ft
dc2

· 1
y

)
+ 2ρ1,2σ1σ2xy

(
−d2ft

dc2
· c
y

)
+ σ2

2y
2

(
d2ft
dc2

· c
2

y

)]
+

[
(r − δ1)x

(
dft
dc

)
+ (r − δ2)y

(
ft − c

dft
dc

)
− r (yft) + ymax(c− 1, 0)

]
= 0.

Dividing both sides by y (> 0):

1

2

[
σ2
1c

2

(
d2ft
dc2

)
+ 2ρ1,2σ1σ2c

2

(
−d2ft

dc2

)
+ σ2

2c
2

(
d2ft
dc2

)]
+

[
(r − δ1)c

(
dft
dc

)
+ (r − δ2)

(
ft − c

dft
dc

)
− rft +max(c− 1, 0)

]
= 0.

Simplifying the equation and grouping the terms yields:

1

2

[
σ2
1 + σ2

2 − 2ρ1,2σ1σ2

]
c2
d2ft
dc2

+

[
(δ2 − δ1)c

dft
dc

− δ2ft +max(c− 1, 0)

]
= 0.

Defining σ2
c = σ2

1 + σ2
2 − 2ρ1,2σ1σ2 we have:

σ2
cc

2

2
· d

2ft
dc2

+ (δ2 − δ1)c
dft
dc

− δ2ft +max(c− 1, 0) = 0. (3.13)

We note that the homogeneous part of the ordinary diferential equation (ODE) (3.13) is

one of Euler type:
σ2
cc

2

2
· d

2ft
dc2

+ (δ2 − δ1)c
dft
dc

− δ2ft = 0, (3.14)

which by the usual ODE theory has solutions of the form ft(c) = cβ, where β is a constant

to be determined. Substituting this solution into the equation (3.14) we see that the

solution satisfies the equation provided β is the root of the quadratic equation, q(β) = 0,

with q(β):

q(β) :=
1

2
σ2β(β − 1) + (δ2 − δ1)β − δ2. (3.15)
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The equation above has two roots, β+ (> 1) and β− (< 0) given by:

β± =

(
1

2
− δ2 − δ1

σ2

)
±

√(
δ2 − δ1
σ2

− 1

2

)2

+
2δ2
σ2

. (3.16)

Hence, the solution of equation (3.14) must have the following form:

ft(c) = K1c
β+ +K2c

β− . (3.17)

Since the profit flow max(c − 1, 0) of the equation (3.13) is defined differently when

c ≥ 1 and c < 0, we solve the equation separately for c ≥ 1 and c < 1, and then, ”we

stitch together” the two solutions at the point c = 1 where the two regions meet.

In the region c < 1, we have that the profit flow is zero, and only the homogeneous

part of the equation remains. Therefore, the general solution on this region is given by

equation (3.17).

In the region c ≥ 1 the profit flow of the equation (3.13) is present so the general

solution is equal to (3.17) plus any particular solution of the full equation. A simple

substitution shows that ( c
δ1
− 1

δ2
) satisfies the equation.

Therefore, the general solution for the equation (3.13) is of the form:

ft(Ct) =

 K1c
β+ +K2c

β− , c < 1

K∗
1c

β+ +K∗
2c

β− + c
δ1
− 1

δ2
, c ≥ 1

. (3.18)

The constants in the solutions are determined using considerations that apply at the

boundaries of the regions. In the region c ≥ 1, when c becomes very large, the suspension

option is unlikely to be invoked except perhaps in the very remote future, so its value

should be zero. For this we should rule out the positive power of c in the solution, by

making K∗
1 = 0. In the region c < 1, as c nears zero the expected present value of future

profits should then go to zero, and so should the value of the project. For this we should

rule out the negative power of c in the solution, by making K2 = 0. Hence the solution is

of the form:

ft(Ct) =

 K1c
β+ , c < 1

K∗
2c

β− + c
δ1
− 1

δ2
, c ≥ 1

. (3.19)

This still leaves two constants, for which we consider the point c = 1 where the two regions

meet. Using the value-matching and smooth-pasting conditions, the constants K∗
2 and

K1 must solve the following system: K∗
2β−c

β−−1 + 1
δ1

= K1β+c
β+−1

K∗
2c

β− + c
δ1
− 1

δ2
= K1c

β+

(3.20)
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with c = 1  K∗
2β− + 1

δ1
= K1β+

K∗
2 +

1
δ1
− 1

δ2
= K1

(3.21)

⇔


1

β−−β+

[
β+−1
δ1

− β+

δ2

]
= K∗

2

1
β−−β+

[
β−−1
δ1

− β−
δ2

]
= K1

(3.22)

Substituting this in (3.19) yields:

ft(c) =


1

β−−β+

[
β−−1
δ1

− β−
δ2

]
cβ+ , c < 1

1
β−−β+

[
β+−1
δ1

− β+

δ2

]
cβ− + c

δ1
− 1

δ2
, c ≥ 1

(3.23)

We can now unwind the change of variable to get the solution of equation (3.12). Given

that Vt(x, y) = yft(c), S1,t = x, S2,t = y and S1,t

S2,t
= c

Vt(S1,t, S2,t,∞) =


1

β−−β+

[
β−−1
δ1

− β−
δ2

]
S2,t

(
S1,t

S2,t

)β+

, S1,t < S2,t

1
β−−β+

[
β+−1
δ1

− β+

δ2

]
S2,t

(
S1,t

S2,t

)β−
+ S1,t

δ1
− S2,t

δ2
, S1,t ≥ S2,t

. (3.24)

□

Before proceeding to the next section, we will rewrite equation (3.10) under a different

notation that will facilitate the derivation of the forward starting perpetuity of the problem

at hand:

Definition 3.1. We define a mapping function B(x) expressed as:

B(x) =



1
β−−β+

[
β−−1
δ1

− β−
δ2

]
, x = β+

1
β−−β+

[
β+−1
δ1

− β+

δ2

]
, x = β−

1
δ1

, x = 1

1
δ2

, x = 0

(3.25)

Using Definition 3.1 and the indicator function, we can rewrite equation (3.10) as:

Vt(S1,t, S2,t,∞) = B(β+)S2,t

(
S1,t

S2,t

)β+

1{S1,t<S2,t}+

+

(
B(1)S1,t −B(0)S2,t +B(β−)S2,t

(
S1,t

S2,t

)β−
)
1{S1,t≥S2,t}.

(3.26)

3.3. Forward start perpetual case

3.3.1. Forward start perpetual real options problem

Since the caplets contained within the integral (3.5) are of European-style, we can compute

the finite cap integral from the perpetial cap by subtracting the risk-neutral expectation
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of the forward start perpetual cap, that is

Vt(S1,t, S2,t, T ) = Vt(S1,t, S2,t,∞)− e−rτEQ [VT (S1,T , S2,T ,∞)|Ft] , (3.27)

where the risk-neutral expectation of the forward starting perpetual cap can be expressed

as

e−rτEQ [VT (S1,T , S2,T ,∞)|Ft] =

∫ ∞

T

e−r(T−t)EQ [mT (S1,T , S2,T , u)|Ft] du (3.28)

=

∫ ∞

T

mt(S1,t, S2,t, u)du. (3.29)

using equation (3.7) and Fubini’s theorem.

3.3.2. Forward start perpetual caps

Next proposition produces a formula for valuing the forward expectation of a perpetual

claim using the risk-neutral pricing theory.

Proposition 3.2. The time-t value of a perpetual claim starting at time T is given

by:

e−rτEQ [VT (S1,T , S2,T ,∞)|Ft] = B(β+)S2,t

(
S1,t

S2,t

)β+

Φ
(
−dβ+(S1,t, S2,t, τ)

)
+B(1)e−δ1τS1,TΦ(d1(S1,t, S2,t, τ))

−B(0)e−δ2τS2,TΦ(d0(S1,t, S2,t, τ))

+B(β−)S2,t

(
S1,t

S2,t

)β−

Φ
(
dβ−(S1,t, S2,t, τ)

)
,

(3.30)

where

dβ(S1,t, S2,t, τ) =
ln
(

S1,t

S2,t

)
+
(
δ2 − δ1 + σ2

c

(
β − 1

2

))
τ

σc

√
τ

. (3.31)

Proof. Let us first write equation (3.26) at the forward time T :

Vt(S1,T , S2,T ,∞) = B(β+)S2,T

(
S1,T

S2,T

)β+

1{S1,T<S2,T }+

+

(
B(1)S1,T −B(0)S2,T +B(β−)S2,T

(
S1,T

S2,T

)β−
)
1{S1,T≥S2,T }.

(3.32)

The t-time expected value of this T -time expectation is then, given by:

e−rτEQ [VT (S1,T , S2,T ,∞)|Ft] = B(β+)e
−rτEQ

[
S2,T

(
S1,T

S2,T

)β+

1{S1,T<S2,T }|Ft

]
+B(1)e−rτEQ [S1,T1{S1,T≥S2,T }|Ft

]
−B(0)e−rτEQ [S2,T1{S1,T≥S2,T }|Ft

]
+B(β−)e

−rτEQ

[
S2,T

(
S1,T

S2,T

)β−

1{S1,T≥S2,T }|Ft

]
.

(3.33)
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We note that B(β+), B(1), B(0) and B(β−) are constants. Using the change of numéraire

used in Chapter 2:

e−rτEQ

[
S2,T

(
S1,T

S2,T

)β+

1{S1,T<S2,T }|Ft

]
= e−rτS2,te

(r−δ2)τEQ
[
dQS2

dQ
C

β+

T 1{CT<1}|Ft

]
= S2,te

−δ2τEQS2
[
C

β+

T 1{CT<1}|Ft

]
(3.34)

e−rτEQ [S1,T1{S1,T≥S2,T }|Ft

]
= e−rτEQ [S2,TCT1{CT≥1}|Ft

]
=

= e−rτS2,te
(r−δ2)τEQ

[
dQS2

dQ
CT1{CT≥1}|Ft

]
= S2,te

−δ2τEQS2
[
CT1{CT≥1}|Ft

]
(3.35)

e−rτEQ [S2,T1{S1,T≥S2,T }|Ft

]
= e−rτS2,te

(r−δ2)τEQ
[
dQS2

dQ
1{CT≥1}|Ft

]
= S2,te

−δ2τEQS2
[
1{CT≥1}|Ft

]
(3.36)

e−rτEQ

[
S2,T

(
S1,T

S2,T

)β−

1{S1,T≥S2,T } |Ft

]
= e−rτS2,te

(r−δ2)τEQ
[
dQS2

dQ
C

β−
T 1{CT≥1}|Ft

]
=

= S2,te
−δ2τEQS2

[
C

β−
T 1{CT≥1}|Ft

]
. (3.37)

To calculate these expectations we first note that all of these are the expectations of

the ratio process Cβ
T with β = β+ in equation (3.34), β = 1 in equation (3.35), β = 0 in

equation (3.36) and β = β− in equation (3.37), thus we can solve the expectations for the

process Cβ
T with a general elasticity β,

EQS2
[
Cβ

T1{CT≥1}|Ft

]
(3.38)

and

EQS2
[
Cβ

T1{CT<1}|Ft

]
(3.39)

and then use them with the appropriated elasticity to solve the expectations (3.34), (3.35),

(3.36) and (3.37).

We will solve the expectation (3.38). The solution of the expectation (3.39) is analo-

gous. Equation (2.21) implies that:

Cβ
T = Cβ

t exp

[
(δ2 − δ1 −

σ2
c

2
)βτ − βσcY

√
τ

]
, (3.40)

where Y = −WQS2
c,T −WQS2

c,t√
τ

is a standard normal random variable independent of Ft. Sub-

stituting this in equation (3.38):

EQS2
[
Cβ

T1{CT≥1}|Ft

]
= Cβ

t EQS2

[
e(δ2−δ1−

σ2
c
2
)βτ−βσcY

√
τ
1{CT≥1}|Ft

]
(3.41)
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and we have that:

CT ≥ 1 ⇔ d0(Ct, 1, τ) =
lnCt +

(
δ2 − δ1 − σ2

c

2

)
τ

σc

√
τ

≥ Y. (3.42)

With Ct = x:

EQS2
[
Cβ

T1{CT≥1}|Ft

]
=

1√
2π

∫ d0(x,1,τ)

−∞
xβe(δ2−δ1−

σ2
c
2
)βτ−βσcy

√
τe−

1
2
y2dy

=
xβe

(
δ2−δ1−

σ2
c
2

)
βτ

√
2π

∫ d0(x,1,τ)

−∞
e−βσcy

√
τe−

1
2
y2dy

=
xβe

(
δ2−δ1−

σ2
c
2

)
βτ

√
2π

∫ d0(x,1,τ)

−∞
e−

1
2(σ2

cβ
2τ+2βσcy

√
τ+y2)+σ2

cβ
2τ

2 dy

=
xβe

(
δ2−δ1−

σ2
c
2

)
βτ+

σ2
cβ

2τ

2

√
2π

∫ d0(x,1,τ)

−∞
e−

1
2(y+σcβ

√
τ)

2

dy.

Let z = y + σcβ
√
τ , then:

EQS2
[
Cβ

T1{CT≥1}|Ft

]
=

xβe

[
(δ2−δ1)β+

σ2
c
2
β(β−1)

]
τ

√
2π

∫ d0(x,1,τ)+σcβ
√
τ

−∞
e−

1
2
(z)2dz

= xβe

[
(δ2−δ1)β+

σ2
c
2
β(β−1)

]
τ
Φ(d0(x, 1, τ) + σcβ

√
τ).

(3.43)

Now, we can include the discount factor e−δ2τ in equation (3.43) which yields:

e−δ2τEQS2
[
Cβ

T1{CT≥1}|Ft

]
= e−δ2τxβe

[
(δ2−δ1)β+

σ2
c
2
β(β−1)

]
τ
Φ(d0(x, 1, τ) + σcβ

√
τ)

= xβe

[
(δ2−δ1)β+

σ2
c
2
β(β−1)−δ2

]
τ
Φ(d0(x, 1, τ) + σcβ

√
τ).

(3.44)

Since x = Ct,

e−δ2τEQS2
[
Cβ

T 1{CT≥1}|Ft

]
= eq(β)τCβ

t Φ (dβ(Ct, 1, τ)) , (3.45)

where

dβ(Ct, 1, τ) =
ln Ct

1
+
(
δ2 − δ1 + σ2

c

(
β − 1

2

))
τ

σc

√
τ

(3.46)

and

q(β) =
1

2
σ2β(β − 1) + (δ2 − δ1)β − δ2. (3.47)

It can be shown analogously

e−δ2τEQS2
[
Cβ

T 1{CT<1}|Ft

]
= eq(β)τCβ

t Φ (−dβ(Ct, 1, τ)) . (3.48)
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We can now use the general equations (3.45) and (3.48) to solve equations (3.34),

(3.35), (3.36) and (3.37). Using equation (3.48) with β = β+ for equation (3.34):

S2,te
−δ2τEQS2

[
C

β+

T 1{CT<1}|Ft

]
= S2,t

(
S1,t

S2,t

)β+

Φ
(
−dβ+(S1,t, S2,t, τ)

)
(3.49)

using equation (3.45) with β = 1 for equation (3.35):

S2,te
−δ2τEQS2

[
CT1{CT≥1}|Ft

]
= e−δ1τS1,tΦ (d1(S1,t, S2,t, τ)) (3.50)

using equation (3.45) with β = 0 for equation (3.36):

S2,te
−δ2τEQS2

[
1{CT≥1}|Ft

]
= e−δ2τS2,tΦ (d0(S1,t, S2,t, τ)) (3.51)

using equation (3.45) with β = β− for equation (3.37):

S2,te
−δ2τEQS2

[
C

β−
T 1{CT≥1}|Ft

]
= S2,t

(
S1,t

S2,t

)β−

Φ
(
dβ−(S1,t, S2,t, τ)

)
. (3.52)

Finally combining equations (3.34), (3.35), (3.36), (3.37), (3.49), (3.50), (3.51) and

(3.52), equation (3.33) becomes:

e−rτEQ [VT (S1,T , S2,T ,∞)|Ft] = B(β+)S2,t

(
S1,t

S2,t

)β+

Φ
(
−dβ+(S1,t, S2,t, τ)

)
+B(1)e−δ1τS1,TΦ(d1(S1,t, S2,t, τ))

−B(0)e−δ2τS2,TΦ(d0(S1,t, S2,t, τ))

+B(β−)S2,t

(
S1,t

S2,t

)β−

Φ
(
dβ−(S1,t, S2,t, τ)

)
.

(3.53)

□

3.4. Finite caps

Finally we will combine the results from Section 3.2.2 and Section 3.3.2 to obtain the

formula for the finite case.

Proposition 3.3. The t-value of the finite-lived claim is:

Vt(S1,t, S2,t, T ) = B(β−)S2,t

(
S1,t

S2,t

)β−

[1{S1,T≥S2,T } − Φ(dβ−(S1,t, S2,t, τ))]

+B(1)S1,t [1{S1,T≥S2,T } − e−δ1τΦ(d1(S1,t, S2,t, τ))]

−B(0)S2,t [1{S1,T≥S2,T } − e−δ2τΦ(d0(S1,t, S2,t, τ))]

−B(β+)S2,t

(
S1,t

S2,t

)β+

[1{S1,T≥S2,T } − Φ(dβ+(S1,t, S2,t, τ))].

(3.54)
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Proof. Substituting equations (3.26) and equation (3.30) into equation (3.6):

Vt(S1,t, S2,t, T ) = Vt(S1,t, S2,t,∞)− e−rτEQ [VT (S1,T , S2,T ,∞)]

= B(β−)S2,t

(
S1,t

S2,t

)β−

[1{S1,T≥S2,T } − Φ(dβ−(S1,t, S2,t, τ))]

+B(1)S1,t [1{S1,T≥S2,T } − e−δ1τΦ(d1(S1,t, S2,t, τ))]

−B(0)S2,t [1{S1,T≥S2,T } − e−δ2τΦ(d0(S1,t, S2,t, τ))]

+B(β+)S2,t

(
S1,t

S2,t

)β+

[1{S1,T<S2,T } − Φ(−dβ+(S1,t, S2,t, τ))].

(3.55)

Using the relationship

1{S1,T<S2,T } − Φ(−dβ(S1,t, S2,t, τ)) = −(1{S1,T≥S2,T } − Φ(dβ(S1,t, S2,t, τ))) (3.56)

we get

Vt(S1,t, S2,t, T ) = B(β−)S2,t

(
S1,t

S2,t

)β−

[1{S1,T≥S2,T } − Φ(dβ−(S1,t, S2,t, τ))]

+B(1)S1,t [1{S1,T≥S2,T } − e−δ1τΦ(d1(S1,t, S2,t, τ))]

−B(0)S2,t [1{S1,T≥S2,T } − e−δ2τΦ(d0(S1,t, S2,t, τ))]

−B(β+)S2,t

(
S1,t

S2,t

)β+

[1{S1,T≥S2,T } − Φ(dβ+(S1,t, S2,t, τ))].

(3.57)

□

3.5. Finite floors

The difference between the cap and the floor is the swap (a result that depends on caplet

and floorlet parity). Thus floors Ft(S1,t, S2,t, T ) are valued as a function of the corre-

sponding cap less a swap of the revenues associated with S1,t against those with S2,t, both

over a finite horizon T . Using equation (3.54) and the relationship (3.56)

Ft(S1,t, S2,t, T ) = Vt(S1,t, S2,t, T )−B(1)S1,t(1− e−δ1τ ) +B(2)S2,t(1− e−δ2τ )

= −B(β−)S2,t

(
S1,t

S2,t

)β−

[1{S1,T<S2,T } − Φ(−dβ−(S1,t, S2,t, τ))]

−B(1)S1,t [1{S1,T<S2,T } − e−δ1τΦ(−d1(S1,t, S2,t, τ))]

+B(0)S2,t [1{S1,T<S2,T } − e−δ2τΦ(−d0(S1,t, S2,t, τ))]

+B(β+)S2,t

(
S1,t

S2,t

)β+

[1{S1,T<S2,T } − Φ(−dβ+(S1,t, S2,t, τ))]. (3.58)

It is also interesting to note that, the value of the floor is the same the cap on S2,t

with strike S1,t:

Ft(S1,t, S2,t, T ) = Vt(S2,t, S1,t, T ). (3.59)

In this case, the numéraire to price Vt(S2,t, S1,t, T ), will be S1,t instead of S2,t.
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CHAPTER 4

Conclusions

We began this thesis by exploring the key concepts of an option to exchange one asset

for another where the assets pay dividends, the orthogonalization of the pricing problem

and the change of numéraire to reduce the problem to the one dimensional case. We

then tackled the problem of the continuous sum of such exchange options using the time

decomposition technique presented by Shackleton & Wojakowski (2007) to reach closed-

form solutions.

The valuation of finite maturity caps, floors, and collars on continuous flows has

typically been addressed using methods inspired by real options literature, which often

focus on perpetual solutions. In our approach, the problem is initially solved for the

perpetual case, and then the finite maturity case is derived. This is done by subtracting

the risk-neutral expectation of the forward start perpetual solution from the corresponding

current perpetual solution. Dias, Nunes & Silva (2024) have solved this problem solving

the integral (3.5) using the process of integration by parts.

As prospects of future research, one could apply the framework developed in this thesis

to price finite horizon situations where switching can occur frequently and repeatedly

between two randomly variable flows: One use case of this framework would be a project

to generate energy, where the price of energy and the fuel to generate it are traded assets.

In this framework one could stop production of energy if the price of the fuel would be

higher then the profit of selling that energy. This could be done instantaneously, at any

moment, and with no cost. One could use the close form solutions of this thesis to derive

the so-called Greeks to find hedging strategies for these projects. Another topic of future

research would be to value the option to invest in such a project.
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