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Resumo 
 

Este estudo tem como objetivo diminuir a lacuna existente entre a pesquisa (teórica) e a prática 

existente para a tarefa de previsão de séries temporais, ao introduzir e avaliar um novo modelo 

transformer-based. Este é baseado nas arquiteturas já existentes em modelos como o Frequency 

Enhanced Decomposed Transformer (Zhou et al., 2022) e o Patch Time Series Transformer 

(Nie et al., 2022), que se destacaram pela positiva em ambientes univariados e multivariados, 

respetivamente. O cerne desta tese é então o desenvolvimento de um modelo transformer-

based, que combina elementos dos dois modelos acima mencionados. Através de diversos testes 

rigorosos recorrendo às métricas erro quadrático médio (MSE) e erro médio absoluto (MAE), o 

desempenho deste novo modelo foi comparado com os que o originaram. Em sede de conclusão 

as descobertas revelam que este novo modelo supera um dos modelos que o origina ainda que 

não supere o outro. Esta pesquisa contribui para a área da Ciência de Dados ao fornecer insights 

sobre a eficácia deste tipo de modelos e orientando possíveis avanços futuros para a tarefa de 

previsão de séries temporais.  

 

Palavras-Chave: Previsão de Séries Temporais, Transformers, Attention Mechanism, Erro 

Quadratico Médio (MSE), Erro Médio Absoluto (MAE) 
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Abstract 

 

This study aims to bridge the gap between theoretical research and practical application in time 

series forecasting by introducing and evaluating a novel transformer-based model. It builds on 

the foundations set by models such as Frequency Enhanced Decomposed Transformer (Zhou 

et al., 2022) and Patch Time Series Transformer (Nie et al., 2022), which have excelled in 

univariate and multivariate settings. The core of this thesis is the development of a transformer-

based model, combining elements of the two models mentioned above. Through rigorous 

testing using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluative 

metrics, the new model's performance was benchmarked against its precursors. The findings 

reveal that while the latest model surpasses one of its predecessors in forecasting accuracy, it 

does not outperform the other. This research contributes to the field of Data Science by 

providing insights into the effectiveness of these models and guiding future advancements in 

time series forecasting. 

 

Keywords: Time Series Forecasting, Transformers, Attention Mechanism, MSE, MAE 
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  Introduction 
Throughout the years, the models used in time series forecasts have changed. From the 

traditional Auto-Regressive Integrated Moving Average (ARIMA) statistical linear models to 

the Recurrent Neural Networks (RNN) or the Long Short-Term Memory (LSTM) model as 

neural network implementations, we have seen an increase in the forecast performance by 

performing these algorithms. It was noticed, then, that machine (deep) learning models, such 

as RNN or LSTM, were the ones that performed better (Lezmi & Xu, 2023; Sreelekshmy Selvin 

et al., 2017).  

That said, it is rational to think that more machine learning models had to come out to try 

and outperform old ones. And so it was, with the appearance of the Transformer (Vaswani et 

al., 2017), initially designed to perform natural language processing tasks, that time series 

forecasting took a turn. The excellent performances in other fields triggered a great interest in 

the time series community (Wen et al., 2022). 

It was only a matter of time until researchers tried to use algorithms from the Transformers 

family in time series forecasting - and they did with great success (H. Wu et al., 2021; H. Zhou 

et al., 2020). The main idea relies on the understanding that just like a phrase/corpus in a natural 

language processing problem is a sequence of words that serve as input to the Transformer 

architecture to obtain an output; it is also fair to consider the values in a time series a sequence 

of numbers as valid input to get a certain output – the forecast. Since there is no perfect model, 

it is also relevant to mention that research has been done on the problems inherent to using 

transformers for time series forecasting. The detection of problems occurred quite early, and 

the main ones are, as mentioned by the authors (Li et al., 2019): (1) Memory bottleneck 

associated with space and time complexity. (2) The fact that this model is insensitive to local 

context comes as a problem when solving issues in time series forecasting. 
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This whole study, and more precisely the literature review section, will focus on exploring 

and exposing the more relevant methodologies to time series forecasting using the Transformer 

architecture or, as mentioned before, transformer-based solutions. We will investigate key 

components of the research topic based on studies that followed some of the methodologies in 

question. Following that, emphasis will be placed on comparing and discussing all relevant 

existing transformer-based solutions for this problem, also with simple linear models, so that it 

will be possible to better understand and progress with further studies. Finally, a novel 

implementation of a hybrid transformer-based model will be tested and paired against the 

original models to obtain better or confirm already discussed insights. To do so, we utilize well-

known benchmark datasets. These include the Traffic dataset, Weather dataset, Illness dataset, 

and Exchange Rate dataset, each representing different domains such as traffic, meteorology, 

healthcare, and finance, respectively. These datasets were chosen to ensure the robustness of 

the proposed hybrid model across diverse application areas. The characteristics of these 

datasets, such as their time spans, frequencies, and variability, provide a comprehensive basis 

for evaluating the performance of transformer-based models in capturing both short-term and 

long-term dependencies That said, three main research questions arise: 

 

Question 1: Are transformer-based models relevant in time series forecasting? 

Question 2: Does transformer-based models’ performance change for different 

windows/settings? 

Question 3: How does the integration of PatchTST into FEDFormer influence the 

computational efficiency and predictive accuracy of transformer-based models for time series 

forecasting? 

 

With that, and briefly, this study will be divided into four main chapters: the first one will 

regard the selection and revision of relevant literature for the study; chapter two will describe 

the corresponding methodology for the models, data used and respective evaluation metrics 

used;  chapter three will mainly be composed of the results and discussion of the said results; 

and finally the fourth and final chapter will describe the obtained conclusions and possible 

future work that will be drawn from the previously obtained results. 
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CHAPTER 1 

Literature Review 

 
1.1 Literature selection 
To better understand the subject of study, the systematic literature review (SLR) method was 

used, which is amply considered worldwide and aims to help identify and gather relevant 

literature better. This literature review resorted to one of the most significant research databases, 

Scopus.  

In Scopus, one can gather relevant literature in many fields using specific queries to obtain 

more specific results. The systematic literature review started by using a more generalist query; 

that is, it was started by searching papers regarding the task of time series forecasting with the 

following query: "TITLE-ABS-KEY ( "time series" AND "forecasting")" which means that it 

searched the Scopus database for papers that contain in the title, abstract or keywords, the terms 

"time series" and "forecasting". That specific query matched 49,025 documents found in the 

database, which is a lot due to the query being too simple and general. Yet some papers were 

extracted from this search because it was intended to understand better the task of time series 

forecasting in its essence. However, it was necessary to narrow the scope of the search by 

introducing a more complex query.  

That said, the second and final query that was used was the following: TITLE-ABS ( 

"forecasting" AND "time series" AND "transformers" ) AND PUBYEAR > 2016 AND 

PUBYEAR < 2024, which means that it searched the Scopus database for papers that contain 

in the title or abstract the terms "forecasting", "time series" and "transformers" where the year 

the paper was published is comprehended between 2017 and 2023. In this final query, the 

intention was to gather the most important papers for my study, that is, papers that matched in 

several aspects with my work – that's why this query already included the term "transformers" 

and set the interval of the publishing year starting in 2017, the year the original transformer 

paper (Vaswani et al., 2017) was released.  
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Figure 1 – Number of papers by year. 

 

This final query resulted in 423 documents, which is still a large number, yet it started the 

research using the most relevant and cited ones. As can be observed in Figure 1, the exponential 

growth in interest in using transformers for the task of time series forecasting is evident as the 

number of papers dramatically increased.  

As mentioned earlier, there was still a need to narrow the number of articles considered 

relevant to this study.  It started by selecting the ones that proposed to create transformer-based 

solutions, such as the Informer (Zhou et al., 2020) or the Autoformer (Wu et al., 2021), as my 

study will, in some ways, do precisely that. It is also relevant to mention that Scopus was not 

the only source for gathering the research papers that were found helpful. Some of the collected 

documents were found on platforms like Google Scholar, since, after reading the Informer and 

Autoformer papers - that mentioned other transformer-based solutions, surveys, and general 

knowledge on the matter - and didn't appear on the Scopus database - as was the case of the 

Scaleformer (Amin Shabani et al., 2022), or the Crossformer (Zhang & Yan, 2023), among 

others. 
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Figure 2 – Number of papers by type. 

 

That said, 27 papers were gathered and divided into four relevant classes. It is possible to 

observe, based on Figure 2, that most of them regard transformer-based solutions that were 

already mentioned and that were found highly relevant, and others, due to the way the results 

were displayed, were not so relevant, such as the State Space Decomposition Neural Network 

(Lin et al., 2021), the Temporal Fusion Transformer (Lim et al., 2021), or the Adversial Sparse 

Transformer (Wu et al., 2020) that presented the results using, as the main evaluation metric, 

for example, the accuracy of the model and not MSE or MAE as most of the papers use. Still, 

these papers were pertinent in the research as, even though the results were not comparable with 

other methods, they still provided knowledge on their methodologies, yet, they will not be 

present in the results section of this study. Other publications, more precisely, four of them, 

regarded time series forecasting solutions using Linear, ARIMA, LSTM, or RNN models, 

which is the case (Chimmula & Zhang, 2020; Siami-Namini et al., 2018; Sreelekshmy Selvin 

et al., 2017; Zeng et al., 2023) and provided the fundamental historical context on the task using 

some "older" and classical models. Finally, two of them regard surveys done on the task of time 

series forecasting using transformers/deep learning models (Lim & Zohren, 2020; Wen et al., 

2022), which gave an overview of the task itself, and the other two papers regarding a general 

overview of the topic of transformers and/or time series forecasting (Lara-Benítez et al., 2021; 

Lezmi & Xu, 2023) that gave the insights needed to combine the two subjects in question, 

Transformers, and Time Series Forecasting, in a more general way. 
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1.2 Literature Results 
In this section, it is proposed to present and discuss the models and respective results found in 

the selected literature - to do so, the results gathered from the papers shown in Appendixes A.1 

– A.5 were used.  

To present these results, the same methodology was used as in most papers: separate the 

results into univariate and multivariate sections and go from there. It is also relevant to mention 

that the results in the Appendixes show only the best results for each model and each dataset 

for each prediction length – that is, if a model is composed of two or three different variants of 

the model, each with its particularity, the results shown in the tables only regard the best results 

among all the variants of the same model. 

In what follows, we present the data used in most selected papers for the literature review, 

alongside with the respective models. Also, results will be extracted directly from the papers 

(regarding univariate and multivariate settings) and summarized in order to gather valuable 

insights and formulate conclusions to enrich future studies.  

 

1.2.1 Data 

It is important to mention that the models in the selected papers used the same datasets as, in 

this particular field of time series forecasting, they are well-known for their benchmark nature. 

That said, the considered datasets will be described in the following parts of this sub section. 

Starting with the Electricity Transformer Temperature (ETT datasets - ETTh1, ETTh2, 

ETTm1, and ETTm2)1 that consist of 2 years of electric power deployment data from two 

separate counties in China that are split into 4 different subsets where the only difference 

between them is the granularity - that is, ETTh1 and ETTh2 represent hourly data, and ETTm1 

and ETTm2 represent 15-minute data. The Weather dataset is also largely used in this task, and 

it contains weather data with a 10-minute frequency for an entire year. The ECL dataset 

represents data on electricity consumption recorded every 15 minutes from 2011 to 2014. The 

electricity dataset is like the previous one, but only regarding hourly data. The exchange dataset, 

as it explicitly says, regards (daily) exchange rate data of eight different countries ranging from 

1990 to 2016. The ILI dataset is the Illness dataset regarding weekly data on patients with 

influenza-like illness in the United States between 2002 and 2020, and finally, the Traffic 

 
1 https://github.com/zhouhaoyi/ETDataset 
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dataset considers hourly traffic data. All datasets can also be found on the Autoformer GitHub 

page2. 

Dataset Time Period Frequency Number of Observations 

ETTh1 2 years Hourly 17420 

ETTh2 2 years Hourly 17420 

ETTm1 2 years 15 minutes 69680 

ETTm2 2 years 15 minutes 69680 

Weather 1 year 10 minutes 52696 

ECL 2011-2014 15 minutes 26304 

Electricity 2011-2014 Hourly 26304 

Exchange 1990-2010 Daily 7588 

ILI 2002-2020 Weekly 966 

Traffic 2016-2018 Hourly 17544 
 

Table 1 – Description of the datasets. 

    

 As summarized in Table 1, it is represented, for each dataset, the corresponding time 

period, its frequency and the number of observations. 

The models and the respective results presented in the relevant selected literature will be 

reviewed. The transformer-based models will be described, some advantages presented, and 

then the results will be compared. 

 

 

1.2.2 Models 

Firstly, and to give some context, a brief description will be made regarding the original 

transformer model proposed in 2017 (Vaswani et al., 2017) so that it is possible to better 

understand some of the particularities of other transformer-based solutions.  

 
2 https://github.com/thuml/Autoformer 
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Figure 3 – Original Transformer model architecture. 

 
 

In a simple way, the Transformer model consists of an encoder-decoder architecture where 

both are composed of a stack of identical layers – as can be observed in Figure 3. In the original 

architecture, the encoder is composed of six identical layers, and each layer has two main layers 

that consist of a multi-head self-attention layer, and a fully connected feed-forward network. 

The decoder, in the original architecture, is also composed of six identical layers. In addition to 

the two sub-layers in each encoder layer, the decoder also inserts a third sub-layer, which is a 

multi-head attention layer.  

That said, the Transformer can be categorized as a type of neural network model designed 

to process sequential data, such as text or, in this case, time series. One of the main 

particularities of this model lies in the fact that it uses an attention mechanism (self-attention) 

to weigh the importance of different elements in the data, unlike earlier models. Some key 

concepts to retain from this architecture are as follows: (1) The self-attention mechanism is an 

attention mechanism that allows the model to focus on different parts of the input and weight it 

accordingly. (2) Positional encoding that straightforwardly helps the model to understand the 

order of the elements in the sequence. 
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Starting with the Informer (Zhou et al., 2020), the authors mainly identified the inefficiency 

of traditional self-attention mechanisms in handling long sequences and so, they presented two 

main characteristics for the model: a ProbSparce self-attention mechanism with its benefits and 

a generative style decoder. Building on this, the Autoformer (Wu et al., 2021), observed that 

while the ProbSparce self-attention mechanism improved efficiency, it still struggled to capture 

dependencies over time. To solve this, the authors proposed replacing self-attention with the 

Auto-Correlation mechanism. While the Autoformer enhanced dependency modeling, the 

FEDformer (Zhou et al., 2022) noted that previous models still had difficulty capturing both 

seasonal and trend components. That said, the authors proposed to combine the vanilla 

transformer with frequency analysis using a seasonal-trend decomposition method. The 

Pyraformer (S. Liu et al., 2022) introduces a pyramidal graph-structure attention mechanism to 

the transformer in order to address the challenge of capturing multi-scale dependencies. 

PatchTST (Nie et al., 2022), identified the need, in a general way, for better segmentation of 

time series data. The authors then proposed two main changes to the original transformer: the 

first one is the segmentation of the time series into subseries-level patches; the second one is 

the implementation of channel-independence (already used in other traditional models, just not 

on transformers). The Non-stationary Transformers (Y. Liu et al., 2022)  focused on the 

problem of over-stationarization. To solve this the authors proposed to use a series 

stationarization and a de-stationary attention mechanism, that allowed the model to adapt to 

changes in the underlying data. Subsequently, to enhance the ability of transformer-based 

models to understand cross-dimensional dependencies, the Crossformer (Zhang & Yan, 2023) 

proposed a solution utilizing cross-dimension dependency, which improved the model’s 

capability to capture interactions between different dimensions of time series data. Finally, the 

Channel Aligned Robust Blend Transformer (Xue et al., 2023) also introduces two changes: a 

dual transformer structure; and a robust loss function to alleviate the potential overfitting issue.  



 

10 

Apart from all the models presented above, there are also some models or frameworks that were 

not included in the results tables mainly because of a few reasons: being too specific and not 

relevant for "overall" time series forecasting, like the transformer proposed for energy forecast 

(Oliveira & Oliveira, 2023), the transformer suggested for traffic forecast (Cai et al., 2020), or 

even the transformer for the Influenza Prevalence Case (Wu et al., 2020); the second reason 

relies on the choice of the authors regarding the selection of the metrics to evaluate the model, 

as said earlier – that is, most of the authors chose to use MSE and MAE to evaluate their models, 

other models just like the SSDNet or the Hierarchical Multi-Scale Gaussian Transformer (Ding 

et al., 2020) chose not to do so, that said, it was decided to omit the ones that didn't present 

these metrics or similar in the tables for consistency reasons. Finally, the so-called frameworks 

like the Scaleformer (Amin Shabani et al., 2022) or the Tightly-Coupled Convolutional 

Transformer (Shen & Wang, 2022) that, despite being relevant to the research, don't qualify as 

a "real" transformer-based solution just because they mainly rely on other transformer-based 

solutions and add some changes on top of them. Yet, it is still especially important to mention 

that even though they are not present in the tables, it doesn't mean the changes proposed by 

these papers were not valuable. These changes are significant and meant to be taken just like 

the others as relevant to future work. 

 

1.2.3 Results 

After introducing most of the models, we will present the results. The univariate results will 

now be discussed, followed by the multivariate ones, for the transformer-based solutions as 

they are done in most literature. After doing so, a comparison and discussion will occur 

regarding the best results from transformer-based solutions versus linear solutions presented in 

the literature – Appendix A.2. 

Univariate Time-series Forecasting: Under this setting, it is from Appendix A.1 that we 

can observe that: (1) The Informer and FEDformer models were the only models to perform 

tests with the ETTh1, ETTh2, ETTm1, ECL, ILI, and Electricity datasets. (2) For the ETTm2 

dataset, the FEDformer, among the other models, performs better, although not prominently. It 

is also nice to note that, through the varying input lengths, we see an increase in the MSE and 

MAE. (3) Regarding the Weather dataset, the Informer and FEDformer are the only models to 

use this dataset to make tests. That said, and with varying input lengths, the FEDformer 

performs better, this time, prominently. (4) Finally, in the Exchange dataset, the implementation 

of the Non-stationary transformer outperforms all the other models. In conclusion, we can 

affirm that the best-performing transformer-based model under this setting is the FEDformer. 
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The results will vary a lot based on many factors, so it is necessary to point out again that the 

results gathered are based only on the respective papers of each model.  

Multivariate Time-series Forecasting: Under this setting, it is from Appendix A.2, only 

regarding the ETT dataset, that it is possible to observe that: (1) There were three main models 

for getting the best results. The Autoformer, Crossformer, and PatchTST were the ones that got 

the best results. (2) In the ETTh1, it was the Crossformer and PatchTST that got the best results; 

In the ETTh2 and ETTm2 it was the Autoformer and PatchTST (Crossformer didn't use these 

datasets); And finally, in the ETTm1 all three models performed nicely. (3) It is necessary to 

mention that, although all three models outperformed all others, among these 3, it is possible to 

say that the PatchTST is, in this dataset, the best model to use. Not only do they get a significant 

portion of the best results, but they also get the best results where the input length is more 

significant, which is also a plus. Now, passing to Appendix A.4, where the ILI, ECL, and 

Weather datasets are regarded, it is possible to observe that: (1) For the Weather dataset, it is 

possible to say that PatchTST is, in a general way, the model that performs the best. Alongside 

the results from Crossformer, which only performed well in input lengths, other models didn't 

make any tests. (2) Regarding the ECL dataset, the only model that performed any tests under 

the multivariate setting was the Crossformer. That said, it is not possible to say that, for this 

dataset in particular, the considered model is better than other models listed. (3) Finally, it is on 

the ILI dataset that the PatchTST confirms, once again, its dominance regarding performance. 

It is possible to say that PatchTST is the best model for this set of datasets. Finally, in Appendix 

A.5 regarding the Traffic, Exchange, and Electricity datasets, it is possible to say that: (1) For 

the Traffic dataset, it is, once again, the PatchTST model that outperforms all the others (except 

for the cases regarding the 24 and 48 input lengths that only the Crossformer model used.) (2) 

For the Exchange dataset, implementing the Non-stationary transformer, just like in the 

univariate setting, outperformed all the others. It is also relevant to mention that, for larger input 

lengths, the results obtained by the Non-stationary transformer decreased a bit, and the 

FEDformer got a little better results. (3) Finally, in the Electricity dataset, the model that got 

the best results was the PatchTST, except regarding the 168 input length, that only the 

Pyraformer model used. In a general way, it is possible to say that, once again, PatchTST was 

the model that got the best results. 
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Transformer-based versus Linear solutions: After gathering the best transformer-based 

solutions, it is interesting to compare them with linear solutions using the same benchmark 

datasets from the literature. It's the case of the long-term time series forecasting – linear (LTSF-

Linear) (Zeng et al., 2023), a simple linear model, as stated by the authors, consisting only of a 

weighted sum of historic L values to predict future T timesteps. This model consists of three 

separate models - Linear, NLinear and DLinear - each designed for its particular field 

(depending on the dataset) and varying only in pre-processing techniques. The best results 

obtained with this model are present in Appendix A.2. That said a compilation table was made 

so that it is possible to compare the results from this linear model and the best multivariate 

transformer-based solution, as it is present in Appendix A.6. It is then possible to observe that: 

(1) Among the two selected models it is challenging to decide which performs better - although 

practically all the best results belong to the PatchTST model, it is by a small margin most of the 

time. 

 

1.3 Conclusions 
In conclusion, the results detailed in Appendix A.1 reveal that the FEDformer consistently 

outperforms other models across all the datasets regarding the univariate setting. Notably, it 

excels in the ETTm2 dataset and demonstrates superior performance in the Weather dataset, 

establishing itself as the top-performing model. Changing the setting to the multivariate time 

series and referencing Appendixes A.3-A.5, three main models emerge as top performers – 

Autoformer, Crossformer, and PatchTST. Yet, overall, PatchTST stands out as the dominant 

model in multivariate forecasting, displaying its versatility and consistently superior 

performance across diverse datasets.  

It is once again crucial to note that these conclusions are drawn from the respective papers 

and regarding each model, and the results may vary depending on specific factors like 

computational resources. Nonetheless, the comprehensive analysis presented here underscores 

the robust performance of the FEDformer and PatchTST in univariate and multivariate time 

series forecasting for transformer-based solutions, respectively, and LTSF-Linear as a robust 

linear solution for time series in general. 
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This systematic literature review's significance lies in identifying time series forecasting 

models that exhibit superior performance in different contexts – that is, not only regarding the 

business area of each dataset, but also the setting (univariate or multivariate). FEDformer 

excelled in the univariate setting, while PatchTST was superior in the multivariate setting. 

These findings are essential to this work since they provide valuable insights into which 

approaches may be most effective to attack the problem. It is also necessary to acknowledge 

certain limitations, one of them being that the conclusions are based on information available 

in the selected papers, introducing a potential bias and limitation. Additionally, one of the most 

important points is that time series forecasting is not easy per se. 

For future research, and based on the limitations of the task in hand, it would be beneficial 

to investigate, explore, and implement a new state-of-the-art transformer-based solution that 

could combine some of the most interesting characteristics of the two best models presented in 

this literature review and also try to solve at least in part some of the problems associated with 

the use of this model such as (1) Memory bottleneck associated with time and space complexity, 

and (2) The fact that this model is insensitive to local context. Moreover, a deeper understanding 

of factors influencing model performance in specific scenarios could provide valuable insights 

for future improvements.  

This systematic literature review offers a comprehensive overview of transformer-based 

solutions for time series forecasting, highlighting their practical nuances and results, providing 

clear guidance, and serving as a strong base for future work. 
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CHAPTER 2 

Data and Models 

 
In this chapter, we will explore the methods chosen and employed for the task of time series 

forecasting. Following, in some ways, the CRISP-DM (Wirth & Hipp, 2000) methodology, we 

will delve into the development of a novel hybrid transformer-based model, which incorporates 

the two best-performing models discussed in the previous chapter – although the novel model’s 

architecture is presented later, the methodology used to develop it can be observed in the 

flowchart in Figure 4. 

 
Figure 4 – CRISP-DM flowchart. 

 

The focus will lie on explaining not only the data used but also the technical aspects of the 

integration of the two models into a new one – mainly the integration of the PatchTST layer 

into the input layer of the FEDFormerMS (the FEDFormer implementation of the Scaleformer 

framework). 

 

 

2.1 Data used 
So, regarding this particular section, the data used in the novel hybrid model will be presented. 

It will consist of the data used in most of the other models presented in the literature review so 

that all future comparisons of results and future discussions are reliable and comparable. 
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Four datasets will be used, spanning different areas, which will also be an excellent test for 

the novel model so that it will be possible to observe its behavior when presented with 

multidisciplinary data. These datasets are the Traffic dataset, the Weather dataset, the Illness 

dataset and the Exchange Rate dataset (all four datasets are available on the Autoformer3 github 

page). All these four datasets are now to be thoroughly described and studied to provide more 

context for future methods and results. It is important to note that, as these datasets are widely 

used for time series forecasting, it is normal that they have already been worked on and need 

no further improvements to fit the novel model.  

 

 

2.1.1 Traffic 

The Traffic dataset contains traffic volume data, ranging from July 2016 to July 2018, with 

17,544 rows, 863 columns and no missing data. 

 

 

 
Figure 5 - Traffic dataset plot – target variable. 

 
3 https://github.com/thuml/Autoformer 
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As it is possible to see in Figure 5, the target variable (OT column) exhibits a consistent 

pattern throughout, registering fluctuations in traffic throughout the days (seen by all the spikes, 

maximums, and minimums). It is noticeable a slight upward trend since around 2017, yet not 

too extreme, indicating a gradual increase in traffic volume over time. It is evident, once again, 

that the daily patterns reveal significant variations, likely corresponding to the peak traffic hours 

during the day – the spikes, maximums, and minimums might indicate rush hours and off-peak 

hours, respectively. 

 
 Mean Mode Median Standard Deviation 

Target 
Variable 

(OT) 
0.032 0.005 0.034 0.019 

 
Table 2 – Traffic dataset – target variable statistics. 

 

Regarding the statistical measures of this variable, the mean and median values are quite 

close, as is observable in Table 2, which points to a symmetric distribution of the data. The 

value for the standard deviation also indicates the presence of regular fluctuations in the data. 

 

 

2.1.2 Weather 

The Weather dataset contains 7588 rows and 9 columns, with no missing values whatsoever. 

This dataset includes numerous weather features recorded from January 2020 to January 2021 

and, as already mentioned, it is common for these datasets to be well maintained due to their 

benchmark nature.  
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Figure 6 – Weather dataset plot – target variable. 

 

Yet, it is noticeable in Figure 6, by plotting the target variable, that although there is a slight 

quadratic trend, the data exhibits slight daily variations - which is typical for weather data, as it 

can be seen in Figure 7, that displays data for one day.  

 
Figure 7 – OT variable plot (over one day). 

 

It is yet to point out the two existing outliers that occurred right before March and 

September 2020, visible in Appendix A.7, which are errors of the dataset itself most likely 

originated from the data collection step. These outliers were replaced with similar values, and 

the correct data is now displayed in Figure 6 
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 Mean Mode Median Standard Deviation 

Target 
Variable 

(OT) 
417.799 419.900 423.200 321.570 

 
Table 3 –Weather dataset – target variable statistics. 

 

 

Regarding the statistical measures of this variable presented in Table 3, the mean and 

median values are pretty close once again, indicating a relatively symmetric data distribution, 

as can also be seen in Figure 8. Lastly, the value for the standard deviation shows the variability 

in the data, which could be expected due to the nature of the weather changes. 

 
Figure 8 – OT variable histogram. 

 

2.1.3 National Illness 

The National Illness dataset contains data on illness activity levels across different regions, 

recorded weekly, from January 2002 to June 2020. It has 966 rows, 8 columns and no missing 

values.  
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Figure 9 – Illness dataset plot – target variable. 

 

Figure 9 shows the data exhibits noticeable weekly variations, with peaks corresponding to 

seasonal flu outbreaks. For example, around 2009, the swine flu pandemic, or the probable 

beginning of the COVID-19 pandemic around the end of 2019 is noticeable. Apart from that, 

no real outliers can be identified so no additional processing was performed. 

 

 
 Mean Mode Median Standard Deviation 

Target Variable 
(OT) 651497.460 64699 618305 349018.888 

 
Table 4 – Illness dataset – target variable statistics. 

 

 

Regarding the statistical measures of the variable, Table 4 also shows that the large value 

for the standard deviation reflects a significant variability, which could be explained by the 

seasonal nature of illness data, where spikes surge during flu seasons and drop during off-peak 

periods. 

 

2.1.4 Exchange Rate 

The Exchange Rate dataset contains nine daily time series with 7588 entries and no missing 

values. This dataset records the exchange rates over the period ranging from January 1990 to 

October 2010, providing a view of the currency fluctuations. 
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Figure 10 – Exchange rate dataset plot – target variable. 

 

Figure 10 shows the data displays evident fluctuations over the years. There are periods of 

both rapid increase and decrease in the values, yet, it doesn’t seem to present a real trend or 

seasonality typical to this type of data. No outliers were encountered either. 

 
 Mean Mode Median Standard Deviation 

Target 
Variable 

(OT) 
0.654 0.552 0.669 0.115 

 
Table 5 – Exchange rate dataset – target variable statistics. 

 

Regarding the statistical measures of the variable present in Table 5, the mean and median 

values provide insights into the central tendency of the data. The standard deviation indicates 

the extent of the variation, which highlights the volatility inherent to this type of data. 

 

2.2 Layer integration 
As one of the main ideas behind this thesis is the possible discovery of a novel model with the 

best results, it is in this section that is presented the implementation of the idea itself regarding 

the integration of the PatchTST layer into the FEDFormerMS model. To achieve that and 

provide context to better understand these models, a brief description of the original transformer 

model and the other three models (FEDFormerMS, PatchTST and the Novel Model) will also 

be made in what follows. 
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The original Transformer model revolutionized the field of sequence modeling as a whole. 

It can be characterized by using the self-attention mechanism to process input sequences (data), 

rather than sequentially as in traditional recurrent neural networks or other traditional models. 

This architecture consists of an encoder-decoder structure where the encoder processes the input 

sequence through multiple layers, each containing, precisely, a multi-head self-attention 

mechanism. This allows the model to focus on different parts of the sequence simultaneously 

and capture complex dependencies. The decoder generates the output sequence by similarly 

using self-attention layers. This dual attention mechanism is the feature that enabled the model 

to produce accurate and contextually relevant predictions in the sequence modeling field. 

Regarding the FEDFormerMS – we can say that it is an implementation of the FEDFormer 

(T. Zhou et al., 2022) model that uses the Scaleformer framework to enhance multi-scale feature 

extraction. This model is designed to manage temporal sequences efficiently by capturing 

patterns across various scales. The architecture of FEDFormerMS includes a multi-scale 

decomposition layer that breaks down the input time series into components at different scales. 

This decomposition allows the model to focus on short-term and long-term patterns, enhancing 

its predictive abilities. Like the original transformer model, this model also uses a multi-head 

attention mechanism to emphasize relevant features across the decomposed data. 

The PatchTST model is designed to effectively capture local dependencies within a time 

series through a unique approach that depends on patching – that is, the input time series is 

divided into smaller patches, each representing a localized data segment. This unique patching 

mechanism should, in theory, allow the model to focus on local temporal patterns, making it 

particularly expert at identifying short-term trends and variations in the data. Each patch is 

processed through a transformer encoder (already discussed briefly earlier), utilizing, once 

again, self-attention to capture dependencies within and between patches. The features 

extracted from these patches are then aggregated to form the final result. 

Finally, regarding the novel model, the idea behind it is really what it seems – to integrate 

the layer responsible for most of the action in the PatchTST, namely this layers’ capability to 

capture local dependencies model into the implementation of the FEDFormer of the scaleformer 

framework that, in itself, has the great ability of multi-scale feature extraction. In order to do 

this, the modules/layers of the PatchTST model regarding patching were gathered in the input 

section of the model and placed as the input layer of the FEDFormerMS in hopes of seeing, 

possibly, better results – illustration seen in Figure 11. 
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Figure 11 – Novel model architecture. 

 
 

The rationale behind this process is to leverage the strengths of both models, aiming to 

achieve better results and performance by combining their capabilities. Process-wise, the input 

time series is split into patches using the PatchTST layer to better capture local dependencies, 

as already mentioned. After this step, the patched data is fed into the input layer of the 

FEDFormerMS, where the multi-scale feature extraction will occur. 

It is by combining the best features of both models that this new hybrid model is expected 

to achieve better results (also regarding performance), when compared to each model 

individually. 

 

2.3 Evaluation metrics 
Finally, regarding the evaluation metrics to be used, once again, they will be assigned to the 

ones present in the selected literature as, in the future, when one wants to compare results, it 

will be not only helpful but truthful and scientifically correct if the comparison is made using 

the same evaluation metrics. 

The metrics used in this novel model will also be the Mean Squared Error (MSE) and the 

Mean Absolute Error (MAE). To better understand what they mean and the real meaning of the 

performance of the novel model, they will now be presented in their essence. 
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Starting with the Mean Squared Error (MSE) is simply the average of the squares of the 

errors, where the error is the difference between the predicted value, 𝑦!" , and the actual/real 

value, 𝑦", where n is the sample size. It is given by: 

 

MSE = #
$
∑ (𝑦" − 𝑦!")%$
"&#   (2.1) 

 

One aspect to consider for future result comparison is that MSE is sensitive to large errors 

once it squares the error term. Based on equation (2.1), it is also possible to conclude that a 

lower value for the MSE indicates a better model performance. 

Regarding the metric Mean Absolute Error (MAE), it is possible to say that it is the average 

of the absolute differences between the predicted and actual/real values. It is given by: 

 

MAE  =   #
'
∑ |y(  −  y)"|'
(&#   (2.2) 

 

To have into consideration this metric, is the fact that, based on its modular nature, this 

metric provides a straightforward measure of the average magnitude of errors in a set of 

predictions, with no consideration for their direction, so it is possible to say that it is in the same 

scale as the target variable. Similarly to the MSE, this metric also indicated better model 

performance for lower values. 

In conclusion, this chapter provides a comprehensive overview of the datasets to be used, 

the integration of the PatchTST layer into the FEDFormerMS as the base for this thesis aiming 

to deliver a superior performance to the individual ‘parent’ models that originate it, and finally 

a simple description of the evaluation metrics to be used in the novel model. The detailed 

discussion and analysis of the results obtained following this implementation will be held in the 

next chapter so that one can understand the real performance of the novel model compared to 

the two that originated it. 
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CHAPTER 3 

Results and discussion 

 
This chapter presents the results obtained from implementing the approach for the novel hybrid 

model and proposes to discuss them in the context of the selected models. This evaluation 

focuses on comparing the performance of the novel model against the FEDformer in the 

Scaleformer configuration and the PatchTST configuration. The comparison will be based on 

the evaluation metrics presented in the previous chapter - Mean Squared Error (MSE) and Mean 

Absolute Error (MAE). Finally, the discussion also addresses the time constraints encountered 

during the experimentation process, which required significant computational resources and 

time. 

 

3.1 Results 
By presenting and discussing these results, we aim to highlight the strengths and potential 

limitations of the novel hybrid model, as well as its relative performance against already 

established models. It is noted that several tests were performed, namely three different tests 

for each window for each dataset on the novel model – these tests were performed using the 

same settings, that is, the same window sizes, as the ones presented in the literature for each 

model.  

For the other two original models, the results that will be considered are the best ones 

presented in the literature. The FEDformer model in the Scaleformer configuration has 

demonstrated robust performance across various datasets, as already discussed in the first 

chapter. This configuration leverages multi-scale feature extraction to capture patterns, 

providing a balanced approach to short-term and long-term dependency modeling regarding 

time series forecasting.  
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Finally, the configuration used to obtain the results for the novel model consisted of the 

following: (1) Data was split into 70%, 20%, and 10%, respectively, for train, test, and 

validation subsets. (2) Regarding training, 10 was the number of epochs chosen, with a batch 

size 32. (3) The window size varied depending on the dataset; as already mentioned, used the 

same values present in the literature for each dataset: 96,192,336 and 720 for the Traffic, 

Weather and Exchange Rate datasets, and 24,36,48 and 60 for the ILI dataset. (4) It is also 

relevant to note that the developed code4 was executed in a notebook in Google Colab using 

NVIDIA A100 GPUs. (5) Regarding the implementation of the PatchTST part in the novel 

model, a patch length of 16 and a stride of 8 were used, meaning that the time series data was 

divided into patches of 16-time steps each, and these patches were created with an overlap 

where each new patch started 8-time steps after the previous one. 

 

3.1.1 Scaleformer (FEDFormerMS) 

In the Traffic dataset, the Scaleformer configuration achieved an MSE of 0.564 and an MAE 

of 0.351 at the 96 window size. At a 192 window, it achieved an MSE of 0.570 and an MAE of 

0.349. At a 336 window, it achieved an MSE of 0.576 and an MAE of 0.439. At a 720 window, 

the MSE was 0.602 and the MAE was 0.360. These results indicate that while the Scaleformer 

performs well at capturing traffic patterns, there is a trend of increasing MSE and MAE as the 

window size increases, suggesting that longer windows may introduce more complexity and 

variability that the model struggles to capture effectively. 

For the Weather dataset, the Scaleformer implementation achieved an MSE of 0.220 and 

an MAE of 0.289 at the 96 window size. For a 192 window, the MSE was 0.341 and the MAE 

was 0.385. At a 336 window, the MSE was 0.463 and the MAE was 0.455. At a 720 window, 

the MSE was 0.682 and the MAE was 0.565. These results show that the Scaleformer 

implementation could handle short-term weather variations well but struggles as the window 

size increases, possibly due to the increasing complexity and variability in the weather data 

over longer periods. 

In the Illness dataset, the Scaleformer configuration reported an MSE of 2.745 and an MAE 

of 1.075 at the 24 window size. At a 32 window, the MSE was 2.748 and the MAE was 1.072. 

For a 48 window, the MSE was 2.793 and the MAE was 1.059. At a 64 window, the MSE was 

2.678 and the MAE was 1.071. 

 
4 Developed code shall be provided upon request. 
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Finally, the Exchange Rate dataset presented at the 96 window an MSE of 0.109 and an 

MAE of 0.240. At a 192 window, the MSE was 0.241 and the MAE was 0.353. At a 336 

window, the MSE was 0.471 and the MAE was 0.508. At a 720 window, the MSE was 1.259 

and the MAE was 0.865.  

 

Dataset Traffic Weather Illness Exchange Rate 
Metric MSE MAE MSE MAE MSE MAE MSE MAE 

24 - - - - 2.745 1.075 - - 
32 - - - - 2.748 1.072 - - 
48 - - - - 2.793 1.059 - - 
64 - - - - 2.678 1.071 - - 
96 0.564 0.351 0.220 0.289 - - 0.109 0.240 
192 0.570 0.349 0.341 0.385 - - 0.241 0.353 
336 0.576 0.439 0.463 0.455 - - 0.471 0.508 
720 0.602 0.360 0.682 0.565 - - 1.259 0.865 

 
Table 6 – Results for the FEDFormerMS model. 

 

 

These results presented in Figures 12 and 13 suggest, as it can also be observed in Table 6, 

that the Scaleformer configuration could be handling short-term volatility well but struggles 

with longer windows that could, in this case, be derived due to increased variability in exchange 

rates (assuming it could be precisely due to the nature of the data in question). 

 

Figure 12 – Results for the Scaleformer model (Traffic, Weather, Exchange Rate). 
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Regarding the interpretation, based on the smallest MAE values, it is possible to conclude 

the following: (1) For the Traffic dataset, the smallest MAE is 0.349 for the 192 window size. 

(2) For the Weather dataset, the smallest MAE is 0.289 for the 96 window size. (3) Regarding 

the Illness dataset, the smallest MAE is 1.059 for the 48 window size. (4) For the Exchange 

Rate dataset the smallest MAE is 0.240 for the 96 window size. That said, it is possible to 

conclude that this model performed better when encountering smaller window sizes. 

Considering this and Question 1 formulated in the first section of this study, we can 

conclude that the Scaleformer configuration of the FEDformer model proved to be a robust 

model across various datasets, balancing short-term and long-term dependencies effectively. 

The results indicate, once again, that smaller window sizes, particularly the 96 window, could 

effectively capture complex patterns in the data, but performance tends to decrease as the 

window size increases, likely due to the increased complexity and variability in the data over 

longer periods, which can provide an answer to Question 2. It was also interesting to notice 

that, no matter the subject into which the data is inserted, this phenomenon stays constant when 

facing larger windows. However, it was noticed that, due to the nature of the data, the results 

may vary. 

 

 

Figure 13 – Results for the Scaleformer model (Illness). 
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3.1.2 PatchTST (64) 

Now, for the PatchTST model, all the following results will be regarding the variation that 

contemplates patches of 64 (that is why it is being referred to as PatchTST (64)), whereas this 

was the model’s variation with the best results. This model also showed strong performance, 

particularly in capturing local dependencies within the time series data.  

 

Dataset Traffic Weather Illness Exchange Rate 
Metric MSE MAE MSE MAE MSE MAE MSE MAE 

24 - - - - 1.319 0.754 - - 
32 - - - - 1.579 0.870 - - 
48 - - - - 1.553 0.815 - - 
64 - - - - 1.470 0.788 - - 
96 0.360 0.249 0.149 0.198 - - - - 
192 0.379 0.256 0.194 0.241 - - - - 
336 0.392 0.264 0.245 0.282 - - - - 
720 0.432 0.286 0.314 0.334 - - - - 

 
Table 7 – Results for the PatchTST model. 

 

As seen in Table 7 and Figure 14, in the Traffic dataset, the PatchTST (64) configuration 

achieved an MSE of 0.360 and an MAE of 0.249 at the 96 window size. At a 192 window, the 

MSE was 0.379, and the MAE was 0.256. At a 336 window, the MSE was 0.392, and the MAE 

was 0.264. At a 720 window, the MSE was 0.432, and the MAE was 0.286. These results could 

indicate that the patching mechanism effectively captures localized traffic patterns and 

maintains relatively stable performance across different window sizes, compared to the scale 

former, although there is a slight increase in error metrics with more oversized windows. 

For the Weather dataset, the PatchTST (64) configuration achieved an MSE of 0.149 and 

an MAE of 0.198 at the 96 window size. At a 192 window, the MSE was 0.194, and the MAE 

was 0.241. At a 336 window, the MSE was 0.245, and the MAE was 0.282. At a 720 window, 

the MSE was 0.314, and the MAE was 0.334. These results indicate that the patching 

mechanism could be particularly effective for dealing with highly variable data (as weather 

data), maintaining relatively strong performance even as the window size increases. 
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In the Illness dataset, the PatchTST (64) configuration reported an MSE of 1.319 and an 

MAE of 0.754 at the 24 window size. At a 32 window, the MSE was 1.579, and the MAE was 

0.870. At a 48 window, the MSE was 1.553, and the MAE was 0.815. Finally, at the 64 window, 

the MSE was 1.470 and the MAE was 0.788. Also, from Figure 15, these results suggest that 

while the patching mechanism is beneficial for capturing localized spikes and trends, its 

performance curiously decreases with intermediate window sizes. 

For the Exchange Rate dataset, the PatchTST (64) unfortunately didn’t have any results, so 

it would be impossible to make any judgements or get any insights. 

 

 

 
Figure 14 – Results for the PatchTST model (Traffic, Weather). 
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Overall, the PatchTST (64) showed strong performance across all datasets, particularly 

excelling in capturing local dependencies – as advertised. This suggests, and once again taking 

into consideration Questions 1 and 2, that the patching mechanism enhances the model's ability 

to manage detailed, localized patterns within the data, although performance tends to decrease 

with larger window sizes due to increased complexity and variability. Although this last 

sentence is true, it is worth noting that although the errors seem to grow with the increase in the 

window, this increase for the PatchTST (64) is smaller than the increase in the Scaleformer 

implementation. 

 

3.1.3 Novel hybrid model 

Our novel hybrid model will then integrate the PatchTST layer responsible for the patching into 

the FEDformerMS input layer’s architecture, aiming to combine the strengths of both 

configurations to get better results – it is essential to state that, because both the code for the 

PatchTST and FEDFormerMS models were implemented in Python using PyTorch, it was, in 

a general way, easier to develop the code for the novel model. The results indicate a mixed 

performance, with notable improvements in some areas and challenges in others. It is important 

to note that the following results were achieved using a patch length equal to 16, a stride of 8 

(meaning each patch overlaps the next one by eight-time steps), and two subsequent layers of 

the PatchTST. 

 

 

Figure 15 – Results for the PatchTST model (Illness). 
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Dataset Traffic Weather Illness Exchange Rate 
Metric MSE MAE MSE MAE MSE MAE MSE MAE 

24 - - - - 2.272 0.958 - - 
32 - - - - 2.701 1.066 - - 
48 - - - - 2.745 1.067 - - 
64 - - - - 2.644 1.036 - - 
96 0.555 0.324 0.218 0.288 - - 0.122 0.246 
192 0.569 0.332 0.303 0.343 - - 0.189 0.320 
336 0.586 0.333 0.401 0.414 - - 0.316 0.411 
720 0.613 0.347 0.655 0.551 - - 1.290 0.859 

 
Table 8 – Results for the Novel model. 

 

In the Traffic dataset, and observing Table 8 and Figure 16, the hybrid model achieved an 

MSE of 0.555 and an MAE of 0.324 at the 96 window size. At a 192 window, the MSE was 

0.569, and the MAE was 0.332. At a 336 window, the MSE was 0.586, and the MAE was 0.333. 

At a 720 window, the MSE was 0.613, and the MAE was 0.347. While this performance is 

slightly poorer than the PatchTST (64) configuration, it is comparable to the Scaleformer 

configuration, indicating that the hybrid model could effectively balance local and global 

dependencies in the data, especially for smaller windows. Yet the results show a trend in 

increasing MSE and MAE values as the window size increases, consistent with the behavior 

observed in the Scaleformer and PatchTST (64) configurations. 

For the Weather dataset, the hybrid model achieved an MSE of 0.218 and an MAE of 0.288 

at the 96 window size. At a 192 window, the MSE was 0.303, and the MAE was 0.343. At a 

336 window, the MSE was 0.401, and the MAE was 0.414. At a 720 window, the MSE was 

0.655, and the MAE was 0.551. This performance appears between the Scaleformer and 

PatchTST (64) configurations results, suggesting that the hybrid model captures weather 

variations reasonably well but does not significantly outperform the individual configurations. 

Once again, the increasing error metrics with larger windows indicate challenges in handling 

longer-term weather variability. 
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In the Illness dataset, the hybrid model reported an MSE of 2.272 and an MAE of 0.958 at 

the 96 window size. At a 192 window, the MSE was 2.701, and the MAE was 1.066. At a 336 

window, the MSE was 2.745, and the MAE was 1.067. At a 720 window, the MSE was 2.644, 

and the MAE was 1.036. As seen in Figure 17, this performance is better than the Scaleformer 

configuration but slightly worse than the PatchTST (64) configuration, indicating that the 

hybrid model could be capturing seasonal trends correctly but may be struggling with localized 

spikes in the data (which could make total sense knowing what data we are talking about, 

subject-wise). The performance trend suggests that while the hybrid model can manage longer-

term trends, it probably faces challenges with the increased variability in longer windows. 

Finally, regarding the Exchange Rate dataset, a similar pattern was presented, with the 

hybrid model achieving an MSE of 0.122 and an MAE of 0.246 at the 96 window size. At a 

192 window, the MSE was 0.189, and the MAE was 0.320. At a 336 window, the MSE was 

0.316, and the MAE was 0.411. At a 720 window, the MSE was 1.290, and the MAE was 0.859.  

 

 
Figure 16 – Results for the Novel model (Traffic, Weather, Exchange Rate). 
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This performance is only comparable to the Scaleformer configuration once the PatchTST 

(64) model doesn’t contemplate results for this dataset. The results may indicate that the hybrid 

model could effectively handle volatility in the data but may not fully leverage the strengths (or 

at least not as much as the Scaleformer) of the patching mechanism provided by the integrated 

layer. The constant and recurring increasing error metrics with larger windows highlight the 

challenges in managing longer-term volatility in exchange rate data (which once again could 

make all sense knowing what data we are talking about, subject-wise). 

Once again, and considering Question 2, it is essential to note that these results were 

obtained using arguments for the patch length, stride, and number of layers, the numbers 

mentioned earlier – and the results will vary when changing these arguments. 

 

3.2 Discussion 
It is also important to note that one significant challenge encountered with the hybrid model 

was the time constraint, particularly with the Weather dataset. Running the code for this dataset 

required substantial computational resources and time, highlighting the increased complexity 

and resource demands of this novel hybrid architecture. This challenge underscores the 

importance of considering computational efficiency alongside predictive performance in model 

development, which should be considered for future work regarding time duration for time 

series forecasting. 

Figure 17 – Results for the Novel model (Illness). 
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When comparing the performance of the three models, we observed a clear pattern related 

to window size limitations across all datasets. Each model exhibits a trend of increasing error 

metrics as the window size increases, which highlights the inherent complexity and variability 

that longer windows introduced – when grouped by dataset in order of the model, it is possible 

to conclude, as it is possible to observe in Figures 18 and 19. 

 

 Figure 18 – MSE Results for the three models by dataset. 
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Figure 19 – MAE  Results for the three models by dataset. 

 

The Scaleformer implementation demonstrated robust performance, particularly with 

smaller window sizes. For instance, in the Traffic dataset, the Scaleformer achieved an MSE of 

0.564 and an MAE of 0.351 at the 96 window size. However, as the window size increases to 

192, 336, and 720 hours, the error metrics also increase, indicating that the model struggles to 

maintain accuracy over longer periods. This pattern is consistent across other datasets where 

the Scaleformer shows strong performance with short-term data but faces challenges with long-

term variability. 

On the other hand, the PatchTST (64) configuration excels in capturing local dependencies, 

which is reflected in its superior performance across all window sizes and datasets compared 

to the Scaleformer. In the Traffic dataset, the PatchTST (64) achieved an MSE of 0.360 and an 

MAE of 0.249 at the 96 window size, outperforming the Scaleformer. Even as the window size 

increases, the degradation in performance is less severe than that observed with the 

Scaleformer. For example, at a 720 window, the PatchTST (64) recorded an MSE of 0.432 and 

an MAE of 0.286, maintaining a relatively stable performance. On the other hand, the 

Scaleformer had worse results for this bigger window. This trend is also evident across other 

datasets, where the PatchTST (64) consistently ranks as the top-performing model due to its 

ability to oversee localized patterns effectively. 
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Finally, our novel hybrid model that integrates the PatchTST layer into the FEDformerMS 

architecture, aiming to balance the strengths of both configurations, returned results that 

indicate that the hybrid model generally performs better than the Scaleformer implementation, 

but not as well as the PatchTST (64) model. For example, in the Traffic dataset, the hybrid 

model achieved an MSE of 0.555 and an MAE of 0.324 at the 96 window size, positioning itself 

between the two individual models that originated it. As the window size increases, the hybrid 

model's performance remains closer to that of the PatchTST (64) than the Scaleformer, 

indicating a successful integration that leverages the strengths of both approaches, namely the 

integration of the PatchTST layer. However, as it is a universal problem, like the other models, 

the hybrid model also shows an inevitable increase in error metrics when presented with longer 

windows, highlighting precisely the universal challenge of managing longer-term dependencies 

and variability for the task of time series forecasting. 

When ranking the models based on their performance across different datasets and window 

sizes, the PatchTST (64) model emerges as the best overall performer, followed by the novel 

hybrid model, with the Scaleformer configuration coming in third. The PatchTST (64) model 

consistently shows lower MSE and MAE values, indicating its robustness in handling both 

short-term and long-term dependencies more effectively than the other models. The novel 

hybrid model, while not outperforming the PatchTST (64), demonstrates a significant 

improvement over the Scaleformer, indicating that the integration of the PatchTST layer adds 

value by enhancing the model’s ability to capture localized patterns, although it could be 

dragged down by time and computation affairs. Finally, the Scaleformer, despite its robust 

performance with smaller window sizes, also struggles with larger windows. This limitation 

underscores the importance of model architecture in handling different types of time series data, 

particularly when dealing with longer-term forecasts. Once again, the consistent trend of 

increasing error metrics across all models with larger windows highlights a common challenge 

in time series forecasting: balancing short-term and long-term dependencies while managing 

the increased complexity and variability of longer prediction horizons. 
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In conclusion, while each model has strengths and weaknesses, the PatchTST (64) stands 

out, with pity, as the most effective configuration for time series forecasting across various 

datasets and window sizes. Following this, the novel hybrid model shows promising results, by 

bridging the gap between the PatchTST (64) model and the Scaleformer implementation, 

offering a balanced approach to this task that leverages the strengths of both models. Finally, 

The Scaleformer, while robust in certain scenarios, also faces notable challenges with longer 

windows, emphasizing the possible need for further refinement in handling long-term 

dependencies. Future work presented in the next chapter should focus on optimizing the novel 

model to improve its performance with possibly larger windows, ensuring more accurate and 

reliable forecasts across different time series datasets. An emphasis on time constraints and 

computational resources should also be placed on future improvement, where more tests should 

be done with varying arguments regarding patch length, stride, and number of layers, as these 

will influence the results and time-related issues. 
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CHAPTER 4 

Conclusions and future work 
 

This study explored the potential of a novel hybrid model for time series forecasting, integrating 

the PatchTST input layer into the FEDFormerMS architecture. The study aimed to leverage and 

merge the strengths of both configurations - PatchTST's ability to capture local dependencies 

and FEDFormerMS's robust multi-scale feature extraction- and answer the questions proposed 

in the first chapter. The obtained results indicated that while the novel model presented notable 

improvements in some areas (particularly in balancing local and global dependencies), it did 

not, unfortunately, consistently outperform the PatchTST model that originated it. 

One significant challenge during this research was the time constraint, particularly with the 

Weather dataset. The increased complexity of the hybrid model derived from integrating two 

distinct and very different models required a substantial number of computational resources and 

time, highlighting the importance of considering computational efficiency alongside more 

extensive testing regarding the arguments to find the best configuration for this novel model. 

This constraint underscores the need for future work to improve accuracy and optimize 

computational efficiency. It could also raise some challenges while simultaneously leading to 

further development of Questions 2 and 3. 

The analysis presented in this study showed that the PatchTST configuration consistently 

outperformed the Scaleformer implementation and our hybrid model in terms of Mean Squared 

Error (MSE) and Mean Absolute Error (MAE). The PatchTST model's superior performance 

could be attributed to its effective handling of localized patterns within the data. While showing 

promise, our hybrid model demonstrated performance that fell between the PatchTST and 

Scaleformer implementations, indicating a successful integration and highlighting obvious 

improvement areas. 
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Given the mixed results, it is evident that hybrid models combining various elements of 

different architectures could hold potential for improvement regarding the task of time series 

forecasting yet, and directly answering to Question 1, the transformer model proved to have 

success in time series forecasting (at least to some extent). Future research should explore 

Question 3 more deeply, namely integrating other transformer-based models or traditional 

forecasting techniques into hybrid architectures. This approach could harness the unique 

strengths of each model, potentially leading to better overall performance and making 

transformer-based models even more powerful for this task. Additionally, addressing the 

computational challenges is crucial alongside more extensive testing with more computational 

resources. 

Throughout this study, as transformers are a prominent topic in the data science field, 

several alternative models and ideas have emerged. Notable examples include the already 

mentioned Informer, Autoformer, PatchTST, and the Temporal Fusion Transformer (TFT) 

models. These models are gaining traction and being incorporated into libraries such as 

Hugging Face’s time series section5. Additionally, practitioners like Marco Peixeiro are also 

leveraging the mentioned frameworks, such as DARTS and NeuralForecast6. Finally, it is also 

to note that there are also implementations available in PyTorch, such as the Transformers-for-

timeseries notebook on Google Colab7 which is also a great way to break through this topic. 

These developments highlight the continuous evolution and innovation of the topic within the 

field, providing promising directions for future research. 

In conclusion, this research contributes to the field of time series forecasting by providing 

insights into the potential and limitations of transformer-based models for time series 

forecasting. While our novel model did not consistently outperform existing solutions, it paved 

the way for future exploration into more sophisticated hybrid models that could present 

researchers with better results. Future work should focus on optimizing these models for both 

accuracy and computational efficiency, ensuring they can, even more effectively, handle the 

complexities of long-term time series forecasting. Through continued innovation and rigorous 

testing, it is possible to develop more robust and efficient forecasting models to significantly 

improve prediction accuracy in various application domains.  

 
5 https://huggingface.co/docs/transformers/model_doc/patchtst 
6 https://github.com/marcopeix/datasciencewithmarco 
7 https://colab.research.google.com/github/charlesollion/dlexperiments/blob/master/7-Transformers-
Timeseries/Transformers_for_timeseries.ipynb 
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Appendix  
APPENDIX A.1 – Results for Univariate solutions for each prediction length. 

 Model Informer Autoformer FEDFormer Non-stationary 
Transformer 

 Metric MSE MAE MSE MAE MSE MAE MSE MAE 

ET
Th

1 

24 0.098 0.247 -- -- -- -- -- -- 
48 0.158 0.319 -- -- -- -- -- -- 
168 0.183 0.346 -- -- -- -- -- -- 
336 0.222 0.387 -- -- -- -- -- -- 
720 0.269 0.435 -- -- -- -- -- -- 

ET
Th

2 

24 0.093  0.240  -- -- -- -- -- -- 
48 0.155 0.314  -- -- -- -- -- -- 
168 0.232  0.389  -- -- -- -- -- -- 
192 -- -- -- -- -- -- -- -- 
336 0.263  0.417  -- -- -- -- -- -- 
720 0.277 0.431  -- -- -- -- -- -- 

ET
Tm

1  

24 0.030  0.137  -- -- -- -- -- -- 
48 0.069 0.203 -- -- -- -- -- -- 
96 0.194 0.372 -- -- -- -- -- -- 
288 0.401 0.554  -- -- -- -- -- -- 
672 0.512 0.644  -- -- -- -- -- -- 

ET
Tm

2 

96 -- -- 0.065  0.189  0.063  0.189  0.069 0.193 
192 -- -- 0.118  0.256  0.102 0.245  0.109 0.249 
336 -- -- 0.154  0.305  0.130  0.279  0.139 0.286 
720 -- -- 0.182  0.335  0.178  0.325  0.180 0.331 

W
ea

th
er

 

24 0.117  0.251  -- -- -- -- -- -- 
48 0.178 0.318  -- -- -- -- -- -- 
96 -- -- -- -- 0.0035  0.046  -- -- 
168 0.266 0.398  -- -- -- -- -- -- 
192 -- -- -- -- 0.0054  0.059  -- -- 
336 0.297  0.416  -- -- 0.0041  0.050  -- -- 
720 0.359  0.466 -- -- 0.0055  0.059  -- -- 

EC
L 

48 0.239  0.359  -- -- -- -- -- -- 
168 0.447 0.503 -- -- -- -- -- -- 
336 0.489  0.528 -- -- -- -- -- -- 
720 0.540  0.571  -- -- -- -- -- -- 
960 0.582  0.608 -- -- -- -- -- -- 

IL
I  

24 -- -- -- -- 0.693  0.629  -- -- 
36 -- -- -- -- 0.554  0.604  -- -- 
48 -- -- -- -- 0.699  0.696  -- -- 
60 -- -- -- -- 0.828  0.770  -- -- 
96 -- -- -- -- 0.170  0.263  -- -- 
168 -- -- -- -- 0.173  0.265  -- -- 
336 -- -- -- -- 0.178  0.266  -- -- 
720 -- -- -- -- 0.187  0.286 -- -- 

Ex
ch

an
ge

 96 -- -- 0.241  0.387 0.131  0.284  0.104 0.235 
192 -- -- 0.273  0.403  0.277  0.420  0.230 0.375 
336 -- -- 0.508  0.539  0.426 0.511  0.432 0.509 
720 -- -- 0.991 0.768 1.162 0.832 0.782 0.682 

El
ec

tr
ic

it
y 

96 -- -- -- -- 0.253 0.370 -- -- 
192 -- -- -- -- 0.282 0.386 -- -- 
336 -- -- -- -- 0.346 0.431 -- -- 
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720 -- -- -- -- 0.422 0.484 -- -- 

 

APPENDIX A.2 – Results for LTSF-Linear model. 

 Model LTSF-Linear 
(Multivariate) 

 Metric MSE MAE 

E
T

T
h1

 96 0.374 0.394 
192 0.405 0.415 
336 0.429 0.427 
720 0.440 0.453 

E
T

T
h2

 96 0.277 0.338 
192 0.344 0.381 
336 0.357 0.400 
720 0.394 0.436 

E
T

T
m

1 96 0.299 0.343 
192 0.335 0.365 
336 0.369 0.386 
720 0.425 0.421 

E
T

T
m

2 

96 0.167 0.255 
192 0.221 0.293 
336 0.274 0.327 
720 0.368 0.384 

W
ea

th
er

 96 0.176 0.232 
192 0.218 0.269 
336 0.262 0.301 
720 0.362 0.348 

IL
I 

24 1.683 0.858 
36 1.703 0.858 
48 1.719 0.884 
60 1.819 0.917 

T
ra

ff
ic

 96 0.310 0.279 
192 0.423 0.284 
336 0.435 0.290 
720 0.464 0.307 

E
xc

ha
ng

e 96 0.081 0.203 
192 0.157 0.293 
336 0.305 0.414 
720 0.643 0.601 

E
le

ct
ri

ci
t

y 

96 0.140 0.237 
192 0.153 0.249 
336 0.265 0.169 
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720 0.297 0.203 
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APPENDIX A.3 – Results for Multivariate solutions (ETT dataset) for each prediction length. 

 Model Informer Autoformer FEDFormer Pyraformer Crossformer PatchTST CARD Non-stationary 
Transformer 

 Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

E
T

T
h1

 

24 0.577  0.549  0.384  0.425  -- -- -- -- 0.305 0.367 -- -- -- -- -- -- 
48 0.685  0.625  0.392  0.419  -- -- -- -- 0.352 0.394 -- -- -- -- -- -- 
96 -- -- -- -- -- -- -- -- -- -- 0.370 0.399 0.383 0.391 -- -- 
168 0.931  0.752  0.490  0.481  -- -- 0.808 0.683 0.410 0.441 -- -- -- -- -- -- 
192 -- -- -- -- -- -- 0.945 0.766 -- -- 0.413 0.421 0.435 0.420 -- -- 
336 1.128  0.873  0.505  0.484  -- -- -- -- 0.440 0.461 0.422 0.436 0.479 0.442 -- -- 
720 1.215  0.896  0.498  0.500  -- -- 1.022 0.806 0.519 0.524 0.447 0.466 0.471 0.461 -- -- 

E
T

T
h2

 

24 0.720 0.665 0.261  0.341  -- -- -- -- -- -- -- -- -- -- -- -- 
48 1.457  1.001  0.312  0.373  -- -- -- -- -- -- -- -- -- -- -- -- 
96 -- --   -- -- -- -- -- -- -- 0.274 0.399 0.281 0.330 -- -- 
168 3.489  1.515  0.457  0.455  -- -- -- -- -- -- -- -- -- -- -- -- 
192 -- -- -- -- -- -- -- -- -- -- 0.339 0.379 0.363 0.381 -- -- 
336 2.723  1.340 0.471  0.475  -- -- -- -- -- -- 0.329 0.380 0.411 0.418 -- -- 
720 3.467  1.340  0.474  0.484  -- -- -- -- -- -- 0.379 0.422 0.416 0.431 -- -- 

E
T

T
m

1  

24 -- -- 0.383  0.403  -- -- -- -- 0.211 0.293 -- -- -- -- -- -- 
48 -- -- 0.454  0.453  -- -- -- -- 0.300 0.352 -- -- -- -- -- -- 
96 -- -- 0.255  0.339  -- -- 0.480 0.486 -- -- 0.290 0.342 0.316 0.347 -- -- 
168 -- -- -- -- -- -- -- -- 0.320 0.373 -- -- -- -- -- -- 
192 -- -- -- -- -- -- -- -- -- -- 0.332 0.369 0.363 0.370 -- -- 
288 -- -- 0.342  0.378  -- -- 0.754 0.659 0.404 0.427 -- -- -- -- -- -- 
336 -- -- -- -- -- -- -- -- -- -- 0.366 0.392 0.392 0.390 -- -- 
672 -- -- 0.434  0.430  -- -- 0.857 0.707 0.569 0.528 -- -- -- -- -- -- 
720 -- -- -- -- -- -- -- -- -- -- 0.416 0.420 0.458 0.425 -- -- 

E
T

T
m

2  

24 -- -- 0.153  0.261  -- -- -- -- -- -- -- -- -- -- -- -- 
48 -- -- 0.178  0.280  -- -- -- -- -- -- -- -- -- -- -- -- 
96 -- -- 0.255 0.339  0.203  0.287  -- -- -- -- 0.165 0.255 0.169 0.248 0.192 0.274 
192 -- -- 0.281  0.340  0.269  0.328  -- -- -- -- 0.220 0.292 0.234 0.292 0.280 0.330 
288 -- -- 0.342  0.378  -- -- -- -- -- -- -- -- -- -- -- -- 
336 -- -- 0.339  0.372  0.325  0.366  -- -- -- -- 0.274 0.329 0.294 0.339 0.334 0.361 
672 -- -- 0.434  0.430  -- -- -- -- -- -- -- -- -- -- -- -- 
720 -- -- 0.422  0.419  0.421  0.415  -- -- -- -- 0.362 0.385 0.390 0.388 0.417 0.413 
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APPENDIX A.4 – Results for Multivariate solutions (Weather, ECL, and ILI datasets) for each prediction length. 

 

 Model Informer Autoformer FEDFormer Pyraformer Crossformer PatchTST CARD Non-stationary 
Transformer 

 Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

W
ea

th
er

 

24 -- -- -- -- -- -- -- -- 0.294 0.343 -- -- -- -- -- -- 
48 -- -- -- -- -- -- -- -- 0.370 0.411 -- -- -- -- -- -- 
96 -- -- 0.266  0.336  0.217  0.296  -- -- -- -- 0.149 0.198 0.150 0.188 0.173 0.223 
168 -- -- -- -- -- -- -- -- 0.473 0.494 -- -- -- -- -- -- 
192 -- -- 0.307  0.367  0.276  0.336  -- -- -- -- 0.194 0.241 0.202 0.238 0.245 0.285 
336 -- -- 0.359 0.395 0.339  0.380  -- -- 0.495 0.515 0.245 0.282 0.260 0.282 0.321 0.338 
720 -- -- 0.419 0.428 0.403  0.428  -- -- 0.526 0.542 0.314 0.334 0.343 0.353 0.414 0.410 

E
C

L
 

48 -- -- -- -- -- -- -- -- 0.156 0.255 -- -- -- -- -- -- 
168 -- -- -- -- -- -- -- -- 0.231 0.309 -- -- -- -- -- -- 
336 -- -- -- -- -- -- -- -- 0.323 0.369 -- -- -- -- -- -- 
720 -- -- -- -- -- -- -- -- 0.404 0.423 -- -- -- -- -- -- 
960 -- -- -- -- -- -- -- -- 0.433 0.438 -- -- -- -- -- -- 

IL
I  

24 -- -- 3.483  1.287  2.203  0.963  -- -- 3.041 1.186 1.1319 0.754 -- -- 2.294 0.945 
36 -- -- 3.103  1.148  2.272  0.976  -- -- 3.406 1.232 1.439 0.834 -- -- 1.825 0.848 
48 -- -- 2.669  1.085  2.209  0.981  -- -- 3.459 1.221 1.553 0.815 -- -- 2.010 0.900 
60 -- -- 2.770  1.125  2.545  1.061  -- -- 3.640 1.305 1.470 0.788 -- -- 2.178 0.963 
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APPENDIX A.5 – Results for Multivariate solutions (Traffic, Exchange, and Electricity datasets) for each prediction length. 

 Model Informer Autoformer FEDFormer Pyraformer Crossformer PatchTST CARD Non-stationary 
Transformer 

 Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE 

T
ra

ff
ic

 

24 -- -- -- -- -- -- -- -- 0.491 0.274 -- -- -- -- -- -- 
48 -- -- -- -- -- -- -- -- 0.519 0.295 -- -- -- -- -- -- 
96 -- -- 0.613  0.388 0.562  0.349 -- -- -- -- 0.360 0.249 0.419 0.269 0.612 0.338 
168 -- -- -- -- 0.562  0.346  -- -- 0.513 0.289 -- -- -- -- -- -- 
192 -- -- 0.616  0.382  -- -- -- -- -- -- 0.379 0.256 0.443 0.276 0.613 0.340 
336 -- -- 0.622  0.337  0.570  0.323  -- -- 0.530 0.300 0.392 0.264 0.460 0.283 0.618 0.328 
720 -- -- 0.660  0.408  0.596  0.368  -- -- 0.573 0.313 0.432 0.286 0.490 0.299 0.653 0.355 

E
xc

ha
ng

e 96 -- -- 0.197  0.323 0.139 0.276 -- -- -- -- -- -- -- -- 0.111 0.237 
192 -- -- 0.300 0.369 0.256 0.369 -- -- -- -- -- -- -- -- 0.219 0.335 
336 -- -- 0.509 0.524 0.426 0.464 -- -- -- -- -- -- -- -- 0.421 0.476 
720 -- -- 1.447 0.941 1.090 0.800 -- -- -- -- -- -- -- -- 1.092 0.769 

E
le

ct
ri

ci
ty

 96 -- -- 0.201  0.317  0.183  0.297  -- -- -- -- 0.129 0.222 0.141 0.233 0.169 0.273 
168 -- -- -- -- -- -- 0.719 0.256 -- -- -- -- -- -- -- -- 
192 -- -- 0.222  0.334  0.195  0.308  -- -- -- -- 0.147 0.240 0.160 0.250 0.182 0.286 
336 -- -- 0.231  0.338  0.212  0.313 1.533 0.291 -- -- 0.163 0.259 0.173 0.263 0.200 0.304 
720 -- -- 0.254 0.361 0.231 0.343 4.312 0.346 -- -- 0.197 0.290 0.197 0.284 0.222 0.321 
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APPENDIX A.6 – Linear versus Transformer-based results. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   LTSF-Linear (Multivariate) PatchTST 
   MSE MAE MSE MAE 
 

ET
Th

1  

96 0.374 0.394 0.370 0.399 
 192 0.405 0.415 0.413 0.421 
 336 0.429 0.427 0.422 0.436 
 720 0.440 0.453 0.447 0.466 
 

ET
Th

2 

96 0.277 0.338 0.274 0.399 
 192 0.344 0.381 0.339 0.379 
 336 0.357 0.400 0.329 0.380 
 720 0.394 0.436 0.379 0.422 
 

ET
Tm

1 

96 0.299 0.343 0.290 0.342 
 192 0.335 0.365 0.332 0.369 
 336 0.369 0.386 0.366 0.392 
 720 0.425 0.421 0.416 0.420 
 

ET
Tm

2 

96 0.167 0.255 0.165 0.255 
 192 0.221 0.293 0.220 0.292 
 336 0.274 0.327 0.274 0.329 
 720 0.368 0.384 0.362 0.385 
 

W
ea

th
er

 96 0.176 0.232 0.149 0.198 
 192 0.218 0.269 0.194 0.241 
 336 0.262 0.301 0.245 0.282 
 720 0.362 0.348 0.314 0.334 
 

IL
I 

24 1.683 0.858 1.1319 0.754 
 36 1.703 0.858 1.439 0.834 
 48 1.719 0.884 1.553 0.815 
 60 1.819 0.917 1.470 0.788 
 

Tr
af

fic
 

96 0.310 0.279 0.360 0.249 
 192 0.423 0.284 0.379 0.256 
 336 0.435 0.290 0.392 0.264 
 720 0.464 0.307 0.432 0.286 
 

Ex
ch

an
ge

 96 0.081 0.203 -- -- 
 192 0.157 0.293 -- -- 
 336 0.305 0.414 -- -- 
 720 0.643 0.601 -- -- 
 

El
ec

tr
ic

ity
 96 0.140 0.237 0.129 0.222 

 192 0.153 0.249 0.147 0.240 
 336 0.265 0.169 0.163 0.259 
 720 0.297 0.203 0.197 0.290 
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APPENDIX A.7 – Weather dataset plot with outliers. 
 

 


