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Resumo

Este estudo analisa os investimentos de fundos de penséo em green bonds da zona Euro, em particular,
a sua relacdo com as emissdes de dioxido de carbono. A pesquisa utilizou um modelo VAR para
analisar as interacOes entre seis variaveis: emissdes de CO2 (COZ2E), racio de investimento em green
bonds (GBIR), indice de produgdo industrial (IPI), precos de energia (EP), consumo de energia (EC) e
a benchmark yield a 10 anos (10YBY). Os resultados da analise mostram que as emissdes de CO2
aumentaram inesperadamente, possivelmente devido as atividades intensivas em carbono, financiadas
pelas green bonds, durante as fases iniciais dos projetos. Contudo, apesar das emissdes de CO2 serem
inicialmente impulsionadas por choques préprios, 0 investimento em green bonds passa a explicar
uma parte substancial da variancia das emissdes CO2. O estudo sublinha assim a importancia de
compreender a dindmica temporal dos investimentos verdes, mostrando que 0s investimentos em
green bonds podem néo resultar em reducgdes imediatas de CO2, sendo crucial reconhecer o impacto
diferido destes investimentos. Embora exista um aumento temporario de emissdes, 0 crescimento
constante no GBIR reflete o progresso do financiamento sustentavel, reforcando a necessidade de se

continuar a investir em green bonds, focando-se nos beneficios ambientais a longo prazo.

Palavras-Chave: Fundos de Pensdo; Green Bonds; Emissoes de CO2; Zona Euro; Modelo VAR
Cddigos JEL: G23 C32 044






Abstract

This study analyses pension fund investments in green bonds within the Eurozone, particularly their
relationship with carbon dioxide emissions. The research employed a VAR model to examine the
interactions between six variables: CO2 emissions (CO2E), green bond investment ratio (GBIR),
industrial production index (IPI), energy prices (EP), energy consumption (EC), and the 10-year
benchmark yield (10YBY). The results of the analysis show that CO2 emissions unexpectedly
increased, possibly due to the carbon-intensive activities financed by green bonds during the early
stages of the projects. However, despite CO2 emissions initially being driven by their own shocks,
green bond investments increasingly account for a substantial part of the variance in CO2 emissions
over time. The study thus highlights the importance of understanding the temporal dynamics of green
investments, demonstrating that green bond investments may not result in immediate CO2 reductions,
and it is crucial to recognise the delayed impact of these investments. Although there is a temporary
increase in emissions, the steady growth in GBIR reflects the progress of sustainable finance,
reinforcing the need to continue investing in green bonds, with a focus on long-term environmental

benefits.

Keywords: Pension Funds; Green Bonds; CO2 Emissions; Eurozone; VAR Model
JEL Codes: G23 C32 044
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Introduction

As scientific evidence increasingly highlights the warming of the planet and the
exacerbation of extreme weather events, public awareness and concern have reached
unprecedented levels. Climate change has become a central issue in global discourse among
governments, environmental organizations, and individuals, prompting various
international efforts to achieve carbon neutrality. Key initiatives include the 2015 Paris
Agreement, the United Nations Sustainable Development Goals (UN SDGs), and, more

recently, the European Union's Green Deal.

Achieving these ambitious goals requires substantial financial commitments, with
institutional investors playing a crucial role in financing green initiatives. Pension funds, in
particular, have significant potential to drive green finance initiatives, especially through
their investments in green bonds. These bonds are attractive due to their liquidity and ability
to support environmentally sustainable projects, with previous studies, such as Al Mamnun
(2020), showing that the issuance of green bonds directly correlates with a reduction in CO2

emissions.

Indeed, existing literature on green finance primarily focuses on green bond
issuance, pricing, and the green bond premium, although there are limited studies examining
the measurable positive environmental outcomes of green bond investments (Boermans,
2023). Specifically, there is a lack of investigation into the direct relationship between green

bond investments by pension funds and CO2 emissions.

This analysis seeks to fill that gap by examining how investments in green bonds by
pension funds may influence CO2 emissions. Its goal is to provide answers to the following
questions: What is the extent of pension fund investments in green bonds? How do pension
funds contribute to promoting green finance, specifically CO2 reduction, through their

investments in green bonds?

By shifting the focus from traditional green bond analyses to the direct impact of
pension funds on carbon footprint reduction, this study aims to build upon existing literature
and provide new insights into the potential of pension funds to drive meaningful

environmental change.



This study’s methodology will follow a Vector Autoregression (VAR) analysis to
explore the interplay between pension funds’ investments in green bonds and a range of
financial and environmental variables, particularly, CO2 emissions in Europe. As such, the
data collected covers the Euro Area 20 (fixed composition) as of 1 January 2023.

Given that EA pension funds favour green bonds (Boermans, 2023), this study
includes data on green debt securities (GDSPF) and debt securities held by pension funds
(DSPF) from the European Central Bank (ECB), spanning from December 2020 to
December 2023 on a monthly basis, in millions of euros. EU CO2 emissions (CO2E) data

was sourced from the Centre for Research on Energy and Clean Air (CREA).

To provide control for factors affecting carbon emissions, the industrial production
index (IPI) from the ECB was included. Additionally, energy prices (EP) and electricity
consumption (EC) data from Eurostat were incorporated, as these factors are recognised in
green finance literature for their impact on carbon emissions. The EA 10 Years Government
Benchmark Bond Yield (10YBY), sourced from ECB, was also included as a control

variable.

Finally, the study includes the Green Bond Investment Ratio (GBIR), that serves as
a metric indicating the share of pension fund investments in green bonds within their bond
portfolio. This ratio provides insight into the extent to which pension funds prioritise green

bond investments.

In this context, this thesis contributes to the literature by providing new insights into
the relationship between pension fund investments in green bonds and carbon emissions,
offering empirical evidence from the Euro Area and applying econometric techniques, such
as a VAR model.

The thesis main results point to several key conclusions. Firstly, pension funds have
evidently increased their investments in green bonds, with the Green Bond Investment Ratio
rising, reflecting a growing commitment to integrating green bonds into investment
portfolios. However, the study shows that there was an unexpected rise in CO2 emissions,
likely due to the carbon-intensive activities involved in the early stages of green projects.
Despite this short-term increase in emissions, the consistent growth of influence of GBIR
on CO2 emissions indicates that as green bond-funded projects mature, their long-term

environmental benefits should become more evident.



To frame this research, chapter one establishes a robust framework for this study by
providing a comprehensive overview of the current discourse on climate change. Building
on this framework, chapter two presents a detailed literature review, exploring the rise of
green bonds as a financial instrument, detailing their growth, and their appeal to pension

funds.

Subsequently, chapter three outlines the data and methodology employed to
investigate the relationship between pension funds' investments in green bonds and CO2
emissions in the Euro Area (EA), with a focus on the VAR model and related tests.
Following this, chapter four presents the empirical findings of the research, including the
analysis of sample data and results from the VAR model, along with impulse response and

variance decomposition analyses.

Finally, the conclusion will analyse the primary findings and draw insights from the
study, offering policy recommendations informed by the research outcomes and

highlighting potential directions for future research.



1. Framework

As scientific evidence continues to indicate the warming of the planet and the exacerbation
of extreme weather events, public awareness and concern have reached unprecedented
levels, making climate change a focal point in global discourse amongst governments,

environmental organizations, and individuals worldwide.

In 2021, Glocalities, an international research agency based in Amsterdam, in
cooperation with Global Citizen, an action platform dedicated to eradicating poverty,
released an in-depth study on how people feel about climate change. The findings, drawn
from 247,722 interviews spanning a six-year period across 20 countries, indicate that 78%
of respondents experienced a growing sense of apprehension about the adverse impact of

human activities on the environment (Glocalities, 2021).

The study highlighted a particularly pronounced surge in environmental worries
among young adults aged 18 to 24, with 59% of global youth now viewing climate change
as a very serious issue. Notably, the research underscores a willingness among people to act

and exert pressure on leaders to address these pressing environmental concerns.

As the world recognizes the imperative to transition towards a more sustainable and
environmentally friendly model, global efforts promoting green practices have gained
significant traction. Consequently, numerous initiatives and policies have been implemented
to encourage and support sustainable development on a global scale, with some of the most
pivotal ones including the 2015 Paris Agreement, the United Nation’s Sustainable

Development Goals (UN SDGs) and, more recently, the European Union’s Green Deal.

The 2015 Paris Agreement, a landmark international accord under the UN
Framework Convention on Climate Change (UNFCCC), was adopted by 196 countries at
the UN Climate Change Conference (COP21), with the primary objective of restraining the
increase in the global average temperature below 2°C and to limit temperature increase to
1.5°C, whilst making finance flows consistent with pathway towards low greenhouse gas

emissions [2: Art. 2.1c].

In efforts to reach these goals, nations pledged to achieve the global peaking of
greenhouse gas emissions by the year 2025, and, additionally, committed to a substantial
reduction in carbon emissions, with a specific target of attaining a 43% reduction by the
year 2030 (The Paris Agreement, 2015).



Aligned with the principles of the Paris Agreement, the year 2015 witnessed the
unanimous approval by all UN member states of the 2030 Agenda for Sustainable
Development — an action plan encompassing 17 SDGs which address key objectives related
to climate action, urging nations to combat climate change and mitigate its impacts, paving
the way for a zero-emission future (United Nations, 2015). Moreover, the European Union's
Green Deal, approved in 2020 by the European Commission, represents a comprehensive
set of policy initiatives aimed at promoting green finance and investments with the
overarching goal of positioning the European Union as the first climate-neutral continent by
2050 (European Commission, 2019).

However, to achieve carbon neutrality, a substantial financial commitment is
essential. According to the European Commission (2024), a staggering EUR 185 trillion is
required, while the International Monetary Fund predicts climate mitigation investment will
soar to USD 2 trillion by 2030 (World Economic Forum, 2023).

Recognizing the urgent need to bridge the "Green Financing Gap", UN Secretary
General, Anténio Guterres (2023), has called on stakeholders to boost financing efforts.
However, despite encouraging engagement from private investors in the climate capital
market (European Commission, 2024), a sobering report by the German environmental
NGO "Urgewald" (2023) highlights the significant presence of banks, insurance companies,

and pension funds among the largest investors in fossil fuel companies in Europe.

According to the report, Europe alone holds the second largest number of fossil fuel
investors globally, with investments exceeding EUR 336 billion in shares and bonds, leading
Guterres (2023) to emphasise the critical role of financial institutions in addressing the
climate crisis, calling for immediate action to reallocate investments away from fossil fuels

and towards renewable energy sources.

Sustainable investments offer a dual benefit: they not only serve the greater good by
supporting environmental initiatives but also play a crucial role in safeguarding long-term
financial returns. As the risks associated with climate change continue to grow, impacting
both the global economy and businesses, integrating sustainable considerations into

investment strategies becomes imperative for ensuring stability (Egli et al., 2022).

In addition, the increased interest in green finance has led to the development of
various financial instruments, particularly, green bonds (Ma et al., 2023), reflecting a

commitment


https://en.wikipedia.org/wiki/European_Union

within the financial sector to foster sustainability while simultaneously addressing the

urgent challenges posed by climate change.

Interestingly, it was pension funds that emerged as the driving force behind these
titles. Prompted by the 2007 Intergovernmental Panel for Climate Change (IPCC) report,
which linked human actions to global warming, a group of Swedish pension funds took the
lead in seeking sustainable solutions. In collaboration with their bank (Skandinaviska
Enskilda Banken AB) and CICERO, the Centre for International Climate and Environmental
Research, they approached the World Bank with the goal of creating "a liquid, tradeable,

fixed income product that would support climate-friendly solutions™” (World Bank, 2018).

That is the central component of a green bond — the allocation of proceeds to
environmentally beneficial projects. Various guidelines governing green bonds outline
specific categories of projects deemed environmentally sustainable, including renewable
energy, pollution prevention and control, sustainable land use, biodiversity conservation,

clean transportation, and climate adaptation (Sartzetakis, 2020).

Considering that pension funds are major players in financial markets due to the size
of their assets; by aligning their investments with climate-oriented commitments through
green bonds, they’re contributing to the broader goal of achieving sustainable development
and mitigating the impact of climate change. Still, despite the growing importance of green
finance and the recognition that institutional investors can play a vital role in its
advancement, it remains a notable gap in our understanding of how pension funds

specifically contribute to it.

Existing literature on green finance mainly focuses on green bonds issuance, pricing,
or green bond premium, however, there are limited studies examining the measurable
positive environmental outcomes by green bond investments, particularly by pension funds.
This study aims to build upon existing literature by shifting the focus from traditional green
bond analyses to the direct impact of pension funds’ investments in these titles on carbon

reduction.

As a result, this study aims to assess how pension funds contribute to promoting
green finance, particularly through their investments in green bonds, by first measuring what
is the extent of pension funds’ investments in green bonds? And then, what is the efficacy
of green bonds in promoting positive environmental outcomes, particularly in reducing CO2

emissions?



2. Literature Review

The emerging field of finance and environmental sustainability, commonly referred to as
"Green Finance", represents a paradigm shift in financial thinking, emphasising the

incorporation of environmental considerations into financial decision-making processes.

According to Bhatnagar and Sharma (2022) the term "Green Finance™ can be traced
back to the concept of "Green Economy"”, first discussed in the 1980s by Pearce, Markandya,
and Barbier in their work "The Blueprint of Green Economy". The concept was driven by
the environmental and climatic challenges experienced by Western countries, as a result of
rapid industrialization, making them reevaluate their economic models and transition

towards a more sustainable and environmentally conscious approach (Pearce et al., 1989).

More recently, as societies face increasing environmental challenges, such as climate
change and pollution, Wang and Zhi (2016) argued that "Green Finance" represents an
innovative financial paradigm geared towards environmental protection, by using financial
products to control pollution emissions and mitigate environmental risks. This perspective
aligns with the growing recognition of the importance of incorporating environmental

considerations into financial decision-making.

However, it’s important to acknowledge that financial mechanisms alone are
insufficient to address complex environmental challenges and that broader systemic changes
are needed. Zhang et al. (2019) conducted an analysis of the literature surrounding "Green
Finance" and found policy to be one of the primary concerns amongst researchers,
recognising the pivotal role of regulatory frameworks in fostering environmentally

responsible investments.

This viewpoint resonates with the understanding that policy interventions are often
necessary to create incentives for sustainable practices, outlining a crucial disparity between
Green Finance and conventional financial practices: the former is fundamentally driven by

policy imperatives.

Despite its growing prominence, a clear and universally accepted definition for
"Green Finance" remains elusive, being often intertwined with other related concepts such

as "Sustainable Finance", "Carbon Finance", or "Climate Finance".



Zhang et al. (2019) drew attention to the blurred distinction between "Green
Finance"” and "Climate Finance”, highlighting that, the first pertains to financing
investments aimed at delivering environmental benefits, as defined by the International
Finance Corporation (IFC) (2017), while "Climate Finance" refers to financing actions that

support climate change mitigation and adaptation, as proposed by the UNFCCC (1992).

On the other hand, Bhatnagar and Sharma (2022) defend that "Green Finance" is
broadly defined and includes the term "Climate Finance" thereby advocating for their
interchangeable application. Building upon that, the authors define Green Finance as
"Financing renewable and green energy projects with the objective of reducing carbon
emissions and developing climate resilient and environmentally sustainable infrastructure”
(p.1), emphasising the tangible environmental impact of investments, particularly in the

areas of energy and infrastructure.

Aligned with that, Long et al. (2022) developed a study with the purpose of
summarising the literature around climate finance, finding that green financing has its focus
on the financial markets, including green bonds, financing sustainable business models and
sustainability transition. Their perspective not only highlights the broader scope of green
finance but underscores the role of financial mechanisms in driving environmentally

conscious initiatives.

In essence, "Green Finance" is an innovative approach that combines finance with
environmentally friendly practices across different economic sectors, complemented with
regulation and implementation of policies. It encompasses a spectrum of financial activities,
ranging from specific project financing for renewable energy and climate-resilient

infrastructures, to a broader focus on financial markets.

Ultimately, the discourse surrounding "Green Finance" reflects a dynamic and
multifaceted landscape, with scholars and institutions offering diverse perspectives on its
definition and scope. Despite the lack of a universally accepted definition, the consensus
among researchers highlights the imperative role of policy frameworks, financial markets,
and collaborative efforts across sectors in driving investments towards sustainable

development priorities.



Unfortunately, the transition to a green economy requires significant investment, and
despite the numerous collaborative accords and policies implemented, the challenge of
securing funding for a low-carbon and climate-resilient economy persists. According to a
report from the OECD, the committed USD 100 billion for green investments in the Paris
Agreement is projected to fall short of what is needed (OECD, 2017) prompting the call for

increased flows of private capital on a much larger scale.

In this context, institutional investors, entrusted with managing substantial assets,
assume a pivotal role in financing green initiatives. An analysis conducted by Sangiorgi and
Schopohl (2021) reveals that 48 European institutional investors collectively hold EUR
13.68 trillion in assets under management (AUM) and have an accumulated fixed income
of EUR 4.30 trillion. As such, there is no doubt that with such substantial AUM, European
institutional investors could allocate a considerable portion of their funds towards green

investments.

Among institutional investors, pension funds emerge as significant contributors to
long-term financing for clean energy projects, as highlighted by Polzin and Sanders (2020),
potentially mobilising investments exceeding USD 77 billion annually for clean energy
initiatives. These institutions offer distinct advantages compared to traditional banks,
primarily due to their possession of long-term resources, being well-suited to finance

projects in the green sector (Taghizadeh-Hesary & Yoshino, 2020).

Nonetheless, despite efforts to promote sustainability, a considerable portion of
pension funds continue to prioritise investments in fossil fuels. Rempel and Gupta (2020)
highlight this trend, indicating that pension funds within the OECD hold a substantial sum,
ranging from EUR 238 to 828 billion, in assets associated with fossil fuels, while

Gunningham (2020) suggests an even higher estimate, from EUR 800 to 940 billion.

Notably, the Norwegian Government Pension Fund Global (GPFG) stands out as
Europe’s largest fossil fuel investor, with substantial holdings totalling over EUR 37.25
billion. Similarly, the Dutch Algemeen Burgerlijk Pensioenfonds (ABP) and the Swedish
public pension fund are significant players, collectively investing billions in fossil fuel
assets (Urgewald, 2023).



While pension funds have historically shown a strong inclination towards investing
in fossil fuels, it is imperative to recognise that there are alternatives that offer greater
sustainability. Interestingly, Boermans and Galema’s (2019) study on Dutch pension funds
indicates that actively divesting from fossil fuels does not carry negative risk-adjusted

performance implications.

However, despite divesting from fossil fuels, pension funds are inefficient in
decarbonizing their portfolios and fall short of meeting the climate targets outlined in the
Paris Agreement (Rempel and Gupta, 2020). These findings imply that although divestment
may not harm financial performance, it alone is insufficient to drive meaningful change

towards sustainability within pension fund investments.

Therefore, reallocating more funds towards sustainable investment opportunities
appears a feasible approach for pension funds to pursue without compromising their primary
mandate — to safeguard and grow the wealth of their beneficiaries. Fiduciary duty serves as
the cornerstone of trust and accountability in pension fund management ensuring the
financial security of retirees and the integrity of funds over the long term, encompassing not

only investment decisions but also governance and administration.

Soneryd (2024) reveals a striking disparity between lucrative returns and financial
stability on one hand, and apprehension regarding the environmental and social
repercussions of investment decisions on the other, concluding that, overall, savers prioritise
both their carbon footprint and financial security. As such, by aligning their investments
with environmentally conscious initiatives, pension funds stand to benefit financially,

capitalizing on the increasing demand for clean energy and eco-friendly solutions.

As a result of their fiduciary duty, pension funds exhibit a preference for lower-risk
investments that offer a stable and inflation- adjusted income stream. Pension funds operate
under regulatory frameworks that require them to manage their assets in a way that matches
their long-term liabilities. Due to their ongoing payment obligations, they must prioritise
investments in liquid assets to ensure they can meet their financial commitments (Hafner et
al., 2020).
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Although they have multiple avenues to explore green investments, including equity
(indices, mutual funds, and ETFs) and private equity (real estate funds and infrastructure
funds), the allure of fixed-income securities, particularly green bonds, has understandably
grown, making these bonds an additional channel through which funds can be directed

towards environmentally sustainable projects (Croce et al., 2011).

Green bonds typically offer a level of liquidity comparable to traditional bonds,
making them an attractive option for institutional investors with long-term liabilities
(Hafner et al., 2020). By investing in green bonds, these institutions can diversify their
portfolios, manage risk, and contribute to environmental sustainability — all while meeting

their regulatory requirements for asset-liability management.

Since their first creation, green bonds have experienced rapid growth in investments,
particularly in Europe. According to a 2023 report by the Climate Bonds Initiative, the
volume of green bonds reached USD 2.6 trillion, with Europe dominating the market with
a 37% share, followed by USD at 23%, and CNY contributing 8%. In addition, the euro
remains the currency of choice for 47% of cumulative green bond volumes, reflecting a high

number of dedicated investors in the region (Climate Bonds Initiative, 2023).

Boermans (2023) also supported this trend, stating that despite green bonds
constituting only 1.5% of the total bond market, they have a larger presence (3.7%) in the
euro area bond portfolios, also indicating a heightened allocation towards environmentally
conscious investments in Europe. Furthermore, the author concluded that green bond
preferred habitat investors are exclusively European mutual funds and pension funds. This
investment institutions display a strong preference to hold green bonds and are relatively
price insensitive which can be explained by their relative long investment horizons and

commitment to combat climate change.

Despite de growing acceptance of green bonds, lingering concerns persist among
investors and issuers regarding their implementation. Shi et al. (2023) highlight a significant
concern surrounding green bonds: the issue of greenwashing. The practice occurs when
companies falsely portray their policies as environmentally friendly, casting doubt on the

true impact of green bonds in channelling funds towards genuinely sustainable initiatives.
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Even though green bonds offer pension funds an opportunity to align their
investment strategies with sustainability objectives, challenges such as greenwashing must
be addressed to ensure that their investments genuinely contribute to environmental

objectives.

In order to mitigate the risk of greenwashing and enhance transparency in the green
bond market, in 2014 the International Capital Market Association (ICMA) introduced the
Green Bond Principles (GBP) providing clear guidelines on the use and disclosure of
proceeds from green bonds (ICMA, 2014). Additionally, certification under the Climate
Bonds Standard (CBS) verifies the alignment of green bond projects with the goals of the
Paris Agreement investments (Jankovic et al., 2022), therefore, by adhering to these
standards, issuers can provide investors with assurance regarding the environmental

integrity of their green bond investments.

The green bonds market has attracted widespread attention from investors,
policymakers, and researchers due to its potential to direct financial resources towards
projects that play a pivotal role in fostering a more sustainable and low-carbon future. In
response to this interest, a study conducted by Al Mamun et al. (2022) aimed to explore the

influence of green finance on decarbonization.

The authors gathered data on green finance, specifically on green bond issuance,
across a sample of 46 countries and found a substantial and negative correlation between
green finance and CO2 emissions, a trend observed in both short and long-term scenarios.
Moreover, the study underlined the significant role played by green bonds in advancing the
broader decarbonization agenda, highlighting the tangible contributions of these financial

instruments to the overarching goal of reducing carbon emissions.

The study provides valuable insights into the potential of green finance, particularly
green bonds, to drive positive environmental outcomes and contribute to global efforts to
address climate change. It serves as a compelling argument for stakeholders, including
pension funds, to prioritise and support initiatives that promote sustainable finance practices

and accelerate the transition to a greener economy.
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Overall, the literature underscores the transformative potential of Green Finance in
addressing environmental challenges and advancing the transition towards a low-carbon
economy. Despite debates regarding its definition and scope, there's a consensus among
researchers on the imperative role of policy frameworks, financial markets, and
collaborative efforts across sectors in driving investments towards sustainable development

priorities.

Undoubtedly, key global initiatives such as the 2015 Paris Agreement and the
European Union's Green Deal serve as crucial frameworks guiding efforts towards
environmental sustainability and climate resilience, however, substantial financial

commitments are required to achieve carbon neutrality.

Pension funds hold significant potential to drive investments towards green
initiatives, and while some pension funds continue to prioritize investments in fossil fuels,
there's evidence suggesting that divesting from fossil fuels doesn’t necessarily harm
financial performance, opening the door for reallocating funds towards sustainable

opportunities.

Green bonds emerge as a promising financial instrument, attracting pension funds
due to their liquidity and potential to support environmentally sustainable projects, even
though challenges such as greenwashing persist, underscoring the importance of stringent

standards and certifications to ensure the integrity of green bond investments.

To conclude, it is evident that pension funds, by directing financial resources towards
environmentally friendly investments and adhering to rigorous standards, can play a crucial
role in driving meaningful change while safeguarding long-term financial returns. Through
strategic investments in green bonds, specifically tailored to fund eco-friendly projects,
these funds can actively contribute to a carbon-neutral economy while aligning with

international climate agreements such as the Paris Agreement.
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3. Data and Methodology

Drawing upon existing literature highlighting the role of pension funds in promoting
sustainable practices through green bond investments, this chapter seeks to explore the
connection between Pension Funds' investments in green bonds and CO2 emissions. The
chapter is structured into two sections: the first section outlines the data used, while the

second section delves into the methodology employed.

3.1. Data Description

Through empirical analysis, this study aims to shed light on ongoing sustainability efforts
within the Euro Area (EA) pension funds by conducting a comprehensive examination of
crucial environmental and economic indicators. The data collected covers the Euro Area 20

(fixed composition) as of 1 January 2023.

Given that EA pension funds are the preferred investors in green bonds (Boermans,
2023), this study will include the outstanding amounts of green debt securities (GDSPF) and
the debt securities held by pension funds (DSPF) sourced from the European Central Bank
(ECB). These datasets serve as experimental indicators, spanning from December 2020 to

February 2024 on a monthly basis, denoted in millions of euros.

To provide context and control for factors influencing carbon emissions, the
industrial production index (IP1) was integrated, also sourced from the ECB. This index
includes the overall industrial sector, encompassing manufacturing, mining, and utilities,
excluding data related to construction activities. The industrial production index, offers
insights into changes in production output across Euro Area industries, acting as proxy for
economic activity and industrial growth, particularly considering the unavailability of
monthly GDP data.

Moreover, energy prices (EP) and electricity consumption (EC) data were
incorporated, aligning with the existing literature on green finance that recognises their
potential impact on carbon emissions, and consequently, their significance in evaluating the
effectiveness of green bonds in fostering positive environmental outcomes. Both datasets
were sourced from Eurostat. Energy Prices are presented as an index, while electricity

consumption is measured in gigawatt-hours (GWh).
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Filimonova et al. (2022) highlights the direct link between electricity consumption
and CO2 emissions, driven by fossil fuel use, whilst stressing the association with economic
growth, since higher economic development requires higher electricity consumption.
Additionally, Alestra et al. (2022) underscore the efficacy of energy price signals in
mitigating carbon emissions, suggesting that these signals hold significant promise in
mitigating the impacts of climate change by discouraging the utilisation of carbon-intensive

energy sources.

In line with Hammoudeh et al. (2020) the EA 10 Years Government Benchmark
Bond - Yield (10YBY) was also incorporated as a control variable. This yield is a critical
benchmark for long-term interest rates, reflecting government borrowing costs and
influencing pension funds, by a stable measure of long-term economic conditions and
investor confidence, the 10YBY clarifies the impact of borrowing costs on green bond

investments. The data was sourced from the ECB and is expressed in percent per annum.

Lastly, following Al Mamun et al. (2022) and Hammoudeh et al. (2020) EU CO2
emissions (CO2E) data are used, sourced from the Centre for Research on Energy and Clean
Air (CREA). This set of data uses estimates from fossil fuel consumption from Eurostat and
applies the Intergovernmental Panel on Climate Change (IPCC) default emissions factors.
The CREA CO2 Tracker provides estimates of CO2 emissions, measured in metric tons per
day, however, to ensure consistency with the remaining datasets, the daily values were
aggregated and summed to generate monthly data, facilitating comparison and analysis over

time.

In addition, it includes data from European Network of Transmission System
Operators for Gas (ENTSOG) for natural gas, and from European Network of Transmission
System Operators for Electricity (ENTSOE) for electricity generation, allowing for a
comprehensive assessment of total carbon dioxide emissions within the European Union,
offering invaluable insights into the region’s environmental footprint and its progress toward

emission reduction targets.

Furthermore, it’s possible to calculate the Green Bond Investment Ratio (GBIR),
which serves as a metric indicating the share of pension fund investments specifically
allocated to green bonds within their bond portfolio. By employing this calculation, we gain
insight into trends and patterns in pension funds' investment behaviour, specifically the

degree to which pension funds investors prioritise investments through green bonds.
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The ratio was calculated as follows:

GDSPF
DSPF

(1)

The GBIR reveals a clear and consistent growth trend from December 2020 (4.21%)
to December 2023, peaking at 9.42%. Even though there are fluctuations, overall, the data
suggests a positive trajectory towards more significant investments in green bonds by euro
area pension funds, reflecting a growing emphasis on environmentally sustainable

investments within the pension fund sector.

Green Bond Investment Ratlo

Percentage

= T T T T T T
2021.0 20215 2022.0 20225 2023.0 2023.5 2024.0

Period

Figure 1 - Green Bond Investment Ratio Evolution. Source: Own Elaboration

Incorporating both the Green Bond Investment Ratio (GBIR) into the research
allows for a comprehensive and nuanced understanding of the role of green bond
investments in the Euro Area pension funds, helping to illuminate the direct and relative
contributions of these investments towards environmental sustainability and economic
growth.

The GBIR highlights investment behaviours in the prioritisation of green
investments, allowing to identify whether increases in green investments are due to overall

portfolio growth or a strategic shift towards greener assets.
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3.2. Research Methodology

Despite the number of research in green finance, limited focus has been given to green bond
investors (Boermans, 2023). Specifically, there's a lack of investigation into the direct
relationship between green bond investors, particularly pension funds, and CO2 emissions.
This analysis seeks to fill that gap by examining how investments in green bonds by pension

funds may influence CO2 emissions.

Most literature surrounding green finance, and green bonds specifically, relies on
cross-sectional panel data analysis. Namely, Boermans (2023) and Al Mamun et al. (2022)
both employed this method to explore various aspects of green bond characteristics, such as

investors preferences and issuance’s impact on CO2 emissions.

However, alternative methodologies have been employed. Specifically,
Hammoudeh et al. (2020) employed a distinct methodology, using a Vector Autoregression
(VAR) analysis to explore the interplay between green bonds and a range of financial and
environmental variables. Given constraints in data availability regarding pension funds'
investments in green bonds across various countries, this methodology will follow

Hammoudeh et al.'s (2020) approach.

Building upon prior research indicating that Green Bond issuance correlates with a
direct reduction in CO2 emissions (Al Mamun, 2020), it is reasonable to anticipate that
investments in green bonds will yield similar outcomes. Therefore, this research hypothesis
centres on exploring whether investments by Pension Funds in Green Bonds exhibit a
noticeable effect on mitigating CO2 emissions in Europe. As such, the endogenous variables
in the model are the CO2E, IPI, EP, EC, GBIR and 10YBY.

Through a thorough examination of this relationship, the aim is to provide
meaningful contributions to the ongoing dialogue surrounding sustainable investment

strategies and their implications for the environment.
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321. VAR Model

The Vector Autoregressive (VAR) model serves as an effective tool in time series analysis,
offering a robust framework to grasp the intricate dynamics among multiple variables over
time, capturing not only a variable's own past observations but also its relationship with the
past observations of other variables within the system.

In essence, a VAR model elucidates the evolution of a set of k endogenous variables,
denotedas Yt = (ylt, ..., yk, ..., yKt) for k =1, ..., K. These variables are intricately linked
through a linear relationship with their historical states and dependencies on lagged values

(up to lag p) of all K variables, supplemented by an error term v.

The model is parameterized employing the Ordinary Least Squares (OLS), a method
that minimizes the discrepancies between observed values of Yt and those predicted by the
VAR framework. This optimization process determines the optimal values of ¢1, . . ., @p,

v1, ..., ¥p, encapsulating the observed dynamics within the data.

In addition, to ensure the model's robustness and applicability, is crucial to preform
diagnostic assessments. These encompass selecting an appropriate lag order (p), scrutinizing
residuals for autocorrelation absence, validating normality assumptions, and evaluating

homoscedasticity.

In order to select the optimal lag order for the model, researchers often rely on
criteria such as the Akaike Information Criterion (AIC), the Hannan-Quinn Information
Criterion (HQIC), the Schwarz Information Criterion (also known as the Bayesian
Information Criterion, BIC), and the Final Prediction Error (FPE). These metrics strike a
balance between model fit and complexity, aiding in identifying the lag order that minimizes

forecasting errors while avoiding overfitting.

Diagnostic tests play a pivotal role in validating the model's assumptions and
refining its utility. Among these, the Jarque-Bera test confirms error normality, the Breusch-
Godfrey test evaluates residual autocorrelation, and the ARCH test assesses the model’s
homoscedasticity. Adhering to these tests ensures the reliability of the VAR model in

informing policy decisions and forecasting future trends.
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3.2.2. Granger Causality

Granger causality, introduced by Clive Granger in 1969, is a crucial statistical hypothesis
test for determining whether one time series can predict another. Given that VAR models
are designed to capture the interdependencies among multiple variables over time, assessing
Granger causality becomes paramount in understanding the directional influences among

these variables.

The idea behind the Granger causality test is to assess whether past values of a
potential causal variable contain information that helps forecast a dependent variable
beyond what is already provided by past values of the dependent variable itself and any

other variables in the model.

The null hypothesis (Ho) of the Granger causality test is that the lagged values of the
potential causal variable do not provide significant predictive power for the dependent
variable(s) beyond what is already captured by the lagged values of the dependent
variable(s) themselves and any other variables in the model. In other words,
B1=P2=...=Pk=0, suggesting that the potential causal variable does not Granger cause the

dependent variable.

The alternative hypothesis (H1) is that the lagged values of the potential causal
variable do provide significant predictive power for the dependent variable(s) beyond what
is captured by the lagged values of the dependent variable(s) and other variables in the
model. This means at least one B coefficient is not equal to zero, indicating that the potential

causal variable Granger causes the dependent variable.

The test uses the Wald F-statistics to determine if the lagged values of the potential
causal variable significantly improve the model’s predictive power. If the p-value is below
the convectional significance level, we reject the null hypothesis, indicating Granger

Causality.

Identifying causality within a VAR model not only enhances its ability to accurately
depict the temporal sequencing of shocks and their impacts on the involved variables but

also facilitates the development of more precise and insightful impulse response functions.
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3.23. Impulse Response Functions

Impulse response functions (IRFs) are a powerful tool in econometrics for understanding
the dynamic effects of shocks on a system of variables over time, depicting the responses of
endogenous variables to a one-time shock in one of the exogenous variables, while holding
all other variables constant. In this research, the IRFs are orthogonalized—known as
Orthogonal Impulse Response Functions (OIRFs)—where the shocks are uncorrelated or
orthogonal, meaning that each shock can be interpreted as an isolated event, independent of

the others.

IRFs offer several insights into the dynamics of the system showing the magnitude
and timing of the responses of endogenous variables to the initial shock which helps to
understand the short-term and long-term effects of shocks on the economy. Besides, IRFs
reveal whether the responses of endogenous variables are positive or negative, providing
insights into the direction of causality among variables. In addition, IRFs illustrate how
shocks propagate through the system, showing whether the effects of a shock dissipate
quickly or persist over time and by examining the pattern of responses across variables, IRFs
can help identify dynamic relationships and feedback mechanisms within the system.

3.2.4. Variance Decomposition

To understand the relative importance of different shocks in explaining the variation in
endogenous variables over time, Variance Decomposition is employed by calculating the
percentage of the forecast error variance of each endogenous variable that can be attributed

to shocks in each of the variables in the system.

A specific application of variance decomposition focuses on the decomposition of
forecast error variance. Forecast Error Variance Decomposition (FEVD), quantifies the
extent to which forecast errors in endogenous variables can be attributed to shocks
originating from each variable in the system, facilitating the identification of dynamic
relationships and feedback mechanisms within VAR models, by understanding how shocks

influence each other over time.

Overall, variance decomposition, particularly through techniques like FEVD,
enhances the analytical capabilities of VAR models by providing a nuanced understanding

of the sources of variability and forecast uncertainty.
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4. Empirical Results
4.1. Sample Analysis

The sample consists of 37 monthly observations spanning from December 2020 to
December 2023, containing 6 series, presented in their natural logarithms, except for the
GBIR and the 10YBY. For each series, descriptive statistics including the average, median,
standard deviation, minimum, maximum, skewness, and kurtosis were computed to

characterise the data. The results of the analyses are presented in Table 1.

Table 1 - Descriptive Statistics of the Variables. Source: Own Elaboration.

Variable Mean Median  Stand. Dev Min Max Skewness Kurtosis
CO2E 8.3852 8.3791 0.0429 8.3115  8.4769 0.2056 -0.7944
IPI 2.0231 2.0241 0.0299 1.9375  2.0715 -1.1094 1.4957
EP 2.2471 2.2833 0.1363 1.9921  2.4490 -0.5149 -1.0377
EC 5.2040 5.2028 0.0599 49196  5.2843 -2.8123 11.2692
GBIR 0.0694 0.0761 0.0174 0.0413  0.0927 -0.4803 -1.3186
10YBY 1.7836 2.0583 1.3943 -0.0915  3.7239 -0.0915 -1.7955

The overall sample exhibits several notable characteristics in its distribution. Firstly,
the variables show relatively smaller dispersions in comparison to their means, as indicated
by the standard deviation, suggesting a degree of consistency in the data. However, it's
important to highlight that EP and 10YBY stand out with the highest relative dispersion,

indicating greater variability in those aspects.

Furthermore, all variables display left-skewed distributions, except for CO2E, which
demonstrate a slightly right-skewed distribution, suggesting a higher concentration of lower

values across most variables, with fewer occurrences of higher values.

Regarding kurtosis, EC stands out with exceptionally high kurtosis, indicating a
pronounced concentration of values around the mean and the presence of extremely low
values, as opposed to the negative kurtosis in the remaining variables that suggest
distributions with fewer extreme values. Thus, EC's high kurtosis indicates a more
leptokurtic distribution, with a peakier shape and heavier tails compared to a normal

distribution.
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The correlation among the series was examined to detect signs of multicollinearity
issues in the estimated models. The Pearson linear correlation coefficient was employed, the

results of which are presented in Table 2.

Table 2 — Matrix of Correlations. Source: Own Elaboration

Variable CO2E IPI EP EC GBIR 10BYBY
CO2E 1.0000
p-value Na
IPI 0.1145 1.0000
p-value 0.4996 Na
EP -0.1567 0.2153 1.0000
p-value 0.3541 0.2007 Na
EC 0.3976 0.0398 -0.1854 1.0000
p-value 0.0148 0.8149 0.2719 Na
GBIR -0.4090 0.1200 0.8340 -0.4435 1.0000
p-value 0.0120 0.4790 0.0000 0.0060 Na
10YBY -0.5362 0.1349 0.7430 -0.4537 0.9285 1.000
p-value 0.0006 0.4259 0.0000 0.0048 0.0000 Na

Overall, the variables exhibit a mix of significant and non-significant correlations
amongst themselves. The correlation coefficients fall between -1 and 1, which is typical,
however, most p-values are greater than the conventional statistical threshold of 5%,

indicating that many of the observed correlations are not statistically significant.

Nonetheless, the correlation between energy prices (EP) and both green bonds
investment by pension funds (GBIR) and the 10-year benchmark yield (10YBY) is
relatively high (0.8340 and 0.7430, respectively) and statistically significant (p-value <
0.05). This suggests that the relationships between these variables are unlikely to be due to

random chance.

Additionally, the correlation between GBIR and 10YBY is very high, with a
correlation coefficient of 0.9285 and a p-value lower than 5%, indicating a potentially

meaningful relationship between these two variables.
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4.2. Stationarity Analysis

In this study, stationarity was assessed by examining the graphical representations of each
series, as well as their respective autocorrelation and partial autocorrelation functions (ACF
and PACF). Additionally, the Augmented Dickey-Fuller (ADF), Phillips-Perron (PP), and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests were employed.

From the graphical analysis, clear trends were observed in all series. In particular,
the GBIR, EP and 10YBY (figures Al, A2, A3, respectively) series exhibited increasing
trends, while the CO2E and EC series (figures A4 and A5, respectively) showed a decreasing
trend, indicating non-stationarity. On the other hand, the IPI (figure A6) series displayed
values closer to the mean, suggesting potential stationarity. Upon analysing the ACFs and
PACEFs of each variable (figures A7 — A12), an exponential decline was noted in the series,

indicating non-stationarity for all except the IPI series which hinted at stationarity.

Further examination using the ADF, PP and KPSS tests, it was confirmed that the
GBIR, COZ2E, EP and 10YBY variables were non-stationary at their initial level, achieving
stationary after computing the first differences. The EC variable required second
differencing for stationarity. Notably, the variable IPl was already stationary without the

need for differencing. Table 3 presents the results of the stationarity tests conducted.
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Table 3 — Unit Root Tests. Source: Own Elaboration.

ADF PP KPSS
Test Intercept Intercept + Intercept + Conclusion
Intercept Short
Trend Trend
CO2E -2.47 -2.37 -2.55 -2.49 0.06 ]
Non-Stationary
p-value 0.06 * 0.12 0.00*** 0.00*** 0.10*
A CO2E -3.61 -3.58 -5.57 -5.60 0.06 Stati
ationary
p-value 0.00*** 0.00*** 0.90 0.72 0.10*
IPI -5.29 -5.20 -7.00 -6.85 0.12 Stati
ationary
p-value 0.00*** 0.00*** 0.51 0.80 0.10*
EP -1.81 -0.71 -1.98 -0.60 0.64 )
Non-Stationary
p-value 0.00*** 0.01*** 0.00*** 0.00*** 0.02**
AEP -2.39 -3.07 -3.51 -4.08 0.10 Stati
ationary
p-value 0.01*** 0.00*** 0.00*** 0.00*** 0.05**
EC -0.43 -0.52 -0.95 -0.19 0.13 )
Non-Stationary
t-statistic p-value 0.60 0.41 0.00*** 0.00*** 0.02**
AEC -1.18 -1.26 -3.26 -3.41 0.12 )
Non-Stationary
p-value 0.02** 0.01*** 0.35 0.27 0.10*
A’EC -3.19 -3.40 -8.96 -9.53 0.12 Stati
ationary
p-value 0.00*** 0.00*** 0.01*** 0.01*** 0.10*
GBIR -1.27 -0.97 -1.11 -1.32 0.19 )
Non-Stationary
p-value 0.33 0.46 0.00*** 0.00*** 0.01***
AGBIR -3.96 -4.09 -6.53 -6.62 0.10 Stat
ationary
p-value 0.00*** 0.00*** 0.42 0.43 0.10*
10YBY -1.25 -1.09 -1.11 -0.89 0.13 )
Non-Stationary
p-value 0.24 0.33 0.00*** 0.00*** 0.01***
A10YBY -4.19 -4.17 -3.97 -4.00 0.17 Stationary
p-value 0.00*** 0.00*** 0.25 0.32 0.1*

Significance Codes: “***°0.01 “**’0.05 “*’0.1”’
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4.3. Lags Selection

Selecting the optimal number of lags is essential for effective VAR modelling, as the number
of lags significantly influences both the forecasting accuracy and the stability of the model.
Given that the lag length determines how many previous time periods are included in the
model to predict the current value, an incorrect number of lags can either lead to underfitting

or overfitting, both of which compromise the model's performance.

The most common method for determining the optimal number of lags in a VAR
model involves the use of information criteria, namely the Akaike Information Criterion
(AIC), the Hannan-Quinn Information Criterion (HQIC), the Schwarz Information Criterion
(also known as the Bayesian Information Criterion, BIC), and the Final Prediction Error
(FPE). These criteria balance model fit with model complexity, penalising the addition of
more parameters to avoid overfitting. Table 4 represents the optimal number of lags

selection criteria for this model.

Table 4 — Lag Selection Criteria. Source: Own Elaboration

Lags AlIC HQ SC FPE
1 -42.38 -41.81 -40.34 0.00
2 -42.04 -40.98 -38.24 0.00
3 -47.30 -45.76 -41.74 0.00
4 -Inf* -Inf* -Inf* NaN
5 -Inf -Inf -Inf 0.00*

*Indicates lag order selected by the criterion

The analysis reveals a consistent trend across multiple criteria, indicating the optimal
lag for the VAR model. While AIC, HQ, and SC converge on the 4th lag as optimal, FPE
suggests considering the 5th lag. However, it's crucial to note the sharp decline in values (to
-Inf or zero) for all criteria beyond the 5th lag. This pattern suggests that incorporating more
than 5 lags leads to overfitting, where the model captures noise instead of the underlying

signal.

Therefore, based on this analysis, the 4th lag will be used to ensure a balanced model

that maximizes forecasting accuracy while maintaining stability.
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4.4. Diagnostic Tests

For VAR models to be considered adequate and reliable, the residuals must have three
properties: follow a normal distribution, be uncorrelated over time, and exhibit constant
variance. To ensure that these criteria are being met, it’s necessary to perform diagnostic

tests on the residuals.

4.4.1. Normality of the Residuals

To validate that the residuals in each equation conform to a normal distribution, the Jarque-
Bera (JB) test, introduced by Jarque and Bera (1987), is employed. This test aims to evaluate
whether the residuals exhibit a distribution similar to the normal curve. In addition, the
skewness test, which assesses the asymmetry of the distribution, as well as the kurtosis test,
which measures the tail heaviness of the distribution, were applied as both tests can indicate

deviations from a normal distribution.

The null hypothesis (Ho) of these tests imply that the data adheres to a normal
distribution. Should the associated p-value fall below the significances levels the null
hypothesis is rejected, indicating compelling evidence that the data does not conform to a

normal distribution. The results are presented in Table 5.

Table 5 — Normality Tests. Source: Own Elaboration

Test Chi-squared df p-value
JB 7.35 12 0.83
Skewness 1.73 6 0.94
Kurtosis 5.62 6 0.47

The results show that the p-values associated with all three tests are not significant,
as all are above the typical significance levels, consequently, the null hypothesis for each
test is not rejected, meaning that the residuals follow a multivariate normal distribution, and

their skewness and kurtosis are consistent with that distribution.

In summary, these tests provide no strong evidence to suggest that the residuals of
the VAR model deviate significantly from a multivariate normal distribution, therefore, the
assumptions of normality, skewness, and kurtosis are reasonably met by the residuals of the
VAR model.2
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44.2. Residual Autocorrelation

To assess the autocorrelation of the residuals, the LM test proposed by Breusch-Godfrey
was performed. The Breusch-Godfrey LM test is a statistical test used to detect the presence
of autocorrelation in the residuals of a regression model, particularly useful for evaluating

multivariate models, such as a VAR model.

The null hypothesis (Ho) of the Breusch-Godfrey LM test states that there is no
autocorrelation in the residuals up to the specified lag. The alternative hypothesis (H1) posits
that there is autocorrelation in the residuals. The results are presented in Table 6.

Table 6 — Autocorrelation Test. Source: Own Elaboration

Test Chi-squared df p-value

Breusch-Godfrey LM 186 180 0.36

The results show that the p-value is not significant at the 5% significance level
consequently, we fail to reject the null hypothesis for the test, meaning that there is sufficient
evidence to conclude that there is no autocorrelation in the residuals of the model up to the
4" lag.

This lack of autocorrelation supports the adequacy and reliability of the VAR model,

indicating that the model’s residuals are uncorrelated over time.
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4.4.3. Heteroskedasticity Test

To assess whether the assumption of constant error variance in the VAR model holds true,
an analysis of heteroskedasticity, using the ARCH (Autoregressive Conditional

Heteroskedasticity) test was conducted.

This test aims to investigate whether it exists a systematic pattern of conditional
heteroskedasticity within the residuals of the VAR model, by examining whether the squared

residuals exhibit serial correlation over time.

In the ARCH test, the null hypothesis (Ho) is that there is no conditional
heteroskedasticity in the residuals, meaning that the variance of the residuals is constant
over time. The alternative hypothesis (H1) tests for conditional heteroskedasticity in the
residuals, indicating that the variance of the residuals is not constant and exhibits some
systematic pattern or dependence on past values. The results of the test are presented in
Table 7.

Table 7 — Heteroskedasticity Test. Source: Own Elaboration.

Test Chi-squared df p-value
ARCH test 546 2205 1

The test shows a p-value of 1, suggesting that there is no evidence of autocorrelation
in the squared residuals, which is indicative of no ARCH effects. This implies that the
variance of the residuals in the VAR model does not exhibit a systematic pattern of
dependence on past values, therefore, the assumption of homoskedasticity (constant

variance) in the residuals is met.

This finding enhances the reliability of the VAR model, indicating that the
assumption of constant error variance holds true, thereby contributing to the robustness of

the model's forecasts.
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4.5. Causality Test

Causality tests aim to determine the direction and strength of the relationship between two

or more variables, in order to investigate the causal relationships among variables.

The commonly causality tests used in VAR analysis is the Granger causality test,
which assesses whether one variable in a VAR model can help predict another variable
beyond its own lagged values and the lagged values of the other variable(s) in the model,

essentially, evaluating whether one variable "Granger-causes™ another variable.

In the context of this research, for the Granger Causality test, the null hypothesis
(Ho) tests whether changes in the Green Bond Investment Ratio (GBIR) Granger-cause
changes in CO2E, IPI, EP and 10YBY. The results are presented in Table 8.

Table 8 — Causality Test. Source: Own Elaboration.

Model F-Test Residual df p-value
CO2E 5.78 25 0.00***

IPI 1.23 25 0.33

EP 0.87 25 0.52

EC 1.96 24 0.13
10YBY 3.95 25 0.01***

Significance. Codes: “***’0.01 “**’0.05 *’0.1’

The analysis reveals varied degrees of causality between GBIR, and the dependent
variables examined. Specifically, the relationship between GBIR and COZ2E shows a
statistically significant result with a strong F-statistic and a p-value indicating significance
at the 1% level. This suggests that past values of GBIR Granger-cause changes in CO2E.

Regarding 10YBY, the analysis reveals a significant relationship with GBIR,
evidenced by a p-value significant at the 1% level, implying that lagged values of GBIR

Granger-cause changes in 10YBY at this significance level.

Conversely, the tests for IP1, EP and EC do not demonstrate a significant relationship
with GBIR, indicating that lagged values of GBIR do not Granger-cause changes in IPI or
EP.
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4.6. VAR Analysis

Vector Autoregression models offer a robust framework for delving into the complex
interactions among the six endogenous variables in their differenced from: CO2E, GBIR,
IP1, EP, EC and 10YBY, aiming to show the nuanced connections between fluctuations in

green bond investments by pension funds and CO2 emissions.

Tables Al to A6 shows the results of the estimated values in the VAR model, with a
lag order of 4 (p=4) and including a constant term. Overall, the statistical analysis reveals
varying degrees of explanatory power and model fit, with some equations demonstrating
significant relationships concerning certain lagged variables, while others exhibit weak or

insignificant effects.

The analysis unveils a negative and significant lag (I3) for industrial production
index (IPI) concerning CO2 emissions, indicating a potential adverse effect of industrial
activities on environmental sustainability suggesting that a one-unit increase in industrial
production leads to a corresponding increase in CO2 emissions in the subsequent period,

underscoring the short-term contribution of industrial activity to higher CO2 emissions.

However, it's noteworthy that equations related to the green bond investment ratio,
10-year bond vyield, industrial production and electricity consumption do not exhibit

statistical significance, suggesting minimal impact of their past values.

The equation for EP reveals a significant negative impact observed at the 10% level
at EC. I1, suggesting that changes in electricity consumption have an immediate positive
effect on energy prices. The substantial positive coefficient for GBIR.I3 implies that
investments on green bonds (captured by GBIR) have a more delayed but significant effect

on energy prices.

Moving forward, the analysis will delve deeper into the implications of these
findings through Impulse Response Function (IRF) and Forecast Error Variance
Decomposition (FEVD) analyses. These additional analyses will provide further insights
into the short-term and long-term effects of shocks to green bond investments and CO2
emissions, enriching our understanding of the complex dynamics at play in the intersection

of finance and environmental sustainability.
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4.6.1. Impulse Response Function Analysis

The Impulse Response Function (IRF) is an analytical tool used in VAR models, to examine
how one variable in a system responds to a shock in another variable over time. When a
variable in a VAR model is perturbed by a positive shock of one unit at a specific time
period, the IRF illustrates how other variables in the system react to this shock over several

subsequent periods.

In this research, the IRFs are orthogonalized—known as Orthogonal Impulse
Response Functions (OIRFs)—where the shocks are uncorrelated or orthogonal, meaning
that each shock can be interpreted as an isolated event, independent of the others.

Since the aim of this research is to analyse the impact of green bond investments
by pension funds on CO2 emissions, the IRF was computed to illustrate how a shock to
the variable "GBIR" affects the remaining variables over time. The results are presented in

Figure 2 below, along with the coefficients provided in Table A2.
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Figure 2 - Orthogonal IRF of the Variables. Source: Own Elaboration
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The impulse response analysis reveals intriguing dynamics between green bond
investments by pension funds (GBIR) and the remaining variables, particularly CO2

emissions.

Initially, the coefficients suggest that a shock in green bond investments may not
have a significant immediate impact on CO2 emissions, as indicated by the coefficients
close to zero (the coefficients for periods 1 through 3 range from -0.0098 to -0.025,
indicating a slight reduction in emissions, but not statistically significant as evidenced by
the confidence intervals). However, in the short term (periods 4 to 7) the impact on CO2

emissions becomes more positive, suggesting an increase in emissions.

From period 8 onwards, the positive impact on CO2 emissions continues, peaking at
period 11, indicating a more substantial increase in emissions. The negative coefficients in
periods 9 and 10 suggest some fluctuations in the impact, but the overall trend indicates a

positive influence of green bond investments on CO2 emissions.

The response of the remaining variables exhibits similar patterns. The 10YBY
responds positively and increasingly over time, peaking around the 6" and 10" periods
suggesting higher yields demanded by investors as investments in green bonds increase.
After peaking, the 10YBY gradually declines, suggesting a stabilization or reduction in the

premium required by investors.

Regarding EP, the response is slightly negative initially, turning positive from the
2" period onwards, indicating a positive response to green bond investments. In addition,
the response from EC to shocks from GBIR fluctuates, peaking around the 8" period, turning

negative until period 10, and then increasing thereafter.

The coefficients for IPI start positive but become negative in period 2 and 3, with a
positive spike around the 8" and 9™ periods, suggesting that green bond investments
positively impact industrial production during this time. However, after reaching this peak,

a subsequent decrease indicates that the impact may not be sustained over time.

The impulse response analysis indicates that green bond investments by pension
funds initially have a negligible or mixed effect on CO2 emissions, with some fluctuations
in the short term. However, over time, the investments appear to have a positive influence
on CO2 emissions, contrary to the expectation that green investments would reduce

emissions.
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4.6.2. Variance Decomposition Analysis

Variance decomposition analysis, employed through techniques like Forecast Error Variance
Decomposition (FEVD), serves as a powerful tool in understanding the intricate dynamics
within VAR models.

In the context of VAR models, FEVD is used to analyse the proportion of the forecast
error variance of each variable that is attributable to shocks from each variable in the system,
helping to understand the dynamic interactions and the relative importance of different

shocks over time.

In order to analyse the impact of green bond investments by pension funds on CO2
emissions, it was identified the proportion of the forecast error variance of COZ2E attributed
to GBIR in different time periods, which allowed for an understanding of how changes in

GBIR influence the forecasts of CO2E and, by extension, CO2 emissions.

Therefore, by interpreting the FEVD, it is possible to identify the periods in which
GBIR has a more significant impact on CO2 emissions. The results are presented in figure

3 and coefficients for each variable are presented in Table A3.
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Figure 3 - FEVD of the variables. Source: Own Elaboration
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Initially, Green Bond Investments (GBIR) are fully explained by their own
variability over time, and while their influence on its own forecast error decreases, it remains
relatively high throughout (36.76% in period 10). Contributions from CO2 Emissions
increases, explaining about 29.47% of the forecast error variance after 10 periods, while EP

explains 23.75% at period 10, indicating an influence of both variables on GBIR.

Turning to CO2E, there’s a similar initial patter where nearly all the forecast error
variance (72.23%) is due to its own shocks. However, by the tenth period, this self-
explanatory power diminishes to 28.33%, with significant contributions from GBIR
(33.65%) indicating that shocks in green bond investments explain a notable portion of the
variance in CO2 emissions. On the other hand, fluctuations in energy prices also have a
moderate effect on CO2E explaining about 23.91% in period 10 while contributions from
10YBY, IPI and EC have minimum effect.

Regarding the IPI, it exhibits a notable pattern where its forecast error variance is
initially driven largely by itself (52.07%) and CO2E (47.72%). Although its own
explanatory power decrease, CO2E remains significant across all periods (decreasing
slightly, to 40% at period 10) suggesting that CO2 emissions affect industrial production to
a moderate extent. The influence of GBIR and EP increases moderately by period 10
(20.51% and 20.31%, respectively) indicating that green bond investments and energy

prices have a growing impact on industrial production over time.

For EP, the initial forecast error variance is largely explained by itself (53%) but this
influence decreases significantly over time (to just 12.15% at period 10). By the tenth period,
the variance explained by CO2E (21.26%), GBIR (22.31%) and 10YBY (37.47%) also
contributes significantly, suggesting that investments in green bonds and the 10-year bond
yields are critical drivers of energy prices over time, possibly due to their influence on
investment decision in energy sectors. Similarly, changes in CO2 emissions strongly affect

energy prices, likely through energy production costs.

Initially, EC is largely explained by CO2E (61.67%) and although this influence
decreases overtime, it remains marginally high (at 32.89% in period 10), suggesting that
CO2 emissions have a lasting impact on electricity consumption. On the other hand, GBIR
and EP also have some influence in EC explaining about 35.03% and 20.87% respectively
at period 10 implying that green bond investments and energy prices also play significant

roles in driving economic activity.
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Finally, looking at 10YBY in the first period the majority (77.74%) of the forecast
error variance is attributed to itself, however this influence decreases to 12.23% in period
10. By that time, CO2 emissions and EP explain respectively, 25.99% and 21.44% of the
10YBY forecast variance, indicating a strong initial impact of environmental factors on the
variable. Still, but the largest contribution comes from Green Bond Investments, which

contribute 36.17% to the forecast error variance of 10YBY in period 10.

To conclude, the FEVD shows significant interconnectedness among the variables.
The green bond investments by pension funds emerge as a significant driver for most

variables, influencing CO2 emissions, energy prices and industrial production over time.
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4.7. Robustness Assessment

Given the complexity and sensitivity of VAR models to different specifications, it is crucial
to test the stability of the findings under various conditions. This assessment involved re-
estimating the VAR model using various adjustments, such as experimenting with different
variable orderings, and testing alternative model versions, including the removal of
electricity consumption or energy prices, which could be influenced by industrial production

and electricity consumption.

Despite these modifications, the re-estimated models consistently produced nearly
identical impulse response functions, demonstrating that the results were robust to changes
in variable sequencing and model specifications, reinforcing the stability of the findings.

The robustness checks greatly strengthened the credibility of the VAR model,
offering a reliable basis for the conclusions drawn from the impulse response functions. By
thoroughly examining these variations, it’s shown that the conclusions are not reliant on any
particular model configuration, thus further validating the insights gained from the impulse

response functions.
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Conclusion

This study examined pension fund investments in green bonds, focusing on their

contributions to green finance and their impact on CO2 emissions.

One key aspect of the study was assessing the extent of these investments through
the Green Bond Investment Ratio (GBIR), which demonstrated a consistent upward trend,
increasing from 4.21% in December 2020 to 9.42% by December 2023, despite fluctuations.
This growth represents a commitment by pension funds to integrate green bonds into their

portfolios and support environmentally sustainable investments.

To understand how green bond investments contribute to reducing CO2 emissions,
the study analysed the interactions among six endogenous variables: CO2 emissions
(COZ2E), Green Bond Investment Ratio (GBIR), Industrial Production Index (IPI), Energy
Prices (EP), Energy Consumption (EC), and 10-Year Bond Yields (10YBY), using a VAR

model.

The IRF analysis showed that a sudden increase in green bond investments initially
has little immediate impact on CO2 emissions. This outcome is expected, as green bond-
funded projects typically require time for development and implementation before their
environmental benefits, such as CO2 reduction, can materialise. Investments in green bonds
are often directed toward long-term infrastructure and sustainability projects, such as
renewable energy facilities, energy efficiency upgrades, or sustainable transport, which take
time to become fully operational, and, as a result, the immediate impact on CO2 emissions

is not evident right away.

In the early stages of the analysis, the coefficients suggested a modest reduction in
CO2 emissions, although this change was not statistically significant. However, in the short
term the trend reversed, revealing an unexpected increase in emissions. This result
contradicts prior expectations, including findings from Al Mamun et al. (2022), which

indicated that green bond issuance is negatively correlated with CO2 emissions.

This counterintuitive result may be explained by the nature of green bond projects,
which often require intensive construction, manufacturing, or initial energy use during their
early stages, which are carbon-intensive activities, making these upfront emissions

outweigh the long-term environmental benefits.
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However, while initial CO2 emissions are primarily driven by their own shocks,
green bond investments increasingly explain a substantial portion of the variance in CO2
emissions over time. So, it’s expected that as these projects mature and become operational,

the long-term environmental benefits of green bonds start to manifest.

In summary, the findings of this study emphasise the importance of understanding
the temporal dynamics of green investments. They underscore that green bond investments
may not yield immediate reductions in CO2 emissions, highlighting the importance of
understanding the delayed impact of these investments. Investors, policymakers, and
stakeholders need to recognize that while green bonds are designed to promote

environmental sustainability, their benefits often take time to manifest.

Moreover, the study revealed a short-term increase in CO2 emissions associated with
green bond-funded projects. This increase can be attributed to the carbon-intensive activities
involved in the early stages of project development, such as construction and manufacturing.
To address this, it is crucial for policymakers and project developers to implement strategies
that mitigate these upfront emissions. This could involve adopting carbon management
practices or utilizing cleaner technologies during the construction phase to offset the initial
carbon footprint.

Despite the short-term rise in emissions, the consistent growth in the Green Bond
Investment Ratio (GBIR) reflects a strong commitment by pension funds towards
environmentally sustainable investments. This trend reinforces the idea that green finance
is gaining traction and supports the need for continued investment in green bonds. Investors
and financial institutions should align their strategies with this understanding, focusing on

the long-term environmental benefits rather than expecting immediate results.

While the research offers valuable insights into the impact of green bond
investments on CO2 emissions, it is crucial to acknowledge the study's limitations and
recognise that certain constraints may affect the scope and applicability of the results. This
study is subject to some limitations, primarily related to data constraints, model

specification, and external validity.
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Firstly, the study faces data limitations concerning sample size and time frame.
Given that green bond investments are a relatively recent development, the analysis relies
on just 37 monthly observations, which may affect the broader applicability of the results.
Additionally, the short time frame (December 2020 to December 2023) may not fully
capture long-term trends of green bond investments. This period is also significantly
affected by the COVID-19 pandemic, which may have influenced market dynamics and

investment behaviours in ways that could’ve affected the results.

Secondly, the study's findings are specific to the Euro Area and may not be directly
applicable to different economic environments or regions without further adjustments.
Thirdly, although the VAR model employed in this study effectively captures dynamic
interactions, it may not adequately address non-linear effects or complex interactions that
other methodologies, such as structural or non-linear time series models, might capture more

effectively.

Lastly, it is important to note that the confidence intervals provided for the impulse
response functions of the variables don’t reveal statistically significant results, thereby
leaving open the possibility of a null effect. Therefore, although the study offers valuable
perspectives on the interactions between green bond investments and various economic and

environmental indicators, these findings should be interpreted with caution.

To address these limitations, future research could start by exploring alternative data
sources, by examining the long-term effects of green bond investments on environmental
and economic variables over a longer period of time. In addition, expanding the analysis to
include cross-country comparisons would help determine whether the findings are

consistent across different economic contexts or are specific to particular regions.

Employing more advanced methodologies for data validation could also be
beneficial. Examining non-linear relationships and potential structural breaks in the data
could offer deeper insights into the dynamics of green finance and its economic and
environmental impacts. While this study recognizes the complexity of these relationships
and explores them within the constraints of the VAR model, future research could benefit
from applying more sophisticated modelling techniques to gain deeper insights.
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Table A1 — VAR Estimation Results. Source: Own Elaboration

VAR Estimation Results:

Endogenous variables: diffco2e, diffGBIrR, diffBY, IPI, diffEP, diff2EC
Deterministic variables: const

Sample size: 31

Log Likelihood: 638.478

Roots of the characteristic polynomial:

1.293 1.293 0.9981 0.9981 0.9464 0.9464 0.9435 0.9435 0.935 0.935 0.93
47 0.9172 0.9172 0.909 0.8799 0.8799 0.8662 0.8662 0.8573 0.8573 0.814
6 0.8146 0.6888 0.5685

call:

VAR(y = dataseries, p = 4, type = "const")

Estimation results for equation diffCO2E:

diffCco2E = diffco2e.11 + diffGBIR.T11 + diffBY.11 + IPI.11 + diffEP.T11

+ diff2eC.11 + diffco2e.12 + diffGBIR.12 + diffBY.12 + IPI.12 + diffEP
12 + diff2ec.12 + diffco2e.13 + diffGBIR.13 + diffBY.13 + IPI.13 + di
ffEP.13 + diff2eEC.13 + diffCco2E.14 + diffGBIR.14 + diffBY.14 + IPI.T14

+ diffep.14 + diff2eEC.14 + const

Estimate sStd. Error t value Pr(>|tl|)
diffco2e.11 -0.301886 0.689310 -0.438 0.6767

diffGBIR.11-2.126989 3.690344 -0.576 0.5853
diffey.11 -0.043238 0.049558 -0.872 0.4165
IPI.T1 0.415012 0.589079 0.705 0.5075
diffep.11 -0.702927 0.602557 -1.167 0.2876
diff2EC.11 0.004143 0.407064 0.010 0.9922
diffCco2e.12 -0.460232 0.695214 -0.662 0.5326
dittGBIR. 12 -0.222872 4.024609 -0.055 0.9576
diffey.12 -0.044280 0.062325 -0.710 0.5041
IPI.12 -0.427891 0.607598 -0.704 0.5077
diffeEpP.12 0.064218 0.645391 0.100 0.9240
diff2ec.12 0.737173 0.797305 0.925 0.3909
diffco2e.13 0.240329 0.569529 0.422 0.6877
diffGBIR.13 3.754929 3.990649 0.941 0.3831
diffey.13 0.023824 0.047652 0.500 0.6349
IPI.13 -1.063861 0.500381 -2.126 0.0776
diffep.13 0.035295 0.679204 0.052 0.9602
diff2eCc.13 1.096224 0.694715 1.578 0.1657
diffco2e.14 -0.312785 0.671777 -0.466 0.6579
dittGBIR.14 2.077913 5.006107 0.415 0.6925
diffey.14 0.015044 0.048719 0.309 0.7679
IPI. T4 -0.421590 0.549610 -0.767 0.4721
diffep.14 0.613610 0.658817 0.931 0.3876
diff2ec.14 0.805824 0.709258 1.136 0.2992
const 3.032180 2.930054 1.035 0.3406
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 “ ' 1

Residual standard error: 0.03127 on 6 degrees of freedom
Multiple R-Squared: 0.7554, Adjusted R-squared: -0.2228
F-statistic: 0.7722 on 24 and 6 DF, p-value: 0.7029
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Estimation results for equation diffGBIR:

diffGBIR = diffco2e.11 + diffGBIR.T11 + diffBY.11 + IPI.11 + diffEP.T11

+ diff2ec.11 + diffco2e.12 + diffGBIR.12 + diffBY.12 + IPI.12 + diffEP
.12 + diff2ec.12 + diffco2e.13 + diffGBIR.13 + diffBY.13 + IPI.13 + di
ffEP.13 + diff2eCc.13 + diffco2e.14 + diffGBIR.14 + diffBY.14 + IPI.T14

+ diffeEP.14 + diff2EC.14 + const

Estimate Std. Error t value Pr(>|t])

diffCco2E.11 -4.444e-02 9.002e-02 -0.494 0.639
diffGBIR.11 -3.593e-01 4.819e-01 -0.746 0.484
diffBY.11 -6.949e-03 6.472e-03 -1.074 0.324
IPI.11 -4,268e-02 7.693e-02 -0.555 0.599
diffEp.11 2.734e-02 7.869e-02 0.347 0.740
diff2eCc.11 2.875e-02 5.316e-02 0.541 0.608
diffCco2E.12 6.398e-02 9.079e-02 0.705 0.507
diffGBIR.12 -1.446e-01 5.256e-01 -0.275 0.792
diffBy.12 -3.005e-03 8.139e-03 -0.369 0.725
IPI.12 2.720e-02 7.935e-02 0.343 0.743
diffEP.12  3.495e-02 8.429e-02 0.415 0.693
diff2eEC.12 -8.799e-02 1.041e-01 -0.845 0.430
diffco2e.13 -3.215e-02 7.438e-02 -0.432 0.681
diffGBIR.13 4.096e-01 5.212e-01 0.786 0.462
diffBYy.13 2.204e-03 6.223e-03 0.354 0.735
IPI.13 4.772e-02 6.535e-02 0.730 0.493
diffEp.13 5.234e-02 8.870e-02 0.590 0.577
diff2eEC.13 -4.920e-02 9.073e-02 -0.542 0.607
diffCo2E.14 -2.959e-02 8.773e-02 -0.337 0.747
diffGBIR.14 -3.973e-01 6.538e-01 -0.608 0.566
diffBy.14 -5.984e-03 6.363e-03 -0.941 0.383
IPI. 14 3.578e-05 7.178e-02 0.000 1.000
diffeEp.14 -2.716e-02 8.604e-02 -0.316 0.763
diff2eC.14 4.057e-02 9.263e-02 0.438 0.677
const -6.230e-02 3.827e-01 -0.163 0.876

Residual standard error: 0.004084 on 6 degrees of freedom
Multiple R-Squared: 0.6873, Adjusted R-squared: -0.5633
F-statistic: 0.5496 on 24 and 6 DF, p-value: 0.8624
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Estimation results for equation diffBY:
diffBYy = diffco2e.11 + diffGBIR.11 + diffBY.11 + IPI.11 + diffEP.11 +
diff2eCc.11 + diffco2e.12 + diffGBIR.12 + diffBY.12 + IPI.12 + diffEP.]
2 + diff2ec.12 + diffco2e.13 + diffGBIR.13 + diffBY.13 + IPI.13 + diff
EP.13 + diff2EC.13 + diffCco2E.14 + diffGBIR.14 + diffBY.14 + IPI.14 +
diffep.14 + diff2EC.14 + const
Estimate Std. Error t value Pr(>|t])
diffco2e.111.6301  5.4953 0.297 0.777
diffGBIR.1131.2064 29.4200 1.061 0.330
diffBy.11 0.4341 0.3951 1.099 0.314
IPI.T1 4.2082 4.6962 0.896 0.405
diffeEp.11 0.6450 4.8037 0.134 0.898
diff2EC.11 -2.5690 3.2452 -0.792 0.459
diffco2E.12 -5.3459 5.5423 -0.965 0.372
diffGBIR.12 19.6872 32.0848 0.614 0.562
diffBy.12 -0.1311 0.4969 -0.264 0.801
IPI.T2 0.9219 4.8439 0.190 0.855
diffep.12 7.0356 5.1451 1.367 0.221
diff2eCc.12 -1.6241 6.3562 -0.256 0.807
diffco2E.134.1810 4.5404 0.921 0.393
diffGBIR.13 -29.7641 31.8140 -0.936 0.386
diffBy.13 0.3486 0.3799 0.918 0.394
IPI.T3 6.8841 3.9891 1.726 0.135
diffEP.13  -4.2480 5.4147 -0.785 0.463
diff2eCc.13 -1.8282 5.5384 -0.330 0.753
diffCco2e.14 -6.2054 5.3555 -1.159 0.291
diffGBIR.14 42.9557 39.9094 1.076  0.323
diffBy.14 -0.3483 0.3884 -0.897 0.404
IPI. 14 1.5519 4.3816 0.354 0.735
diffep.14 -1.9357 5.2522 -0.369 0.725
diff2ec.14 3.3229 5.6543 0.588 0.578
const -27.5432 23.3588 -1.179 0.283
Residual standard error: 0.2493 on 6 degrees of freedom
Multiple R-Squared: 0.8324, Adjusted R-squared: 0.1621
F-statistic: 1.242 on 24 and 6 DF, p-value: 0.4242
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Estimation results for equation IPI:
IPI = diffco2e.11 + diffGBIR.11 + diffBY.11 + IPI.11 + diffEP.11 + dif
f2EC.11 + diffCc02E.12 + diffGBIR.12 + diffBY.12 + IPI.12 + diffEP.12 +
diff2eCc.12 + diffco2e.13 + diffGBIR.13 + diffBY.13 + IPI.13 + diffEP.]
3 + diff2eEC.13 + diffco2E.14 + diffGBIR.14 + diffBY.14 + IPI.T4 + diff
EP.14 + diff2EC.14 + const
Estimate Std. Error t value Pr(>|t]|)
diffco2e.11 -0.354972 0.592372 -0.599 0.571
diffGBIR.11-0.369966 3.171369 -0.117 0.911
diffBy.11 0.018471 0.042589 0.434 0.680
IPI.11 0.329402 0.506237 0.651 0.539
diffep.11 -0.147081 0.517819 -0.284 0.786
diff2EC.11 -0.201371 0.349818 -0.576 0.586
diffco2E.12 -0.062003 0.597445 -0.104 0.921
diffGBIR.12 0.014449 3.458626 0.004 0.997
diffey.12 -0.043017 0.053560 -0.803 0.453
IPI.12 0.270463 0.522151 0.518 0.623
diffEp.12 -0.163020 0.554629 -0.294 0.779
diff2ec.12 -0.665551 0.685179 -0.971 0.369
diffco2E.130.418630 0.489436 0.855 0.425
diffGBIR.131.649679 3.429442 0.481 0.648
diffBy.13 0.020501 0.040951 0.501 0.634
IPI.13 -0.272506 0.430012 -0.634 0.550
diffep.13 0.162059 0.583687 0.278 0.791
diff2eCc.13 0.004988 0.597016 0.008 0.994
diffco2e.14 -0.514233 0.577305 -0.891 0.407
diffGBIR.14 1.296211 4.302095 0.301 0.773
diffBy.14 0.027928 0.041868 0.667 0.530
IPI. 14 -0.479201 0.472318 -1.015 0.349
diffep.14 0.120137 0.566167 0.212 0.839
diff2ec.14 1.121374 0.609514 1.840 0.115
const 2.325521 2.517998 0.924 0.391
Residual standard error: 0.02688 on 6 degrees of freedom
Multiple R-Squared: 0.8553, Adjusted R-squared: 0.2766
F-statistic: 1.478 on 24 and 6 DF, p-value: 0.3303
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Estimation results for equation diffEP:

diffep = diffco2e.11 + diffGBIR.11 + diffBY.11 + IPI.T1 + diffEP.11 +

diff2eCc.11 + diffco2e.12 + diffGBIR.12 + diffBY.12 + IPI.12 + diffEP.]
2 + diff2ec.12 + diffco2e.13 + diffGBIR.13 + diffBY.13 + IPI.13 + diff
EP.13 + diff2ec.13 + diffco2e.14 + diffGBIR.14 + diffBY.14 + IPI.14 +

diffepr.14 + diff2EC.14 + const

Estimate Std. Error t value Pr(>|t])
diffco2e.11 -0.744357 0.466969 -1.594 0.1620
diffGBIR.110.144612 2.500001 0.058 0.9558
diffBy.11 -0.058710 0.033573 -1.749 0.1309
IPI.11 -0.416438 0.399068 -1.044 0.3369
diffep.11 0.095403 0.408198 0.234 0.8230
diff2ec.11 0.557824 0.275763 2.023 0.0895
diffco2e.12 -0.011366 0.470968 -0.024 0.9815
diffGBIR.12 0.176566 2.726446 0.065 0.9505
diffBy.12 0.007915 0.042222 0.187 0.8575
IPI.12 -0.651034 0.411613 -1.582 0.1648
diffeEp.12 -0.230426 0.437216 -0.527 0.6171
diff2ec.12 0.838388 0.540129 1.552 0.1716
diffco2E.13 -0.031631 0.385824 -0.082 0.9373
diffGBIR.13 5.704493 2.703441 2.110 0.0794
diffBy.13 0.019945 0.032282 0.618 0.5594
IPI.13 -0.556058 0.338980 -1.640 0.1520
diffep.13 0.563957 0.460122 1.226 0.2662
diff2eC.13 0.728942 0.470630 1.549 0.1724
diffCco2E.14 0.447658 0.455091 0.984 0.3633
diffGBIR.14 1.070280 3.391356 0.316 0.7630
diffBy.14 0.026107 0.033005 0.791 0.4590
IPI. 14 -0.252468 0.372330 -0.678 0.5230
diffep.14 0.195373 0.446311 0.438 0.6769
diff2eEC.14 0.186596 0.480482 0.388 0.7112
const 3.790490 1.984947 1.910 0.1048

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 “.” 0.1 * ' 1

Residual standard error: 0.02119 on 6 degrees of freedom
Multiple R-Squared: 0.8753, Adjusted R-squared: 0.3767
F-statistic: 1.755 on 24 and 6 DF, p-value: 0.2497
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Estimation results for equation diff2EC:

diff2eCc = diffco2e.11 + diffGBIR.11 + diffBY.11 + IPI.11 + diffEP.11 +
diff2eCc.11 + diffco2e.12 + diffGBIR.12 + diffBY.12 + IPI.12 + diffEP.]
2 + diff2ec.12 + diffco2e.13 + diffGBIR.13 + diffBY.13 + IPI.13 + diff
EP.13 + diff2ec.13 + diffco2e.14 + diffGBIR.14 + diffBY.14 + IPI.14 +

diffepr.14 + diff2EC.14 + const

Estimate Std. Error t value Pr(>|t])

diffco2e.11-0.701617 1.113276 -0.630 0.552
diffGBIR.11 2.416441 5.960122 0.405 0.699
diffBy.11 -0.009788 0.080039 -0.122 0.907
IPI.11 0.940988 0.951397 0.989 0.361
diffep.11 0.175531 0.973164 0.180 0.863
diff2eCc.11 -0.492038 0.657431 -0.748 0.482
diffco2e.12 -0.207046 1.122811 -0.184 0.860
diffGBIR.121.173350 6.499979 0.181 0.863
diffBy.12 -0.063613 0.100658 -0.632 0.551
IPI.12 1.190238 0.981306 1.213 0.271
diffEp.12 -0.014566 1.042344 -0.014 0.989
diff2eC.12 -1.049468 1.287694 -0.815 0.446
diffCco2e.13 -0.451682 0.919823 -0.491 0.641
diffGBIR.13 8.176496 6.445132 1.269 0.252
diffBy.13 0.054757 0.076962 0.711 0.503
IPI.13 0.522126 0.808144 0.646 0.542
diffEp.13  0.194515 1.096954 0.177 0.865
diff2ec.13 0.558296 1.122005 0.498 0.636
diffCco2E.14 -1.612609 1.084959 -1.486 0.188
diffGBIR.14 -2.993975 8.085155 -0.370 0.724
diffBy.14 -0.100846 0.078684 -1.282 0.247
IPI. 14 0.387654 0.887652 0.437 0.678
diffep.14 -0.034511 1.064028 -0.032 0.975
diff2ec.14 1.816904 1.145492 1.586 0.164
const -6.171830 4.732208 -1.304 0.240

Residual standard error: 0.05051 on 6 degrees of freedom
Multiple R-Squared: 0.7384, Adjusted R-squared: -0.3078
F-statistic: 0.7058 on 24 and 6 DF, p-value: 0.7509

Covariance matrix of residuals:

diffco2e diffGBIR diffBY IPI diffep dif
ZEE%C02E9.781e—04 -6.668e-05 -2.015e-03 5.806e-04 3.122e-04 1.240
g%?%GBIR—G.GGSe—OS 1.668e-05 4.802e-04 -3.710e-05 -2.867e-05 2.381
S%ggBY -2.015e-03 4.802e-04 6.216e-02 -1.351e-03 -2.725e-03 -1.071
%;gi 5.806e-04 -3.710e-05 -1.351e-03 7.223e-04 8.314e-05 9.839
a-

diffEP 3.122e-04 -2.867e-05 -2.725e-03 8.314e-05 4.489e-04 5.611
e-05
diff2eEC 1.240e-03 2.38le-06 -1.071e-05 9.839e-04 5.611e-05 2.551
e-03

Correlation matrix of residuals:

diftCO02E diffGBIR diffBY IPI diffEP dift2EC
diffCo2E 1.0000 -0.52202 -0.2584803 0.6908 0.47117 0.7852551
diffGBIR -0.5220 1.00000 0.4715465 -0.3380 -0.33128 0.0115406

diffBY -0.2585 0.47155 1.0000000 -0.2016 -0.51585 -0.0008504
IPI 0.6908 -0.33802 -0.2015983 1.0000 0.14601 0.7247846
diffEP 0.4712 -0.33128 -0.5158458 0.1460 1.00000 0.0524293

diff2EC 0.7853 0.01154 -0.0008504 0.7248 0.05243 1.0000000
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Table A2 — Impulse Response Coefficients. Source: Own Elaboration

Impulse response coefficients

$diffGBIR

diffCO2E
[1,] 0.000000000

[2!_

-0.009775475
1 -0.002454922
1 0.019282071
1 0.004186145
1 0.003483954
1 0.031099472
1 0.034545700
1 -0.009738038
] -0.009422080

[11.] 0.038930166

diffBYy

09839644
.18733067
.17039813
.08235656
.34360287
55983640
.33514211
.18144619
.59785515
.65911742

0.

0
0
0
0
0.
0
0
0
0

IPT
0.0007119705
-0.0032390108
-0.0194869379
-0.0206645578
-0.0004451177
0.0010446722
-0.0004165978
0.0338911594
0.0423176722
-0.0105378781

-0.01612825 -0.0231890667

Lower Band, CI= 0.95

$diffGBIR

C

[1,]
4
[2,]
[3,]
[4,]
[5,]
[6,]
[7,1]
[8,]
[9,]
8
[10,]
0
[11,]
5

N o Ul O OO O O o

diffco2E

.000000000
.012694118
.014933927
.009697872
.020971538
.022360118
.008817848
.011379036
.039575524
.028917014
.019183969

Upper Band, CI= 0.95

$diffGBIR

diffBYy
.036222890
.043702892
.066734927
.115394810
.009998168
.054443288
.107876059
.228474882
.082766602
.141464328
.464355723

IPI

.007184845
.010465277
.018384557
.020670020
.015655063
.013382945
.014675279
.013108563
.016399293
.040238864
.037779598

di FfEP

[elolololo]ololelele]

.006031215
.030138239
.056521079
.059063026
.057102593
.061923965
.056460186
.042745479
.048000031
.062387162

diffep
.006397604
.008843739
.006267281
.003941095
.015940334
.030744411
.046584146
.053422115
.061635568
.072706097
.076518492

diff2EC
-0.002119374 0.024958265
0.020430699
-0.004283103
0.028329644
0.028963060
-0.009410838
-0.019285934
0.072015360
0.047736122
-0.086376284
0.015304113

diff2Ee

.000967167
.009849545
.022240306
.003845781
.009171495
.028528937
.029811479
.003045563
.025596591
.093710614
.040967647

[1,]

ROV~ UTA WN

/e
=

0.

diffco2e
000000000

0.004244384

OO OOOOOOO

.008521665
.019826222
.016815976
.016387943
.035451524
.043994559
.036513106
.026172218
.049190741

diffBY
.1149868
.1919092
.2147040
.2011084
.3276990
.4394054
.4027137
.3893064
.5015469
.6137395
.4764993

OCOOOOOOOOOO0O

OCOOOOOOOOOO0O

IPI

.006369976
.008771660
.003448159
.006150810
.019083915
.018945974
.018456509
.030323554
.040167208
.022778621
.019784029

OO OOOOOOOO0O

diffeEpP

.00499328
.01140723
.02456507
.04007384
.05061236
.06742303
.08035515
.09190445
.09242396
.10341302
.11091567

OCOO0OO0OOOOOOOO0O

.01693338
.02111416
.01548787
.02351134
.02936798
.01968192
.01560353
.07030451
.04886161
.00890066
.04489056

diff2EC
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Table A3 — FEVD Coefficients. Source: Own Elaboration

$ $diff

[elolololeloleleNe)

- [T | N N SN | SN SN N |
—

Ouw « «w w w «w w w =

R OoONOY VI WNE

rr

$diffGB

QOO OO OOOO0O

QOO NOUVITAhWNE

,_|
=

$diffBY

1

[ U e e L L
ROooNOUVIDhWN =

- L
OO OO OOOOO0O

O « w w w w w w =

CO2E
diffco2Ee

.0000000
.7223416
.7043352
.5192399
.4148766
.4123874
.3088923
.3239606
.2790460
.2833152

[elolololololelolole]

IR
diffco2Ee

.2725040
.2164178
.1308017
.1241926
.2421054
.2396159
.2260166
.2365339
.2321931
.2947055

OO0 OOOOOOO0O

diffGBIR

.000000000
.070458460
.097655680
.299509540
.324771110
.301468040
.398375700
.349308540
.364601870
.336527930

diffGBIR

.7274960
.6314659
.5538483
.5207712
.4536683
.3767275
.4353526
.4099045
.3901917
.3675985

OO0 OO OOOO

diffco2eE diffGBIR

.066812060.
.091976720.
.306926170.
.330642500.
.218006350.
.195604620.
.179259030.
.168963540.
.268334960.
.259900340.

1557528
2059539
1259482
1491232
3600994
4487530
3839194
4058895
3754450
3616951

diffBy

.00000000
.01143527
.01532882
.03415968
.12617421
.12549475
.09175187
.12916538
.08425053
.09348305

diffBY

.00000000
.13264970
.14426115
.12498977
.06691011
.07734941
.06430303
.04609190
.07629638
.03759055

diffBY

.7774351
.6495582
.4463503
.3836590
.2638799
.2218652
.1948466
.1963449
.1006027
.1223090

OO OO OOOOO

QOO0 OO0 OO

QOO OO OOOO0O

QOO OO0 OOOO0O

IPT

.00000000
.10727912
.09567379
.07059762
.05729021
.05649871
.06583986
.05928293
.04453390
.04119141

IPI

.00000000
.01872508
.05656720
.05291709
.02995149
.02335344
.02255395
.03561386
.04154020
.05138670

IPI

.00000000
.02639383
.02269835
.03675490
.03262162
.02816107
.03740569
.03567978
.03315019
.03199006

NNNNNRERERERNO

QOO OO OOOOO0O

QOO0 OO0 OO

d

diffeEp diff2EC
.00000000 0.0000e+00
.08848526 2.4130e-07
.08582130 1.1851e-03
.07544017 1.0530e-03
.07605025 8.3759e-04
.10336533 7.8578e-04
.13162092 3.5193e-03
.13521769 3.0643e-03
.22082340 6.7443e-03
.23914562 6.3367e-03
diffeEpP diff2EC
.000000e+000.0000000
.251663e-050.0007189
.114439e-010.0030777
.727196e-010.0044097
.969896e-010.0103752
.721375e-010.0108163
.406312e-010.0111426
.605644e-010.0112915
.486757e-010.0111029
.374580e-010.0112607
iffEP diff2EC
.00000000 0.000000000
.02464444 0.001472943
.09704014 0.001036844
.09889584 0.000924511
.12374815 0.001644503
.10303779 0.002578298
.19952933 0.005039895
.18818418 0.004938052
.21232429 0.010142848
.21442012 0.009685369
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$IPI
diffco2e

0.4772043
0.5613141
0.5484972
0.5049598
0.5301715
0
0
0
0
0

/i

RHOoONOUVIAhWNE

.5340377
.5622229
.4561620
.3857672
.4007415

RN S S NS | S S S | S  S_—) S_—

Ou « «w w w w w w =

$diffepP
diffCco2E

.2220021
.1581727

.1761202
.1164132

0
0
0
0
0.1589351
0
0
0
0
0

1

RO NOUVTDRWN R
T

.1313080
.1153694
.1141484
.1070920
.2126205

o

—

$diff2EC
diffCco2E

.6166256
.6470337
.5517233
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.0086548
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