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Summary. In this work, we consider a complex network of predator-prey systems, modeling the ecological
dynamics of interacting species living in a fragmented environment. We consider non-identical instances of
a Lotka-Volterra model with Holling type II functional response. We study optimal control problems, for
the minimization of the default of synchronization in the complex network, where the controls reproduce
the implementation of ecological corridors. The main goal is to restore biodiversity of life species in a
heterogeneous habitat by reaching at least a global coexistence equilibrium, or in a better scenario, a global
limit cycle which would guarantee biological oscillations, which means rich life dynamics.

13.1 Introduction

Optimizing the biodiversity restoration of life species in a fragmented habitat through the imple-
mentation of ecological corridors between each component of the fragmented environment, while
maintaining human activity at a reasonable level, is a challenge that we wish to study in this work.
We assume that the geographical habitat of the species is perturbed by the anthropic extension,
so that it is fragmented in several patches. This fragmentation is likely to alter the equilibrium of
the ecological system. In order to model such a fragmented environment, we consider a complex
network of predator-prey models, first proposed in [16], which reproduces the heterogeneous natural
environment, that is perturbed by fragmentation, by coupling several patches on which interacting
wild species are living. To construct the complex network model, on each patch, the ecological
inter-species dynamics are modeled by a Lotka-Volterra predator-prey model with Holling type II
functional response, which is able to describe several biological dynamics, such as extinction, co-
existence or ecological cycles (see e.g. [21, 31, 33]). Here, each patch can admit its own dynamic,
that is, the local components of the network can for instance exhibit an extinction equilibrium on
some places, whereas other places can present cycles [16]. Moreover, migrations of biological indi-
viduals in space, between each component of the fragmented environment, are taken into account
by coupling the patches of the network (see Figure 13.1, where the disks model the patches of a
fragmented environment, where the inter-species dynamics of Lotka-Volterra type occur, and the
arrows model the ecological corridors which can be implemented between these patches, so as to
increase the migrations in space of the species between each patch).
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In [16], sufficient conditions of synchronization of the local dynamics, under a variation of the
couplings, are proved, namely a theorem for near-synchronization is proved, which guarantees that
the complex network remains in a neighborhood of a synchronization state, provided the coupling
strength is strong enough, even if the local behaviors are non-identical. This result improves the
sufficient conditions of synchronization for the particular case of identical dynamics, proved in [15].
The relevance of synchronization in complex networks has been highlighted by several studies in
different areas, such that, coupled oscillators, networks of chemical reactions, neural networks or
meta-populations models (see for instance [3, 5, 8, 29] and the references therein).

The main goal of this paper is to optimize the synchronization of the complex network, through
optimal control theory. The possibility to reach synchronization through an optimal control process
has been studied in [14], with an application to an epidemic model, or in [13], with an application to
a panic model. Meanwhile, the dynamics of Lotka-Volterra type models have been widely analyzed
(see for instance [7] or [24]) and the optimal control of such models has been studied in [18, 22],
but not in the framework of complex networks. On the optimal control of periodic solutions, the
non-existence of limit cycle was proved in [9], and periodic optimal control problems have been
analyzed in [6, 20, 27, 38].

Focusing on Lotka Volterra models, in [32], a fish population optimal control problem is studied
considering the Lotka Volterra model

ẋ1(t) = x1(t)− x1(t)x2(t)
ẋ2(t) = −x2(t) + x1(t)x2(t)

xi(t0) = xi0 , i = 1, 2 ,

(13.1)

where x1(t) and x2(t) represent the biomass of the prey and predator species, respectively, with
initial state conditions xi(t0) = xi0, i = 1, 2.

The main goal in [32] is to bring the control system (13.1) close to a steady state to avoid the
high fluctuations that cause economical problems. More precisely, the authors choose to vary the
fishing quota for a certain time span T − t0. Adding an objective functional that punishes deviation
from the steady state x̃ = (1, 1)T for u(t) = 0, and x̃ = (1 + c2, 1− c1)T for u(t) = 1, respectively.
The following optimal control problem is analyzed

min
u

∫ T

t0

(x1(t)− 1)
2
+ (x2(t)− 1)

2
dt

such that 
ẋ1(t) = x1(t)− x1(t)x2(t)− c1x1(t)u(t)
ẋ2(t) = −x2(t) + x1(t)x2(t)− c2x2(t)u(t)
xi(t0) = xi0 , u(t) ∈ [0, 1] .

(13.2)

and where control function u(t) describes the percentage of the fleet that is actually fished at
time t. The parameters c1 and c2 indicate how many fish would be caught by the entire fleet. For
optimization methods to solve the previous optimal control problem see, e.g. [32] and also [40].

In [23], the turnpike phenomenon is illustrated by studying an optimal control problem, consider-
ing the control system (13.2) with c1 = 0.4 and c2 = 0.2, initial conditions (x1(0), x2(0)) = (0.5; 0.7),
final time T = 60, and with the following cost functional:
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min
u

1

2

∫ T

0

(x1(t)− 1)
2
+ x2(t)

2 + u(t)2 dt .

An analogous control system is also considered in [17], where optimal strategies for reaching fixed
steady states, namely co-existence of both species are studied. General turnpike results for optimal
control problems have been established in [35, 36, 37].

In [4], a Mayer-type optimal control problem is studied for Lotka-Volterra systems with a hunter
population, where the goal is to maximize the population of both species at the final time, that is,
x1(T ) + x2(T ) and the control u represents the hunting proportionality factor. In [39] the authors
analyze analytically a Mayer-type optimal control problem applied to a two dimensional Lotka
Volterra system. In [10], the shooting method is applied to a minimal time optimal control problem
with the control system from [23, 32].

Recently, advances on geometrical optimal control theory of Generalized Lotka-Volterra systems
applied to the intestinal microbiome have been developed in [11, 12].

In this paper, we aim to study a more general problem than the ones studied in [23, 32] reaching
at least a global coexistence equilibrium, or in a better scenario, a global limit cycle, instead of a
fixed steady state. The optimal control of limit cycles in medical models applied to diabetes and
heart attack problem was studied in [19] and [27], respectively. Moreover, the nonexistence of limit
cycle for an optimal control problem applied to a diabetes model was proved in [9]. In this chapter,
we first consider a controlled complex network of Lotka-Volterra systems, where the strength of the
migrations of biological individuals in system (13.6) is replaced by control functions, reproducing the
implementation of ecological corridors We prove that a solution of the controlled complex network
can reach a near-synchronization state, under sufficient conditions which highlight the importance to
consider a positive lower on the controls functions. After, we study optimal control problems where
the main goal is the minimization of the default of synchronization in the complex network. We
consider different cost functionals taking into account that the dynamics of the controlled complex
network ensure the conservation of both species, namely, our goal is to impose synchronization or
synchronization of limit cycles. Therefore, the solutions of the optimal control problems lead to
a restoration of the biodiversity of life species in a heterogeneous habitat by reaching at least a
global coexistence equilibrium, or in a better scenario, a global limit cycle which would guarantee
biological oscillations, which means rich life dynamics.

This chapter is organized as follows. In Section 13.2, we recall the construction of the uncon-
trolled complex network of Lotka-Volterra systems and the near synchronization results, from [16].
In Section 13.3, we propose a controlled complex network, where the strength of the migrations of
biological individuals in the Lotka-Volterra systems is replaced by control functions, and prove a
sufficient condition for the near-synchronization of the solutions of the controlled system. In Sec-
tion 13.4, we consider optimal control problems, in order to exert a command on the global behavior
of the controlled complex network. To model the goal of restoring biodiversity and biological dy-
namics in a fragmented environment, we define appropriate cost functionals where the conservation
of species is guaranteed by imposing synchronization or synchronization of limit cycles. We end this
chapter with Section 13.5 with some conclusions and future work.
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13.2 Setting of the Complex Network of Lotka-Volterra Systems

Based on the previous work [16], we present the construction of a complex network of Lotka-Volterra
systems, which describes the dynamics of interacting species living in a fragmented environment,
and recall important near synchronization results, proved in [16], for the uncontrolled complex
network.

13.2.1 Lotka-Volterra predator-prey model with Holling type II functional response

Let us consider a biological environment in which two species interact. We assume that the densities
of the species are determined by a predator-prey model of Lotka-Volterra type, which can be written
by: 

ẋ = rx(1− x)− cxy

α+ x
,

ẏ = −dy + cxy

α+ x
.

(13.3)

Here, x and y denote the prey and predator density, respectively; ẋ and ẏ denote their derivatives
with respect to the time variable t. The parameters r, c, d and α are positive coefficients; r is
the birth rate of the preys, d is the mortality rate of predators, and c, α determine the non-linear
interaction between preys and predators (see, for instance [24], for a deep study on the dynamics
of predator-prey system (13.3)). Depending on the values of the parameters r, c, d, α, the solutions
of system (13.3) can be attracted to a coexistence equilibrium, to an extinction equilibrium or to
a limit cycle. The extinction equilibrium is denoted E0 = (0, 0). The coexistence equilibrium E1,
which implies persistence of each specie, is given, for c ̸= d, by

E1 =

Å
αd

c− d ,
rα

c− d

Å
1− αd

c− d

ãã
. (13.4)

System (13.3) also admits the equilibrium E2 = (1, 0). Let us introduce the critical value α0 given
by

α0 =
c− d
c+ d

. (13.5)

It is well-known (see for instance [24], Chapter 3 or [7], Section 3.4.1) that system (13.3) undergoes
a Hopf bifurcation at α = α0. For α < α0, a stable limit cycle bifurcates from the persistence equi-
librium E1. Therefore, for α small enough, system (13.3) presents oscillations, which are interpreted
as healthy ecological cycles.

13.2.2 Complex network of predator-prey models for a fragmented environment

Next, we assume that the geographical habitat of the species is perturbed by the anthropic extension,
so that it is fragmented in several patches. This fragmentation is likely to alter the equilibrium of
the ecological system. In order to model such a fragmented environment, we construct a complex
network of predator-prey models as follows.

First, let n > 0 denote the number of patches on the fragmented environment. On each patch
i ∈ {1, . . . , n}, we denote by (xi, yi) the densities of preys and predators respectively. We assume that
each patch i ∈ {1, . . . , n} can be connected to other patches and we denote by Ni ⊂ {1, . . . , n} the
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set of patches which are connected to patch i. We assume that migrations of biological individuals
can occur between two connected patches, at rates σ1 for preys and σ2 for predators. In this way,
the dynamics of the fragmented environment are determined by the following complex network:

ẋi = rixi(1− xi)−
cixiyi
αi + xi

− σ1
∑
j∈Ni

(xi − xj),

ẏi = −diyi +
cixiyi
αi + xi

− σ2
∑
j∈Ni

(yi − yj),
(13.6)

for 1 ≤ i ≤ n, with σ1 ≥ 0 and σ2 ≥ 0.
We emphasize that the parameters ri, ci, di, αi can differ from one patch to another, which means

that the ecological dynamics are non-identical within the fragmented environment. For instance,
some patches could present limit cycles, whereas other patches could exhibit an extinction of both
species. Note also that the couplings are symmetric, which means that if the species xi, yi of patch
i can move towards some patch j, then the species xj , yj of patch j can conversely move towards
patch i.

One remarkable case of fragmented environment is that of a complete graph topology, for which
we have Ni = {1, . . . , n}\{i}; this situation means that each patch is connected to all other patches.
At the opposite, if the coupling parameters σ1, σ2 are equal to 0, then no migration of individuals
occur in the network.

Let us now introduce some notations. Let X =
(
(x1, y1), . . . , (xn, yn)

)⊤ ∈ R2n. For each i ∈
{1, . . . , n}, we denote

λi = (ri, ci, di, αi)
⊤ ∈ R4,

f1(xi, yi, λi) = rixi(1− xi)−
cixiyi
αi + xi

,

f2(xi, yi, λi) = −diyi +
cixiyi
αi + xi

,

g1(xi, X, σ1) = −σ1
∑
j∈Ni

(xi − xj),

g2(yi, X, σ2) = −σ2
∑
j∈Ni

(yi − yj).

(13.7)

We also denote σ = (σ1, σ2)
⊤ ∈ R2 and

Λ = (λ1, . . . , λn)
⊤ ∈ R4n,

F (X,Λ) =
(
f1(x1, y1, λ1), f2(x1, y1, λ1), . . . , f1(xn, yn, λn), f2(xn, yn, λn)

)⊤
∈ R2n,

G(X,σ) =
(
g1(x1, X, σ1), g2(y1, X, σ2), . . . , g1(xn, X, σ1), g2(yn, X, σ2)

)⊤
∈ R2n.

(13.8)

With these notations, the complex network (13.6) can be written under the following short form

Ẋ = F (X,Λ) +G(X,σ). (13.9)

13.2.3 Review of known results

In this section, we recall recent results obtained in [16], that motivate the controlled system and
the optimal control problem studied in the present work.
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The following theorem guarantees that the complex network problem determined by system
(13.9) admits global solutions.

Theorem 1 ([16]). Let X0 ∈ (R+)2n. Then the complex network problem determined by (13.9)
and X(0) = X0 admits a unique global solution X(t,X0) defined on [0,+∞), whose components are
non-negative.

Furthermore, the flow induced by Equation (13.9) admits a positively invariant region Θ which
is compact in (R+)2n.

One remarkable property of complex network is the synchronization property. The following
definition is classical.

Definition 1 (Synchronization). Let i, j ∈ {1, . . . , n} such that i ̸= j. We say that the patches
i and j of the complex network (13.9) synchronize in Θ if, for any initial condition X0 ∈ Θ, the
solution of (13.9) starting from X0 satisfies

lim
t→+∞

(
|xi(t)− xj(t)|2 + |yi(t)− yj(t)|2

)
= 0.

We say that the complex network (13.9) synchronizes in Θ if every pair (i, j) of patches synchronizes
in Θ.

In the case of a complex network of nonidentical systems, it is not always possible to prove
that a synchronization state is reached. Therefore, we are led to introduce a relaxed definition of
synchronization, called near-synchronisation.

Definition 2 (Near-synchronization). Let i, j ∈ {1, . . . , n} such that i ̸= j. We say that the
patches i and j of the complex network (13.9) nearly synchronize in Θ with respect to σ̃ if, for any
initial condition X0 ∈ Θ, and for any ε > 0, the solution of (13.9) starting from X0 satisfies

0 ≤ lim
t→+∞

(
|xi(t)− xj(t)|2 + |yi(t)− yj(t)|2

)
< ε,

for σ̃ sufficiently large.
We say that the complex network (13.9) nearly synchronizes in Θ if every pair (i, j) of patches

nearly synchronizes in Θ.

In [16], sufficient conditions of near-synchronization have been established for the complex net-
work (13.9) with non-identical systems. We recall below these results. For the sake of simplicity, it
is assumed that the graph underlying the complex network (13.9) is complete, that is, each patch
is connected to all other patches; equivalently, we have Ni = {1, . . . , n} \ {i} for 1 ≤ i ≤ n, where
Ni denotes the finite set of patches which are connected to patch i. For all i, j ∈ {1, . . . , n}, we
introduce the energy function Ei,j defined along the trajectories of the complex network by

Ei,j(t) =
1

2

[
|xi(t)− xj(t)|2 + |yi(t)− yj(t)|2

]
, (13.10)

and for λi = (ri, di, ci, αi), λj = (rj , dj , cj , αj) ∈ R4, denote

∥λi − λj∥∞ = max
{
|ri − rj | , |di − dj | , |ci − cj | , |αi − αj |

}
.

The next theorem establishes an estimate of the energy functions Ei,j defined by (13.10).
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Theorem 2 (Near-synchronization of the uncontrolled complex network predator-prey
model, [16]). There exist positive constants η, δ such that, for any initial condition X0 ∈ Θ, the
solution of the complex network (13.9) starting from X0 satisfies

Ėi,j(t) ≤ η ∥λi − λj |∞E
1/2
i,j (t) +

[
δ − 2nσ̃

]
Ei,j(t), t > 0, (13.11)

where σ̃ = min{σ1, σ2}.3
Furthermore, the constants η and δ do not depend on the coupling parameters σ1, σ2.

We now recall important consequences of Theorem 2.

Corollary 1 ([16]). Assume that λi = λj for some i, j ∈ {1, . . . , n}. Then the patches i and j
synchronize if the following condition is fulfilled:

2nσ̃ > δ. (13.12)

If λi = λj for all i, j ∈ {1, . . . , n}, then obviously the whole network synchronizes under con-
dition (13.12). Next, since the constant δ does not depend on the coupling parameters σ1, σ2, the
sufficient condition (13.12) can easily be satisfied, provided the number n of patches in the network
is sufficiently large, or provided the minimum coupling strength σ̃ = min{σ1, σ2} is sufficiently
large.

From the ecological point of view, increasing the number n of patches in the network would
correspond to a worse fragmentation of the habitat, which is not a reasonable strategy for our
purposes. However, increasing the minimum coupling strength σ̃ can be realized by providing wider
ecological corridors.

The non trivial case of Theorem 2 corresponds to a complex network of non-identical patches,
for which we have λi ̸= λj for at least one pair (i, j) ∈ {1, . . . , n}2. In that case, the synchronization
state {(xi, yi) = (xj , yj)} is likely to present a soft loss of stability. Indeed, it is well-known that
the solution w of the Bernoulli equation

ẇ(t) = η ∥λi − λj |∞ w1/2(t) +
[
δ − 2nσ̃

]
w(t), t > 0, (13.13)

converges towards a positive limit given by

lim
t→+∞

w(t) =

Å
η ∥λi − λj |∞
δ − 2nσ̃

ã2
,

provided w(0) > 0. We obtain the following corollaries.

Corollary 2 ([16]). The energy function Ei,j defined by (13.10) along a solution of the complex
network (13.9) starting from X0 ∈ Θ, satisfies

0 ≤ lim supEi,j(t) ≤
Å
η ∥λi − λj |∞
δ − 2nσ̃

ã2
. (13.14)

complex

3 In this paper, we correct a misprint of [16], since the quantity 2(n− 1)σ̃ in [16] should be 2nσ̃.
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Corollary 3 ([16]). The complex network (13.9) nearly synchronizes in Θ with respect to the the
minimum coupling strength σ̃.

Remark 1. Note that near-synchronization can occur in the complex network (13.9) without im-
posing any particular asymptotic dynamics; for example, the complex network could synchronize
towards a global dynamic of extinction, towards a global dynamic of coexistence, or towards a
global dynamic of limit cycles (it could even happen that a new dynamic emerges from the complex
network structure).

In the next section, we construct a controlled complex network of Lotka-Volterra systems, where
the strength of the migrations of biological individuals in system (13.6) is replaced by control
functions. We prove that a solution of the controlled system can reach a near-synchronization state,
under sufficient conditions which highlight the importance to consider a positive lower bound on
the controls functions.

13.3 Controlled Synchronization

In this section, we present a controlled complex network of Lotka-Volterra systems, where the
strength of the migrations of biological individuals in system (13.6) is replaced by control functions
ui,j(·) ∈ L∞ (0, T ), 1 ≤ i, j ≤ n.

The main goal is to restore biodiversity and biological dynamics in a fragmented environment.
Our aim is to reach at least a global coexistence equilibrium, or better, a global limit cycle which
would guaranty biological oscillations, which means rich life dynamics.

13.3.1 Setting of the control system

We consider the control system, given by
ẋi = rixi(1− xi)−

cixiyi
αi + xi

−
∑
j∈Ni

ui,j(t)(xi − xj),

ẏi = −diyi +
cixiyi
αi + xi

−
∑
j∈Ni

ui,j(t)(yi − yj),
(13.15)

for 1 ≤ i ≤ n, with the following control constraints

umin ≤ ui,j(t) ≤ umax ∀t ∈ [0, T ] , for all (i, j) ∈ {1, . . . , n}2, (13.16)

with umin > 0. Hence, the set of admissible control functions is given by

Ω =
{
ui,j(·) ∈ L∞(0, T ) | umin ≤ ui,j(t) ≤ umax ∀t ∈ [0, T ] , ∀ (i, j) ∈ {1, . . . , n}2

}
.

Moreover, we consider fixed initial conditions X(0) = X0 ∈ (R+)2n.

Analogously to equation (13.9), we can write the controlled system (13.15) in the form

Ẋ = F (X,Λ) +G(X, {ui,j}1≤i,j≤n) .
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The following theorem guarantees the existence of a positively invariant region for a solution of
the controlled system (13.15).

Let a0 =
∑n
i=1 ai, b0 = min1≤i≤n bi, d0 = min1≤i≤n di,c0 = min{b0, d0}, where the coefficients

ai, bi are chosen such that
ris(1− s) ≤ ai − bis,

for all s ∈ R.

Theorem 3 (Positively invariant region). The region Θ defined by

Θ =

X = (xi, yi)1≤i≤n ∈ (R+)2n
∣∣∣ ∑

1≤i≤n

(xi + yi) ≤
a0
c0

 (13.17)

is positively invariant for the flow induced by the controlled system (13.15).

Proof. Let P (t) =
∑

1≤i≤n
(
xi(t)+yi(t)

)
. Summing the equations of the complex network problem,

we easily prove that
Ṗ + c0P ≤ a0,

since the sum of the control couplings vanishes. Applying Gronwall lemma finishes the proof.

13.3.2 Near-synchronization of the controlled system

In this section, we prove that a solution of the controlled system (13.15) can reach a near-
synchronization state, under sufficient conditions which highlight the importance to consider a
positive lower bound on the controls functions. The following theorem establishes an estimate of
the energy function corresponding to a solution of the control system (13.15).

Theorem 4 (Energy estimate the controlled system). Assume that the graph G underlying
the complex network (13.15) is a complete graph. Then the energy functions Ei,j defined by

Ei,j(t) =
1

2

[
(xi − xj)2 + (yi − yj)2

]
satisfy the following estimate:

0 ≤ lim sup
t→+∞

Ei,j(t) ≤
Ç
η ∥λi − λj |∞ + K̃(n− 2)(umax − umin)

δ − 2numin

å2

. (13.18)

Proof. We compute

dEi,j
dt

= (ẋi − ẋj)(xi − xj) + (ẏi − ẏj)(yi − yj)
=
[
fi(xi, yj)− fj(xj , yj)

]
(xi − xj)

+

− ∑
k∈Ni

ui,k(t)(xi − xk) +
∑
k∈Nj

uj,k(t)(xj − xk)

 (xi − xj)

+
[
gi(xi, yj)− gj(xj , yj)

]
(yi − yj)

+

− ∑
k∈Ni

ui,k(t)(yi − yk) +
∑
k∈Nj

uj,k(t)(yj − yk)

 (yi − yj).
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Next, we write∑
k∈Ni

ui,k(t)(xi − xk)−
∑
k∈Nj

uj,k(t)(xj − xk) = ui,j(xi − xj)− uj,i(xj − xi)

+
∑

k∈Ni\{j}

ui,k(t)(xi − xk)−
∑

k∈Nj\{i}

uj,k(t)(xj − xk).

If the graph if complete, then we have Ni \{j} = Nj \{i}. Moreover, we have ui,j = uj,i. We obtain∑
k∈Ni

ui,k(t)(xi − xk)−
∑
k∈Nj

uj,k(t)(xj − xk) = 2ui,j(xi − xj)

+
∑

k∈Ni\{j}

ui,k(t)(xi − xk)−
∑

k∈Nj\{i}

uj,k(t)(xj − xk)

We introduce Si,j = Ni \ {j} = Nj \ {i} and we observe that∑
k∈Si,j

ui,k(xi − xk)−
∑

k∈Si,j

uj,k(xj − xk) =
∑

k∈Si,j

(ui,kxi − uj,kxj)−
∑

k∈Si,j

(ui,k − uj,kxk).

We write

(ui,kxi − uj,kxj)(xi − xj) = (ui,kxi − ui,kxj)(xi − xj) + (ui,kxj − uj,kxj)(xi − xj)
= ui,k(xi − xj)2 + xj(ui,k − uj,k)(xi − xj)
≥ umin(xi − xj)2 + xj(ui,k − uj,k)(xi − xj).

Similarly, we have

(ui,kxi − uj,kxj)(xi − xj) ≥ umin(xi − xj)2 + xi(ui,k − uj,k)(xi − xj).
It follows that

(ui,kxi − uj,kxj)(xi − xj) ≥ umin(xi − xj)2 +
xi + xj

2
(ui,k − uj,k)(xi − xj).

We can deduce

(xi − xj)
∑

k∈Si,j

(ui,kxi − uj,kxj) ≥ umin(n− 2)(xi − xj)2

+
(xi + xj)(xi − xj)

2

∑
k∈Si,j

(ui,k − uj,k),

since the set Si,j contains (n− 2) elements. We obtain

−(xi − xj)
[ ∑
k∈Si,j

ui,k(xi − xk)−
∑

k∈Si,j

uj,k(xj − xk)
]

≤ −2umin(n− 2)E1
i,j

− (xi + xj)(xi − xj)
2

∑
k∈Si,j

(ui,k − uj,k)

+ (xi − xj)
∑

k∈Si,j

(ui,k − uj,k)xk,
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with E1
i,j =

1
2 (xi − xj)2. Next, we estimate

− (xi + xj)(xi − xj)
2

∑
k∈Si,j

(ui,k − uj,k) + (xi − xj)
∑

k∈Si,j

(ui,k − uj,k)xk

≤
∣∣∣∣xi + xj

2

∣∣∣∣ |xi − xj | ∑
k∈Si,j

|ui,k − uj,k|

+ |xi − xj |
∑

k∈Si,j

|ui,k − uj,k| |xk|

≤ K |xi − xj |
∑

k∈Si,j

(umax − umin)

+ |xi − xj |
∑

k∈Si,j

(umax − umin)K,

where K is a positive constant such that |xi| ≤ K for all i, whose existence is guaranteed by
Theorem 3. We obtain

−(xi − xj)
[ ∑
k∈Si,j

ui,k(xi − xk)−
∑

k∈Si,j

uj,k(xj − xk)
]

≤ −2umin(n− 2)E1
i,j + 2K(n− 2) |xi − xj | (umax − umin).

Similarly, we estimate

−(yi − yj)
[ ∑
k∈Si,j

ui,k(yi − yk)−
∑

k∈Si,j

uj,k(yj − yk)
]

≤ −2umin(n− 2)E2
i,j + 2K(n− 2) |yi − yj | (umax − umin),

where E2
i,j =

1
2 (yi − xj)2. Now we come back to estimate

dEi,j

dt :

dEi,j
dt
≤
[
fi(xi, yi)− fj(xj , yj)

]
(xi − xj) +

[
gi(xi, yi)− gj(xj , yj)

]
(yi − yj)

− 2uminnEi,j + 2K(n− 2)
[
|xi − xj |+ |yi − yj |

]
≤
[
η ∥λi − λj |∞ + K̃(n− 2)(umax − umin)

]
E

1/2
i,j +

[
δ − 2numin

]
Ei,j .

Applying Gronwall Lemma and comparing with the solution of the Bernoulli equation (13.13)
finishes the proof.

Corollary 4. The controlled system (13.15) nearly synchronizes with respect to umin, provided
(umax − umin) is uniformly bounded.

Remark 2 (Generalization to other models). We can consider a complex network of ecological sys-
tems of the general form

ẋ = xM(x, y, λ), ẏ = yN(x, y, λ), (13.19)

where M and N are regular functions defined in R× R× Rp (see notably [7], [28]), by considering
the following system:
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ẋi = xMi(xi, yi)−

∑
j∈Ni

ui,j(xi − xj),

ẏi = yNi(xi, yi)−
∑
j∈Ni

ui,j(yi − yj),
(13.20)

with 1 ≤ i ≤ n and control functions ui,j . Here, the functionsMi and Ni are non identical instances
of the functions M , N defined in (13.19), that is

Mi(xi, yi) =M(xi, yi, λi), Ni(xi, yi) = N(xi, yi, λi),

with λ1, λ2, . . . , λn ∈ Rp. Theorem 2 and its corollaries can easily be generalized to this setting,
with a complex network of the form (13.20), under the single assumption that there exists constants
η > 0 and δ > 0 such thatÅ

fi(xi, yi)− fj(xj , yj)
gi(xi, yi)− gj(xj , yj)

ã
·
Å
xi − xj
yi − yj

ã
≤ η ∥λi − λj |∞E

1/2
i,j + δEi,j . (13.21)

Remark 3 (Non complete graph topologies). Recent results have been obtained (see [2]) for synchro-
nization in non complete graph topologies.

The previous result motivates the setting of an optimal control problem, so as to exert a com-
mand on the dynamics of the complex network (13.9) and to reach a synchronization state, even in
the case of non-identical patches.

13.4 Optimal Control Synchronization

Considering the controlled complex network of Lotka-Volterra systems (13.15), we propose an opti-
mal control problem, in order to exert a command on the global behavior of this complex network.
To model the goal of restoring biodiversity and biological dynamics in a fragmented environment,
we need define an appropriate cost functional.

The choice of the cost functional has an important role on the optimal synchronization of the
complex network (see e.g. [25] for a study on the role of the objective functional in optimal control
problems applied to compartmental models for biomedical therapies). Here, our main focus on the
choice of the cost functional is not only on the properties of the optimal control solution but mainly
on the dynamics of the state functions xi, yi ensuring the conservation of both species.

In what follows, we will consider different cost functionals where the conservation of species is
guaranteed by:

i. imposing synchronization;
ii. synchronization of limit cycles.

Impose synchronization – optimal solutions may kill limit cycles or damped oscillations

For the scenario “imposing synchronization”, we consider the optimal control problem of determin-
ing X∗(·) associated to the admissible controls u∗i,j(·) ∈ Ω on the time interval [0, T ], satisfying the

controlled system Ẋ = F (X,Λ) +G(X, {ui,j}1≤i,j≤n), given by (13.15), the fixed initial conditions
X(0) = X0 ∈ (R+)2n and minimizing the one of the following cost functionals:
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J1 =

∫ T

0

∑
i̸=j

[
(xi(t)− xj(t))2 + (yi(t)− yj(t))2

]
dt. (13.22)

or
J2 =

∑
i ̸=j

[
(xi(T )− xj(T ))2 + (yi(T )− yj(T ))2

]
. (13.23)

In this case, we emphasize that maximizing synchronization can kill limit cycles or damped
oscillations possibly occurring in the case of constant couplings (σ1, σ2). Indeed, let us consider as
a simple example a four nodes network, associated with a complete graph topology (as shown in
Figure 13.1). The parameters of each patch are given in Table 13.1, and the initial conditions were
randomly generated between 0 and 1. If the couplings are fixed to σ1 = σ2 = 1, then the local
dynamics are synchronized towards the same damped oscillations (when αi = 0.4, 1 ≤ i ≤ 4, see
Figure 13.2) or towards the same limit cycle (when αi = 0.3, 1 ≤ i ≤ 4, see Figure 13.3). However,
when the couplings are determined by a control associated with the functionals J1, J2 given by
(13.22), (13.23), then we observe that the oscillations vanish, as depicted in Figure 13.4. In other
words, the optimality criterion can lead to an unexpected emergent behavior.

1 2

3 4

Fig. 13.1: Simple 4 nodes complex network with a complete graph topology.

Table 13.1: Values of the parameters for the example of a 4 nodes network.

Parameter Value

r1 0.8
d1 0.98
c1 1.6
α1 0.3, 0.4
r2 0.8
d2 0.6
c2 1.6
α2 0.3, 0.4

Parameter Value

r3 0.9
d3 0.7
c3 1.6
α3 0.3, 0.4
r4 0.8
d4 0.75
c4 1.6
α4 0.3, 0.4

Remark 4. The non nonexistence of a limit cycle in an optimal control problem applied to a diabetes
model was proved in [9].

This lead us to consider an alternative cost functional for which the optimal solution is attracted
to a local limit cycle.
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Fig. 13.2: Synchronization of damped oscillations in a four nodes network with constant couplings.
Even if the initial conditions and parameters are distinct from one patch to another, the local
dynamics are synchronized towards the same damped oscillations.
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Fig. 13.3: Synchronization of limit cycles in a four nodes network with constant couplings.

How to reach a limit cycle?

Suppose that without couplings, the local dynamics are attracted to local limit cycles. Moreover,
suppose that we can synchronize (or near synchronize) these local limit cycles with a constant
coupling strength.

We denote by γ(t) =
(
ζ(t), ξ(t)

)
0≤t≤ϕ a parametrization of the global limit cycle (with period

ϕ), obtained by synchronization with a constant coupling strength.
Then we can try to preserve and reach this cycle in an optimal control problem by minimizing

the cost functional

Jγ (xi, yi) =

k∗∑
k=0

∫ T+(k+1)ϕ

T+kϕ

n∑
i=1

[
(xi(t)− ζ(t))2 + (yi(t)− ξ(t))2

]
dt , (13.24)

where T is a positive time such that the transitional dynamics occurs in [0, T ], and k∗ is the number
of periods of oscillations around the limit cycles. Considering again the four nodes network given
in Figure 13.1 and the parameters given in Table 13.1, we show in Figure 13.5 a first simulation of
the control problem determined by the functional (13.24). We observe that controls can be found
to maintain oscillations. It is now our aim to analyze the properties of these controls in a rigorous
framework.

13.4.1 Optimal control problem

Our goal is to find the optimal control solution that reaches a limit cycle γ, ensuring the preservation
of the ecological biodiversity in a fragmented environment. We consider the optimal control problem
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Fig. 13.4: Imposing synchronization in a four nodes network with a control associated with the
functionals (13.22), (13.23) can kill oscillations or limit cycles. (a) Phase portraits showing the
local dynamics (xi, yi) on each patch i of the network (1 ≤ i ≤ 4). (b) Time series of the control
functions uij between each pair (i, j) of patches (1 ≤ i, j ≤ j, i ̸= j).

(OCP) given by

min
X,u

k∗∑
k=0

∫ T+(k+1)ϕ

T+kϕ

n∑
i=1

[
(xi(t)− ζ(t))2 + (yi(t)− ξ(t))2

]
dt ,

such that
ẋi = rixi(1− xi)−

cixiyi
αi + xi

−
∑
j∈Ni

ui,j(xi − xj),

ẏi = −diyi +
cixiyi
αi + xi

−
∑
j∈Ni

ui,j(yi − yj),

withX∗(0) = X∗
0 ∈ (R+)2n and ui,j(·) ∈ Ω .

(OCP)

The existence of solutions for the (OCP) is ensured by classical sufficient conditions, see e.g.
[34] and references cited therein.

Let us now apply the well known first order necessary optimality condition given by the Pon-
tryagin maximum principle [30] to the (OCP) problem. In what follows, we write (xi, yi) for
(xi(t), yi(t)) ∈ (R+)2n, ui,j for ui,j(t) ∈ Ω and p = (p1,i, p2,i) for (p1,i(t), p2,i(t)) : [0, T ]→ (R+)2n,
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Fig. 13.5: Attempt to reach synchronization of a given limit cycle in a four nodes network. (a)
Phase portraits showing the local dynamics (xi, yi) on each patch i of the network (1 ≤ i ≤ 4). (b)
Time series of the control functions uij between each pair (i, j) of patches (1 ≤ i, j ≤ j, i ̸= j).

with t ∈ [0, T ] and 1 ≤ i ≤ n. According to the Pontryagin maximum principle, if u∗i,j ∈ Ω is
optimal for (OCP), then there exists a nontrivial absolutely continuous mapping p∗, the adjoint
vector, such that

ẋ∗i =
∂H

∂p∗1,i
, ẏ∗i =

∂H

∂p∗2,i
,

and

ṗ∗1,i = −
∂H

∂x∗i
and ṗ∗2,i = −

∂H

∂y∗i
for 1 ≤ i ≤ n ,

where the normalized Hamiltonian H is given by

H (xi, yi, p1,i, p2,i, ui,j) = −
n∑
i=1

[
(xi(t)− ζ(t))2 + (yi(t)− ξ(t))2

]
+

n∑
i=1

p1,i(t) (f1 (xi, yi, λi) + g1 (xi, X, ui,j))

+

n∑
i=1

p2,i(t) (f2 (xi, yi, λi) + g2 (yi, X, ui,j)) ,

(13.25)

for 1 ≤ i ≤ n and j ∈ Ni. The minimization condition is given by
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H
(
x∗i , y

∗
i , p

∗
1,i, p

∗
2,i, u

∗
i,j

)
= min
ui,j∈Ω

H
(
x∗i , y

∗
i , p

∗
1,i, p

∗
2,i, ui,j

)
,

holds almost everywhere on [0, T ]. Moreover, the transversality conditions
(
p∗1,i(T ), p

∗
2,i(T )

)
= (0, 0),

hold, with 1 ≤ i ≤ n.
The minimizing controls u∗i,j are determined by the switching functions

ϕi,j =
∂H

∂ui,j
, for 1 ≤ i ≤ n and j ∈ Ni

and the control law

u∗i,j(t) =


0 if ϕi,j(t) > 0 ,

umax if ϕi,j(t) < 0 ,

singular if ϕi,j(t) = 0 ∀t ∈ Is ⊂ [0, T ] ,

(13.26)

for 1 ≤ i ≤ n and j ∈ Ni.
If the switching functions ϕi,j , 1 ≤ i ≤ n, j ∈ Ni, do not vanish on any subinterval I of [0, T ],

then the extremal controls u∗i,j are bang-bang on I. The zeros of ϕi,j on I (possibly in infinite
number), 0 < τ∗1 < . . . < τ∗s . . ., are called the switching times.

Moroever, the strict bang-bang Legendre condition, can be applied to the (OCP) problem, that
is,

ϕ̇i,j(τ
∗
l ) =

d

dt
ϕ(t)|t=τ∗

l
̸= 0 , (13.27)

for every switching time.
Next, we consider an optimal control synchronization problem of the type (OCP) with 4 nodes.

13.4.2 Example: optimal control synchronization with 4 nodes

Let γ be limit cycle, that is, {γ(t) = (ζ(t), ξ(t))}0≤t≤ϕ, with period ϕ.
Consider the control system with 4 nodes, again associated with the complete graph shown in

Figure 13.1. The equations of the controlled network are given by

ẋ1 = r1x1(1− x1)− c1x1y1
α1+x1

−
∑
j ̸=1

u1,j(x1 − xj)

ẏ1 = −d1y1 + c1x1y1
α1+x1

−
∑
j ̸=1

u2,j(y1 − yj)

ẋ2 = r2x2(1− x2)− c2x2y2
α2+x2

−
∑
j ̸=2

u2,j(x2 − xj)

ẏ2 = −d2y2 + c2x2y2
α2+x2

−
∑
j ̸=2

u1,j(y2 − yj)

ẋ3 = r3x3(1− x3)− c3x3y3
α3+x3

−
∑
j ̸=3

u3,j(x3 − xj)

ẏ3 = −d3y3 + c3x3y3
α3+x3

−
∑
j ̸=3

u3,j(y3 − yj)

ẋ4 = r4x4(1− x4)− c4x4y4
α4+x4

−
∑
j ̸=4

u4,j(x4 − xj)

ẏ4 = −d4y4 + c4x4y4
α4+x4

−
∑
j ̸=4

u4,j(y4 − yj)

(13.28)
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and the cost functional

J (xi, yi) =

k∗∑
k=0

∫ T+(k+1)ϕ

T+kϕ

4∑
i=1

î
(xi(t)− ζ(t))2 + (yi(t)− ξ(t))2

ó
dt, (13.29)

subject to the initial conditions X(0) = (x1(0), . . . , x4(0)) ∈ N (γ), and control constraints

umin ≤ ui,j(t) ≤ umax , t ∈ [T, T +mϕ],

where m is the number of periods and umin satisfies umin ≥ K, with K a positive threshold, that
guarantees the near synchronization in the case of a constant coupling strength σ. The normalized
Hamiltonian is given by

H = −
4∑
i=1

î
(xi(t)− ζ(t))2 + (yi(t)− ξ(t))2

ó
+ p1,1

Å
r1x1(1− x1)−

c1x1y1
α1 + x1

− u1,2(x1 − x2)− u1,3(x1 − x3)− u1,4(x1 − x4)
ã

+ p2,1

Å
−d1y1 +

c1x1y1
α1 + x1

− u1,2(y1 − y2)− u1,3(y1 − y3)− u1,4(y1 − y4)
ã

+ p1,2

Å
r2x2(1− x2)−

c2x2y2
α2 + x2

− u1,2(x2 − x1)− u2,3(x2 − x3)− u2,4(x2 − x4)
ã

+ p2,2

Å
−d2y2 +

c2x2y2
α2 + x2

− u1,2(y2 − y1)− u2,3(y2 − y3)− u2,4(y2 − y4)
ã

+ p1,3

Å
r3x3(1− x3)−

c3x3y3
α3 + x3

− u1,3(x3 − x1)− u2,3(x3 − x2)− u3,4(x3 − x4)
ã

+ p2,3

Å
−d3y3 +

c3x3y3
α3 + x3

− u1,3(y3 − y1)− u2,3(y3 − y2)− u3,4(y3 − y4)
ã

+ p1,4

Å
r4x4(1− x4)−

c4x4y4
α4 + x4

− u1,4(x4 − x1)− u2,4(x4 − x2)− u3,4(x4 − x3)
ã

+ p2,4

Å
−d4y4 +

c4x4y4
α4 + x4

− u1,4(y4 − y1)− u2,4(y4 − x2)− u3,4(y4 − y3)
ã
,

and the switching functions are given by

ϕ1,2 =
∂H

∂u12
= −p1,1(x1 − x2)− p2,1(y1 − y2)− p1,2(x2 − x1)− p2,2(y2 − y1) ,

ϕ1,3 =
∂H

∂u13
= −p1,1(x1 − x3)− p2,1(y1 − y3)− p1,3(x3 − x1)− p2,3(y3 − y1) ,

ϕ1,4 =
∂H

∂u14
= −p1,1(x1 − x4)− p2,1(y1 − y4)− p1,4(x4 − x1)− p2,4(y4 − y1) ,

ϕ2,3 =
∂H

∂u23
= −p1,2(x2 − x3)− p2,2(y2 − y3)− p1,3(x3 − x2)− p2,3(y3 − y2) ,

ϕ2,4 =
∂H

∂u24
= −p1,2(x2 − x4)− p2,2(y2 − y4)− p1,4(x4 − x2)− p2,4(y4 − x2) ,

ϕ3,4 =
∂H

∂u34
= −p1,3(x3 − x4)− p2,3(y3 − y4)− p1,4(x4 − x3)− p2,4(y4 − y3) .
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In Figure 13.6 we observe that the control u1,2 and the corresponding switching function ϕ1,2 satisfy
the control law (13.26) and the strict bang-bang Legendre condition (13.27). Analogously, the other
controls also satisfy these optimality conditions, but for simplicity we do not provide a figure for
the others five controls.

(a) Control u1,2. (b) Switching function ϕ1,2.

Fig. 13.6: The control u1,2 and the switching function ϕ1,2 satisfy (13.26) and (13.27).

Next, we show in Figure 13.7 the dynamics of the solution to the controlled four nodes network

(13.28)-(13.29). We have computed the solution
(
(xi, yi)1≤i≤4, (ui,j)1≤i ̸=j≤4

)
until the final time

T +mϕ with T = 6.5, m = 5 and ϕ = 13.5. It is interesting to note that the numbers of switching
times of the controls are distinct. Namely, u12 reaches 9 times its maximum value, whereas u23 does
only 5 times. We mainly observe that oscillations are maintained under the action of bang-bang
controls. Overall, our goal to synchronize the local dynamics while preserving oscillations is reached.

13.5 Conclusion and Future Work

In this chapter, we considered a controlled complex network of Lotka-Volterra systems, where the
strength of the migrations of biological individuals between the patches is replaced by control
functions, reproducing the implementation of ecological corridors in a fragmented environment.
We assumed that the ecological dynamics are non-identical within the fragmented environment and
proved near-synchronization sufficient conditions for the solution of the controlled complex network.

After, we study optimal control problems where the main goal is the minimization of the default
of synchronization in the complex network. We consider different cost functionals taking into account
that the dynamics of the controlled complex network ensure the conservation of both species,
namely, our goal is to impose synchronization or synchronization of limit cycles. Therefore, the
solutions of the optimal control problems lead to a restoration of the biodiversity of life species in a
heterogeneous habitat by reaching at least a global coexistence equilibrium, or in a better scenario,
a global limit cycle which would guarantee biological oscillations, which means rich life dynamics.

In a future work, we aim to enlarge our study of controlled synchronization or near-
synchronization in complex networks of nonlinear dynamical systems. First, it is natural to ask
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Fig. 13.7: Synchronization towards oscillations of the controlled four nodes network (13.28)–(13.29).
(a) Time series showing the evolution of x1, y1 on the first patch. (b) Phase portraits showing the
local dynamics (xi, yi) on each patch i of the network (1 ≤ i ≤ 4). (c) Time series of the control
functions uij between each pair (i, j) of patches (1 ≤ i, j ≤ j, i ̸= j).

if the possibility to near-synchronize oscillations in finite-dimensional systems can be generalized
to infinite dimensional systems, such as reaction-diffusion systems, which are likely to admit bifur-
cations of periodic solutions (see for instance [26] for a study of oscillatory solutions in a spatial
Holling-Tanner reaction-diffusion system). Next, another exciting perspective would be to investi-
gate the optimal control of synchronization of chaotic systems, since it is known that such systems
can be synchronized by constant couplings (see notably [1]). Hence, we believe that optimal control
of synchronization in complex networks of nonlinear dynamical systems will produce original results
in a near future.
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