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Resumo 

 
Este estudo analisa os investimentos de fundos de pensão em green bonds da zona Euro, em particular, 

a sua relação com as emissões de dióxido de carbono. A pesquisa utilizou um modelo VAR para 

analisar as interações entre seis variáveis: emissões de CO2 (CO2E), rácio de investimento em green 

bonds (GBIR), índice de produção industrial (IPI), preços de energia (EP), consumo de energia (EC) e 

a benchmark yield a 10 anos (10YBY). Os resultados da análise mostram que as emissões de CO2 

aumentaram inesperadamente, possivelmente devido às atividades intensivas em carbono, financiadas 

pelas green bonds, durante as fases iniciais dos projetos. Contudo, apesar das emissões de CO2 serem 

inicialmente impulsionadas por choques próprios, o investimento em green bonds passa a explicar 

uma parte substancial da variância das emissões CO2. O estudo sublinha assim a importância de 

compreender a dinâmica temporal dos investimentos verdes, mostrando que os investimentos em 

green bonds podem não resultar em reduções imediatas de CO2, sendo crucial reconhecer o impacto 

diferido destes investimentos. Embora exista um aumento temporário de emissões, o crescimento 

constante no GBIR reflete o progresso do financiamento sustentável, reforçando a necessidade de se 

continuar a investir em green bonds, focando-se nos benefícios ambientais a longo prazo. 

 
 

Palavras-Chave: Fundos de Pensão; Green Bonds; Emissões de CO2; Zona Euro; Modelo VAR 

Códigos JEL: G23 C32 O44 
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Abstract 

 
This study analyses pension fund investments in green bonds within the Eurozone, particularly their 

relationship with carbon dioxide emissions. The research employed a VAR model to examine the 

interactions between six variables: CO2 emissions (CO2E), green bond investment ratio (GBIR), 

industrial production index (IPI), energy prices (EP), energy consumption (EC), and the 10-year 

benchmark yield (10YBY). The results of the analysis show that CO2 emissions unexpectedly 

increased, possibly due to the carbon-intensive activities financed by green bonds during the early 

stages of the projects. However, despite CO2 emissions initially being driven by their own shocks, 

green bond investments increasingly account for a substantial part of the variance in CO2 emissions 

over time. The study thus highlights the importance of understanding the temporal dynamics of green 

investments, demonstrating that green bond investments may not result in immediate CO2 reductions, 

and it is crucial to recognise the delayed impact of these investments. Although there is a temporary 

increase in emissions, the steady growth in GBIR reflects the progress of sustainable finance, 

reinforcing the need to continue investing in green bonds, with a focus on long-term environmental 

benefits. 

 

 
Keywords: Pension Funds; Green Bonds; CO2 Emissions; Eurozone; VAR Model 

JEL Codes: G23 C32 O44 
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Introduction 

 
As scientific evidence increasingly highlights the warming of the planet and the 

exacerbation of extreme weather events, public awareness and concern have reached 

unprecedented levels. Climate change has become a central issue in global discourse among 

governments, environmental organizations, and individuals, prompting various 

international efforts to achieve carbon neutrality. Key initiatives include the 2015 Paris 

Agreement, the United Nations Sustainable Development Goals (UN SDGs), and, more 

recently, the European Union's Green Deal. 

 

Achieving these ambitious goals requires substantial financial commitments, with 

institutional investors playing a crucial role in financing green initiatives. Pension funds, in 

particular, have significant potential to drive green finance initiatives, especially through 

their investments in green bonds. These bonds are attractive due to their liquidity and ability 

to support environmentally sustainable projects, with previous studies, such as Al Mamnun 

(2020), showing that the issuance of green bonds directly correlates with a reduction in CO2 

emissions. 

 

Indeed, existing literature on green finance primarily focuses on green bond 

issuance, pricing, and the green bond premium, although there are limited studies examining 

the measurable positive environmental outcomes of green bond investments (Boermans, 

2023). Specifically, there is a lack of investigation into the direct relationship between green 

bond investments by pension funds and CO2 emissions. 

 

This analysis seeks to fill that gap by examining how investments in green bonds by 

pension funds may influence CO2 emissions. Its goal is to provide answers to the following 

questions: What is the extent of pension fund investments in green bonds? How do pension 

funds contribute to promoting green finance, specifically CO2 reduction, through their 

investments in green bonds? 

 

By shifting the focus from traditional green bond analyses to the direct impact of 

pension funds on carbon footprint reduction, this study aims to build upon existing literature 

and provide new insights into the potential of pension funds to drive meaningful 

environmental change. 
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This study’s methodology will follow a Vector Autoregression (VAR) analysis to 

explore the interplay between pension funds’ investments in green bonds and a range of 

financial and environmental variables, particularly, CO2 emissions in Europe. As such, the 

data collected covers the Euro Area 20 (fixed composition) as of 1 January 2023. 

 

Given that EA pension funds favour green bonds (Boermans, 2023), this study 

includes data on green debt securities (GDSPF) and debt securities held by pension funds 

(DSPF) from the European Central Bank (ECB), spanning from December 2020 to 

December 2023 on a monthly basis, in millions of euros. EU CO2 emissions (CO2E) data 

was sourced from the Centre for Research on Energy and Clean Air (CREA). 

 

To provide control for factors affecting carbon emissions, the industrial production 

index (IPI) from the ECB was included. Additionally, energy prices (EP) and electricity 

consumption (EC) data from Eurostat were incorporated, as these factors are recognised in 

green finance literature for their impact on carbon emissions. The EA 10 Years Government 

Benchmark Bond Yield (10YBY), sourced from ECB, was also included as a control 

variable. 

 

Finally, the study includes the Green Bond Investment Ratio (GBIR), that serves as 

a metric indicating the share of pension fund investments in green bonds within their bond 

portfolio. This ratio provides insight into the extent to which pension funds prioritise green 

bond investments. 

 

In this context, this thesis contributes to the literature by providing new insights into 

the relationship between pension fund investments in green bonds and carbon emissions, 

offering empirical evidence from the Euro Area and applying econometric techniques, such 

as a VAR model. 

 

The thesis main results point to several key conclusions. Firstly, pension funds have 

evidently increased their investments in green bonds, with the Green Bond Investment Ratio 

rising, reflecting a growing commitment to integrating green bonds into investment 

portfolios. However, the study shows that there was an unexpected rise in CO2 emissions, 

likely due to the carbon-intensive activities involved in the early stages of green projects. 

Despite this short-term increase in emissions, the consistent growth of influence of GBIR 

on CO2 emissions indicates that as green bond-funded projects mature, their long-term 

environmental benefits should become more evident. 
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To frame this research, chapter one establishes a robust framework for this study by 

providing a comprehensive overview of the current discourse on climate change. Building 

on this framework, chapter two presents a detailed literature review, exploring the rise of 

green bonds as a financial instrument, detailing their growth, and their appeal to pension 

funds. 

 

Subsequently, chapter three outlines the data and methodology employed to 

investigate the relationship between pension funds' investments in green bonds and CO2 

emissions in the Euro Area (EA), with a focus on the VAR model and related tests. 

Following this, chapter four presents the empirical findings of the research, including the 

analysis of sample data and results from the VAR model, along with impulse response and 

variance decomposition analyses. 

 

Finally, the conclusion will analyse the primary findings and draw insights from the 

study, offering policy recommendations informed by the research outcomes and 

highlighting potential directions for future research. 
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1. Framework 
 

As scientific evidence continues to indicate the warming of the planet and the exacerbation 

of extreme weather events, public awareness and concern have reached unprecedented 

levels, making climate change a focal point in global discourse amongst governments, 

environmental organizations, and individuals worldwide. 

In 2021, Glocalities, an international research agency based in Amsterdam, in 

cooperation with Global Citizen, an action platform dedicated to eradicating poverty, 

released an in-depth study on how people feel about climate change. The findings, drawn 

from 247,722 interviews spanning a six-year period across 20 countries, indicate that 78% 

of respondents experienced a growing sense of apprehension about the adverse impact of 

human activities on the environment (Glocalities, 2021). 

The study highlighted a particularly pronounced surge in environmental worries 

among young adults aged 18 to 24, with 59% of global youth now viewing climate change 

as a very serious issue. Notably, the research underscores a willingness among people to act 

and exert pressure on leaders to address these pressing environmental concerns. 

As the world recognizes the imperative to transition towards a more sustainable and 

environmentally friendly model, global efforts promoting green practices have gained 

significant traction. Consequently, numerous initiatives and policies have been implemented 

to encourage and support sustainable development on a global scale, with some of the most 

pivotal ones including the 2015 Paris Agreement, the United Nation’s Sustainable 

Development Goals (UN SDGs) and, more recently, the European Union’s Green Deal. 

The 2015 Paris Agreement, a landmark international accord under the UN 

Framework Convention on Climate Change (UNFCCC), was adopted by 196 countries at 

the UN Climate Change Conference (COP21), with the primary objective of restraining the 

increase in the global average temperature below 2ºC and to limit temperature increase to 

1.5ºC, whilst making finance flows consistent with pathway towards low greenhouse gas 

emissions [2: Art. 2.1c]. 

In efforts to reach these goals, nations pledged to achieve the global peaking of 

greenhouse gas emissions by the year 2025, and, additionally, committed to a substantial 

reduction in carbon emissions, with a specific target of attaining a 43% reduction by the 

year 2030 (The Paris Agreement, 2015). 
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Aligned with the principles of the Paris Agreement, the year 2015 witnessed the 

unanimous approval by all UN member states of the 2030 Agenda for Sustainable 

Development – an action plan encompassing 17 SDGs which address key objectives related 

to climate action, urging nations to combat climate change and mitigate its impacts, paving 

the way for a zero-emission future (United Nations, 2015). Moreover, the European Union's 

Green Deal, approved in 2020 by the European Commission, represents a comprehensive 

set of policy initiatives aimed at promoting green finance and investments with the 

overarching goal of positioning the European Union as the first climate-neutral continent by 

2050 (European Commission, 2019). 

However, to achieve carbon neutrality, a substantial financial commitment is 

essential. According to the European Commission (2024), a staggering EUR 185 trillion is 

required, while the International Monetary Fund predicts climate mitigation investment will 

soar to USD 2 trillion by 2030 (World Economic Forum, 2023). 

Recognizing the urgent need to bridge the "Green Financing Gap", UN Secretary 

General, António Guterres (2023), has called on stakeholders to boost financing efforts. 

However, despite encouraging engagement from private investors in the climate capital 

market (European Commission, 2024), a sobering report by the German environmental 

NGO "Urgewald" (2023) highlights the significant presence of banks, insurance companies, 

and pension funds among the largest investors in fossil fuel companies in Europe. 

According to the report, Europe alone holds the second largest number of fossil fuel 

investors globally, with investments exceeding EUR 336 billion in shares and bonds, leading 

Guterres (2023) to emphasise the critical role of financial institutions in addressing the 

climate crisis, calling for immediate action to reallocate investments away from fossil fuels 

and towards renewable energy sources. 

Sustainable investments offer a dual benefit: they not only serve the greater good by 

supporting environmental initiatives but also play a crucial role in safeguarding long-term 

financial returns. As the risks associated with climate change continue to grow, impacting 

both the global economy and businesses, integrating sustainable considerations into 

investment strategies becomes imperative for ensuring stability (Egli et al., 2022). 

In addition, the increased interest in green finance has led to the development of 

various financial instruments, particularly, green bonds (Ma et al., 2023), reflecting a 

commitment 

https://en.wikipedia.org/wiki/European_Union
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within the financial sector to foster sustainability while simultaneously addressing the 

urgent challenges posed by climate change. 

Interestingly, it was pension funds that emerged as the driving force behind these 

titles. Prompted by the 2007 Intergovernmental Panel for Climate Change (IPCC) report, 

which linked human actions to global warming, a group of Swedish pension funds took the 

lead in seeking sustainable solutions. In collaboration with their bank (Skandinaviska 

Enskilda Banken AB) and CICERO, the Centre for International Climate and Environmental 

Research, they approached the World Bank with the goal of creating "a liquid, tradeable, 

fixed income product that would support climate-friendly solutions" (World Bank, 2018). 

That is the central component of a green bond – the allocation of proceeds to 

environmentally beneficial projects. Various guidelines governing green bonds outline 

specific categories of projects deemed environmentally sustainable, including renewable 

energy, pollution prevention and control, sustainable land use, biodiversity conservation, 

clean transportation, and climate adaptation (Sartzetakis, 2020). 

Considering that pension funds are major players in financial markets due to the size 

of their assets; by aligning their investments with climate-oriented commitments through 

green bonds, they’re contributing to the broader goal of achieving sustainable development 

and mitigating the impact of climate change. Still, despite the growing importance of green 

finance and the recognition that institutional investors can play a vital role in its 

advancement, it remains a notable gap in our understanding of how pension funds 

specifically contribute to it. 

 

Existing literature on green finance mainly focuses on green bonds issuance, pricing, 

or green bond premium, however, there are limited studies examining the measurable 

positive environmental outcomes by green bond investments, particularly by pension funds. 

This study aims to build upon existing literature by shifting the focus from traditional green 

bond analyses to the direct impact of pension funds’ investments in these titles on carbon 

reduction. 

 

As a result, this study aims to assess how pension funds contribute to promoting 

green finance, particularly through their investments in green bonds, by first measuring what 

is the extent of pension funds’ investments in green bonds? And then, what is the efficacy 

of green bonds in promoting positive environmental outcomes, particularly in reducing CO2 

emissions? 
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2. Literature Review 
 

The emerging field of finance and environmental sustainability, commonly referred to as 

"Green Finance", represents a paradigm shift in financial thinking, emphasising the 

incorporation of environmental considerations into financial decision-making processes. 

According to Bhatnagar and Sharma (2022) the term "Green Finance" can be traced 

back to the concept of "Green Economy", first discussed in the 1980s by Pearce, Markandya, 

and Barbier in their work "The Blueprint of Green Economy". The concept was driven by 

the environmental and climatic challenges experienced by Western countries, as a result of 

rapid industrialization, making them reevaluate their economic models and transition 

towards a more sustainable and environmentally conscious approach (Pearce et al., 1989). 

More recently, as societies face increasing environmental challenges, such as climate 

change and pollution, Wang and Zhi (2016) argued that "Green Finance" represents an 

innovative financial paradigm geared towards environmental protection, by using financial 

products to control pollution emissions and mitigate environmental risks. This perspective 

aligns with the growing recognition of the importance of incorporating environmental 

considerations into financial decision-making. 

However, it’s important to acknowledge that financial mechanisms alone are 

insufficient to address complex environmental challenges and that broader systemic changes 

are needed. Zhang et al. (2019) conducted an analysis of the literature surrounding "Green 

Finance" and found policy to be one of the primary concerns amongst researchers, 

recognising the pivotal role of regulatory frameworks in fostering environmentally 

responsible investments. 

This viewpoint resonates with the understanding that policy interventions are often 

necessary to create incentives for sustainable practices, outlining a crucial disparity between 

Green Finance and conventional financial practices: the former is fundamentally driven by 

policy imperatives. 

Despite its growing prominence, a clear and universally accepted definition for 

"Green Finance" remains elusive, being often intertwined with other related concepts such 

as "Sustainable Finance", "Carbon Finance", or "Climate Finance". 
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Zhang et al. (2019) drew attention to the blurred distinction between "Green 

Finance" and "Climate Finance", highlighting that, the first pertains to financing 

investments aimed at delivering environmental benefits, as defined by the International 

Finance Corporation (IFC) (2017), while "Climate Finance" refers to financing actions that 

support climate change mitigation and adaptation, as proposed by the UNFCCC (1992). 

On the other hand, Bhatnagar and Sharma (2022) defend that "Green Finance" is 

broadly defined and includes the term "Climate Finance" thereby advocating for their 

interchangeable application. Building upon that, the authors define Green Finance as 

"Financing renewable and green energy projects with the objective of reducing carbon 

emissions and developing climate resilient and environmentally sustainable infrastructure" 

(p.1), emphasising the tangible environmental impact of investments, particularly in the 

areas of energy and infrastructure. 

Aligned with that, Long et al. (2022) developed a study with the purpose of 

summarising the literature around climate finance, finding that green financing has its focus 

on the financial markets, including green bonds, financing sustainable business models and 

sustainability transition. Their perspective not only highlights the broader scope of green 

finance but underscores the role of financial mechanisms in driving environmentally 

conscious initiatives. 

In essence, "Green Finance" is an innovative approach that combines finance with 

environmentally friendly practices across different economic sectors, complemented with 

regulation and implementation of policies. It encompasses a spectrum of financial activities, 

ranging from specific project financing for renewable energy and climate-resilient 

infrastructures, to a broader focus on financial markets. 

Ultimately, the discourse surrounding "Green Finance" reflects a dynamic and 

multifaceted landscape, with scholars and institutions offering diverse perspectives on its 

definition and scope. Despite the lack of a universally accepted definition, the consensus 

among researchers highlights the imperative role of policy frameworks, financial markets, 

and collaborative efforts across sectors in driving investments towards sustainable 

development priorities. 
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Unfortunately, the transition to a green economy requires significant investment, and 

despite the numerous collaborative accords and policies implemented, the challenge of 

securing funding for a low-carbon and climate-resilient economy persists. According to a 

report from the OECD, the committed USD 100 billion for green investments in the Paris 

Agreement is projected to fall short of what is needed (OECD, 2017) prompting the call for 

increased flows of private capital on a much larger scale. 

In this context, institutional investors, entrusted with managing substantial assets, 

assume a pivotal role in financing green initiatives. An analysis conducted by Sangiorgi and 

Schopohl (2021) reveals that 48 European institutional investors collectively hold EUR 

13.68 trillion in assets under management (AUM) and have an accumulated fixed income 

of EUR 4.30 trillion. As such, there is no doubt that with such substantial AUM, European 

institutional investors could allocate a considerable portion of their funds towards green 

investments. 

Among institutional investors, pension funds emerge as significant contributors to 

long-term financing for clean energy projects, as highlighted by Polzin and Sanders (2020), 

potentially mobilising investments exceeding USD 77 billion annually for clean energy 

initiatives. These institutions offer distinct advantages compared to traditional banks, 

primarily due to their possession of long-term resources, being well-suited to finance 

projects in the green sector (Taghizadeh-Hesary & Yoshino, 2020). 

 

Nonetheless, despite efforts to promote sustainability, a considerable portion of 

pension funds continue to prioritise investments in fossil fuels. Rempel and Gupta (2020) 

highlight this trend, indicating that pension funds within the OECD hold a substantial sum, 

ranging from EUR 238 to 828 billion, in assets associated with fossil fuels, while 

Gunningham (2020) suggests an even higher estimate, from EUR 800 to 940 billion. 

 

Notably, the Norwegian Government Pension Fund Global (GPFG) stands out as 

Europe's largest fossil fuel investor, with substantial holdings totalling over EUR 37.25 

billion. Similarly, the Dutch Algemeen Burgerlijk Pensioenfonds (ABP) and the Swedish 

public pension fund are significant players, collectively investing billions in fossil fuel 

assets (Urgewald, 2023). 
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While pension funds have historically shown a strong inclination towards investing 

in fossil fuels, it is imperative to recognise that there are alternatives that offer greater 

sustainability. Interestingly, Boermans and Galema’s (2019) study on Dutch pension funds 

indicates that actively divesting from fossil fuels does not carry negative risk-adjusted 

performance implications. 

 

However, despite divesting from fossil fuels, pension funds are inefficient in 

decarbonizing their portfolios and fall short of meeting the climate targets outlined in the 

Paris Agreement (Rempel and Gupta, 2020). These findings imply that although divestment 

may not harm financial performance, it alone is insufficient to drive meaningful change 

towards sustainability within pension fund investments. 

 

Therefore, reallocating more funds towards sustainable investment opportunities 

appears a feasible approach for pension funds to pursue without compromising their primary 

mandate – to safeguard and grow the wealth of their beneficiaries. Fiduciary duty serves as 

the cornerstone of trust and accountability in pension fund management ensuring the 

financial security of retirees and the integrity of funds over the long term, encompassing not 

only investment decisions but also governance and administration. 

 

Soneryd (2024) reveals a striking disparity between lucrative returns and financial 

stability on one hand, and apprehension regarding the environmental and social 

repercussions of investment decisions on the other, concluding that, overall, savers prioritise 

both their carbon footprint and financial security. As such, by aligning their investments 

with environmentally conscious initiatives, pension funds stand to benefit financially, 

capitalizing on the increasing demand for clean energy and eco-friendly solutions. 

 

As a result of their fiduciary duty, pension funds exhibit a preference for lower-risk 

investments that offer a stable and inflation- adjusted income stream. Pension funds operate 

under regulatory frameworks that require them to manage their assets in a way that matches 

their long-term liabilities. Due to their ongoing payment obligations, they must prioritise 

investments in liquid assets to ensure they can meet their financial commitments (Hafner et 

al., 2020). 
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Although they have multiple avenues to explore green investments, including equity 

(indices, mutual funds, and ETFs) and private equity (real estate funds and infrastructure 

funds), the allure of fixed-income securities, particularly green bonds, has understandably 

grown, making these bonds an additional channel through which funds can be directed 

towards environmentally sustainable projects (Croce et al., 2011). 

Green bonds typically offer a level of liquidity comparable to traditional bonds, 

making them an attractive option for institutional investors with long-term liabilities 

(Hafner et al., 2020). By investing in green bonds, these institutions can diversify their 

portfolios, manage risk, and contribute to environmental sustainability – all while meeting 

their regulatory requirements for asset-liability management. 

Since their first creation, green bonds have experienced rapid growth in investments, 

particularly in Europe. According to a 2023 report by the Climate Bonds Initiative, the 

volume of green bonds reached USD 2.6 trillion, with Europe dominating the market with 

a 37% share, followed by USD at 23%, and CNY contributing 8%. In addition, the euro 

remains the currency of choice for 47% of cumulative green bond volumes, reflecting a high 

number of dedicated investors in the region (Climate Bonds Initiative, 2023). 

 

Boermans (2023) also supported this trend, stating that despite green bonds 

constituting only 1.5% of the total bond market, they have a larger presence (3.7%) in the 

euro area bond portfolios, also indicating a heightened allocation towards environmentally 

conscious investments in Europe. Furthermore, the author concluded that green bond 

preferred habitat investors are exclusively European mutual funds and pension funds. This 

investment institutions display a strong preference to hold green bonds and are relatively 

price insensitive which can be explained by their relative long investment horizons and 

commitment to combat climate change. 

Despite de growing acceptance of green bonds, lingering concerns persist among 

investors and issuers regarding their implementation. Shi et al. (2023) highlight a significant 

concern surrounding green bonds: the issue of greenwashing. The practice occurs when 

companies falsely portray their policies as environmentally friendly, casting doubt on the 

true impact of green bonds in channelling funds towards genuinely sustainable initiatives. 
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Even though green bonds offer pension funds an opportunity to align their 

investment strategies with sustainability objectives, challenges such as greenwashing must 

be addressed to ensure that their investments genuinely contribute to environmental 

objectives. 

In order to mitigate the risk of greenwashing and enhance transparency in the green 

bond market, in 2014 the International Capital Market Association (ICMA) introduced the 

Green Bond Principles (GBP) providing clear guidelines on the use and disclosure of 

proceeds from green bonds (ICMA, 2014). Additionally, certification under the Climate 

Bonds Standard (CBS) verifies the alignment of green bond projects with the goals of the 

Paris Agreement investments (Jankovic et al., 2022), therefore, by adhering to these 

standards, issuers can provide investors with assurance regarding the environmental 

integrity of their green bond investments. 

The green bonds market has attracted widespread attention from investors, 

policymakers, and researchers due to its potential to direct financial resources towards 

projects that play a pivotal role in fostering a more sustainable and low-carbon future. In 

response to this interest, a study conducted by Al Mamun et al. (2022) aimed to explore the 

influence of green finance on decarbonization. 

The authors gathered data on green finance, specifically on green bond issuance, 

across a sample of 46 countries and found a substantial and negative correlation between 

green finance and CO2 emissions, a trend observed in both short and long-term scenarios. 

Moreover, the study underlined the significant role played by green bonds in advancing the 

broader decarbonization agenda, highlighting the tangible contributions of these financial 

instruments to the overarching goal of reducing carbon emissions. 

The study provides valuable insights into the potential of green finance, particularly 

green bonds, to drive positive environmental outcomes and contribute to global efforts to 

address climate change. It serves as a compelling argument for stakeholders, including 

pension funds, to prioritise and support initiatives that promote sustainable finance practices 

and accelerate the transition to a greener economy. 
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Overall, the literature underscores the transformative potential of Green Finance in 

addressing environmental challenges and advancing the transition towards a low-carbon 

economy. Despite debates regarding its definition and scope, there's a consensus among 

researchers on the imperative role of policy frameworks, financial markets, and 

collaborative efforts across sectors in driving investments towards sustainable development 

priorities. 

Undoubtedly, key global initiatives such as the 2015 Paris Agreement and the 

European Union's Green Deal serve as crucial frameworks guiding efforts towards 

environmental sustainability and climate resilience, however, substantial financial 

commitments are required to achieve carbon neutrality. 

Pension funds hold significant potential to drive investments towards green 

initiatives, and while some pension funds continue to prioritize investments in fossil fuels, 

there's evidence suggesting that divesting from fossil fuels doesn’t necessarily harm 

financial performance, opening the door for reallocating funds towards sustainable 

opportunities. 

Green bonds emerge as a promising financial instrument, attracting pension funds 

due to their liquidity and potential to support environmentally sustainable projects, even 

though challenges such as greenwashing persist, underscoring the importance of stringent 

standards and certifications to ensure the integrity of green bond investments. 

To conclude, it is evident that pension funds, by directing financial resources towards 

environmentally friendly investments and adhering to rigorous standards, can play a crucial 

role in driving meaningful change while safeguarding long-term financial returns. Through 

strategic investments in green bonds, specifically tailored to fund eco-friendly projects, 

these funds can actively contribute to a carbon-neutral economy while aligning with 

international climate agreements such as the Paris Agreement. 
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3. Data and Methodology 
 

Drawing upon existing literature highlighting the role of pension funds in promoting 

sustainable practices through green bond investments, this chapter seeks to explore the 

connection between Pension Funds' investments in green bonds and CO2 emissions. The 

chapter is structured into two sections: the first section outlines the data used, while the 

second section delves into the methodology employed. 

 

 

3.1. Data Description 

 
Through empirical analysis, this study aims to shed light on ongoing sustainability efforts 

within the Euro Area (EA) pension funds by conducting a comprehensive examination of 

crucial environmental and economic indicators. The data collected covers the Euro Area 20 

(fixed composition) as of 1 January 2023. 

Given that EA pension funds are the preferred investors in green bonds (Boermans, 

2023), this study will include the outstanding amounts of green debt securities (GDSPF) and 

the debt securities held by pension funds (DSPF) sourced from the European Central Bank 

(ECB). These datasets serve as experimental indicators, spanning from December 2020 to 

February 2024 on a monthly basis, denoted in millions of euros. 

To provide context and control for factors influencing carbon emissions, the 

industrial production index (IPI) was integrated, also sourced from the ECB. This index 

includes the overall industrial sector, encompassing manufacturing, mining, and utilities, 

excluding data related to construction activities. The industrial production index, offers 

insights into changes in production output across Euro Area industries, acting as proxy for 

economic activity and industrial growth, particularly considering the unavailability of 

monthly GDP data. 

Moreover, energy prices (EP) and electricity consumption (EC) data were 

incorporated, aligning with the existing literature on green finance that recognises their 

potential impact on carbon emissions, and consequently, their significance in evaluating the 

effectiveness of green bonds in fostering positive environmental outcomes. Both datasets 

were sourced from Eurostat. Energy Prices are presented as an index, while electricity 

consumption is measured in gigawatt-hours (GWh). 
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Filimonova et al. (2022) highlights the direct link between electricity consumption 

and CO2 emissions, driven by fossil fuel use, whilst stressing the association with economic 

growth, since higher economic development requires higher electricity consumption. 

Additionally, Alestra et al. (2022) underscore the efficacy of energy price signals in 

mitigating carbon emissions, suggesting that these signals hold significant promise in 

mitigating the impacts of climate change by discouraging the utilisation of carbon-intensive 

energy sources. 

In line with Hammoudeh et al. (2020) the EA 10 Years Government Benchmark 

Bond – Yield (10YBY) was also incorporated as a control variable. This yield is a critical 

benchmark for long-term interest rates, reflecting government borrowing costs and 

influencing pension funds, by a stable measure of long-term economic conditions and 

investor confidence, the 10YBY clarifies the impact of borrowing costs on green bond 

investments. The data was sourced from the ECB and is expressed in percent per annum. 

Lastly, following Al Mamun et al. (2022) and Hammoudeh et al. (2020) EU CO2 

emissions (CO2E) data are used, sourced from the Centre for Research on Energy and Clean 

Air (CREA). This set of data uses estimates from fossil fuel consumption from Eurostat and 

applies the Intergovernmental Panel on Climate Change (IPCC) default emissions factors. 

The CREA CO2 Tracker provides estimates of CO2 emissions, measured in metric tons per 

day, however, to ensure consistency with the remaining datasets, the daily values were 

aggregated and summed to generate monthly data, facilitating comparison and analysis over 

time. 

In addition, it includes data from European Network of Transmission System 

Operators for Gas (ENTSOG) for natural gas, and from European Network of Transmission 

System Operators for Electricity (ENTSOE) for electricity generation, allowing for a 

comprehensive assessment of total carbon dioxide emissions within the European Union, 

offering invaluable insights into the region's environmental footprint and its progress toward 

emission reduction targets. 

Furthermore, it’s possible to calculate the Green Bond Investment Ratio (GBIR), 

which serves as a metric indicating the share of pension fund investments specifically 

allocated to green bonds within their bond portfolio. By employing this calculation, we gain 

insight into trends and patterns in pension funds' investment behaviour, specifically the 

degree to which pension funds investors prioritise investments through green bonds. 
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The ratio was calculated as follows: 
 

 

 

𝐺𝐷𝑆𝑃𝐹 
 

 

𝐷𝑆𝑃𝐹 

 

(1) 

 

The GBIR reveals a clear and consistent growth trend from December 2020 (4.21%) 

to December 2023, peaking at 9.42%. Even though there are fluctuations, overall, the data 

suggests a positive trajectory towards more significant investments in green bonds by euro 

area pension funds, reflecting a growing emphasis on environmentally sustainable 

investments within the pension fund sector. 

 
 

 
Figure 1 - Green Bond Investment Ratio Evolution. Source: Own Elaboration 

 

Incorporating both the Green Bond Investment Ratio (GBIR) into the research 

allows for a comprehensive and nuanced understanding of the role of green bond 

investments in the Euro Area pension funds, helping to illuminate the direct and relative 

contributions of these investments towards environmental sustainability and economic 

growth. 

The GBIR highlights investment behaviours in the prioritisation of green 

investments, allowing to identify whether increases in green investments are due to overall 

portfolio growth or a strategic shift towards greener assets. 
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3.2. Research Methodology 

 

Despite the number of research in green finance, limited focus has been given to green bond 

investors (Boermans, 2023). Specifically, there's a lack of investigation into the direct 

relationship between green bond investors, particularly pension funds, and CO2 emissions. 

This analysis seeks to fill that gap by examining how investments in green bonds by pension 

funds may influence CO2 emissions. 

Most literature surrounding green finance, and green bonds specifically, relies on 

cross-sectional panel data analysis. Namely, Boermans (2023) and Al Mamun et al. (2022) 

both employed this method to explore various aspects of green bond characteristics, such as 

investors preferences and issuance’s impact on CO2 emissions. 

However, alternative methodologies have been employed. Specifically, 

Hammoudeh et al. (2020) employed a distinct methodology, using a Vector Autoregression 

(VAR) analysis to explore the interplay between green bonds and a range of financial and 

environmental variables. Given constraints in data availability regarding pension funds' 

investments in green bonds across various countries, this methodology will follow 

Hammoudeh et al.'s (2020) approach. 

Building upon prior research indicating that Green Bond issuance correlates with a 

direct reduction in CO2 emissions (Al Mamun, 2020), it is reasonable to anticipate that 

investments in green bonds will yield similar outcomes. Therefore, this research hypothesis 

centres on exploring whether investments by Pension Funds in Green Bonds exhibit a 

noticeable effect on mitigating CO2 emissions in Europe. As such, the endogenous variables 

in the model are the CO2E, IPI, EP, EC, GBIR and 10YBY. 

Through a thorough examination of this relationship, the aim is to provide 

meaningful contributions to the ongoing dialogue surrounding sustainable investment 

strategies and their implications for the environment. 
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3.2.1. VAR Model 

 
The Vector Autoregressive (VAR) model serves as an effective tool in time series analysis, 

offering a robust framework to grasp the intricate dynamics among multiple variables over 

time, capturing not only a variable's own past observations but also its relationship with the 

past observations of other variables within the system. 

In essence, a VAR model elucidates the evolution of a set of k endogenous variables, 

denoted as 𝑌𝑡 = (𝑦1t, …, 𝑦k, …, 𝑦Kt) for 𝑘 = 1, …, 𝐾. These variables are intricately linked 

through a linear relationship with their historical states and dependencies on lagged values 

(up to lag p) of all K variables, supplemented by an error term ν. 

The model is parameterized employing the Ordinary Least Squares (OLS), a method 

that minimizes the discrepancies between observed values of 𝑌𝑡 and those predicted by the 

VAR framework. This optimization process determines the optimal values of 𝜑1, . . ., 𝜑p, 

𝛾1, …, 𝛾p, encapsulating the observed dynamics within the data. 

 

In addition, to ensure the model's robustness and applicability, is crucial to preform 

diagnostic assessments. These encompass selecting an appropriate lag order (p), scrutinizing 

residuals for autocorrelation absence, validating normality assumptions, and evaluating 

homoscedasticity. 

In order to select the optimal lag order for the model, researchers often rely on 

criteria such as the Akaike Information Criterion (AIC), the Hannan-Quinn Information 

Criterion (HQIC), the Schwarz Information Criterion (also known as the Bayesian 

Information Criterion, BIC), and the Final Prediction Error (FPE). These metrics strike a 

balance between model fit and complexity, aiding in identifying the lag order that minimizes 

forecasting errors while avoiding overfitting. 

Diagnostic tests play a pivotal role in validating the model's assumptions and 

refining its utility. Among these, the Jarque-Bera test confirms error normality, the Breusch- 

Godfrey test evaluates residual autocorrelation, and the ARCH test assesses the model’s 

homoscedasticity. Adhering to these tests ensures the reliability of the VAR model in 

informing policy decisions and forecasting future trends. 
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3.2.2. Granger Causality 

Granger causality, introduced by Clive Granger in 1969, is a crucial statistical hypothesis 

test for determining whether one time series can predict another. Given that VAR models 

are designed to capture the interdependencies among multiple variables over time, assessing 

Granger causality becomes paramount in understanding the directional influences among 

these variables. 

The idea behind the Granger causality test is to assess whether past values of a 

potential causal variable contain information that helps forecast a dependent variable 

beyond what is already provided by past values of the dependent variable itself and any 

other variables in the model. 

The null hypothesis (H0) of the Granger causality test is that the lagged values of the 

potential causal variable do not provide significant predictive power for the dependent 

variable(s) beyond what is already captured by the lagged values of the dependent 

variable(s) themselves and any other variables in the model. In other words, 

β1=β2=...=βk=0, suggesting that the potential causal variable does not Granger cause the 

dependent variable. 

The alternative hypothesis (H1) is that the lagged values of the potential causal 

variable do provide significant predictive power for the dependent variable(s) beyond what 

is captured by the lagged values of the dependent variable(s) and other variables in the 

model. This means at least one β coefficient is not equal to zero, indicating that the potential 

causal variable Granger causes the dependent variable. 

The test uses the Wald F-statistics to determine if the lagged values of the potential 

causal variable significantly improve the model’s predictive power. If the p-value is below 

the convectional significance level, we reject the null hypothesis, indicating Granger 

Causality. 

Identifying causality within a VAR model not only enhances its ability to accurately 

depict the temporal sequencing of shocks and their impacts on the involved variables but 

also facilitates the development of more precise and insightful impulse response functions. 



20  

3.2.3. Impulse Response Functions 

 
Impulse response functions (IRFs) are a powerful tool in econometrics for understanding 

the dynamic effects of shocks on a system of variables over time, depicting the responses of 

endogenous variables to a one-time shock in one of the exogenous variables, while holding 

all other variables constant. In this research, the IRFs are orthogonalized—known as 

Orthogonal Impulse Response Functions (OIRFs)—where the shocks are uncorrelated or 

orthogonal, meaning that each shock can be interpreted as an isolated event, independent of 

the others. 

IRFs offer several insights into the dynamics of the system showing the magnitude 

and timing of the responses of endogenous variables to the initial shock which helps to 

understand the short-term and long-term effects of shocks on the economy. Besides, IRFs 

reveal whether the responses of endogenous variables are positive or negative, providing 

insights into the direction of causality among variables. In addition, IRFs illustrate how 

shocks propagate through the system, showing whether the effects of a shock dissipate 

quickly or persist over time and by examining the pattern of responses across variables, IRFs 

can help identify dynamic relationships and feedback mechanisms within the system. 

3.2.4. Variance Decomposition 

 
To understand the relative importance of different shocks in explaining the variation in 

endogenous variables over time, Variance Decomposition is employed by calculating the 

percentage of the forecast error variance of each endogenous variable that can be attributed 

to shocks in each of the variables in the system. 

A specific application of variance decomposition focuses on the decomposition of 

forecast error variance. Forecast Error Variance Decomposition (FEVD), quantifies the 

extent to which forecast errors in endogenous variables can be attributed to shocks 

originating from each variable in the system, facilitating the identification of dynamic 

relationships and feedback mechanisms within VAR models, by understanding how shocks 

influence each other over time. 

Overall, variance decomposition, particularly through techniques like FEVD, 

enhances the analytical capabilities of VAR models by providing a nuanced understanding 

of the sources of variability and forecast uncertainty. 
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4. Empirical Results 

4.1. Sample Analysis 

 
The sample consists of 37 monthly observations spanning from December 2020 to 

December 2023, containing 6 series, presented in their natural logarithms, except for the 

GBIR and the 10YBY. For each series, descriptive statistics including the average, median, 

standard deviation, minimum, maximum, skewness, and kurtosis were computed to 

characterise the data. The results of the analyses are presented in Table 1. 

 
Table 1 – Descriptive Statistics of the Variables. Source: Own Elaboration. 

 

Variable Mean Median Stand. Dev Min Max Skewness Kurtosis 

CO2E 8.3852 8.3791 0.0429 8.3115 8.4769 0.2056 -0.7944 

IPI 2.0231 2.0241 0.0299 1.9375 2.0715 -1.1094 1.4957 

EP 2.2471 2.2833 0.1363 1.9921 2.4490 -0.5149 -1.0377 

EC 5.2040 5.2028 0.0599 4.9196 5.2843 -2.8123 11.2692 

GBIR 0.0694 0.0761 0.0174 0.0413 0.0927 -0.4803 -1.3186 

10YBY 1.7836 2.0583 1.3943 -0.0915 3.7239 -0.0915 -1.7955 

 
The overall sample exhibits several notable characteristics in its distribution. Firstly, 

the variables show relatively smaller dispersions in comparison to their means, as indicated 

by the standard deviation, suggesting a degree of consistency in the data. However, it's 

important to highlight that EP and 10YBY stand out with the highest relative dispersion, 

indicating greater variability in those aspects. 

 

Furthermore, all variables display left-skewed distributions, except for CO2E, which 

demonstrate a slightly right-skewed distribution, suggesting a higher concentration of lower 

values across most variables, with fewer occurrences of higher values. 

 

Regarding kurtosis, EC stands out with exceptionally high kurtosis, indicating a 

pronounced concentration of values around the mean and the presence of extremely low 

values, as opposed to the negative kurtosis in the remaining variables that suggest 

distributions with fewer extreme values. Thus, EC's high kurtosis indicates a more 

leptokurtic distribution, with a peakier shape and heavier tails compared to a normal 

distribution. 
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The correlation among the series was examined to detect signs of multicollinearity 

issues in the estimated models. The Pearson linear correlation coefficient was employed, the 

results of which are presented in Table 2. 

 

Table 2 – Matrix of Correlations. Source: Own Elaboration 
 

Variable CO2E IPI EP EC GBIR 10BYBY 

CO2E 

p-value 

1.0000 

Na 

     

IPI 

p-value 

0.1145 

0.4996 

1.0000 

Na 

    

EP 

p-value 

-0.1567 

0.3541 

0.2153 

0.2007 

1.0000 

Na 

   

EC 

p-value 

0.3976 

0.0148 

0.0398 

0.8149 

-0.1854 

0.2719 

1.0000 

Na 

  

GBIR 

p-value 

-0.4090 

0.0120 

0.1200 

0.4790 

0.8340 

0.0000 

-0.4435 

0.0060 

1.0000 

Na 

 

10YBY 

p-value 

-0.5362 

0.0006 

0.1349 

0.4259 

0.7430 

0.0000 

-0.4537 

0.0048 

0.9285 

0.0000 

1.000 

Na 

 
Overall, the variables exhibit a mix of significant and non-significant correlations 

amongst themselves. The correlation coefficients fall between -1 and 1, which is typical, 

however, most p-values are greater than the conventional statistical threshold of 5%, 

indicating that many of the observed correlations are not statistically significant. 

 

Nonetheless, the correlation between energy prices (EP) and both green bonds 

investment by pension funds (GBIR) and the 10-year benchmark yield (10YBY) is 

relatively high (0.8340 and 0.7430, respectively) and statistically significant (p-value < 

0.05). This suggests that the relationships between these variables are unlikely to be due to 

random chance. 

 

Additionally, the correlation between GBIR and 10YBY is very high, with a 

correlation coefficient of 0.9285 and a p-value lower than 5%, indicating a potentially 

meaningful relationship between these two variables. 
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4.2. Stationarity Analysis 

In this study, stationarity was assessed by examining the graphical representations of each 

series, as well as their respective autocorrelation and partial autocorrelation functions (ACF 

and PACF). Additionally, the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were employed. 

 

From the graphical analysis, clear trends were observed in all series. In particular, 

the GBIR, EP and 10YBY (figures A1, A2, A3, respectively) series exhibited increasing 

trends, while the CO2E and EC series (figures A4 and A5, respectively) showed a decreasing 

trend, indicating non-stationarity. On the other hand, the IPI (figure A6) series displayed 

values closer to the mean, suggesting potential stationarity. Upon analysing the ACFs and 

PACFs of each variable (figures A7 – A12), an exponential decline was noted in the series, 

indicating non-stationarity for all except the IPI series which hinted at stationarity. 

 

Further examination using the ADF, PP and KPSS tests, it was confirmed that the 

GBIR, CO2E, EP and 10YBY variables were non-stationary at their initial level, achieving 

stationary after computing the first differences. The EC variable required second 

differencing for stationarity. Notably, the variable IPI was already stationary without the 

need for differencing. Table 3 presents the results of the stationarity tests conducted. 
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Table 3 – Unit Root Tests. Source: Own Elaboration. 

 

 
Test 

ADF PP KPSS  
Conclusion Intercept Intercept + 

Trend 
Intercept 

Intercept + 

Trend 
Short 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
t-statistic 

CO2E -2.47 -2.37 -2.55 -2.49 0.06 
Non-Stationary 

p-value 0.06 * 0.12 0.00*** 0.00*** 0.10* 

Δ CO2E -3.61 -3.58 -5.57 -5.60 0.06 
Stationary 

p-value 0.00*** 0.00*** 0.90 0.72 0.10* 

IPI -5.29 -5.20 -7.00 -6.85 0.12 
Stationary 

p-value 0.00*** 0.00*** 0.51 0.80 0.10* 

EP -1.81 -0.71 -1.98 -0.60 0.64 
Non-Stationary 

p-value 0.00*** 0.01*** 0.00*** 0.00*** 0.02** 

Δ EP -2.39 -3.07 -3.51 -4.08 0.10 
Stationary 

p-value 0.01*** 0.00*** 0.00*** 0.00*** 0.05** 

EC -0.43 -0.52 -0.95 -0.19 0.13 
Non-Stationary 

p-value 0.60 0.41 0.00*** 0.00*** 0.02** 

Δ EC -1.18 -1.26 -3.26 -3.41 0.12 
Non-Stationary 

p-value 0.02** 0.01*** 0.35 0.27 0.10* 

Δ2 EC -3.19 -3.40 -8.96 -9.53 0.12 
Stationary 

p-value 0.00*** 0.00*** 0.01*** 0.01*** 0.10* 

GBIR -1.27 -0.97 -1.11 -1.32 0.19 
Non-Stationary 

p-value 0.33 0.46 0.00*** 0.00*** 0.01*** 

Δ GBIR -3.96 -4.09 -6.53 -6.62 0.10 
Stationary 

p-value 0.00*** 0.00*** 0.42 0.43 0.10* 

10YBY -1.25 -1.09 -1.11 -0.89 0.13 
Non-Stationary 

p-value 0.24 0.33 0.00*** 0.00*** 0.01*** 

Δ 10YBY -4.19 -4.17 -3.97 -4.00 0.17 
Stationary 

p-value 0.00*** 0.00*** 0.25 0.32 0.1* 

Significance Codes: ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1’ 
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4.3. Lags Selection 

 
Selecting the optimal number of lags is essential for effective VAR modelling, as the number 

of lags significantly influences both the forecasting accuracy and the stability of the model. 

Given that the lag length determines how many previous time periods are included in the 

model to predict the current value, an incorrect number of lags can either lead to underfitting 

or overfitting, both of which compromise the model's performance. 

 

The most common method for determining the optimal number of lags in a VAR 

model involves the use of information criteria, namely the Akaike Information Criterion 

(AIC), the Hannan-Quinn Information Criterion (HQIC), the Schwarz Information Criterion 

(also known as the Bayesian Information Criterion, BIC), and the Final Prediction Error 

(FPE). These criteria balance model fit with model complexity, penalising the addition of 

more parameters to avoid overfitting. Table 4 represents the optimal number of lags 

selection criteria for this model. 

 

Table 4 – Lag Selection Criteria. Source: Own Elaboration 
 

Lags AIC HQ SC FPE 

1 -42.38 -41.81 -40.34 0.00 

2 -42.04 -40.98 -38.24 0.00 

3 -47.30 -45.76 -41.74 0.00 

4 -Inf* -Inf* -Inf* NaN 

5 -Inf -Inf -Inf 0.00* 

*Indicates lag order selected by the criterion 

 

The analysis reveals a consistent trend across multiple criteria, indicating the optimal 

lag for the VAR model. While AIC, HQ, and SC converge on the 4th lag as optimal, FPE 

suggests considering the 5th lag. However, it's crucial to note the sharp decline in values (to 

-Inf or zero) for all criteria beyond the 5th lag. This pattern suggests that incorporating more 

than 5 lags leads to overfitting, where the model captures noise instead of the underlying 

signal. 

Therefore, based on this analysis, the 4th lag will be used to ensure a balanced model 

that maximizes forecasting accuracy while maintaining stability. 



26  

4.4. Diagnostic Tests 

 
For VAR models to be considered adequate and reliable, the residuals must have three 

properties: follow a normal distribution, be uncorrelated over time, and exhibit constant 

variance. To ensure that these criteria are being met, it’s necessary to perform diagnostic 

tests on the residuals. 

4.4.1. Normality of the Residuals 

 
To validate that the residuals in each equation conform to a normal distribution, the Jarque- 

Bera (JB) test, introduced by Jarque and Bera (1987), is employed. This test aims to evaluate 

whether the residuals exhibit a distribution similar to the normal curve. In addition, the 

skewness test, which assesses the asymmetry of the distribution, as well as the kurtosis test, 

which measures the tail heaviness of the distribution, were applied as both tests can indicate 

deviations from a normal distribution. 

The null hypothesis (H0) of these tests imply that the data adheres to a normal 

distribution. Should the associated p-value fall below the significances levels the null 

hypothesis is rejected, indicating compelling evidence that the data does not conform to a 

normal distribution. The results are presented in Table 5. 

 

Table 5 – Normality Tests. Source: Own Elaboration 
 
 

Test Chi-squared df p-value 

JB 7.35 12 0.83 

Skewness 1.73 6 0.94 

Kurtosis 5.62 6 0.47 

 
 

The results show that the p-values associated with all three tests are not significant, 

as all are above the typical significance levels, consequently, the null hypothesis for each 

test is not rejected, meaning that the residuals follow a multivariate normal distribution, and 

their skewness and kurtosis are consistent with that distribution. 

In summary, these tests provide no strong evidence to suggest that the residuals of 

the VAR model deviate significantly from a multivariate normal distribution, therefore, the 

assumptions of normality, skewness, and kurtosis are reasonably met by the residuals of the 

VAR model.2 
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4.4.2. Residual Autocorrelation 

 
To assess the autocorrelation of the residuals, the LM test proposed by Breusch-Godfrey 

was performed. The Breusch-Godfrey LM test is a statistical test used to detect the presence 

of autocorrelation in the residuals of a regression model, particularly useful for evaluating 

multivariate models, such as a VAR model. 

The null hypothesis (H0) of the Breusch-Godfrey LM test states that there is no 

autocorrelation in the residuals up to the specified lag. The alternative hypothesis (H1) posits 

that there is autocorrelation in the residuals. The results are presented in Table 6. 

 
 

Table 6 – Autocorrelation Test. Source: Own Elaboration 

 
Test Chi-squared df p-value 

Breusch-Godfrey LM 186 180 0.36 

 
 

The results show that the p-value is not significant at the 5% significance level 

consequently, we fail to reject the null hypothesis for the test, meaning that there is sufficient 

evidence to conclude that there is no autocorrelation in the residuals of the model up to the 

4th lag. 

This lack of autocorrelation supports the adequacy and reliability of the VAR model, 

indicating that the model’s residuals are uncorrelated over time. 
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4.4.3. Heteroskedasticity Test 

 
To assess whether the assumption of constant error variance in the VAR model holds true, 

an analysis of heteroskedasticity, using the ARCH (Autoregressive Conditional 

Heteroskedasticity) test was conducted. 

This test aims to investigate whether it exists a systematic pattern of conditional 

heteroskedasticity within the residuals of the VAR model, by examining whether the squared 

residuals exhibit serial correlation over time. 

In the ARCH test, the null hypothesis (H0) is that there is no conditional 

heteroskedasticity in the residuals, meaning that the variance of the residuals is constant 

over time. The alternative hypothesis (H1) tests for conditional heteroskedasticity in the 

residuals, indicating that the variance of the residuals is not constant and exhibits some 

systematic pattern or dependence on past values. The results of the test are presented in 

Table 7. 

Table 7 – Heteroskedasticity Test. Source: Own Elaboration. 
 
 

Test Chi-squared df p-value 

ARCH test 546 2205 1 

 

The test shows a p-value of 1, suggesting that there is no evidence of autocorrelation 

in the squared residuals, which is indicative of no ARCH effects. This implies that the 

variance of the residuals in the VAR model does not exhibit a systematic pattern of 

dependence on past values, therefore, the assumption of homoskedasticity (constant 

variance) in the residuals is met. 

This finding enhances the reliability of the VAR model, indicating that the 

assumption of constant error variance holds true, thereby contributing to the robustness of 

the model's forecasts. 
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4.5. Causality Test 

 
Causality tests aim to determine the direction and strength of the relationship between two 

or more variables, in order to investigate the causal relationships among variables. 

The commonly causality tests used in VAR analysis is the Granger causality test, 

which assesses whether one variable in a VAR model can help predict another variable 

beyond its own lagged values and the lagged values of the other variable(s) in the model, 

essentially, evaluating whether one variable "Granger-causes" another variable. 

In the context of this research, for the Granger Causality test, the null hypothesis 

(H0) tests whether changes in the Green Bond Investment Ratio (GBIR) Granger-cause 

changes in CO2E, IPI, EP and 10YBY. The results are presented in Table 8. 

Table 8 – Causality Test. Source: Own Elaboration. 
 

Model F-Test Residual df          p-value 

CO2E 5.78 25 0.00*** 

IPI 1.23 25          0.33 

EP 0.87 25          0.52 

EC 1.96 24          0.13 

10YBY 3.95 25 0.01*** 

Significance. Codes: ‘***’ 0.01 ‘**’ 0.05 ‘*’ 0.1’ 

 

The analysis reveals varied degrees of causality between GBIR, and the dependent 

variables examined. Specifically, the relationship between GBIR and CO2E shows a 

statistically significant result with a strong F-statistic and a p-value indicating significance 

at the 1% level. This suggests that past values of GBIR Granger-cause changes in CO2E. 

 

Regarding 10YBY, the analysis reveals a significant relationship with GBIR, 

evidenced by a p-value significant at the 1% level, implying that lagged values of GBIR 

Granger-cause changes in 10YBY at this significance level. 

 

Conversely, the tests for IPI, EP and EC do not demonstrate a significant relationship 

with GBIR, indicating that lagged values of GBIR do not Granger-cause changes in IPI or 

EP. 
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4.6. VAR Analysis 

 
Vector Autoregression models offer a robust framework for delving into the complex 

interactions among the six endogenous variables in their differenced from: CO2E, GBIR, 

IPI, EP, EC and 10YBY, aiming to show the nuanced connections between fluctuations in 

green bond investments by pension funds and CO2 emissions. 

Tables A1 to A6 shows the results of the estimated values in the VAR model, with a 

lag order of 4 (p=4) and including a constant term. Overall, the statistical analysis reveals 

varying degrees of explanatory power and model fit, with some equations demonstrating 

significant relationships concerning certain lagged variables, while others exhibit weak or 

insignificant effects. 

The analysis unveils a negative and significant lag (l3) for industrial production 

index (IPI) concerning CO2 emissions, indicating a potential adverse effect of industrial 

activities on environmental sustainability suggesting that a one-unit increase in industrial 

production leads to a corresponding increase in CO2 emissions in the subsequent period, 

underscoring the short-term contribution of industrial activity to higher CO2 emissions. 

However, it's noteworthy that equations related to the green bond investment ratio, 

10-year bond yield, industrial production and electricity consumption do not exhibit 

statistical significance, suggesting minimal impact of their past values. 

The equation for EP reveals a significant negative impact observed at the 10% level 

at EC. l1, suggesting that changes in electricity consumption have an immediate positive 

effect on energy prices. The substantial positive coefficient for GBIR.l3 implies that 

investments on green bonds (captured by GBIR) have a more delayed but significant effect 

on energy prices. 

Moving forward, the analysis will delve deeper into the implications of these 

findings through Impulse Response Function (IRF) and Forecast Error Variance 

Decomposition (FEVD) analyses. These additional analyses will provide further insights 

into the short-term and long-term effects of shocks to green bond investments and CO2 

emissions, enriching our understanding of the complex dynamics at play in the intersection 

of finance and environmental sustainability. 
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4.6.1. Impulse Response Function Analysis 

 
The Impulse Response Function (IRF) is an analytical tool used in VAR models, to examine 

how one variable in a system responds to a shock in another variable over time. When a 

variable in a VAR model is perturbed by a positive shock of one unit at a specific time 

period, the IRF illustrates how other variables in the system react to this shock over several 

subsequent periods. 

In this research, the IRFs are orthogonalized—known as Orthogonal Impulse 

Response Functions (OIRFs)—where the shocks are uncorrelated or orthogonal, meaning 

that each shock can be interpreted as an isolated event, independent of the others. 

Since the aim of this research is to analyse the impact of green bond investments 

by pension funds on CO2 emissions, the IRF was computed to illustrate how a shock to 

the variable "GBIR" affects the remaining variables over time. The results are presented in 

Figure 2 below, along with the coefficients provided in Table A2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 - Orthogonal IRF of the Variables. Source: Own Elaboration 
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The impulse response analysis reveals intriguing dynamics between green bond 

investments by pension funds (GBIR) and the remaining variables, particularly CO2 

emissions. 

Initially, the coefficients suggest that a shock in green bond investments may not 

have a significant immediate impact on CO2 emissions, as indicated by the coefficients 

close to zero (the coefficients for periods 1 through 3 range from -0.0098 to -0.025, 

indicating a slight reduction in emissions, but not statistically significant as evidenced by 

the confidence intervals). However, in the short term (periods 4 to 7) the impact on CO2 

emissions becomes more positive, suggesting an increase in emissions. 

From period 8 onwards, the positive impact on CO2 emissions continues, peaking at 

period 11, indicating a more substantial increase in emissions. The negative coefficients in 

periods 9 and 10 suggest some fluctuations in the impact, but the overall trend indicates a 

positive influence of green bond investments on CO2 emissions. 

The response of the remaining variables exhibits similar patterns. The 10YBY 

responds positively and increasingly over time, peaking around the 6th and 10th periods 

suggesting higher yields demanded by investors as investments in green bonds increase. 

After peaking, the 10YBY gradually declines, suggesting a stabilization or reduction in the 

premium required by investors. 

Regarding EP, the response is slightly negative initially, turning positive from the 

2nd period onwards, indicating a positive response to green bond investments. In addition, 

the response from EC to shocks from GBIR fluctuates, peaking around the 8th period, turning 

negative until period 10, and then increasing thereafter. 

The coefficients for IPI start positive but become negative in period 2 and 3, with a 

positive spike around the 8th and 9th periods, suggesting that green bond investments 

positively impact industrial production during this time. However, after reaching this peak, 

a subsequent decrease indicates that the impact may not be sustained over time. 

The impulse response analysis indicates that green bond investments by pension 

funds initially have a negligible or mixed effect on CO2 emissions, with some fluctuations 

in the short term. However, over time, the investments appear to have a positive influence 

on CO2 emissions, contrary to the expectation that green investments would reduce 

emissions. 
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4.6.2. Variance Decomposition Analysis 

 
Variance decomposition analysis, employed through techniques like Forecast Error Variance 

Decomposition (FEVD), serves as a powerful tool in understanding the intricate dynamics 

within VAR models. 

In the context of VAR models, FEVD is used to analyse the proportion of the forecast 

error variance of each variable that is attributable to shocks from each variable in the system, 

helping to understand the dynamic interactions and the relative importance of different 

shocks over time. 

In order to analyse the impact of green bond investments by pension funds on CO2 

emissions, it was identified the proportion of the forecast error variance of CO2E attributed 

to GBIR in different time periods, which allowed for an understanding of how changes in 

GBIR influence the forecasts of CO2E and, by extension, CO2 emissions. 

Therefore, by interpreting the FEVD, it is possible to identify the periods in which 

GBIR has a more significant impact on CO2 emissions. The results are presented in figure 

3 and coefficients for each variable are presented in Table A3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 - FEVD of the variables. Source: Own Elaboration 



34  

Initially, Green Bond Investments (GBIR) are fully explained by their own 

variability over time, and while their influence on its own forecast error decreases, it remains 

relatively high throughout (36.76% in period 10). Contributions from CO2 Emissions 

increases, explaining about 29.47% of the forecast error variance after 10 periods, while EP 

explains 23.75% at period 10, indicating an influence of both variables on GBIR. 

Turning to CO2E, there’s a similar initial patter where nearly all the forecast error 

variance (72.23%) is due to its own shocks. However, by the tenth period, this self- 

explanatory power diminishes to 28.33%, with significant contributions from GBIR 

(33.65%) indicating that shocks in green bond investments explain a notable portion of the 

variance in CO2 emissions. On the other hand, fluctuations in energy prices also have a 

moderate effect on CO2E explaining about 23.91% in period 10 while contributions from 

10YBY, IPI and EC have minimum effect. 

Regarding the IPI, it exhibits a notable pattern where its forecast error variance is 

initially driven largely by itself (52.07%) and CO2E (47.72%). Although its own 

explanatory power decrease, CO2E remains significant across all periods (decreasing 

slightly, to 40% at period 10) suggesting that CO2 emissions affect industrial production to 

a moderate extent. The influence of GBIR and EP increases moderately by period 10 

(20.51% and 20.31%, respectively) indicating that green bond investments and energy 

prices have a growing impact on industrial production over time. 

For EP, the initial forecast error variance is largely explained by itself (53%) but this 

influence decreases significantly over time (to just 12.15% at period 10). By the tenth period, 

the variance explained by CO2E (21.26%), GBIR (22.31%) and 10YBY (37.47%) also 

contributes significantly, suggesting that investments in green bonds and the 10-year bond 

yields are critical drivers of energy prices over time, possibly due to their influence on 

investment decision in energy sectors. Similarly, changes in CO2 emissions strongly affect 

energy prices, likely through energy production costs. 

Initially, EC is largely explained by CO2E (61.67%) and although this influence 

decreases overtime, it remains marginally high (at 32.89% in period 10), suggesting that 

CO2 emissions have a lasting impact on electricity consumption. On the other hand, GBIR 

and EP also have some influence in EC explaining about 35.03% and 20.87% respectively 

at period 10 implying that green bond investments and energy prices also play significant 

roles in driving economic activity. 
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Finally, looking at 10YBY in the first period the majority (77.74%) of the forecast 

error variance is attributed to itself, however this influence decreases to 12.23% in period 

10. By that time, CO2 emissions and EP explain respectively, 25.99% and 21.44% of the 

10YBY forecast variance, indicating a strong initial impact of environmental factors on the 

variable. Still, but the largest contribution comes from Green Bond Investments, which 

contribute 36.17% to the forecast error variance of 10YBY in period 10. 

To conclude, the FEVD shows significant interconnectedness among the variables. 

The green bond investments by pension funds emerge as a significant driver for most 

variables, influencing CO2 emissions, energy prices and industrial production over time. 



36  

4.7. Robustness Assessment 

 
Given the complexity and sensitivity of VAR models to different specifications, it is crucial 

to test the stability of the findings under various conditions. This assessment involved re- 

estimating the VAR model using various adjustments, such as experimenting with different 

variable orderings, and testing alternative model versions, including the removal of 

electricity consumption or energy prices, which could be influenced by industrial production 

and electricity consumption. 

Despite these modifications, the re-estimated models consistently produced nearly 

identical impulse response functions, demonstrating that the results were robust to changes 

in variable sequencing and model specifications, reinforcing the stability of the findings. 

The robustness checks greatly strengthened the credibility of the VAR model, 

offering a reliable basis for the conclusions drawn from the impulse response functions. By 

thoroughly examining these variations, it’s shown that the conclusions are not reliant on any 

particular model configuration, thus further validating the insights gained from the impulse 

response functions. 
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Conclusion 

This study examined pension fund investments in green bonds, focusing on their 

contributions to green finance and their impact on CO2 emissions. 

One key aspect of the study was assessing the extent of these investments through 

the Green Bond Investment Ratio (GBIR), which demonstrated a consistent upward trend, 

increasing from 4.21% in December 2020 to 9.42% by December 2023, despite fluctuations. 

This growth represents a commitment by pension funds to integrate green bonds into their 

portfolios and support environmentally sustainable investments. 

To understand how green bond investments contribute to reducing CO2 emissions, 

the study analysed the interactions among six endogenous variables: CO2 emissions 

(CO2E), Green Bond Investment Ratio (GBIR), Industrial Production Index (IPI), Energy 

Prices (EP), Energy Consumption (EC), and 10-Year Bond Yields (10YBY), using a VAR 

model. 

The IRF analysis showed that a sudden increase in green bond investments initially 

has little immediate impact on CO2 emissions. This outcome is expected, as green bond- 

funded projects typically require time for development and implementation before their 

environmental benefits, such as CO2 reduction, can materialise. Investments in green bonds 

are often directed toward long-term infrastructure and sustainability projects, such as 

renewable energy facilities, energy efficiency upgrades, or sustainable transport, which take 

time to become fully operational, and, as a result, the immediate impact on CO2 emissions 

is not evident right away. 

In the early stages of the analysis, the coefficients suggested a modest reduction in 

CO2 emissions, although this change was not statistically significant. However, in the short 

term the trend reversed, revealing an unexpected increase in emissions. This result 

contradicts prior expectations, including findings from Al Mamun et al. (2022), which 

indicated that green bond issuance is negatively correlated with CO2 emissions. 

This counterintuitive result may be explained by the nature of green bond projects, 

which often require intensive construction, manufacturing, or initial energy use during their 

early stages, which are carbon-intensive activities, making these upfront emissions 

outweigh the long-term environmental benefits. 
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However, while initial CO2 emissions are primarily driven by their own shocks, 

green bond investments increasingly explain a substantial portion of the variance in CO2 

emissions over time. So, it’s expected that as these projects mature and become operational, 

the long-term environmental benefits of green bonds start to manifest. 

In summary, the findings of this study emphasise the importance of understanding 

the temporal dynamics of green investments. They underscore that green bond investments 

may not yield immediate reductions in CO2 emissions, highlighting the importance of 

understanding the delayed impact of these investments. Investors, policymakers, and 

stakeholders need to recognize that while green bonds are designed to promote 

environmental sustainability, their benefits often take time to manifest. 

Moreover, the study revealed a short-term increase in CO2 emissions associated with 

green bond-funded projects. This increase can be attributed to the carbon-intensive activities 

involved in the early stages of project development, such as construction and manufacturing. 

To address this, it is crucial for policymakers and project developers to implement strategies 

that mitigate these upfront emissions. This could involve adopting carbon management 

practices or utilizing cleaner technologies during the construction phase to offset the initial 

carbon footprint. 

Despite the short-term rise in emissions, the consistent growth in the Green Bond 

Investment Ratio (GBIR) reflects a strong commitment by pension funds towards 

environmentally sustainable investments. This trend reinforces the idea that green finance 

is gaining traction and supports the need for continued investment in green bonds. Investors 

and financial institutions should align their strategies with this understanding, focusing on 

the long-term environmental benefits rather than expecting immediate results. 

While the research offers valuable insights into the impact of green bond 

investments on CO2 emissions, it is crucial to acknowledge the study's limitations and 

recognise that certain constraints may affect the scope and applicability of the results. This 

study is subject to some limitations, primarily related to data constraints, model 

specification, and external validity. 
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Firstly, the study faces data limitations concerning sample size and time frame. 

Given that green bond investments are a relatively recent development, the analysis relies 

on just 37 monthly observations, which may affect the broader applicability of the results. 

Additionally, the short time frame (December 2020 to December 2023) may not fully 

capture long-term trends of green bond investments. This period is also significantly 

affected by the COVID-19 pandemic, which may have influenced market dynamics and 

investment behaviours in ways that could’ve affected the results. 

Secondly, the study's findings are specific to the Euro Area and may not be directly 

applicable to different economic environments or regions without further adjustments. 

Thirdly, although the VAR model employed in this study effectively captures dynamic 

interactions, it may not adequately address non-linear effects or complex interactions that 

other methodologies, such as structural or non-linear time series models, might capture more 

effectively. 

Lastly, it is important to note that the confidence intervals provided for the impulse 

response functions of the variables don’t reveal statistically significant results, thereby 

leaving open the possibility of a null effect. Therefore, although the study offers valuable 

perspectives on the interactions between green bond investments and various economic and 

environmental indicators, these findings should be interpreted with caution. 

To address these limitations, future research could start by exploring alternative data 

sources, by examining the long-term effects of green bond investments on environmental 

and economic variables over a longer period of time. In addition, expanding the analysis to 

include cross-country comparisons would help determine whether the findings are 

consistent across different economic contexts or are specific to particular regions. 

Employing more advanced methodologies for data validation could also be 

beneficial. Examining non-linear relationships and potential structural breaks in the data 

could offer deeper insights into the dynamics of green finance and its economic and 

environmental impacts. While this study recognizes the complexity of these relationships 

and explores them within the constraints of the VAR model, future research could benefit 

from applying more sophisticated modelling techniques to gain deeper insights. 
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Appendix 
 

 

 
 

 

Figure A1 - Green Bond Investment Ratio Trend. Source: Own Elaboration 

 

 

 
 

 
Figure A2 - Energy Price Trend. Source: Own Elaboration 
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Figure A3 - 10-Year Benchmark Yield Trend. Source: Own Elaboration 

 

 

 

 

 
 

 
Figure A4 - CO2 Emissions Trend. Source: Own Elaboration 
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Figure A5 - Electricity Consumption Trend. Source: Own Elaboration 

 

 

 

 

 
 

 
Figure A6 - Industrial Production Index Trend. Source: Own Elaboration 
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Figure A7 - Green Bond Investment Ratio ACF and PACF. Source: Own Elaboration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A8 - Energy Price ACF and PACF. Source: Own Elaboration 
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Figure A9 - 10-Year Benchmark Yield ACF and PACF. Source: Own Elaboration 

 

 

 

 

 

 

 

 
 

Figure A10 - CO2 Emissions ACF and PACF. Source: Own Elaboration 



48  

 

 
 

 
Figure A11 – Electricity Consumption ACF and PACF. Source: Own Elaboration 

 

 

 

 

 

 

 
 

Figure A12 - Industrial Production Index ACF and PACF. Source: Own Elaboration 
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Figure A13 - First Differences of Green Bond Investment Ratio. Source: Own Elaboration 

 

 

 

 
 

 
Figure A14 - First Differences of Energy Price. Source: Own Elaboration 
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Figure A15 - First Differences of 10-Year Benchmark Yield. Source: Own Elaboration 

 

 

 

 

 

 
Figure A16 - First Differences of CO2 Emissions. Source: Own Elaboration 
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Figure A17 - First Differences of Electricity Consumption. Source: Own Elaboration 

 

 

 

 

 
Figure A18 - Second Differences of Electricity Consumption. Source: Own Elaboration 
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Table A1 – VAR Estimation Results. Source: Own Elaboration 

 
VAR Estimation Results: 

 
========================= 
Endogenous variables: diffCO2E, diffGBIR, diffBY, IPI, diffEP, diff2EC 
Deterministic variables: const 
Sample size: 31 
Log Likelihood: 638.478 
Roots of the characteristic polynomial: 
1.293 1.293 0.9981 0.9981 0.9464 0.9464 0.9435 0.9435 0.935 0.935 0.93 
47 0.9172 0.9172 0.909 0.8799 0.8799 0.8662 0.8662 0.8573 0.8573 0.814 
6 0.8146 0.6888 0.5685 
Call: 
VAR(y = dataseries, p = 4, type = "const") 

 
 
Estimation results for equation diffCO2E: 
========================================= 
diffCO2E = diffCO2E.l1 + diffGBIR.l1 + diffBY.l1 + IPI.l1 + diffEP.l1 
+ diff2EC.l1 + diffCO2E.l2 + diffGBIR.l2 + diffBY.l2 + IPI.l2 + diffEP 
.l2 + diff2EC.l2 + diffCO2E.l3 + diffGBIR.l3 + diffBY.l3 + IPI.l3 + di 
ffEP.l3 + diff2EC.l3 + diffCO2E.l4 + diffGBIR.l4 + diffBY.l4 + IPI.l4 
+ diffEP.l4 + diff2EC.l4 + const 

 
 Estimate Std. Error t value Pr(>|t|)  
diffCO2E.l1 -0.301886 0.689310 -0.438 0.6767 
diffGBIR.l1 -2.126989 3.690344 -0.576 0.5853 
diffBY.l1 -0.043238 0.049558 -0.872 0.4165 
IPI.l1 0.415012 0.589079 0.705 0.5075 
diffEP.l1 -0.702927 0.602557 -1.167 0.2876 
diff2EC.l1 0.004143 0.407064 0.010 0.9922 
diffCO2E.l2 -0.460232 0.695214 -0.662 0.5326 
diffGBIR.l2 -0.222872 4.024609 -0.055 0.9576 
diffBY.l2 -0.044280 0.062325 -0.710 0.5041 
IPI.l2 -0.427891 0.607598 -0.704 0.5077 
diffEP.l2 0.064218 0.645391 0.100 0.9240 
diff2EC.l2 0.737173 0.797305 0.925 0.3909 
diffCO2E.l3 0.240329 0.569529 0.422 0.6877 
diffGBIR.l3 3.754929 3.990649 0.941 0.3831 
diffBY.l3 0.023824 0.047652 0.500 0.6349 
IPI.l3 -1.063861 0.500381 -2.126 0.0776 . 
diffEP.l3 0.035295 0.679204 0.052 0.9602  

diff2EC.l3 1.096224 0.694715 1.578 0.1657  

diffCO2E.l4 -0.312785 0.671777 -0.466 0.6579  

diffGBIR.l4 2.077913 5.006107 0.415 0.6925  

diffBY.l4 0.015044 0.048719 0.309 0.7679  

IPI.l4 -0.421590 0.549610 -0.767 0.4721  

diffEP.l4 0.613610 0.658817 0.931 0.3876  

diff2EC.l4 0.805824 0.709258 1.136 0.2992  

const 3.032180 2.930054 1.035 0.3406  

---      

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
Residual standard error: 0.03127 on 6 degrees of freedom 
Multiple R-Squared: 0.7554, Adjusted R-squared: -0.2228 
F-statistic: 0.7722 on 24 and 6 DF, p-value: 0.7029 
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Estimation results for equation diffGBIR: 
========================================= 
diffGBIR = diffCO2E.l1 + diffGBIR.l1 + diffBY.l1 + IPI.l1 + diffEP.l1 
+ diff2EC.l1 + diffCO2E.l2 + diffGBIR.l2 + diffBY.l2 + IPI.l2 + diffEP 
.l2 + diff2EC.l2 + diffCO2E.l3 + diffGBIR.l3 + diffBY.l3 + IPI.l3 + di 
ffEP.l3 + diff2EC.l3 + diffCO2E.l4 + diffGBIR.l4 + diffBY.l4 + IPI.l4 
+ diffEP.l4 + diff2EC.l4 + const 

 
 Estimate Std. Error t value Pr(>|t|) 
diffCO2E.l1 -4.444e-02 9.002e-02 -0.494 0.639 
diffGBIR.l1 -3.593e-01 4.819e-01 -0.746 0.484 
diffBY.l1 -6.949e-03 6.472e-03 -1.074 0.324 
IPI.l1 -4.268e-02 7.693e-02 -0.555 0.599 
diffEP.l1 2.734e-02 7.869e-02 0.347 0.740 
diff2EC.l1 2.875e-02 5.316e-02 0.541 0.608 
diffCO2E.l2 6.398e-02 9.079e-02 0.705 0.507 
diffGBIR.l2 -1.446e-01 5.256e-01 -0.275 0.792 
diffBY.l2 -3.005e-03 8.139e-03 -0.369 0.725 
IPI.l2 2.720e-02 7.935e-02 0.343 0.743 
diffEP.l2 3.495e-02 8.429e-02 0.415 0.693 
diff2EC.l2 -8.799e-02 1.041e-01 -0.845 0.430 
diffCO2E.l3 -3.215e-02 7.438e-02 -0.432 0.681 
diffGBIR.l3 4.096e-01 5.212e-01 0.786 0.462 
diffBY.l3 2.204e-03 6.223e-03 0.354 0.735 
IPI.l3 4.772e-02 6.535e-02 0.730 0.493 
diffEP.l3 5.234e-02 8.870e-02 0.590 0.577 
diff2EC.l3 -4.920e-02 9.073e-02 -0.542 0.607 
diffCO2E.l4 -2.959e-02 8.773e-02 -0.337 0.747 
diffGBIR.l4 -3.973e-01 6.538e-01 -0.608 0.566 
diffBY.l4 -5.984e-03 6.363e-03 -0.941 0.383 
IPI.l4 3.578e-05 7.178e-02 0.000 1.000 
diffEP.l4 -2.716e-02 8.604e-02 -0.316 0.763 
diff2EC.l4 4.057e-02 9.263e-02 0.438 0.677 
const -6.230e-02 3.827e-01 -0.163 0.876 

 
 
Residual standard error: 0.004084 on 6 degrees of freedom 
Multiple R-Squared: 0.6873, Adjusted R-squared: -0.5633 
F-statistic: 0.5496 on 24 and 6 DF, p-value: 0.8624 
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Estimation results for equation diffBY: 
======================================= 
diffBY = diffCO2E.l1 + diffGBIR.l1 + diffBY.l1 + IPI.l1 + diffEP.l1 + 
diff2EC.l1 + diffCO2E.l2 + diffGBIR.l2 + diffBY.l2 + IPI.l2 + diffEP.l 
2 + diff2EC.l2 + diffCO2E.l3 + diffGBIR.l3 + diffBY.l3 + IPI.l3 + diff 
EP.l3 + diff2EC.l3 + diffCO2E.l4 + diffGBIR.l4 + diffBY.l4 + IPI.l4 + 
diffEP.l4 + diff2EC.l4 + const 

 
 Estimate Std. Error t value Pr(>|t|) 
diffCO2E.l1 1.6301 5.4953 0.297 0.777 
diffGBIR.l1 31.2064 29.4200 1.061 0.330 
diffBY.l1 0.4341 0.3951 1.099 0.314 
IPI.l1 4.2082 4.6962 0.896 0.405 
diffEP.l1 0.6450 4.8037 0.134 0.898 
diff2EC.l1 -2.5690 3.2452 -0.792 0.459 
diffCO2E.l2 -5.3459 5.5423 -0.965 0.372 
diffGBIR.l2 19.6872 32.0848 0.614 0.562 
diffBY.l2 -0.1311 0.4969 -0.264 0.801 
IPI.l2 0.9219 4.8439 0.190 0.855 
diffEP.l2 7.0356 5.1451 1.367 0.221 
diff2EC.l2 -1.6241 6.3562 -0.256 0.807 
diffCO2E.l3 4.1810 4.5404 0.921 0.393 
diffGBIR.l3 -29.7641 31.8140 -0.936 0.386 
diffBY.l3 0.3486 0.3799 0.918 0.394 
IPI.l3 6.8841 3.9891 1.726 0.135 
diffEP.l3 -4.2480 5.4147 -0.785 0.463 
diff2EC.l3 -1.8282 5.5384 -0.330 0.753 
diffCO2E.l4 -6.2054 5.3555 -1.159 0.291 
diffGBIR.l4 42.9557 39.9094 1.076 0.323 
diffBY.l4 -0.3483 0.3884 -0.897 0.404 
IPI.l4 1.5519 4.3816 0.354 0.735 
diffEP.l4 -1.9357 5.2522 -0.369 0.725 
diff2EC.l4 3.3229 5.6543 0.588 0.578 
const -27.5432 23.3588 -1.179 0.283 

 
 
Residual standard error: 0.2493 on 6 degrees of freedom 
Multiple R-Squared: 0.8324, Adjusted R-squared: 0.1621 
F-statistic: 1.242 on 24 and 6 DF, p-value: 0.4242 
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Estimation results for equation IPI: 
==================================== 
IPI = diffCO2E.l1 + diffGBIR.l1 + diffBY.l1 + IPI.l1 + diffEP.l1 + dif 
f2EC.l1 + diffCO2E.l2 + diffGBIR.l2 + diffBY.l2 + IPI.l2 + diffEP.l2 + 
diff2EC.l2 + diffCO2E.l3 + diffGBIR.l3 + diffBY.l3 + IPI.l3 + diffEP.l 
3 + diff2EC.l3 + diffCO2E.l4 + diffGBIR.l4 + diffBY.l4 + IPI.l4 + diff 
EP.l4 + diff2EC.l4 + const 

 
 Estimate Std. Error t value Pr(>|t|) 
diffCO2E.l1 -0.354972 0.592372 -0.599 0.571 
diffGBIR.l1 -0.369966 3.171369 -0.117 0.911 
diffBY.l1 0.018471 0.042589 0.434 0.680 
IPI.l1 0.329402 0.506237 0.651 0.539 
diffEP.l1 -0.147081 0.517819 -0.284 0.786 
diff2EC.l1 -0.201371 0.349818 -0.576 0.586 
diffCO2E.l2 -0.062003 0.597445 -0.104 0.921 
diffGBIR.l2 0.014449 3.458626 0.004 0.997 
diffBY.l2 -0.043017 0.053560 -0.803 0.453 
IPI.l2 0.270463 0.522151 0.518 0.623 
diffEP.l2 -0.163020 0.554629 -0.294 0.779 
diff2EC.l2 -0.665551 0.685179 -0.971 0.369 
diffCO2E.l3 0.418630 0.489436 0.855 0.425 
diffGBIR.l3 1.649679 3.429442 0.481 0.648 
diffBY.l3 0.020501 0.040951 0.501 0.634 
IPI.l3 -0.272506 0.430012 -0.634 0.550 
diffEP.l3 0.162059 0.583687 0.278 0.791 
diff2EC.l3 0.004988 0.597016 0.008 0.994 
diffCO2E.l4 -0.514233 0.577305 -0.891 0.407 
diffGBIR.l4 1.296211 4.302095 0.301 0.773 
diffBY.l4 0.027928 0.041868 0.667 0.530 
IPI.l4 -0.479201 0.472318 -1.015 0.349 
diffEP.l4 0.120137 0.566167 0.212 0.839 
diff2EC.l4 1.121374 0.609514 1.840 0.115 
const 2.325521 2.517998 0.924 0.391 

 
 
Residual standard error: 0.02688 on 6 degrees of freedom 
Multiple R-Squared: 0.8553, Adjusted R-squared: 0.2766 
F-statistic: 1.478 on 24 and 6 DF, p-value: 0.3303 
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Estimation results for equation diffEP: 
======================================= 
diffEP = diffCO2E.l1 + diffGBIR.l1 + diffBY.l1 + IPI.l1 + diffEP.l1 + 
diff2EC.l1 + diffCO2E.l2 + diffGBIR.l2 + diffBY.l2 + IPI.l2 + diffEP.l 
2 + diff2EC.l2 + diffCO2E.l3 + diffGBIR.l3 + diffBY.l3 + IPI.l3 + diff 
EP.l3 + diff2EC.l3 + diffCO2E.l4 + diffGBIR.l4 + diffBY.l4 + IPI.l4 + 
diffEP.l4 + diff2EC.l4 + const 

 
 Estimate Std. Error t value Pr(>|t|)  
diffCO2E.l1 -0.744357 0.466969 -1.594 0.1620 
diffGBIR.l1 0.144612 2.500001 0.058 0.9558 
diffBY.l1 -0.058710 0.033573 -1.749 0.1309 
IPI.l1 -0.416438 0.399068 -1.044 0.3369 
diffEP.l1 0.095403 0.408198 0.234 0.8230 
diff2EC.l1 0.557824 0.275763 2.023 0.0895 . 
diffCO2E.l2 -0.011366 0.470968 -0.024 0.9815  

diffGBIR.l2 0.176566 2.726446 0.065 0.9505  

diffBY.l2 0.007915 0.042222 0.187 0.8575  

IPI.l2 -0.651034 0.411613 -1.582 0.1648  

diffEP.l2 -0.230426 0.437216 -0.527 0.6171  

diff2EC.l2 0.838388 0.540129 1.552 0.1716  

diffCO2E.l3 -0.031631 0.385824 -0.082 0.9373  

diffGBIR.l3 5.704493 2.703441 2.110 0.0794 . 
diffBY.l3 0.019945 0.032282 0.618 0.5594  

IPI.l3 -0.556058 0.338980 -1.640 0.1520  

diffEP.l3 0.563957 0.460122 1.226 0.2662  

diff2EC.l3 0.728942 0.470630 1.549 0.1724  

diffCO2E.l4 0.447658 0.455091 0.984 0.3633  

diffGBIR.l4 1.070280 3.391356 0.316 0.7630  

diffBY.l4 0.026107 0.033005 0.791 0.4590  

IPI.l4 -0.252468 0.372330 -0.678 0.5230  

diffEP.l4 0.195373 0.446311 0.438 0.6769  

diff2EC.l4 0.186596 0.480482 0.388 0.7112  

const 3.790490 1.984947 1.910 0.1048  

---      

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
 
Residual standard error: 0.02119 on 6 degrees of freedom 
Multiple R-Squared: 0.8753, Adjusted R-squared: 0.3767 
F-statistic: 1.755 on 24 and 6 DF, p-value: 0.2497 
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Estimation results for equation diff2EC: 
======================================== 
diff2EC = diffCO2E.l1 + diffGBIR.l1 + diffBY.l1 + IPI.l1 + diffEP.l1 + 
diff2EC.l1 + diffCO2E.l2 + diffGBIR.l2 + diffBY.l2 + IPI.l2 + diffEP.l 
2 + diff2EC.l2 + diffCO2E.l3 + diffGBIR.l3 + diffBY.l3 + IPI.l3 + diff 
EP.l3 + diff2EC.l3 + diffCO2E.l4 + diffGBIR.l4 + diffBY.l4 + IPI.l4 + 
diffEP.l4 + diff2EC.l4 + const 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Residual standard error: 0.05051 on 6 degrees of freedom 
Multiple R-Squared: 0.7384, Adjusted R-squared: -0.3078 
F-statistic: 0.7058 on 24 and 6 DF, p-value: 0.7509 
 
 
 
Covariance matrix of residuals: 
 
f2EC 

diffCO2E diffGBIR diffBY IPI diffEP dif 

diffCO2E 9.781e-04 -6.668e-05 -2.015e-03 5.806e-04 3.122e-04 1.240 
e-03 
diffGBIR 

 
-6.668e-05 

 
1.668e-05 

 
4.802e-04 

 
-3.710e-05 

 
-2.867e-05 

 
2.381 

e-06 
diffBY 

 
-2.015e-03 

 
4.802e-04 

 
6.216e-02 

 
-1.351e-03 

 
-2.725e-03 

 
-1.071 

e-05 
IPI 

 
5.806e-04 

 
-3.710e-05 

 
-1.351e-03 

 
7.223e-04 

 
8.314e-05 

 
9.839 

e-04 
diffEP 

 
3.122e-04 

 
-2.867e-05 

 
-2.725e-03 

 
8.314e-05 

 
4.489e-04 

 
5.611 

e-05 
diff2EC 

 
1.240e-03 

 
2.381e-06 

 
-1.071e-05 

 
9.839e-04 

 
5.611e-05 

 
2.551 

e-03       

Correlation matrix of residuals: 
 
 
 
 
 
 

 Estimate Std. Error t value Pr(>|t|) 
diffCO2E.l1 -0.701617 1.113276 -0.630 0.552 
diffGBIR.l1 2.416441 5.960122 0.405 0.699 
diffBY.l1 -0.009788 0.080039 -0.122 0.907 
IPI.l1 0.940988 0.951397 0.989 0.361 
diffEP.l1 0.175531 0.973164 0.180 0.863 
diff2EC.l1 -0.492038 0.657431 -0.748 0.482 
diffCO2E.l2 -0.207046 1.122811 -0.184 0.860 
diffGBIR.l2 1.173350 6.499979 0.181 0.863 
diffBY.l2 -0.063613 0.100658 -0.632 0.551 
IPI.l2 1.190238 0.981306 1.213 0.271 
diffEP.l2 -0.014566 1.042344 -0.014 0.989 
diff2EC.l2 -1.049468 1.287694 -0.815 0.446 
diffCO2E.l3 -0.451682 0.919823 -0.491 0.641 
diffGBIR.l3 8.176496 6.445132 1.269 0.252 
diffBY.l3 0.054757 0.076962 0.711 0.503 
IPI.l3 0.522126 0.808144 0.646 0.542 
diffEP.l3 0.194515 1.096954 0.177 0.865 
diff2EC.l3 0.558296 1.122005 0.498 0.636 
diffCO2E.l4 -1.612609 1.084959 -1.486 0.188 
diffGBIR.l4 -2.993975 8.085155 -0.370 0.724 
diffBY.l4 -0.100846 0.078684 -1.282 0.247 
IPI.l4 0.387654 0.887652 0.437 0.678 
diffEP.l4 -0.034511 1.064028 -0.032 0.975 
diff2EC.l4 1.816904 1.145492 1.586 0.164 
const -6.171830 4.732208 -1.304 0.240 

 

diffCO2E diffGBIR diffBY IPI diffEP diff2EC 
diffCO2E 1.0000 -0.52202 -0.2584803 0.6908 0.47117 0.7852551 
diffGBIR -0.5220 1.00000 0.4715465 -0.3380 -0.33128 0.0115406 
diffBY -0.2585 0.47155 1.0000000 -0.2016 -0.51585 -0.0008504 
IPI 0.6908 -0.33802 -0.2015983 1.0000 0.14601 0.7247846 
diffEP 0.4712 -0.33128 -0.5158458 0.1460 1.00000 0.0524293 
diff2EC 0.7853 0.01154 -0.0008504 0.7248 0.05243 1.0000000 
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Table A2 – Impulse Response Coefficients. Source: Own Elaboration 

 
Impulse response coefficients 
$diffGBIR 

 diffCO2E diffBY IPI diffEP diff2EC 
[1,] 0.000000000 0.09839644 0.0007119705 -0.002119374 0.024958265 
[2,] -0.009775475 0.18733067 -0.0032390108 0.006031215 0.020430699 
[3,] -0.002454922 0.17039813 -0.0194869379 0.030138239 -0.004283103 
[4,] 0.019282071 0.08235656 -0.0206645578 0.056521079 0.028329644 
[5,] 0.004186145 0.34360287 -0.0004451177 0.059063026 0.028963060 
[6,] 0.003483954 0.55983640 0.0010446722 0.057102593 -0.009410838 
[7,] 0.031099472 0.33514211 -0.0004165978 0.061923965 -0.019285934 
[8,] 0.034545700 0.18144619 0.0338911594 0.056460186 0.072015360 
[9,] -0.009738038 0.59785515 0.0423176722 0.042745479 0.047736122 
[10,] -0.009422080 0.65911742 -0.0105378781 0.048000031 -0.086376284 
[11,] 0.038930166 -0.01612825 -0.0231890667 0.062387162 0.015304113 

 
 
Lower Band, CI= 0.95 
$diffGBIR 

diffCO2E diffBY IPI diffEP diff2E 
C 
[1,] 0.000000000 -0.036222890 -0.007184845 -0.006397604 0.000967167 

4 
[2,] -0.012694118 -0.043702892 -0.010465277 -0.008843739 -0.009849545 

6 
[3,] -0.014933927 -0.066734927 -0.018384557 -0.006267281 -0.022240306 

9 
[4,] -0.009697872 -0.115394810 -0.020670020 -0.003941095 -0.003845781 

0 
[5,] -0.020971538 -0.009998168 -0.015655063 -0.015940334 -0.009171495 

6 
[6,] -0.022360118 0.054443288 -0.013382945 -0.030744411 -0.028528937 

0 
[7,] -0.008817848 -0.107876059 -0.014675279 -0.046584146 -0.029811479 

5 
[8,] -0.011379036 -0.228474882 -0.013108563 -0.053422115 -0.003045563 

2 
[9,] -0.039575524 -0.082766602 -0.016399293 -0.061635568 -0.025596591 

8 
[10,] -0.028917014 -0.141464328 -0.040238864 -0.072706097 -0.093710614 
0 
[11,] -0.019183969 -0.464355723 -0.037779598 -0.076518492 -0.040967647 
5 

 
 
Upper Band, CI= 0.95 
$diffGBIR 

diffCO2E diffBY IPI diffEP diff2EC 
[1,] 0.000000000 0.1149868 0.006369976 0.00499328 0.01693338 
[2,] 0.004244384 0.1919092 0.008771660 0.01140723 0.02111416 
[3,] 0.008521665 0.2147040 0.003448159 0.02456507 0.01548787 
[4,] 0.019826222 0.2011084 0.006150810 0.04007384 0.02351134 
[5,] 0.016815976 0.3276990 0.019083915 0.05061236 0.02936798 
[6,] 0.016387943 0.4394054 0.018945974 0.06742303 0.01968192 
[7,] 0.035451524 0.4027137 0.018456509 0.08035515 0.01560353 
[8,] 0.043994559 0.3893064 0.030323554 0.09190445 0.07030451 
[9,] 0.036513106 0.5015469 0.040167208 0.09242396 0.04886161 
[10,] 0.026172218 0.6137395 0.022778621 0.10341302 0.00890066 
[11,] 0.049190741 0.4764993 0.019784029 0.11091567 0.04489056 
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Table A3 – FEVD Coefficients. Source: Own Elaboration 

 
 
$ $diffCO2E 

 

diffCO2E diffGBIR diffBY IPI diffEP diff2EC 

[1,] 1.0000000 0.00000000 0.00000000 0.00000000 0.00000000 0.0000e+00 
[2,] 0.7223416 0.07045846 0.01143527 0.10727912 0.08848526 2.4130e-07 
[3,] 0.7043352 0.09765568 0.01532882 0.09567379 0.08582130 1.1851e-03 
[4,] 0.5192399 0.29950954 0.03415968 0.07059762 0.07544017 1.0530e-03 
[5,] 0.4148766 0.32477111 0.12617421 0.05729021 0.07605025 8.3759e-04 
[6,] 0.4123874 0.30146804 0.12549475 0.05649871 0.10336533 7.8578e-04 
[7,] 0.3088923 0.39837570 0.09175187 0.06583986 0.13162092 3.5193e-03 
[8,] 0.3239606 0.34930854 0.12916538 0.05928293 0.13521769 3.0643e-03 
[9,] 0.2790460 0.36460187 0.08425053 0.04453390 0.22082340 6.7443e-03 
[10,] 0.2833152 0.33652793 0.09348305 0.04119141 0.23914562 6.3367e-03 

 

$diffGBIR 

diffCO2E diffGBIR diffBY IPI diffEP diff2EC 

[1,] 0.2725040 0.7274960 0.00000000 0.00000000 0.000000e+00 0.0000000 
[2,] 0.2164178 0.6314659 0.13264970 0.01872508 2.251663e-05 0.0007189 
[3,] 0.1308017 0.5538483 0.14426115 0.05656720 1.114439e-01 0.0030777 
[4,] 0.1241926 0.5207712 0.12498977 0.05291709 1.727196e-01 0.0044097 
[5,] 0.2421054 0.4536683 0.06691011 0.02995149 1.969896e-01 0.0103752 
[6,] 0.2396159 0.3767275 0.07734941 0.02335344 2.721375e-01 0.0108163 
[7,] 0.2260166 0.4353526 0.06430303 0.02255395 2.406312e-01 0.0111426 
[8,] 0.2365339 0.4099045 0.04609190 0.03561386 2.605644e-01 0.0112915 
[9,] 0.2321931 0.3901917 0.07629638 0.04154020 2.486757e-01 0.0111029 
[10,] 0.2947055 0.3675985 0.03759055 0.05138670 2.374580e-01 0.0112607 

 
$diffBY 

     

 

diffCO2E 
 

diffGBIR 
 

diffBY 
 

IPI 
 

diffEP 
 

diff2EC 

[1,] 0.06681206 0.1557528 0.7774351 0.00000000 0.00000000 0.000000000 
[2,] 0.09197672 0.2059539 0.6495582 0.02639383 0.02464444 0.001472943 
[3,] 0.30692617 0.1259482 0.4463503 0.02269835 0.09704014 0.001036844 
[4,] 0.33064250 0.1491232 0.3836590 0.03675490 0.09889584 0.000924511 
[5,] 0.21800635 0.3600994 0.2638799 0.03262162 0.12374815 0.001644503 
[6,] 0.19560462 0.4487530 0.2218652 0.02816107 0.10303779 0.002578298 
[7,] 0.17925903 0.3839194 0.1948466 0.03740569 0.19952933 0.005039895 
[8,] 0.16896354 0.4058895 0.1963449 0.03567978 0.18818418 0.004938052 
[9,] 0.26833496 0.3754450 0.1006027 0.03315019 0.21232429 0.010142848 
[10,] 0.25990034 0.3616951 0.1223090 0.03199006 0.21442012 0.009685369 
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$IPI 
diffCO2E diffGBIR diffBY IPI diffEP diff2EC 

[1,] 0.4772043 0.000701765 0.001443094 0.5206509 0.000000000 0.000000 
[2,] 0.5613141 0.016012046 0.024843622 0.3967806 0.000281626 0.000767 
[3,] 0.5484972 0.147169437 0.013281096 0.2246942 0.059945411 0.006412 
[4,] 0.5049598 0.122220969 0.035645350 0.2821540 0.049716233 0.005303 
[5,] 0.5301715 0.135623781 0.034394084 0.1299137 0.161138297 0.008758 
[6,] 0.5340377 0.130654814 0.033833394 0.1249863 0.167758874 0.008728 
[7,] 0.5622229 0.111937541 0.035511724 0.1110741 0.169751078 0.009502 
[8,] 0.4561620 0.226779490 0.028452420 0.1162913 0.163150807 0.009164 
[9,] 0.3857672 0.188230109 0.140858751 0.1441029 0.131170827 0.009870 
[10,] 0.4007415 0.205111906 0.088032102 0.0943818 0.203062897 0.008669 

 

$diffEP 

 diffCO2E diffGBIR diffBY IPI diffEP diff2EC 

[1,] 0.2220021 0.01000682 0.1617188 0.07087860 0.5353938 0.000000000 
[2,] 0.1581727 0.09385633 0.3220083 0.04736145 0.3707514 0.007849841 
[3,] 0.1761202 0.39681756 0.1557001 0.07178880 0.1875248 0.012048539 
[4,] 0.1164132 0.53886266 0.1267750 0.05566915 0.1543176 0.007962355 
[5,] 0.1589351 0.37010878 0.2633327 0.06198375 0.1401357 0.005503952 
[6,] 0.1313080 0.29809246 0.3801879 0.05404329 0.1315055 0.004862894 
[7,] 0.1153694 0.26637583 0.4384517 0.04794633 0.1274514 0.004405403 
[8,] 0.1141484 0.24618721 0.4637456 0.05180063 0.1200603 0.004057852 
[9,] 0.1070920 0.25775045 0.4364344 0.07526936 0.1195111 0.003942615 
[10,] 0.2126205 0.22311569 0.3746756 0.06426179 0.1215254 0.003801081 

 
$diff2EC 

 

diffCO2E diffGBIR diffBY IPI diffEP diff2EC 

[1,] 0.6166256 0.2441629 6.506343e-05 0.05521206 0.07646217 0.0074721 
[2,] 0.6470337 0.1818679 6.582521e-03 0.07666961 0.08115326 0.0066929 
[3,] 0.5517233 0.2432393 3.733991e-02 0.05288123 0.10781498 0.0070013 
[4,] 0.4357028 0.3545279 6.418470e-02 0.04563962 0.09379514 0.0061498 
[5,] 0.4728575 0.2556513 9.235087e-02 0.06411723 0.10711970 0.0079033 
[6,] 0.4315989 0.2285037 5.624024e-02 0.08639941 0.18931509 0.0079426 
[7,] 0.4086534 0.2216777 9.418457e-02 0.08430072 0.18295411 0.0082294 
[8,] 0.3499172 0.3219901 5.487601e-02 0.05727226 0.20642636 0.0095180 
[9,] 0.3184399 0.3067592 9.179506e-02 0.05625153 0.21809957 0.0086548 
[10,] 0.3288563 0.3503007 4.632543e-02 0.05482118 0.20866191 0.0110344 

 

 


