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Resumo

Este estudo tem como objetivo diminuir a lacuna existente entre a pesquisa (tedrica) e a pratica
existente para a tarefa de previsdo de séries temporais, ao introduzir e avaliar um novo modelo
transformer-based. Este € baseado nas arquiteturas ja existentes em modelos como o Frequency
Enhanced Decomposed Transformer (Zhou et al., 2022) e o Patch Time Series Transformer
(Nie et al., 2022), que se destacaram pela positiva em ambientes univariados e multivariados,
respetivamente. O cerne desta tese ¢ entdo o desenvolvimento de um modelo transformer-
based, que combina elementos dos dois modelos acima mencionados. Através de diversos testes
rigorosos recorrendo as métricas erro quadratico médio (MSE) e erro médio absoluto (MAE), o
desempenho deste novo modelo foi comparado com os que o originaram. Em sede de conclusao
as descobertas revelam que este novo modelo supera um dos modelos que o origina ainda que
ndo supere o outro. Esta pesquisa contribui para a area da Ciéncia de Dados ao fornecer insights
sobre a eficacia deste tipo de modelos e orientando possiveis avangos futuros para a tarefa de

previsao de séries temporais.

Palavras-Chave: Previsdo de Séries Temporais, Transformers, Attention Mechanism, Erro

Quadratico Médio (MSE), Erro Médio Absoluto (MAE)






Abstract

This study aims to bridge the gap between theoretical research and practical application in time
series forecasting by introducing and evaluating a novel transformer-based model. It builds on
the foundations set by models such as Frequency Enhanced Decomposed Transformer (Zhou
et al., 2022) and Patch Time Series Transformer (Nie et al., 2022), which have excelled in
univariate and multivariate settings. The core of this thesis is the development of a transformer-
based model, combining elements of the two models mentioned above. Through rigorous
testing using Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluative
metrics, the new model's performance was benchmarked against its precursors. The findings
reveal that while the latest model surpasses one of its predecessors in forecasting accuracy, it
does not outperform the other. This research contributes to the field of Data Science by
providing insights into the effectiveness of these models and guiding future advancements in

time series forecasting.

Keywords: Time Series Forecasting, Transformers, Attention Mechanism, MSE, MAE
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Introduction

Throughout the years, the models used in time series forecasts have changed. From the
traditional Auto-Regressive Integrated Moving Average (ARIMA) statistical linear models to
the Recurrent Neural Networks (RNN) or the Long Short-Term Memory (LSTM) model as
neural network implementations, we have seen an increase in the forecast performance by
performing these algorithms. It was noticed, then, that machine (deep) learning models, such
as RNN or LSTM, were the ones that performed better (Lezmi & Xu, 2023; Sreelekshmy Selvin
etal., 2017).

That said, it is rational to think that more machine learning models had to come out to try
and outperform old ones. And so it was, with the appearance of the Transformer (Vaswani et
al., 2017), initially designed to perform natural language processing tasks, that time series
forecasting took a turn. The excellent performances in other fields triggered a great interest in
the time series community (Wen et al., 2022).

It was only a matter of time until researchers tried to use algorithms from the Transformers
family in time series forecasting - and they did with great success (H. Wu et al., 2021; H. Zhou
etal., 2020). The main idea relies on the understanding that just like a phrase/corpus in a natural
language processing problem is a sequence of words that serve as input to the Transformer
architecture to obtain an output; it is also fair to consider the values in a time series a sequence
of numbers as valid input to get a certain output — the forecast. Since there is no perfect model,
it is also relevant to mention that research has been done on the problems inherent to using
transformers for time series forecasting. The detection of problems occurred quite early, and
the main ones are, as mentioned by the authors (Li et al., 2019): (1) Memory bottleneck
associated with space and time complexity. (2) The fact that this model is insensitive to local

context comes as a problem when solving issues in time series forecasting.



This whole study, and more precisely the literature review section, will focus on exploring
and exposing the more relevant methodologies to time series forecasting using the Transformer
architecture or, as mentioned before, transformer-based solutions. We will investigate key
components of the research topic based on studies that followed some of the methodologies in
question. Following that, emphasis will be placed on comparing and discussing all relevant
existing transformer-based solutions for this problem, also with simple linear models, so that it
will be possible to better understand and progress with further studies. Finally, a novel
implementation of a hybrid transformer-based model will be tested and paired against the
original models to obtain better or confirm already discussed insights. To do so, we utilize well-
known benchmark datasets. These include the Traffic dataset, Weather dataset, Illness dataset,
and Exchange Rate dataset, each representing different domains such as traffic, meteorology,
healthcare, and finance, respectively. These datasets were chosen to ensure the robustness of
the proposed hybrid model across diverse application areas. The characteristics of these
datasets, such as their time spans, frequencies, and variability, provide a comprehensive basis
for evaluating the performance of transformer-based models in capturing both short-term and

long-term dependencies That said, three main research questions arise:

Question 1: Are transformer-based models relevant in time series forecasting?

Question 2: Does transformer-based models’ performance change for different
windows/settings?

Question 3: How does the integration of PatchTST into FEDFormer influence the
computational efficiency and predictive accuracy of transformer-based models for time series

forecasting?

With that, and briefly, this study will be divided into four main chapters: the first one will
regard the selection and revision of relevant literature for the study; chapter two will describe
the corresponding methodology for the models, data used and respective evaluation metrics
used; chapter three will mainly be composed of the results and discussion of the said results;
and finally the fourth and final chapter will describe the obtained conclusions and possible

future work that will be drawn from the previously obtained results.



CHAPTER 1

Literature Review

1.1  Literature selection

To better understand the subject of study, the systematic literature review (SLR) method was
used, which is amply considered worldwide and aims to help identify and gather relevant
literature better. This literature review resorted to one of the most significant research databases,
Scopus.

In Scopus, one can gather relevant literature in many fields using specific queries to obtain
more specific results. The systematic literature review started by using a more generalist query;
that is, it was started by searching papers regarding the task of time series forecasting with the
following query: "TITLE-ABS-KEY ( "time series" AND "forecasting")" which means that it
searched the Scopus database for papers that contain in the title, abstract or keywords, the terms
"time series" and "forecasting". That specific query matched 49,025 documents found in the
database, which is a lot due to the query being too simple and general. Yet some papers were
extracted from this search because it was intended to understand better the task of time series
forecasting in its essence. However, it was necessary to narrow the scope of the search by
introducing a more complex query.

That said, the second and final query that was used was the following: TITLE-ABS (
"forecasting" AND "time series" AND "transformers" ) AND PUBYEAR > 2016 AND
PUBYEAR < 2024, which means that it searched the Scopus database for papers that contain
in the title or abstract the terms "forecasting", "time series" and "transformers" where the year
the paper was published is comprehended between 2017 and 2023. In this final query, the
intention was to gather the most important papers for my study, that is, papers that matched in
several aspects with my work — that's why this query already included the term "transformers"
and set the interval of the publishing year starting in 2017, the year the original transformer

paper (Vaswani et al., 2017) was released.
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Figure 1 — Number of papers by year.

This final query resulted in 423 documents, which is still a large number, yet it started the
research using the most relevant and cited ones. As can be observed in Figure 1, the exponential
growth in interest in using transformers for the task of time series forecasting is evident as the
number of papers dramatically increased.

As mentioned earlier, there was still a need to narrow the number of articles considered
relevant to this study. It started by selecting the ones that proposed to create transformer-based
solutions, such as the Informer (Zhou et al., 2020) or the Autoformer (Wu et al., 2021), as my
study will, in some ways, do precisely that. It is also relevant to mention that Scopus was not
the only source for gathering the research papers that were found helpful. Some of the collected
documents were found on platforms like Google Scholar, since, after reading the Informer and
Autoformer papers - that mentioned other transformer-based solutions, surveys, and general
knowledge on the matter - and didn't appear on the Scopus database - as was the case of the
Scaleformer (Amin Shabani et al., 2022), or the Crossformer (Zhang & Yan, 2023), among

others.
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Figure 2 — Number of papers by type.

That said, 27 papers were gathered and divided into four relevant classes. It is possible to
observe, based on Figure 2, that most of them regard transformer-based solutions that were
already mentioned and that were found highly relevant, and others, due to the way the results
were displayed, were not so relevant, such as the State Space Decomposition Neural Network
(Lin et al., 2021), the Temporal Fusion Transformer (Lim et al., 2021), or the Adversial Sparse
Transformer (Wu et al., 2020) that presented the results using, as the main evaluation metric,
for example, the accuracy of the model and not MSE or MAE as most of the papers use. Still,
these papers were pertinent in the research as, even though the results were not comparable with
other methods, they still provided knowledge on their methodologies, yet, they will not be
present in the results section of this study. Other publications, more precisely, four of them,
regarded time series forecasting solutions using Linear, ARIMA, LSTM, or RNN models,
which is the case (Chimmula & Zhang, 2020; Siami-Namini et al., 2018; Sreelekshmy Selvin
etal., 2017; Zeng et al., 2023) and provided the fundamental historical context on the task using
some "older" and classical models. Finally, two of them regard surveys done on the task of time
series forecasting using transformers/deep learning models (Lim & Zohren, 2020; Wen et al.,
2022), which gave an overview of the task itself, and the other two papers regarding a general
overview of the topic of transformers and/or time series forecasting (Lara-Benitez et al., 2021;
Lezmi & Xu, 2023) that gave the insights needed to combine the two subjects in question,

Transformers, and Time Series Forecasting, in a more general way.



1.2 Literature Results

In this section, it is proposed to present and discuss the models and respective results found in
the selected literature - to do so, the results gathered from the papers shown in Appendixes A.1
— A.5 were used.

To present these results, the same methodology was used as in most papers: separate the
results into univariate and multivariate sections and go from there. It is also relevant to mention
that the results in the Appendixes show only the best results for each model and each dataset
for each prediction length — that is, if a model is composed of two or three different variants of
the model, each with its particularity, the results shown in the tables only regard the best results
among all the variants of the same model.

In what follows, we present the data used in most selected papers for the literature review,
alongside with the respective models. Also, results will be extracted directly from the papers
(regarding univariate and multivariate settings) and summarized in order to gather valuable

insights and formulate conclusions to enrich future studies.

1.2.1 Data
It is important to mention that the models in the selected papers used the same datasets as, in
this particular field of time series forecasting, they are well-known for their benchmark nature.
That said, the considered datasets will be described in the following parts of this sub section.
Starting with the Electricity Transformer Temperature (ETT datasets - ETTh1, ETTh2,
ETTml, and ETTm2)' that consist of 2 years of electric power deployment data from two
separate counties in China that are split into 4 different subsets where the only difference
between them is the granularity - that is, ETTh1 and ETTh2 represent hourly data, and ETTm]1
and ETTm?2 represent 15-minute data. The Weather dataset is also largely used in this task, and
it contains weather data with a 10-minute frequency for an entire year. The ECL dataset
represents data on electricity consumption recorded every 15 minutes from 2011 to 2014. The
electricity dataset is like the previous one, but only regarding hourly data. The exchange dataset,
as it explicitly says, regards (daily) exchange rate data of eight different countries ranging from
1990 to 2016. The ILI dataset is the Illness dataset regarding weekly data on patients with
influenza-like illness in the United States between 2002 and 2020, and finally, the Traffic

!https://github.com/zhouhaoyi/ETDataset



dataset considers hourly traffic data. All datasets can also be found on the Autoformer GitHub

page’.
Dataset | Time Period | Frequency | Number of Observations
ETThl 2 years Hourly 17420
ETTh2 2 years Hourly 17420
ETTm1 2 years 15 minutes 69680
ETTm2 2 years 15 minutes 69680
Weather 1 year 10 minutes 52696
ECL 2011-2014 | 15 minutes 26304
Electricity | 2011-2014 Hourly 26304
Exchange | 1990-2010 Daily 7588
ILI 2002-2020 Weekly 966
Traffic 2016-2018 Hourly 17544

Table 1 — Description of the datasets.

As summarized in Table 1, it is represented, for each dataset, the corresponding time
period, its frequency and the number of observations.

The models and the respective results presented in the relevant selected literature will be
reviewed. The transformer-based models will be described, some advantages presented, and

then the results will be compared.

1.2.2 Models
Firstly, and to give some context, a brief description will be made regarding the original
transformer model proposed in 2017 (Vaswani et al., 2017) so that it is possible to better

understand some of the particularities of other transformer-based solutions.

2 https://github.com/thuml/Autoformer
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Figure 3 — Original Transformer model architecture.

In a simple way, the Transformer model consists of an encoder-decoder architecture where
both are composed of a stack of identical layers — as can be observed in Figure 3. In the original
architecture, the encoder is composed of six identical layers, and each layer has two main layers
that consist of a multi-head self-attention layer, and a fully connected feed-forward network.
The decoder, in the original architecture, is also composed of six identical layers. In addition to
the two sub-layers in each encoder layer, the decoder also inserts a third sub-layer, which is a
multi-head attention layer.

That said, the Transformer can be categorized as a type of neural network model designed
to process sequential data, such as text or, in this case, time series. One of the main
particularities of this model lies in the fact that it uses an attention mechanism (self-attention)
to weigh the importance of different elements in the data, unlike earlier models. Some key
concepts to retain from this architecture are as follows: (1) The self-attention mechanism is an
attention mechanism that allows the model to focus on different parts of the input and weight it
accordingly. (2) Positional encoding that straightforwardly helps the model to understand the

order of the elements in the sequence.



Starting with the Informer (Zhou et al., 2020), the authors mainly identified the inefficiency
of traditional self-attention mechanisms in handling long sequences and so, they presented two
main characteristics for the model: a ProbSparce self-attention mechanism with its benefits and
a generative style decoder. Building on this, the Autoformer (Wu et al., 2021), observed that
while the ProbSparce self-attention mechanism improved efficiencys, it still struggled to capture
dependencies over time. To solve this, the authors proposed replacing self-attention with the
Auto-Correlation mechanism. While the Autoformer enhanced dependency modeling, the
FEDformer (Zhou et al., 2022) noted that previous models still had difficulty capturing both
seasonal and trend components. That said, the authors proposed to combine the vanilla
transformer with frequency analysis using a seasonal-trend decomposition method. The
Pyraformer (S. Liu et al., 2022) introduces a pyramidal graph-structure attention mechanism to
the transformer in order to address the challenge of capturing multi-scale dependencies.
PatchTST (Nie et al., 2022), identified the need, in a general way, for better segmentation of
time series data. The authors then proposed two main changes to the original transformer: the
first one is the segmentation of the time series into subseries-level patches; the second one is
the implementation of channel-independence (already used in other traditional models, just not
on transformers). The Non-stationary Transformers (Y. Liu et al., 2022) focused on the
problem of over-stationarization. To solve this the authors proposed to use a series
stationarization and a de-stationary attention mechanism, that allowed the model to adapt to
changes in the underlying data. Subsequently, to enhance the ability of transformer-based
models to understand cross-dimensional dependencies, the Crossformer (Zhang & Yan, 2023)
proposed a solution utilizing cross-dimension dependency, which improved the model’s
capability to capture interactions between different dimensions of time series data. Finally, the
Channel Aligned Robust Blend Transformer (Xue et al., 2023) also introduces two changes: a

dual transformer structure; and a robust loss function to alleviate the potential overfitting issue.



Apart from all the models presented above, there are also some models or frameworks that were
not included in the results tables mainly because of a few reasons: being too specific and not
relevant for "overall" time series forecasting, like the transformer proposed for energy forecast
(Oliveira & Oliveira, 2023), the transformer suggested for traffic forecast (Cai et al., 2020), or
even the transformer for the Influenza Prevalence Case (Wu et al., 2020); the second reason
relies on the choice of the authors regarding the selection of the metrics to evaluate the model,
as said earlier — that is, most of the authors chose to use MSE and MAE to evaluate their models,
other models just like the SSDNet or the Hierarchical Multi-Scale Gaussian Transformer (Ding
et al., 2020) chose not to do so, that said, it was decided to omit the ones that didn't present
these metrics or similar in the tables for consistency reasons. Finally, the so-called frameworks
like the Scaleformer (Amin Shabani et al., 2022) or the Tightly-Coupled Convolutional
Transformer (Shen & Wang, 2022) that, despite being relevant to the research, don't qualify as
a "real" transformer-based solution just because they mainly rely on other transformer-based
solutions and add some changes on top of them. Yet, it is still especially important to mention
that even though they are not present in the tables, it doesn't mean the changes proposed by
these papers were not valuable. These changes are significant and meant to be taken just like

the others as relevant to future work.

1.2.3 Results

After introducing most of the models, we will present the results. The univariate results will
now be discussed, followed by the multivariate ones, for the transformer-based solutions as
they are done in most literature. After doing so, a comparison and discussion will occur
regarding the best results from transformer-based solutions versus linear solutions presented in
the literature — Appendix A.2.

Univariate Time-series Forecasting: Under this setting, it is from Appendix A.1 that we
can observe that: (1) The Informer and FEDformer models were the only models to perform
tests with the ETTh1, ETTh2, ETTm1, ECL, ILI, and Electricity datasets. (2) For the ETTm?2
dataset, the FEDformer, among the other models, performs better, although not prominently. It
is also nice to note that, through the varying input lengths, we see an increase in the MSE and
MAE. (3) Regarding the Weather dataset, the Informer and FEDformer are the only models to
use this dataset to make tests. That said, and with varying input lengths, the FEDformer
performs better, this time, prominently. (4) Finally, in the Exchange dataset, the implementation
of the Non-stationary transformer outperforms all the other models. In conclusion, we can

affirm that the best-performing transformer-based model under this setting is the FEDformer.

10



The results will vary a lot based on many factors, so it is necessary to point out again that the
results gathered are based only on the respective papers of each model.

Multivariate Time-series Forecasting: Under this setting, it is from Appendix A.2, only
regarding the ETT dataset, that it is possible to observe that: (1) There were three main models
for getting the best results. The Autoformer, Crossformer, and PatchTST were the ones that got
the best results. (2) In the ETTh1, it was the Crossformer and PatchTST that got the best results;
In the ETTh2 and ETTm2 it was the Autoformer and PatchTST (Crossformer didn't use these
datasets); And finally, in the ETTm1 all three models performed nicely. (3) It is necessary to
mention that, although all three models outperformed all others, among these 3, it is possible to
say that the PatchTST is, in this dataset, the best model to use. Not only do they get a significant
portion of the best results, but they also get the best results where the input length is more
significant, which is also a plus. Now, passing to Appendix A.4, where the ILI, ECL, and
Weather datasets are regarded, it is possible to observe that: (1) For the Weather dataset, it is
possible to say that PatchTST is, in a general way, the model that performs the best. Alongside
the results from Crossformer, which only performed well in input lengths, other models didn't
make any tests. (2) Regarding the ECL dataset, the only model that performed any tests under
the multivariate setting was the Crossformer. That said, it is not possible to say that, for this
dataset in particular, the considered model is better than other models listed. (3) Finally, it is on
the ILI dataset that the PatchTST confirms, once again, its dominance regarding performance.
It is possible to say that PatchTST is the best model for this set of datasets. Finally, in Appendix
A.5 regarding the Traffic, Exchange, and Electricity datasets, it is possible to say that: (1) For
the Traffic dataset, it is, once again, the PatchTST model that outperforms all the others (except
for the cases regarding the 24 and 48 input lengths that only the Crossformer model used.) (2)
For the Exchange dataset, implementing the Non-stationary transformer, just like in the
univariate setting, outperformed all the others. It is also relevant to mention that, for larger input
lengths, the results obtained by the Non-stationary transformer decreased a bit, and the
FEDformer got a little better results. (3) Finally, in the Electricity dataset, the model that got
the best results was the PatchTST, except regarding the 168 input length, that only the
Pyraformer model used. In a general way, it is possible to say that, once again, PatchTST was

the model that got the best results.
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Transformer-based versus Linear solutions: After gathering the best transformer-based
solutions, it is interesting to compare them with linear solutions using the same benchmark
datasets from the literature. It's the case of the long-term time series forecasting — linear (LTSF-
Linear) (Zeng et al., 2023), a simple linear model, as stated by the authors, consisting only of a
weighted sum of historic L values to predict future T timesteps. This model consists of three
separate models - Linear, NLinear and DLinear - each designed for its particular field
(depending on the dataset) and varying only in pre-processing techniques. The best results
obtained with this model are present in Appendix A.2. That said a compilation table was made
so that it is possible to compare the results from this linear model and the best multivariate
transformer-based solution, as it is present in Appendix A.6. It is then possible to observe that:
(1) Among the two selected models it is challenging to decide which performs better - although
practically all the best results belong to the PatchTST model, it is by a small margin most of the

time.

1.3  Conclusions

In conclusion, the results detailed in Appendix A.l reveal that the FEDformer consistently
outperforms other models across all the datasets regarding the univariate setting. Notably, it
excels in the ETTm2 dataset and demonstrates superior performance in the Weather dataset,
establishing itself as the top-performing model. Changing the setting to the multivariate time
series and referencing Appendixes A.3-A.5, three main models emerge as top performers —
Autoformer, Crossformer, and PatchTST. Yet, overall, PatchTST stands out as the dominant
model in multivariate forecasting, displaying its versatility and consistently superior
performance across diverse datasets.

It is once again crucial to note that these conclusions are drawn from the respective papers
and regarding each model, and the results may vary depending on specific factors like
computational resources. Nonetheless, the comprehensive analysis presented here underscores
the robust performance of the FEDformer and PatchTST in univariate and multivariate time
series forecasting for transformer-based solutions, respectively, and LTSF-Linear as a robust

linear solution for time series in general.
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This systematic literature review's significance lies in identifying time series forecasting
models that exhibit superior performance in different contexts — that is, not only regarding the
business area of each dataset, but also the setting (univariate or multivariate). FEDformer
excelled in the univariate setting, while PatchTST was superior in the multivariate setting.
These findings are essential to this work since they provide valuable insights into which
approaches may be most effective to attack the problem. It is also necessary to acknowledge
certain limitations, one of them being that the conclusions are based on information available
in the selected papers, introducing a potential bias and limitation. Additionally, one of the most
important points is that time series forecasting is not easy per se.

For future research, and based on the limitations of the task in hand, it would be beneficial
to investigate, explore, and implement a new state-of-the-art transformer-based solution that
could combine some of the most interesting characteristics of the two best models presented in
this literature review and also try to solve at least in part some of the problems associated with
the use of this model such as (1) Memory bottleneck associated with time and space complexity,
and (2) The fact that this model is insensitive to local context. Moreover, a deeper understanding
of factors influencing model performance in specific scenarios could provide valuable insights
for future improvements.

This systematic literature review offers a comprehensive overview of transformer-based
solutions for time series forecasting, highlighting their practical nuances and results, providing

clear guidance, and serving as a strong base for future work.
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CHAPTER 2
Data and Models

In this chapter, we will explore the methods chosen and employed for the task of time series
forecasting. Following, in some ways, the CRISP-DM (Wirth & Hipp, 2000) methodology, we
will delve into the development of a novel hybrid transformer-based model, which incorporates
the two best-performing models discussed in the previous chapter — although the novel model’s

architecture is presented later, the methodology used to develop it can be observed in the

Business
Understanding
Deployment Data Understanding

[ Evaluation } [ Modeling }

Figure 4 — CRISP-DM flowchart.

flowchart in Figure 4.

The focus will lie on explaining not only the data used but also the technical aspects of the
integration of the two models into a new one — mainly the integration of the PatchTST layer
into the input layer of the FEDFormerMS (the FEDFormer implementation of the Scaleformer

framework).

2.1 Data used

So, regarding this particular section, the data used in the novel hybrid model will be presented.
It will consist of the data used in most of the other models presented in the literature review so

that all future comparisons of results and future discussions are reliable and comparable.
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Four datasets will be used, spanning different areas, which will also be an excellent test for
the novel model so that it will be possible to observe its behavior when presented with
multidisciplinary data. These datasets are the Traffic dataset, the Weather dataset, the Illness
dataset and the Exchange Rate dataset (all four datasets are available on the Autoformer? github
page). All these four datasets are now to be thoroughly described and studied to provide more
context for future methods and results. It is important to note that, as these datasets are widely
used for time series forecasting, it is normal that they have already been worked on and need

no further improvements to fit the novel model.

2.1.1 Traffic
The Traffic dataset contains traffic volume data, ranging from July 2016 to July 2018, with

17,544 rows, 863 columns and no missing data.

OT Variable Over Time (Traffic Dataset)

0.20f

0.15f

oT

0.05f

0.00

Figure 5 - Traffic dataset plot — target variable.

3 https:/github.com/thuml/Autoformer
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As it is possible to see in Figure 5, the target variable (OT column) exhibits a consistent
pattern throughout, registering fluctuations in traffic throughout the days (seen by all the spikes,
maximums, and minimums). It is noticeable a slight upward trend since around 2017, yet not
too extreme, indicating a gradual increase in traffic volume over time. It is evident, once again,
that the daily patterns reveal significant variations, likely corresponding to the peak traffic hours
during the day — the spikes, maximums, and minimums might indicate rush hours and off-peak

hours, respectively.

Mean Mode Median Standard Deviation
Target
Variable 0.032 0.005 0.034 0.019
(O7)

Table 2 — Traffic dataset — target variable statistics.

Regarding the statistical measures of this variable, the mean and median values are quite
close, as is observable in Table 2, which points to a symmetric distribution of the data. The

value for the standard deviation also indicates the presence of regular fluctuations in the data.

2.1.2 Weather

The Weather dataset contains 7588 rows and 9 columns, with no missing values whatsoever.
This dataset includes numerous weather features recorded from January 2020 to January 2021
and, as already mentioned, it is common for these datasets to be well maintained due to their

benchmark nature.
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Daily Weather Data (Outliers Removed)
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Figure 6 — Weather dataset plot — target variable.

Yet, it is noticeable in Figure 6, by plotting the target variable, that although there is a slight
quadratic trend, the data exhibits slight daily variations - which is typical for weather data, as it

can be seen in Figure 7, that displays data for one day.

OT Variable Over One Day (2020-01-01)
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Figure 7 — OT variable plot (over one day).

It is yet to point out the two existing outliers that occurred right before March and
September 2020, visible in Appendix A.7, which are errors of the dataset itself most likely
originated from the data collection step. These outliers were replaced with similar values, and

the correct data is now displayed in Figure 6
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Mean Mode Median Standard Deviation
Target
Variable | 417.799 | 419.900 | 423.200 321.570
(OT)

Table 3 —Weather dataset — target variable statistics.

Regarding the statistical measures of this variable presented in Table 3, the mean and
median values are pretty close once again, indicating a relatively symmetric data distribution,
as can also be seen in Figure 8. Lastly, the value for the standard deviation shows the variability
in the data, which could be expected due to the nature of the weather changes.

Histogram of OT Variable
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Figure 8 — OT variable histogram.

2.1.3 National Illness
The National Illness dataset contains data on illness activity levels across different regions,
recorded weekly, from January 2002 to June 2020. It has 966 rows, 8 columns and no missing

values.
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1e6 OT Variable Over Time (National lliness Dataset)
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Figure 9 — Illness dataset plot — target variable.

Figure 9 shows the data exhibits noticeable weekly variations, with peaks corresponding to
seasonal flu outbreaks. For example, around 2009, the swine flu pandemic, or the probable
beginning of the COVID-19 pandemic around the end of 2019 is noticeable. Apart from that,

no real outliers can be identified so no additional processing was performed.

Mean Mode Median | Standard Deviation
651497.460 | 64699 618305 349018.888

Target Variable
(OT)

Table 4 — Illness dataset — target variable statistics.

Regarding the statistical measures of the variable, Table 4 also shows that the large value
for the standard deviation reflects a significant variability, which could be explained by the
seasonal nature of illness data, where spikes surge during flu seasons and drop during off-peak

periods.

2.1.4 Exchange Rate
The Exchange Rate dataset contains nine daily time series with 7588 entries and no missing
values. This dataset records the exchange rates over the period ranging from January 1990 to

October 2010, providing a view of the currency fluctuations.
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OT Variable Over Time (Exchange Rate Dataset)
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Figure 10 — Exchange rate dataset plot — target variable.

Figure 10 shows the data displays evident fluctuations over the years. There are periods of
both rapid increase and decrease in the values, yet, it doesn’t seem to present a real trend or

seasonality typical to this type of data. No outliers were encountered either.

Mean Mode Median | Standard Deviation
Target
Variable 0.654 0.552 0.669 0.115
(OT)

Table 5 — Exchange rate dataset — target variable statistics.

Regarding the statistical measures of the variable present in Table 5, the mean and median
values provide insights into the central tendency of the data. The standard deviation indicates

the extent of the variation, which highlights the volatility inherent to this type of data.

2.2 Layer integration

As one of the main ideas behind this thesis is the possible discovery of a novel model with the
best results, it is in this section that is presented the implementation of the idea itself regarding
the integration of the PatchTST layer into the FEDFormerMS model. To achieve that and
provide context to better understand these models, a brief description of the original transformer
model and the other three models (FEDFormerMS, PatchTST and the Novel Model) will also

be made in what follows.
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The original Transformer model revolutionized the field of sequence modeling as a whole.
It can be characterized by using the self-attention mechanism to process input sequences (data),
rather than sequentially as in traditional recurrent neural networks or other traditional models.
This architecture consists of an encoder-decoder structure where the encoder processes the input
sequence through multiple layers, each containing, precisely, a multi-head self-attention
mechanism. This allows the model to focus on different parts of the sequence simultaneously
and capture complex dependencies. The decoder generates the output sequence by similarly
using self-attention layers. This dual attention mechanism is the feature that enabled the model
to produce accurate and contextually relevant predictions in the sequence modeling field.

Regarding the FEDFormerMS — we can say that it is an implementation of the FEDFormer
(T. Zhou et al., 2022) model that uses the Scaleformer framework to enhance multi-scale feature
extraction. This model is designed to manage temporal sequences efficiently by capturing
patterns across various scales. The architecture of FEDFormerMS includes a multi-scale
decomposition layer that breaks down the input time series into components at different scales.
This decomposition allows the model to focus on short-term and long-term patterns, enhancing
its predictive abilities. Like the original transformer model, this model also uses a multi-head
attention mechanism to emphasize relevant features across the decomposed data.

The PatchTST model is designed to effectively capture local dependencies within a time
series through a unique approach that depends on patching — that is, the input time series is
divided into smaller patches, each representing a localized data segment. This unique patching
mechanism should, in theory, allow the model to focus on local temporal patterns, making it
particularly expert at identifying short-term trends and variations in the data. Each patch is
processed through a transformer encoder (already discussed briefly earlier), utilizing, once
again, self-attention to capture dependencies within and between patches. The features
extracted from these patches are then aggregated to form the final result.

Finally, regarding the novel model, the idea behind it is really what it seems — to integrate
the layer responsible for most of the action in the PatchTST, namely this layers’ capability to
capture local dependencies model into the implementation of the FEDFormer of the scaleformer
framework that, in itself, has the great ability of multi-scale feature extraction. In order to do
this, the modules/layers of the PatchTST model regarding patching were gathered in the input
section of the model and placed as the input layer of the FEDFormerMS in hopes of seeing,

possibly, better results — illustration seen in Figure 11.
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Figure 11 — Novel model architecture.

The rationale behind this process is to leverage the strengths of both models, aiming to
achieve better results and performance by combining their capabilities. Process-wise, the input
time series is split into patches using the PatchTST layer to better capture local dependencies,
as already mentioned. After this step, the patched data is fed into the input layer of the
FEDFormerMS, where the multi-scale feature extraction will occur.

It is by combining the best features of both models that this new hybrid model is expected
to achieve better results (also regarding performance), when compared to each model

individually.

2.3 Evaluation metrics
Finally, regarding the evaluation metrics to be used, once again, they will be assigned to the
ones present in the selected literature as, in the future, when one wants to compare results, it
will be not only helpful but truthful and scientifically correct if the comparison is made using
the same evaluation metrics.

The metrics used in this novel model will also be the Mean Squared Error (MSE) and the
Mean Absolute Error (MAE). To better understand what they mean and the real meaning of the

performance of the novel model, they will now be presented in their essence.
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Starting with the Mean Squared Error (MSE) is simply the average of the squares of the
errors, where the error is the difference between the predicted value, ¥,, and the actual/real

value, y;, where n is the sample size. It is given by:

1 ~
MSE=131.(yi-5) @)

One aspect to consider for future result comparison is that MSE is sensitive to large errors
once it squares the error term. Based on equation (2.1), it is also possible to conclude that a
lower value for the MSE indicates a better model performance.

Regarding the metric Mean Absolute Error (MAE), it is possible to say that it is the average

of the absolute differences between the predicted and actual/real values. It is given by:

1 ~
MAE = —¥iLilyi =%l (22)

n i=1

To have into consideration this metric, is the fact that, based on its modular nature, this
metric provides a straightforward measure of the average magnitude of errors in a set of
predictions, with no consideration for their direction, so it is possible to say that it is in the same
scale as the target variable. Similarly to the MSE, this metric also indicated better model
performance for lower values.

In conclusion, this chapter provides a comprehensive overview of the datasets to be used,
the integration of the PatchTST layer into the FEDFormerMS as the base for this thesis aiming
to deliver a superior performance to the individual ‘parent’ models that originate it, and finally
a simple description of the evaluation metrics to be used in the novel model. The detailed
discussion and analysis of the results obtained following this implementation will be held in the
next chapter so that one can understand the real performance of the novel model compared to

the two that originated it.
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CHAPTER 3

Results and discussion

This chapter presents the results obtained from implementing the approach for the novel hybrid
model and proposes to discuss them in the context of the selected models. This evaluation
focuses on comparing the performance of the novel model against the FEDformer in the
Scaleformer configuration and the PatchTST configuration. The comparison will be based on
the evaluation metrics presented in the previous chapter - Mean Squared Error (MSE) and Mean
Absolute Error (MAE). Finally, the discussion also addresses the time constraints encountered
during the experimentation process, which required significant computational resources and

time.

3.1 Results

By presenting and discussing these results, we aim to highlight the strengths and potential
limitations of the novel hybrid model, as well as its relative performance against already
established models. It is noted that several tests were performed, namely three different tests
for each window for each dataset on the novel model — these tests were performed using the
same settings, that is, the same window sizes, as the ones presented in the literature for each
model.

For the other two original models, the results that will be considered are the best ones
presented in the literature. The FEDformer model in the Scaleformer configuration has
demonstrated robust performance across various datasets, as already discussed in the first
chapter. This configuration leverages multi-scale feature extraction to capture patterns,
providing a balanced approach to short-term and long-term dependency modeling regarding

time series forecasting.
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Finally, the configuration used to obtain the results for the novel model consisted of the
following: (1) Data was split into 70%, 20%, and 10%, respectively, for train, test, and
validation subsets. (2) Regarding training, 10 was the number of epochs chosen, with a batch
size 32. (3) The window size varied depending on the dataset; as already mentioned, used the
same values present in the literature for each dataset: 96,192,336 and 720 for the Traffic,
Weather and Exchange Rate datasets, and 24,36,48 and 60 for the ILI dataset. (4) It is also
relevant to note that the developed code* was executed in a notebook in Google Colab using
NVIDIA A100 GPUs. (5) Regarding the implementation of the PatchTST part in the novel
model, a patch length of 16 and a stride of 8 were used, meaning that the time series data was
divided into patches of 16-time steps each, and these patches were created with an overlap

where each new patch started 8-time steps after the previous one.

3.1.1 Scaleformer (FEDFormerMS)

In the Traffic dataset, the Scaleformer configuration achieved an MSE of 0.564 and an MAE
0of 0.351 at the 96 window size. At a 192 window, it achieved an MSE of 0.570 and an MAE of
0.349. At a 336 window, it achieved an MSE of 0.576 and an MAE of 0.439. At a 720 window,
the MSE was 0.602 and the MAE was 0.360. These results indicate that while the Scaleformer
performs well at capturing traffic patterns, there is a trend of increasing MSE and MAE as the
window size increases, suggesting that longer windows may introduce more complexity and
variability that the model struggles to capture effectively.

For the Weather dataset, the Scaleformer implementation achieved an MSE of 0.220 and
an MAE of 0.289 at the 96 window size. For a 192 window, the MSE was 0.341 and the MAE
was 0.385. At a 336 window, the MSE was 0.463 and the MAE was 0.455. At a 720 window,
the MSE was 0.682 and the MAE was 0.565. These results show that the Scaleformer
implementation could handle short-term weather variations well but struggles as the window
size increases, possibly due to the increasing complexity and variability in the weather data
over longer periods.

In the Illness dataset, the Scaleformer configuration reported an MSE of 2.745 and an MAE
of 1.075 at the 24 window size. At a 32 window, the MSE was 2.748 and the MAE was 1.072.
For a 48 window, the MSE was 2.793 and the MAE was 1.059. At a 64 window, the MSE was
2.678 and the MAE was 1.071.

4 Developed code shall be provided upon request.
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Finally, the Exchange Rate dataset presented at the 96 window an MSE of 0.109 and an
MAE of 0.240. At a 192 window, the MSE was 0.241 and the MAE was 0.353. At a 336
window, the MSE was 0.471 and the MAE was 0.508. At a 720 window, the MSE was 1.259
and the MAE was 0.865.

Dataset Traffic Weather Illness Exchange Rate
Metric MSE MAE MSE MAE MSE MAE MSE MAE
24 - - - - 2.745 1.075 - -
32 - - - - 2.748 1.072 - -
48 - - - - 2.793 1.059 - -
64 - - - - 2.678 1.071 - -
96 0.564 0.351 0.220 0.289 - - 0.109 0.240
192 0.570 0.349 0.341 0.385 - - 0.241 0.353
336 0.576 0.439 0.463 0.455 - - 0.471 0.508
720 0.602 0.360 0.682 0.565 - - 1.259 0.865

Table 6 — Results for the FEDFormerMS model.

These results presented in Figures 12 and 13 suggest, as it can also be observed in Table 6,

that the Scaleformer configuration could be handling short-term volatility well but struggles

with longer windows that could, in this case, be derived due to increased variability in exchange

rates (assuming it could be precisely due to the nature of the data in question).

Scaleformer - MSE over different windows (Traffic, Weather, Exchange Rate)
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Figure 12 — Results for the Scaleformer model (Traffic, Weather, Exchange Rate).
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Scaleformer - MSE over different windows (lliness)
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Figure 13 — Results for the Scaleformer model (Illness).

Regarding the interpretation, based on the smallest MAE values, it is possible to conclude
the following: (1) For the Traffic dataset, the smallest MAE is 0.349 for the 192 window size.
(2) For the Weather dataset, the smallest MAE is 0.289 for the 96 window size. (3) Regarding
the Illness dataset, the smallest MAE is 1.059 for the 48 window size. (4) For the Exchange
Rate dataset the smallest MAE is 0.240 for the 96 window size. That said, it is possible to
conclude that this model performed better when encountering smaller window sizes.

Considering this and Question 1 formulated in the first section of this study, we can
conclude that the Scaleformer configuration of the FEDformer model proved to be a robust
model across various datasets, balancing short-term and long-term dependencies effectively.
The results indicate, once again, that smaller window sizes, particularly the 96 window, could
effectively capture complex patterns in the data, but performance tends to decrease as the
window size increases, likely due to the increased complexity and variability in the data over
longer periods, which can provide an answer to Question 2. It was also interesting to notice
that, no matter the subject into which the data is inserted, this phenomenon stays constant when
facing larger windows. However, it was noticed that, due to the nature of the data, the results

may vary.
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3.1.2 PatchTST (64)

Now, for the PatchTST model, all the following results will be regarding the variation that
contemplates patches of 64 (that is why it is being referred to as PatchTST (64)), whereas this
was the model’s variation with the best results. This model also showed strong performance,

particularly in capturing local dependencies within the time series data.

Dataset Traffic Weather Illness Exchange Rate
Metric MSE MAE MSE MAE MSE MAE MSE MAE
24 - - - - 1.319 0.754 - -
32 - - - - 1.579 0.870 - -
48 - - - - 1.553 0.815 - -
64 - - - - 1.470 0.788 - -
96 0.360 0.249 0.149 0.198 - - - -
192 0.379 0.256 0.194 0.241 - - - -
336 0.392 0.264 0.245 0.282 - - - -
720 0.432 0.286 0.314 0.334 - - - -

Table 7 — Results for the PatchTST model.

As seen in Table 7 and Figure 14, in the Traffic dataset, the PatchTST (64) configuration
achieved an MSE of 0.360 and an MAE of 0.249 at the 96 window size. At a 192 window, the
MSE was 0.379, and the MAE was 0.256. At a 336 window, the MSE was 0.392, and the MAE
was 0.264. At a 720 window, the MSE was 0.432, and the MAE was 0.286. These results could
indicate that the patching mechanism effectively captures localized traffic patterns and
maintains relatively stable performance across different window sizes, compared to the scale
former, although there is a slight increase in error metrics with more oversized windows.

For the Weather dataset, the PatchTST (64) configuration achieved an MSE of 0.149 and
an MAE of 0.198 at the 96 window size. At a 192 window, the MSE was 0.194, and the MAE
was 0.241. At a 336 window, the MSE was 0.245, and the MAE was 0.282. At a 720 window,
the MSE was 0.314, and the MAE was 0.334. These results indicate that the patching
mechanism could be particularly effective for dealing with highly variable data (as weather

data), maintaining relatively strong performance even as the window size increases.
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In the Illness dataset, the PatchTST (64) configuration reported an MSE of 1.319 and an
MAE of 0.754 at the 24 window size. At a 32 window, the MSE was 1.579, and the MAE was
0.870. At a 48 window, the MSE was 1.553, and the MAE was 0.815. Finally, at the 64 window,
the MSE was 1.470 and the MAE was 0.788. Also, from Figure 15, these results suggest that
while the patching mechanism is beneficial for capturing localized spikes and trends, its
performance curiously decreases with intermediate window sizes.

For the Exchange Rate dataset, the PatchTST (64) unfortunately didn’t have any results, so

it would be impossible to make any judgements or get any insights.

PatchTST (64) - MSE over different windows (Traffic, Weather)

Traffic MSE
040 1" _g— weather MSE

100 200 300 400 500 600 700
PatchTST (64) - MAE over different windows (Traffic, Weather)

0.34

Traffic MAE

0327 _g Weather MAE

0.30
0.28

w

£ 0.26
0.24
022

0.20 A

l(I)O 2(|)0 360 4(I)0 560 600 700
Window

Figure 14 — Results for the PatchTST model (Traffic, Weather).
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PatchTST (64) - MSE over different windows (lliness)
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Figure 15 — Results for the PatchTST model (Illness).

Overall, the PatchTST (64) showed strong performance across all datasets, particularly
excelling in capturing local dependencies — as advertised. This suggests, and once again taking
into consideration Questions 1 and 2, that the patching mechanism enhances the model's ability
to manage detailed, localized patterns within the data, although performance tends to decrease
with larger window sizes due to increased complexity and variability. Although this last
sentence is true, it is worth noting that although the errors seem to grow with the increase in the
window, this increase for the PatchTST (64) is smaller than the increase in the Scaleformer

implementation.

3.1.3 Novel hybrid model

Our novel hybrid model will then integrate the PatchTST layer responsible for the patching into
the FEDformerMS input layer’s architecture, aiming to combine the strengths of both
configurations to get better results — it is essential to state that, because both the code for the
PatchTST and FEDFormerMS models were implemented in Python using PyTorch, it was, in
a general way, easier to develop the code for the novel model. The results indicate a mixed
performance, with notable improvements in some areas and challenges in others. It is important
to note that the following results were achieved using a patch length equal to 16, a stride of 8
(meaning each patch overlaps the next one by eight-time steps), and two subsequent layers of

the PatchTST.
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Dataset Traffic Weather Illness Exchange Rate
Metric MSE MAE MSE MAE MSE MAE MSE MAE
24 - - - - 2.272 0.958 - -
32 - - - - 2.701 1.066 - -
48 - - - - 2.745 1.067 - -
64 - - - - 2.644 1.036 - -
96 0.555 0.324 0.218 0.288 - - 0.122 0.246
192 0.569 0.332 0.303 0.343 - - 0.189 0.320
336 0.586 0.333 0.401 0.414 - - 0.316 0.411
720 0.613 0.347 0.655 0.551 - - 1.290 0.859

Table 8 — Results for the Novel model.

In the Traffic dataset, and observing Table 8 and Figure 16, the hybrid model achieved an
MSE of 0.555 and an MAE of 0.324 at the 96 window size. At a 192 window, the MSE was
0.569, and the MAE was 0.332. At a 336 window, the MSE was 0.586, and the MAE was 0.333.
At a 720 window, the MSE was 0.613, and the MAE was 0.347. While this performance is
slightly poorer than the PatchTST (64) configuration, it is comparable to the Scaleformer
configuration, indicating that the hybrid model could effectively balance local and global
dependencies in the data, especially for smaller windows. Yet the results show a trend in
increasing MSE and MAE values as the window size increases, consistent with the behavior
observed in the Scaleformer and PatchTST (64) configurations.

For the Weather dataset, the hybrid model achieved an MSE 0of 0.218 and an MAE of 0.288
at the 96 window size. At a 192 window, the MSE was 0.303, and the MAE was 0.343. Ata
336 window, the MSE was 0.401, and the MAE was 0.414. At a 720 window, the MSE was
0.655, and the MAE was 0.551. This performance appears between the Scaleformer and
PatchTST (64) configurations results, suggesting that the hybrid model captures weather
variations reasonably well but does not significantly outperform the individual configurations.
Once again, the increasing error metrics with larger windows indicate challenges in handling

longer-term weather variability.
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In the Illness dataset, the hybrid model reported an MSE of 2.272 and an MAE of 0.958 at
the 96 window size. At a 192 window, the MSE was 2.701, and the MAE was 1.066. At a 336
window, the MSE was 2.745, and the MAE was 1.067. At a 720 window, the MSE was 2.644,
and the MAE was 1.036. As seen in Figure 17, this performance is better than the Scaleformer
configuration but slightly worse than the PatchTST (64) configuration, indicating that the
hybrid model could be capturing seasonal trends correctly but may be struggling with localized
spikes in the data (which could make total sense knowing what data we are talking about,
subject-wise). The performance trend suggests that while the hybrid model can manage longer-
term trends, it probably faces challenges with the increased variability in longer windows.

Finally, regarding the Exchange Rate dataset, a similar pattern was presented, with the
hybrid model achieving an MSE of 0.122 and an MAE of 0.246 at the 96 window size. At a
192 window, the MSE was 0.189, and the MAE was 0.320. At a 336 window, the MSE was
0.316, and the MAE was 0.411. Ata 720 window, the MSE was 1.290, and the MAE was 0.859.

Novel Model - MSE over different windows (Traffic, Weather, Exchange Rate)
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Figure 16 — Results for the Novel model (Traffic, Weather, Exchange Rate).
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Novel Model - MSE over different windows (llIness)
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Figure 17 — Results for the Novel model (Illness).

This performance is only comparable to the Scaleformer configuration once the PatchTST
(64) model doesn’t contemplate results for this dataset. The results may indicate that the hybrid
model could effectively handle volatility in the data but may not fully leverage the strengths (or
at least not as much as the Scaleformer) of the patching mechanism provided by the integrated
layer. The constant and recurring increasing error metrics with larger windows highlight the
challenges in managing longer-term volatility in exchange rate data (which once again could
make all sense knowing what data we are talking about, subject-wise).

Once again, and considering Question 2, it is essential to note that these results were
obtained using arguments for the patch length, stride, and number of layers, the numbers

mentioned earlier — and the results will vary when changing these arguments.

3.2 Discussion

It is also important to note that one significant challenge encountered with the hybrid model
was the time constraint, particularly with the Weather dataset. Running the code for this dataset
required substantial computational resources and time, highlighting the increased complexity
and resource demands of this novel hybrid architecture. This challenge underscores the
importance of considering computational efficiency alongside predictive performance in model
development, which should be considered for future work regarding time duration for time

series forecasting.
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When comparing the performance of the three models, we observed a clear pattern related
to window size limitations across all datasets. Each model exhibits a trend of increasing error
metrics as the window size increases, which highlights the inherent complexity and variability
that longer windows introduced — when grouped by dataset in order of the model, it is possible

to conclude, as it is possible to observe in Figures 18 and 19.
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Figure 18 — MSE Results for the three models by dataset.
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Figure 19 — MAE Results for the three models by dataset.

The Scaleformer implementation demonstrated robust performance, particularly with
smaller window sizes. For instance, in the Traffic dataset, the Scaleformer achieved an MSE of
0.564 and an MAE of 0.351 at the 96 window size. However, as the window size increases to
192, 336, and 720 hours, the error metrics also increase, indicating that the model struggles to
maintain accuracy over longer periods. This pattern is consistent across other datasets where
the Scaleformer shows strong performance with short-term data but faces challenges with long-
term variability.

On the other hand, the PatchTST (64) configuration excels in capturing local dependencies,
which is reflected in its superior performance across all window sizes and datasets compared
to the Scaleformer. In the Traffic dataset, the PatchTST (64) achieved an MSE of 0.360 and an
MAE of 0.249 at the 96 window size, outperforming the Scaleformer. Even as the window size
increases, the degradation in performance is less severe than that observed with the
Scaleformer. For example, at a 720 window, the PatchTST (64) recorded an MSE of 0.432 and
an MAE of 0.286, maintaining a relatively stable performance. On the other hand, the
Scaleformer had worse results for this bigger window. This trend is also evident across other
datasets, where the PatchTST (64) consistently ranks as the top-performing model due to its

ability to oversee localized patterns effectively.
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Finally, our novel hybrid model that integrates the PatchTST layer into the FEDformerMS
architecture, aiming to balance the strengths of both configurations, returned results that
indicate that the hybrid model generally performs better than the Scaleformer implementation,
but not as well as the PatchTST (64) model. For example, in the Traffic dataset, the hybrid
model achieved an MSE of 0.555 and an MAE of 0.324 at the 96 window size, positioning itself
between the two individual models that originated it. As the window size increases, the hybrid
model's performance remains closer to that of the PatchTST (64) than the Scaleformer,
indicating a successful integration that leverages the strengths of both approaches, namely the
integration of the PatchTST layer. However, as it is a universal problem, like the other models,
the hybrid model also shows an inevitable increase in error metrics when presented with longer
windows, highlighting precisely the universal challenge of managing longer-term dependencies
and variability for the task of time series forecasting.

When ranking the models based on their performance across different datasets and window
sizes, the PatchTST (64) model emerges as the best overall performer, followed by the novel
hybrid model, with the Scaleformer configuration coming in third. The PatchTST (64) model
consistently shows lower MSE and MAE values, indicating its robustness in handling both
short-term and long-term dependencies more effectively than the other models. The novel
hybrid model, while not outperforming the PatchTST (64), demonstrates a significant
improvement over the Scaleformer, indicating that the integration of the PatchTST layer adds
value by enhancing the model’s ability to capture localized patterns, although it could be
dragged down by time and computation affairs. Finally, the Scaleformer, despite its robust
performance with smaller window sizes, also struggles with larger windows. This limitation
underscores the importance of model architecture in handling different types of time series data,
particularly when dealing with longer-term forecasts. Once again, the consistent trend of
increasing error metrics across all models with larger windows highlights a common challenge
in time series forecasting: balancing short-term and long-term dependencies while managing

the increased complexity and variability of longer prediction horizons.
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In conclusion, while each model has strengths and weaknesses, the PatchTST (64) stands
out, with pity, as the most effective configuration for time series forecasting across various
datasets and window sizes. Following this, the novel hybrid model shows promising results, by
bridging the gap between the PatchTST (64) model and the Scaleformer implementation,
offering a balanced approach to this task that leverages the strengths of both models. Finally,
The Scaleformer, while robust in certain scenarios, also faces notable challenges with longer
windows, emphasizing the possible need for further refinement in handling long-term
dependencies. Future work presented in the next chapter should focus on optimizing the novel
model to improve its performance with possibly larger windows, ensuring more accurate and
reliable forecasts across different time series datasets. An emphasis on time constraints and
computational resources should also be placed on future improvement, where more tests should
be done with varying arguments regarding patch length, stride, and number of layers, as these

will influence the results and time-related issues.
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CHAPTER 4

Conclusions and future work

This study explored the potential of a novel hybrid model for time series forecasting, integrating
the PatchTST input layer into the FEDFormerMS architecture. The study aimed to leverage and
merge the strengths of both configurations - PatchTST's ability to capture local dependencies
and FEDFormerMS's robust multi-scale feature extraction- and answer the questions proposed
in the first chapter. The obtained results indicated that while the novel model presented notable
improvements in some areas (particularly in balancing local and global dependencies), it did
not, unfortunately, consistently outperform the PatchTST model that originated it.

One significant challenge during this research was the time constraint, particularly with the
Weather dataset. The increased complexity of the hybrid model derived from integrating two
distinct and very different models required a substantial number of computational resources and
time, highlighting the importance of considering computational efficiency alongside more
extensive testing regarding the arguments to find the best configuration for this novel model.
This constraint underscores the need for future work to improve accuracy and optimize
computational efficiency. It could also raise some challenges while simultaneously leading to
further development of Questions 2 and 3.

The analysis presented in this study showed that the PatchTST configuration consistently
outperformed the Scaleformer implementation and our hybrid model in terms of Mean Squared
Error (MSE) and Mean Absolute Error (MAE). The PatchTST model's superior performance
could be attributed to its effective handling of localized patterns within the data. While showing
promise, our hybrid model demonstrated performance that fell between the PatchTST and
Scaleformer implementations, indicating a successful integration and highlighting obvious

improvement areas.
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Given the mixed results, it is evident that hybrid models combining various elements of
different architectures could hold potential for improvement regarding the task of time series
forecasting yet, and directly answering to Question 1, the transformer model proved to have
success in time series forecasting (at least to some extent). Future research should explore
Question 3 more deeply, namely integrating other transformer-based models or traditional
forecasting techniques into hybrid architectures. This approach could harness the unique
strengths of each model, potentially leading to better overall performance and making
transformer-based models even more powerful for this task. Additionally, addressing the
computational challenges is crucial alongside more extensive testing with more computational
resources.

Throughout this study, as transformers are a prominent topic in the data science field,
several alternative models and ideas have emerged. Notable examples include the already
mentioned Informer, Autoformer, PatchTST, and the Temporal Fusion Transformer (TFT)
models. These models are gaining traction and being incorporated into libraries such as
Hugging Face’s time series section®. Additionally, practitioners like Marco Peixeiro are also
leveraging the mentioned frameworks, such as DARTS and NeuralForecast®. Finally, it is also
to note that there are also implementations available in PyTorch, such as the Transformers-for-
timeseries notebook on Google Colab’ which is also a great way to break through this topic.
These developments highlight the continuous evolution and innovation of the topic within the
field, providing promising directions for future research.

In conclusion, this research contributes to the field of time series forecasting by providing
insights into the potential and limitations of transformer-based models for time series
forecasting. While our novel model did not consistently outperform existing solutions, it paved
the way for future exploration into more sophisticated hybrid models that could present
researchers with better results. Future work should focus on optimizing these models for both
accuracy and computational efficiency, ensuring they can, even more effectively, handle the
complexities of long-term time series forecasting. Through continued innovation and rigorous
testing, it is possible to develop more robust and efficient forecasting models to significantly

improve prediction accuracy in various application domains.

5 https://huggingface.co/docs/transformers/model_doc/patchtst

® https://github.com/marcopeix/datasciencewithmarco

7 https://colab.research.google.com/github/charlesollion/dlexperiments/blob/master/7-Transformers-
Timeseries/Transformers for timeseries.ipynb

40



References

Amin Shabani, M., Abdi, A., Meng, L., & Sylvain Borealis, T. A. (2022). SCALEFORMER: ITERATIVE
MULTI-SCALE  REFINING  TRANSFORMERS FOR TIME SERIES FORECASTING.
https://github.com/BorealisAl/scaleformer.

Cai, L., Janowicz, K., Mai, G., Yan, B., & Zhu, R. (2020). Traffic transformer: Capturing the continuity and
periodicity of time series for traffic forecasting. Tramsactions in GIS, 24(3), 736-755.
https://doi.org/10.1111/tgis.12644

Chimmula, V. K. R., & Zhang, L. (2020). Time series forecasting of COVID-19 transmission in Canada
using LSTM networks. Chaos, Solitons and Fractals, 135. https://doi.org/10.1016/j.chaos.2020.109864

Ding, Q., Wu, S., Sun, H., Guo, J., Guo, J., & Laboratory, P. C. (2020). Hierarchical Multi-Scale Gaussian
Transformer for Stock Movement Prediction.
https://data.worldbank.org/indicator/CM.MKT.TRAD.CD?end=

Lara-Benitez, P., Gallego-Ledesma, L., Carranza-Garcia, M., & Luna-Romera, J. M. (2021). Evaluation of
the Transformer Architecture for Univariate Time Series Forecasting.

Lezmi, E., & Xu, J. (2023). Time Series Forecasting with Transformer Models and Application to Asset
Management.

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.-X., & Yan, X. (2019). Enhancing the Locality and
Breaking the Memory Bottleneck of Transformer on Time Series Forecasting.
http://arxiv.org/abs/1907.00235

Lim, B., Arik, S., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-
horizon time series forecasting. International Journal of Forecasting, 37(4), 1748-1764.
https://doi.org/10.1016/j.ijforecast.2021.03.012

Lim, B., & Zohren, S. (2020). Time Series Forecasting With Deep Learning: A Survey.
https://doi.org/10.1098/rsta.2020.0209

Lin, Y., Koprinska, 1., & Rana, M. (2021). SSDNet: State Space Decomposition Neural Network for Time
Series Forecasting. http://arxiv.org/abs/2112.10251

Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., & Dustdar, S. (2022). PYRAFORMER: LOW-
COMPLEXITY PYRAMIDAL AT-TENTION FOR LONG-RANGE TIME SERIES MODELING AND
FORECASTING. https://github.com/alipay/Pyraformer

Liu, Y., Wu, H., Wang, J., & Long, M. (2022). Non-stationary Transformers: Exploring the Stationarity in
Time Series Forecasting. https://github.com/thuml/Nonstationary Transformers.

Nie, Y., Nguyen, N. H., Sinthong, P., & Kalagnanam, J. (2022). A Time Series is Worth 64 Words: Long-
term Forecasting with Transformers. http://arxiv.org/abs/2211.14730

Oliveira, H. S., & Oliveira, H. P. (2023). Transformers for Energy Forecast. Sensors, 23(15).
https://doi.org/10.3390/s23156840

Shen, L., & Wang, Y. (2022). TCCT: Tightly-coupled convolutional transformer on time series forecasting.
Neurocomputing, 480, 131-145. https://doi.org/10.1016/j.neucom.2022.01.039

41



42

Siami-Namini, S., Tavakoli, N., & Siami Namin, A. (2018). A Comparison of ARIMA and LSTM in
Forecasting Time Series. Proceedings - 17th IEEE International Conference on Machine Learning and
Applications, ICMLA 2018, 1394-1401. https://doi.org/10.1109/ICMLA.2018.00227

Sreelekshmy Selvin, Vinayakumar R, Gopalakrishnan E.A, Vijay Krishna Menon, & Soman K.P. (2017).
STOCK PRICE PREDICTION USING LSTM,RNN AND CNN-SLIDING WINDOW MODEL.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, 1.
(2017). Attention Is All You Need. http://arxiv.org/abs/1706.03762

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transformers in Time Series: A
Survey. http://arxiv.org/abs/2202.07125

Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a Standard Process Model for Data Mining.
https://cs.unibo.it/~danilo.montesi/CBD/Beatriz/10.1.1.198.5133.pdf

Wu, H., Xu, J., Wang, J., & Long, M. (2021). Autoformer: Decomposition Transformers with Auto-
Correlation for Long-Term Series Forecasting. http://arxiv.org/abs/2106.13008

Wu, N., Green, B., Ben, X., & O’Banion, S. (2020). Deep Transformer Models for Time Series Forecasting:
The Influenza Prevalence Case. http://arxiv.org/abs/2001.08317

Wu, S., Xiao, X., Ding, Q., Zhao, P., Wei, Y., & Huang, J. (2020). Adversarial Sparse Transformer for Time
Series Forecasting.

Xue, W., Zhou, T., Wen, Q., Gao, J., Ding, B., & Jin, R. (2023). Make Transformer Great Again for Time
Series Forecasting: Channel Aligned Robust Dual Transformer. http://arxiv.org/abs/2305.12095

Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023). Are Transformers Effective for Time Series Forecasting?
WWW.aaai.org

Zhang, Y., & Yan, J. (2023). CROSSFORMER: TRANSFORMER UTILIZING CROSS-DIMENSION
DEPENDENCY FOR MULTIVARIATE TIME SERIES FORECASTING.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., & Zhang, W. (2020). Informer: Beyond Efficient
Transformer for Long Sequence Time-Series Forecasting. http://arxiv.org/abs/2012.07436

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., & Jin, R. (2022). FEDformer: Frequency Enhanced
Decomposed Transformer for Long-term Series Forecasting. http://arxiv.org/abs/2201.12740



Appendix

APPENDIX A.1 — Results for Univariate solutions for each prediction length.

Model Informer Autoformer FEDFormer N,l?:;lt;g:;zy
Metric MSE | MAE | MsE [ MmaE MSE | MAE MSE | MAE
24 0.098  0.247 — - — - — —
= 48 0.158 0319 - - - - - -
= 168 0.183  0.346 - - - - - -
M 336 0.222 0.387 - - - -- - -
720 0269 0435 - - - - - -
24 0.093  0.240 — — — ~ — —
48 0.155 0314 - - - - - -
E 168 0232 0389 - - - - - -
= 192 - -- - - - -- - -
336 0263 0417 - - - - - -
720 0277 0431 - - - - - -
24 0.030  0.137 — — — ~ — —
- 48 0.069  0.203 - - - - - -
é 96 0.194 0372 - - - - - -
= 288 0401  0.554 - - - - - -
672 0512  0.644 - - - - - -
96 — - 0.065  0.189 0.063 0.189 0.069 0.193
;é 192 - - 0.118 0256 0.102 0.245 0.109 0.249
= 336 - - 0.154 0305 0.130 0.279 0.139 0.286
720 - - 0.182 0335 0.178 0.325 0.180 0331
24 0.117 0251 — — — ~ — —
48 0.178 0318 - - - - - -
5 96 - - - - 0.0035 0.046 - -
E 168 0266  0.398 - - - - - -
= 192 - - - - 0.0054 0.059 - -
336 0297 0416 - - 0.0041 0.050 - -
720 0359  0.466 - - 0.0055 0.059 - -
48 0239 0359 — — — ~ — —
168 0447  0.503 - - - - - -
g 336 0489  0.528 - - - - - -
720 0540 0571 - - - - - -
960 0582  0.608 - - - - - -
~ 60 - - - - 0828 0.770 - -
= %6 - - - - | um w26 - -
168 - - - - 0173 0.265 - -
336 - - - - 0178 0.266 - -
720 - - - - 0187 0286 - -
. 96 — — 0.241 0.387 0.131 0.284 0.104 0.235
g 192 - - 0273 0.403 0.277 0.420 0.230 0.375
S 336 - - 0508  0.539 0.426 0.511 0.432 0.509
= 720 - - 0.991 0.768 1.162 0.832 0.782 0.682
Ea| 2 -~ - - - 0282 0386 - -
= 336 - - - - 0346 0431 - -
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720

0.422

0.484

APPENDIX A.2 — Results for LTSF-Linear model.
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LTSF-Linear

Model (Multivariate)

Metric MSE MAE

96 0.374 0.394

E 192 0.405 0.415
= | 336 0.429 0.427
720 0.440 0.453

96 0.277 0.338

E 192 0.344 0.381
5| 336 0.357 0.400
720 0.394 0.436

96 0.299 0.343

E 192 0.335 0.365
= | 336 0.369 0.386
720 0.425 0.421

96 0.167 0.255

E 192 0.221 0.293
= | 336 0.274 0.327
720 0.368 0.384

| 96 0.176 0.232
2| 192 0.218 0.269
§ 336 0.262 0.301
720 0.362 0.348

24 1.683 0.858

~| 36 1.703 0.858
= | 48 1.719 0.884
60 1.819 0.917

96 0.310 0.279

2| 192 0.423 0.284
1 336 0.435 0.290
720 0.464 0.307

o | 96 0.081 0.203
£ 192 0.157 0.293
S| 336 0.305 0.414
=1 720 0.643 0.601
S| 96 0.140 0.237
4 192 0.153 0.249
= | 336 0.265 0.169




| 720 |

0.297

0.203
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APPENDIX A.3 - Results for Multivariate solutions (ETT dataset) for each prediction length.

Model Informer Autoformer | FEDFormer | Pyraformer | Crossformer PatchTST CARD Non-stationary
Transformer
Metric | MSE | MAE | MSE | MAE [ MSE | MAE | MSE | MAE | MSE MAE | MSE MAE | MSE MAE MSE |  MAE
24 0577 0.549 [ 0384 0425 | -- - - —~ 0305 0367 - - - - - -
48 | 0.685 0.625]0.392 0419 | -- - - —~ 10352 03% | - - - - - -
= 96 - - - - - - - - - —~ 10370 0399 | 0383 0.391 - -
= | 168 |0931 07520490 0481 | - — 10808 0683|0410 0441 | -- - - - - -
=192 - - - - - —~ 10945 0766 | -- —~ | 0413 0421|0435 0.420 - -
336 | 1.128 0.873 | 0.505 0.484 | -- - - — | 0440 0461 | 0.422 0.436 | 0.479 0.442 - -
720 | 1215 0.896 | 0.498 0.500 | -- — | 1.022 0.806 | 0.519 0.524 | 0.447 0.466 | 0.471 0.461 - -
24 0720 0.665 | 0.261 0.341 | -- - - - - - - - - - - -
48 1.457 1.001 | 0312 0373 | -- - - - - - - - - - - -
= 96 - - - - - - - - —~ 0274 0399 | 0281 0.330 - -
= | 168 | 3489 1515|0457 0455 | - - - - - - - - - - - -
=192 - - - - - - - - - —~ 10339 0379 | 0363 0.381 - -
336 | 2723 1.340 | 0.471 0475 | -- - - - - —~ 10329 0380 [ 0411 0418 - -
720 | 3.467 1340 | 0.474 0484 | -- - - - - — 10379 0422|0416 0431 - -
24 - — o038 0403 | -- - - — o211 0203 - - - - - -
48 - — | 0454 0453 | -- - - —~ 0300 0352 - - - - - -
96 - —~ 10255 0339 -- — 10480 0486 | -- —~ 10200 0342|0316 0.347 - -
T | 168 - - - - - - - —~ 0320 0373 | - - - - - -
= | 192 - - - - - - - - - —~ 10332 0369 | 0363 0370 - -
= | 288 - —~ 0342 0378 -- — 10754 0.659 | 0.404 0.427 | -- - - - - -
336 - - - - - - - - - —~ 10366 03920392 0.390 - -
672 - — 0434 0430 | -- — 10857 0707 | 0.569 0.528 | -- - - - - -
720 - - - - - - - - - — | 0416 0.420 | 0.458 0.425 - -
24 - — o153 0261 -- - - - - - - - - - - -
48 - —~ 10178 0280 | -- - - - - - - - - - - -
~ 96 - —~ 10255 0339|0203 0287 | -- - - —~ 0165 0255|0169 0.248 0.192 0.274
E| 192 - — | 0281 0340 [ 0269 0328 | -- - - —~ 0220 0.292 | 0234 0.292 0.280 0.330
= | 288 - —~ 0342 0378 -- - - - - - - - - - - -
336 - —~ 10339 0372|0325 0366 | - - - —~ 0274 0329 | 0294 0339 0.334 0.361
672 - — | 0434 0430 -- - - - - - - - - - - -
720 - —~ 10422 0419|0421 0415 -- - - — 0362 0.385 | 0390 0.388 0.417 0.413
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APPENDIX A.4 - Results for Multivariate solutions (Weather, ECL, and ILI datasets) for each prediction length.

Model Informer Autoformer | FEDFormer | Pyraformer | Crossformer | PatchTST CARD Non-stationary
Transformer
Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE MAE | MSE MAE | MSE MAE MSE MAE
::‘3 96 -- -- 10266 0.336(0.217 029 | -- -- -- -- 0.149 0.198 | 0.150 0.188 0.173 0.223
= 192 -- -- 10307 0.367 (0276 0.336]| -- -- -- -- 0.194 0.241 ] 0.202 0.238 0.245 0.285
336 -- - 10359 0.395(0.339 0380 -- -- 10495 0515] 0.245 0.282 | 0.260 0.282 0.321 0.338
720 -- -- 10419 0428 (0403 0.428 | -- -- 10526 0542 0314 0.334 | 0.343 0.353 0.414 0.410
168 -- -- -- -- -- -- -- - 10.231 0.309 -- -- -- -- -- --
720 -- -- -- -- -- -- -- - 10404 0.423 -- -- -- -- -- --
960 -- -- -- -- -- -- -- - 10433 0.438 -- -- -- -- -- --
24 -- -- 3483 1.28712.203 0963 | -- -- |3.041 1.186|1.1319 0.754 | -- -- 2.294 0.945
~ 36 -- -- | 3.103 1.148 (2272 0976 | -- -- | 3.406 1.232] 1.439 0.834| -- -- 1.825 0.848
= 48 -- - 12.669 1.085(2209 0981 -- - | 3459 1221 1.553 0.815| -- -- 2.010 0.900
60 -- - 2770 1.125(2.545 1.061 | -- -- |3.640 1305| 1.470 0.788 | -- -- 2.178 0.963
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APPENDIX A.5 — Results for Multivariate solutions (Traffic, Exchange, and Electricity datasets) for each prediction length.

Model Informer Autoformer | FEDFormer | Pyraformer | Crossformer | PatchTST CARD Non-stationary
Transformer

Metric | MSE | MAE | MSE | MAE | MSE | MAE | MSE | MAE | MSE MAE | MSE MAE | MSE MAE MSE MAE

24 - - - - - - - - 0491 0274 - - - - - -

48 - - - - - - - - 0319 0295 -- - - - - -
2 96 -- -- 10613 03880562 0349 | -- -- -- - 10360 0.249 [ 0.419 0.269 0.612 0.338

°§ 168 -- -- -- -- 10.562 0346 | -- - 0513 0.289 | -- -- -- -- -- --
= 192 -- - 10616 0382 -- -- -- -- -- - 10379 0.256 | 0.443 0.276 0.613 0.340
336 -- -- 10622 0.337 [0.570 0.323 -- -- 10.530 0.300 | 0.392 0.264 | 0.460 0.283 0.618 0.328
720 -- -- 10.660 0.408 [ 0.596 0.368 -- - 10.573 0.3130.432 0.286 | 0.490 0.299 0.653 0.355
o 96 -- -- 10.197 0.323 (0.139 0276 | -- -- -- -- -- -- -- -- 0.111 0.237
= 192 -- -- 10300 0.369 [ 0.256 0.369 | -- -- -- -- -- -- -- -- 0.219 0.335
é 336 -- -- 10509 0.524 (0426 0.464 | -- -- -- -- -- -- -- -- 0.421 0.476
= 720 -- -- 1.447 0.941 | 1.090 0.800 [ -- -- -- -- -- -- -- -- 1.092 0.769
96 -- -- 10201 0.317(0.183 0.297| -- -- -- - {0129 0.222 | 0.141 0.233 0.169 0.273
E 192 -- -- 10222 0.334(0.195 0.308 -- -- -- - (0.147 0.240 { 0.160 0.250 0.182 0.286
é’ 336 -- -- 10231 0.338(0.212 0.313 | 1.533 0.291 -- - (0163 0.259 [ 0.173 0.263 0.200 0.304
720 -- -- 10254 0361 (0231 0343|4312 0346 | -- - [0.197 0.290 | 0.197 0.284 0.222 0.321
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APPENDIX A.6 — Linear versus Transformer-based results.

LTSF-Linear (Multivariate) PatchTST
MSE MAE MSE MAE
96 0.374 0.394 0.370 0.399
E 192 0.405 0.415 0.413 0.421
; 336 0.429 0.427 0.422 0.436
720 0.440 0.453 0.447 0.466
96 0.277 0.338 0.274 0.399
E 192 0.344 0.381 0.339 0.379
; 336 0.357 0.400 0.329 0.380
720 0.394 0.436 0.379 0.422
96 0.299 0.343 0.290 0.342
E 192 0.335 0.365 0.332 0.369
E 336 0.369 0.386 0.366 0.392
720 0.425 0.421 0.416 0.420
96 0.167 0.255 0.165 0.255
%' 192 0.221 0.293 0.220 0.292
E 336 0.274 0.327 0.274 0.329
720 0.368 0.384 0.362 0.385
96 0.176 0.232 0.149 0.198
E’ 192 0.218 0.269 0.194 0.241
§ 336 0.262 0.301 0.245 0.282
720 0.362 0.348 0.314 0.334
24 1.683 0.858 11319 0.754
_ 36 1.703 0.858 1.439 0.834
= 48 1.719 0.884 1.553 0.815
60 1.819 0917 1.470 0.788
96 0.310 0.279 0.360 0.249
;é’ 192 0.423 0.284 0.379 0.256
E 336 0.435 0.290 0.392 0.264
720 0.464 0.307 0.432 0.286
96 0.081 0.203 -- --
gﬂ 192 0.157 0.293 -- --
-‘:‘ 336 0.305 0.414 -- --
B 720 0.643 0.601 -- --
96 0.140 0.237 0.129 0.222
5 192 0.153 0.249 0.147 0.240
;:3 336 0.265 0.169 0.163 0.259
= 720 0.297 0.203 0.197 0.290
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APPENDIX A.7 — Weather dataset plot with outliers.
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