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ABSTRACT

Aims. Global particle-in-cell (PIC) simulations of pulsar magnetospheres are performed with volume-, surface-, and pair-production-
based plasma injection schemes to systematically investigate the transition between electrosphere and force-free pulsar magneto-
spheric regimes.
Methods. We present a new extension of the PIC code OSIRIS that can be used to model pulsar magnetospheres with a two-
dimensional axisymmetric spherical grid. The subalgorithms of the code and thorough benchmarks are presented in detail, including
a new first-order current deposition scheme that conserves charge to machine precision.
Results. We show that all plasma injection schemes produce a range of magnetospheric regimes. Active solutions can be obtained
with surface and volume injection schemes when using artificially large plasma-injection rates, and with pair-production-based plasma
injection for sufficiently large separation between kinematic and pair-production energy scales.
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1. Introduction

Over the last decade, global kinetic simulations have proven
to be essential tools for understanding the electrodynam-
ics of pulsar magnetospheres. They have been used to
study the organization of plasma currents in the vicin-
ity of the neutron star (Philippov et al. 2015a; Chen 2017;
Kalapotharakos et al. 2018) and the acceleration of lep-
tons (Chen & Beloborodov 2014; Belyaev 2015a; Cerutti et al.
2015; Philippov & Spitkovsky 2014; Philippov et al. 2015b;
Brambilla et al. 2018) and ions (Guépin et al. 2020) in the cur-
rent sheets that develop beyond the light cylinder, leading to
gamma-ray emission consistent with observations.

Particle-in-cell (PIC) (Dawson 1962, 1983; Hockney &
Eastwood 1988; Birdsall & Langdon 1991) has been the main
methodology used in global kinetic simulations of pulsar mag-
netospheres. PIC simulations reproduce the kinetic plasma phe-
nomena relevant in pulsars with high fidelity, including the evo-
lution of highly nonthermal particle distributions and kinetic-
scale fluctuations (Touati et al. 2022). Recent extensions of the
PIC method have also allowed the inclusion of quantum elec-
trodynamical effects such as pair production (Grismayer et al.
2016, 2017) and general relativity corrections (Philippov et al.
2015a; Torres et al. 2024), which are also relevant in pulsars.

Due to the large disparity between kinetic and system scales
in pulsars, PIC simulations typically employ a phenomeno-
logical description of the pair-production processes responsi-
ble for filling the pulsar magnetosphere. This description can
be as simple as injecting plasma into a significant fraction of
the simulation domain (Philippov & Spitkovsky 2014; Belyaev
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2015a; Kalapotharakos et al. 2018; Brambilla et al. 2018), lim-
iting this injection to a small volume close to the stellar sur-
face (Cerutti et al. 2015; Hakobyan et al. 2023), or even con-
sidering heuristic pair-production models (Chen & Beloborodov
2014; Philippov et al. 2015a,b; Chen et al. 2020; Guépin et al.
2020; Bransgrove et al. 2023).

Depending on the details of the injection and/or pair-
production model, the global asymptotic magnetospheric topol-
ogy varies quite significantly: in some cases, the sys-
tem autoregulates to a fully charge-separated configuration
(also called electrosphere) that does not produce a Poynt-
ing flux, whereas in other cases the magnetosphere con-
verges to a force-free regime (Philippov & Spitkovsky 2014;
Chen & Beloborodov 2014; Cerutti et al. 2015; Guépin et al.
2020; Hakobyan et al. 2023). While this range of solutions has
been identified in several works, a systematic study has not been
performed to compare volume-, surface-, and pair-production-
based injection schemes.

In this work, we performed two-dimensional axisymmetric
global simulations of pulsar magnetospheres with three different
pair-injection schemes: (i) over large volumes of the magneto-
sphere; (ii) from the stellar surface only; and (iii) using a pre-
scription model for pair production. We use these simulations
to systematically characterize the obtained magnetospheric solu-
tions as a function of the injection and/or pair-production model
parameters. We show that all plasma sources produce near force-
free solutions in the regime of large plasma supply and inactive
electrosphere solutions with small plasma supply. All plasma
sources also allow a transitional regime with subforce-free sur-
face Poynting flux and wide equatorial current sheets.

The simulations presented in this work are performed with
a recent extension of the PIC code OSIRIS (Fonseca et al. 2002,

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

A229, page 1 of 18

https://doi.org/10.1051/0004-6361/202347926
https://www.aanda.org
http://orcid.org/0000-0003-0761-6628
http://orcid.org/0000-0002-0045-389X
http://orcid.org/0000-0002-9182-0228
http://orcid.org/0000-0002-4738-1168
http://orcid.org/0000-0001-9179-9054
http://orcid.org/0000-0001-6342-6226
http://orcid.org/0000-0003-2906-924X
mailto: fabio.cruz@tecnico.ulisboa.pt
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Cruz, F., et al.: A&A, 690, A229 (2024)

a) B  @ t = 0.00 [ -1]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

B
 [m

e c
 

 / 
e]

Rotation axis, Ω

θ
r

∂/∂φ = 0

Neutron star
surface boundary

Open boundary

Axisymmetric
boundary

Er

Eθ

Eφ
Bφ

Bθ

Br
(i, j)

(i, j + 1/2)

(i + 1/2, j)

b)

Fig. 1. Schematic representation of a spherical PIC grid: Panel (a) shows the grid layout and identifies the coordinate system and boundary types,
while panel (b) shows the edges of the grid cell where each field component is defined.

2008), which was developed for magnetospheric models of com-
pact objects and is presented in this work for completeness.

This paper is organized as follows. In Sect. 2, we describe the
set of numerical techniques used to generalize the PIC method
to perform two-dimensional axisymmetric global kinetic simu-
lations of pulsar magnetospheres with OSIRIS: the adopted dis-
cretization of the spatial domain is presented in Sect. 2.1, and the
numerical schemes used to advance the field and particle equa-
tions and the corresponding boundary conditions are detailed in
Sects. 2.2 and 2.3. A new charge-conserving current-deposition
scheme is presented in Sect. 2.4, and the typical scales and nor-
malizations adopted in the code are presented in Sect. 2.5. In
Sect. 3, we present simulations with volume-based (Sect. 3.1),
surface-based (Sect. 3.2), and pair-production-based (Sect. 3.3)
plasma injection. Our conclusions are presented in Sect. 4.

2. Numerical tool

2.1. Discretization and spatial grid

The numerical tool presented in this work is designed to model
the global plasma environment surrounding neutron stars; that
is, the spatial volume between the stellar surface and a few
light cylinder radii above it, corresponding to the cylinder radius
where the co-rotation velocity matches the speed of light, RLC ≡

c/Ω. We describe this system in spherical coordinates, with the
radial coordinate r measured from the center of the neutron star
and the polar angle θ measured from the star’s rotation axis Ω.
We assume that Ω is either parallel or anti-parallel to the star’s
magnetic axis µ, such that we can assume axisymmetry about
Ω and derivatives with respect to the azimuthal angle φ can be
dropped, ∂/∂φ = 0.

Similarly to Chen & Beloborodov (2014), Cerutti et al.
(2015), we discretize the simulation domain r ∈ [rmin, rmax],
θ ∈ [0, π] in a grid with Nr × Nθ cells. We adopt a regular grid

spacing in θ, ∆θ = π/Nθ, and in log r. The latter choice allows
for a grid spacing that monotonically increases with r. In pulsar
magnetosphere simulations, this choice favors the resolution of
shorter spatial scales close to the stellar surface, where denser
plasmas are expected, and relaxes it far from the neutron star,
where it is less needed. The discretization in the radial direction
can be formally written as

log rn = log rmin + (n − 1)∆ , n = 1, 2, ...,Nr + 1 , (1)

with ∆ ≡ log(rmax/rmin)/Nr. Equation (1) can be manipulated to
write the useful relation rn = rminδ

n−1, where δ ≡ (rmax/rmin)1/Nr

is a parameter that combines all properties of the radial axis.
A schematic representation of the grid used to discretize a

typical simulation domain in illustrated in Fig. 1a. The edges
of grid cells are shown in black lines, and domain boundaries
are highlighted in blue and dark red. The lower radial bound-
ary coincides with the stellar surface, rmin = r∗, whereas the
upper radial boundary is at rmax ∼ tens of r∗, and acts as an open
boundary. The θ = 0, π boundaries enforce axisymmetry, effec-
tively serving as reflecting boundaries. More details about these
boundaries are provided in Sects. 2.2 and 2.3.

In Fig. 1b, we show a schematic representation of a typ-
ical grid cell, which we label with indices (i, j) in the radial
and polar directions, respectively. Cell boundaries are drawn in
solid black lines, and auxiliary lines are drawn in dashed black
lines. The positions where the electric and magnetic field com-
ponents are defined are indicated in dark red and blue. Half inte-
ger indices i + 1/2 and j + 1/2 indicate positions defined as
ri+1/2 ≡ (ri + ri+1)/2 and θ j+1/2 ≡ (θ j + θ j+1)/2, respectively. The
grid illustrated in Fig. 1 presents two key differences with respect
to a typical Cartesian grid: a) its cells have curvilinear bound-
aries and b) their shape and volume change across the grid. These
conditions make each step of the PIC method in spherical coor-
dinates more challenging, requiring conversions between coordi-
nate systems in the particle pusher and adjustments in the current
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deposition scheme to accomodate particle shrinking/expansion
in each time step. We explore these challenges and workarounds
in Sects. 2.2, 2.3 and 2.4.

2.2. Electromagnetic field solver

Electric and magnetic field components are defined in the edges
of the staggered grid cells indicated in Fig. 1b. This definition is
analogous to that used in traditional Cartesian grids, and allows
the use of the Yee algorithm (Yee 1966) to advance the electric
and magnetic field in time via Maxwell’s equations,

Bn+1/2 = Bn−1/2 = −c∆t(∇ × E)n , (2)

En+1 = En + c∆t(∇ × B)n+1/2 − 4π∆tjn+1/2 , (3)

where quantities with integer/half integer superscripts are
defined in integer/half integer times and ∆t is the time step.

Here we adopt the same methodology as Cerutti et al. (2015),
Belyaev (2015b) and use an integral form of Maxwell’s equa-
tions that avoids divergences on the polar boundaries. This inte-
gral form is obtained using Stokes’ theorem to evaluate the curl
of electric and magnetic fields in a given cell as

(∇ × E)cell =

(∮
Ccell

E · dCcell

)
/Scell , (4)

where Ccell is the contour defining the edge of that cell, Scell is
the corresponding area, and the closed integral and dot product
have the usual definition of Stokes’ theorem. The cell label and
corresponding integrations in Eq. (4) change according to the
field component under consideration. For instance, we can write
the radial component of ∇ × E as

(∇ × E)r(i, j+1/2) =
sin θ j+1Eφ(i, j+1) − sin θ jEφ(i, j)

ri(cos θ j − cos θ j+1)
. (5)

This expression is derived by noting that, according to Eq. (2),
(∇ × E)r should be defined in the same position as Br, that
is, at cell indices (i, j + 1/2). This defines the integration sur-
face relevant to Stokes’ theorem as r = ri, θ ∈ [θ j, θ j+1].
The numerator and denominator in Eq. (4) then read respec-
tively 2π(ri sin θ j+1Eφ(i, j+1) − ri sin θ jEφ(i, j)) and 2πr2

i (cos θ j −

cos θ j+1), where the 2π factor comes from the integration along
φ. A similar calculation can be performed for all other compo-
nents (Cerutti et al. 2015).

We note that at the simulation boundaries (i = {1,Nr + 1},
j = {1,Nθ + 1}), the integration regions are adapted to fit
within the domain. For example, the θ integration is changed to
θ ∈ [0, θ1+1/2] and θ ∈ [θNθ+1/2, π] at the θ = 0 and θ = π bound-
aries, respectively. We also apply special rules to the field com-
ponents at the boundaries; for example, in the polar boundaries
we enforce the axisymmetry conditions Eφ(i,1) = Eφ(i,Nθ+1) = 0
and Bθ(i+1/2,1) = Bθ(i+1/2,Nθ+1) = 0. The inner radial bound-
ary acts generally as a rotating conductor mimicking the stellar
surface, whereas the outer boundary acts as a first-order stan-
dard Mur open boundary condition (Mur 1981), that is, a per-
fect absorber of perturbations propagating perpendicularly to
the boundary, thus allowing the system to converge to a quasi-
stationary solution. For the sole purpose of code benchmarking,
we have also implemented static conductor boundary conditions
for both inner and outer radial boundaries, which enforce tan-
gent (normal) electric (magnetic) field components to be null,
Eφ(1, j) = Eφ(Nr+1, j) = 0, Eθ(1, j+1/2) = Eθ(Nr+1, j+1/2) = 0 and
Br(1, j+1/2) = Br(Nr+1, j+1/2) = 0.

We benchmarked our field solver implementation by study-
ing stationary electromagnetic TM modes between two spherical
static conductors (Jackson 1975). We verified that the solution
obtained numerically is in excellent agreement with the analyti-
cal solution of Maxwell’s equations for these modes, as well as
with the detailed discussion about a similar solver in Belyaev
(2015b).

2.3. Particle pusher

Particle position and momentum components are updated
in Cartesian coordinates with either the Boris (Boris 1970;
Birdsall & Langdon 1991) or Vay (Vay 2008) pushers, although
other pushers are also compatible with the remaining modified
subalgorithms of PIC presented in this work. In each time step,
a particle push is done as follows: first, the electric and magnetic
fields are interpolated from the edges of the corresponding grid
cell to the particle position xn

p ≡ (rp, θp), an operation that we
write schematically as (En

(i, j),B
n
(i, j)) → (En

p,Bn
p). This interpola-

tion is done using a area/volume weighting scheme. For exam-
ple, the toroidal component of the electric field can be written as

Eφp =
∑

i′=i,i+1

∑
j′= j, j+1

fri′ fθ j′Eφ(i′, j′) , (6)

with

fri = 1 − fri+1 =
r3

p − r3
i

r3
i+1 − r3

i

,

fθ j = 1 − fθ j+1 =
cos θ j − cos θp

cos θ j − cos θ j+1
.

After the interpolation, the field components are converted from
spherical to Cartesian coordinates, (En

p,Bn
p) → (En

p,C,B
n
p,C), a

calculation that depends on the particle position at time tn, xn.
Finally, the particle momentum and position are updated in time,
un−1/2 ≡ pn−1/2/mec → un+1/2 ≡ pn+1/2/mec and xn → xn+1

respectively. Choosing to advance position and momentum com-
ponents in Cartesian coordinates guarantees that we are solving
the simplest possible equations of motion and also allows for an
easy integration with other modules in OSIRIS, such as those
accounting for classical radiation reaction losses (Vranic et al.
2016) and QED effects (Grismayer et al. 2016, 2017), not
explored in the current study. Other works seem to point out
that the radiation reaction does not significantly modify the
global magnetospheric structure, leading only to thinner current
sheets (Uzdensky & McKinney 2011; Philippov et al. 2015a;
Hakobyan et al. 2019, 2023; Schoeffler et al. 2023). This effect
may be important for the hot population near the light cylin-
der radius, which in the current study may possess unphysical
Larmor radii. Further investigation on the effect of synchrotron
cooling on the magnetospheric state is deferred to future work.

We note that advancing the particle position in (x, y, z) does
not introduce any asymmetry in the azimuthal direction φ; in
fact, each macro-particle in our simulation represents a charged
ring with azimuthal symmetry and φ is never used throughout the
rest of the numerical scheme. In summary, the simulation stores
the particle’s 3D Cartesian coordinates and velocities, and the
2D spherical poloidal coordinates,

xp ≡
(
rp, θp, xp, yp, zp

)
, (7)

up ≡
(
ux, uy, uz

)
. (8)
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Fig. 2. Particle pusher benchmarks corresponding to particle
motions in (a1-2) a uniform azimuthal magnetic field, (b1-2)
crossed constant magnetic and electric fields, and (c1-2) the
time-varying electric and magnetic field components of TM
modes.

We tested our implementation of the particle pushers in a
large set of background electric and/or magnetic field config-
urations. In Fig. 2, we show results from a relevant subset of
these configurations, namely a particle moving in (a) a uni-
form azimuthal magnetic field, (b) crossed constant magnetic
and electric fields, and (c) the time-varying electric and magnetic
field components of the TM modes described in the electromag-
netic field solver benchmark presented in Sect. 2.2. For all these
cases, we show a comparison between the solutions obtained
with the Boris pusher and analytical or other numerical solu-
tions. We obtain an excellent agreement between the results of
the Boris pusher and the reference analytical/numerical curves.
Solutions obtained with the Vay pusher show a similar agree-
ment with the reference curves. In Fig. 2a2, we represent the
temporal evolution of the particle energy for over ∼1000 periods,
showing that it is conserved to machine precision. We note that in
all these benchmarks, the only electromagnetic fields were those
either imposed externally or calculated with the field solver; that
is, they do not include the fields self-consistently created due to
particle motion via plasma currents.

2.4. Current deposition

A current deposition algorithm computes the current density j on
the edges of grid cells as the positions and momenta of particles
are updated. A trivial choice is to compute this current as the sum
over the macro-particles of the product of their charge density
and instantaneous velocity. However, such algorithm in general
does not satisfy the continuity equation (Villasenor & Buneman

1992; Esirkepov 2001),

∂ρ

∂t
+ ∇ · j = 0 , (9)

where ρ is the total plasma density. Solving Eq. (9) ensures also
that Gauss’ law, written as

∇ · E = 4πρ , (10)

is satisfied. Finding a current deposition algorithm that satisfies
Eq. (9), and consequently Eq. (10) (i.e., a charge-conserving cur-
rent deposition algorithm) is one of the key challenges in PIC
codes. For Cartesian grids, there is a well established method
for any interpolation order proposed in Esirkepov (2001). How-
ever, for nonuniform spherical grids, this challenge is more sub-
stantial, as grid cells (and particle shapes, which we define
below) change across the grid. Other codes that adopt such
grids (Cerutti et al. 2015; Philippov et al. 2015a) usually do not
include charge-conserving current deposition algorithms, and
adopt instead numerical schemes to enforce the validity of
Eq. (10), for example Poisson solvers.

Here, we propose a new current deposition scheme that
conserves charge to machine precision in the nonuniform grid
defined in section 2.1. We start by defining the volume occupied
by a macro-particle centered at (rp, θp). The function that defines
this volume is usually called the particle shape, S (r, θ, rp, θp).
Before writing the exact form of S , let us define some of its
important properties, which we illustrate schematically in Fig. 3.
First, the particle shape should only coincide with the shape of
the cell in which its center is located, labeled with indices (i, j),
when and only when (rp, θp) = (ri+1/2, θ j+1/2). Since the grid
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Fig. 3. Schematic representation of (a) the spherical particle shape and (b) the variation of its flat-top density value with the radial coordinate. The
blue shaded region in (a) represents the particle shape and identifies its widths in the radial and polar directions.

Fig. 4. Particle shape properties. Panel (a) shows the radial width and
panel (b) the density and real particle number.

spacing in the radial direction is a function of r, the particle width
in this direction should also be a function of rp, ∆r ≡ ∆r(rp). Fur-
thermore, the charge density associated with each macro-particle
should also be a function of rp. More specifically, the charge
density should decrease with rp to compensate the correspond-
ing increase in volume of the macro-particle, such that its total
charge remains constant.

Defining the number of real particles in a macro-particle as
Np, we formally wish to find a waterbag-like particle number
density n(r) such that∫

Vi

n(ri+1/2) dVi =

∫
Vi′

n(ri′+1/2) dVi′ = Np , (11)

where Vi,i′ are the volumes of cells with radial labels i, i′ (see
Figure 3b)). For simplicity, we assume that the particle density
is only a function of r, and generalize it later to include the nat-
ural dependence in θ as well. Assuming that n(ri+1/2) is constant
within cell i, we can solve Eq. (11) to obtain

n(ri+1/2) =
3Np

4π
1

r3
i+1 − r3

i

=
3Np

32π
(δ + 1)3

δ3 − 1
1

r3
i+1/2

, (12)

where we have used the relation ri+1/2 = ri(1 + δ)/2 = ri+1(1 +
δ−1)/2. We note that Eq. (12) defines n(r) for any ri+1/2, but not
for r , ri+1/2. We choose to take the continuous limit of n(ri+1/2)
for an arbitrary radius, replacing ri+1/2 for an arbitrary rp,

n(rp) =
3Np

32π
(δ + 1)3

δ3 − 1
1
r3

p
. (13)

Eq. (13) ensures that n(r) satisfies exactly Eq. (11) when rp =
ri+1/2 and that the particle shape is a smooth function of rp. The
particle width ∆r(rp) is determined in a similar manner; first,
we express the grid spacing in terms of ri+1/2, ∆ri = ri+1 − ri =
2ri+1/2(δ−1)/(δ+1), and we extend this definition to an arbitrary
radius rp,

∆r(rp) = 2rp
δ − 1
δ + 1

. (14)

This quantity is represented for a typical grid in Fig. 4a,
together with the grid spacing ∆ri. As expected, both quanti-
ties match exactly when r = ri+1/2, and ∆r is a smooth function
of r. Equations (13) and (14) ensure that the conservation law
expressed in Eq. (11) can be extended to any radius, which is
shown in Fig. 4b.

The general particle shape S can be inferred from this dis-
cussion, and in particular from Eq. (13). It reads

S (r, θ, rp, θp) =
3

16π
(δ + 1)3

δ3 − 1
1
r3

p
b0

(
r − rp

∆r(rp)

)
×

×
1

cos(θp − ∆θ/2) − cos(θp + ∆θ/2)
b0

(
θ − θp

∆θ

)
,

(15)

where b0(x) is the zeroth order b-spline function, defined as
b0(x) = 1 if |x| < 0.5 and 0 otherwise. We note that Eq. (15)
generalizes the particle shape to a two-dimensional (r, θ) grid,
hence the cos(θp ± ∆θ) terms resulting from the integral in
Eq. (11). With the shape function in Eq. (15), we can compute
the charge density at any point (r, θ) due to the presence of a
macro-particle with Np real particles of charge qp and coordi-
nates (rp, θp) as ρp(r, θ, rp, θp) = qpNpS (r, θ, rp, θp). The charge
density at cell edges is defined resorting to the area/volume
weighting technique described in Sect. 2.3, and can be formally
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derived as

ρ(i, j)(rp, θp) =

∫
Vi, j
ρs(r, θ, rp, θp) dVi, j

Vi, j

=

qpNp
3

16π
(δ + 1)3

δ3 − 1
(r3

i+1/2 − r3
i−1/2)(cos θ j−1/2 − cos θ j+1/2)

×

×

[
r3
> − r3

<

r3
p

][
cos(θp − ∆θ/2) − cos θ j+1/2

cos(θp − ∆θ/2) − cos(θp + ∆θ/2)

]
.

(16)

We note that the special integration limits r> = min(rp +
∆r(rp)/2, ri+1/2) and r< = max(rp − ∆r(rp)/2, ri−1/2) result from
the subtlety that the particle radial width is a function of the par-
ticle radial coordinate, rp. The expressions in square brackets are
often referred to as the weighting functions in PIC current depo-
sition algorithms. We note also that Eq. (16) and the poloidal
weighting functions defined in Eq. (6) constitute the same opera-
tion, with the volume integral centered in different grid positions,
(rp, θp) and (ri, θ j), respectively. Excluding the volume terms of
the particle, given in Eq. (15), this point can be made explicit
through

fri =
r3

p − r3
i

r3
i+1 − r3

i

and ρ(i, j)(rp, θp) ∝
r3
> − r3

<

r3
i+1/2 − r3

i−1/2

, (17)

for the radial components, which shows that current deposition
and field interpolation schemes have the same order.

The particle shape in Eq. (15) and the deposition rule in
Eq. (16) are the key ingredients in our charge-conserving cur-
rent deposition scheme. This scheme is inspired by the seminal
work of Villasenor & Buneman (1992) (hereafter VB92), which
presented a scheme that predecessed the widely used method
of Esirkepov (2001) for PIC current deposition in Cartesian
grids. The VB92 method is schematically represented in Fig. 5a.
Villasenor & Buneman (1992) proposed that the current density
j should be computed directly by inverting the continuity equa-
tion, thus enforcing by construction that it is satisfied. In prac-
tice, when a particle is pushed in time from a position xn to a
position xn+1, part of its shape crosses the boundaries over which
the current density is defined in the Cartesian PIC grid. These
boundaries, and the exact locations where each of the compo-
nents of j are defined, are shown in Fig. 5a in green and red lines
and arrows, respectively. VB92 recognized that we can simply
compute the different current density components by evaluating
the fraction of charge density carried by each macro-particle that
crosses the boundaries identified in green and red. For a Carte-
sian grid, this fraction can be computed geometrically as the ratio
between the areas Agreen and Ared and the total area corresponding
to the particle shape, Atotal. This calculation is simple in Carte-
sian grids because the particle shape does not change across the
grid, which allows us to label which parts of the colored area at
x > xi+1/2 and y > y j+1/2 crossed each of the green or red lines.
In a spherical grid, this condition is not met, and the calculation
becomes more involved.

A schematic representation of the method equivalent to
VB92 in a spherical grid is shown in Fig. 5b, where same ratio-
nale described above is easily applied except for the determina-
tion of the area identified with A?. Because the particle expands
during its motion from xn to xn+1, it is not trivial to determine
which fraction of A? should be combined with Agreen (Ared) to
compute jr(i+1/2, j) ( jθ(i, j+1/2)). We circumvent this issue by gener-
alizing the geometrical interpretation of ∇ · j proposed by VB92.

They suggested that the total current divergence can be split as
∇·j = (∇·j)x+(∇·j)y in a Cartesian grid, with (∇·j)y ∝ Agreen/Atotal
and (∇ · j)x ∝ Ared/Atotal, and that these terms could be com-
puted directly by evaluating −∂ρ(i, j)/∂t assuming that the parti-
cle moves purely along the corresponding direction at an aver-
age position along the orthogonal direction. Formally, this is
expressed as

(∇ · j)x(i, j) = −
∂ρ(i, j)

∂t

∣∣∣∣∣∣x
n+1,ȳ

xn,ȳ
=
ρ(i, j)(xn+1, ȳ) − ρ(i, j)(xn, ȳ)

∆t
, (18)

(∇ · j)y(i, j) = −
∂ρ(i, j)

∂t

∣∣∣∣∣∣x̄,y
n+1

x̄,yn

=
ρ(i, j)(x̄, yn+1) − ρ(i, j)(x̄, yn)

∆t
, (19)

where x̄ = (xn+1 + xn)/2 and ȳ = (yn+1 + yn)/2. From Eqs. (18)
and (19), we can express the divergence operators using finite
differences and obtain jx(i+1/2, j) and jy(i, j+1/2). This approach can
be generalized to spherical coordinates, as we can write ∇ · j =
(∇ · j)r + (∇ · j)θ. However, because the particle shape changes
continuously in the radial direction, (∇ · j)θ cannot be computed
assuming that the particle moves purely along the polar direction
with r̄ = (rn+1 + rn)/2. Instead, we proceed as follows: first, we
compute ∇ · j and (∇ · j)r using

(∇ · j)(i, j) = −
∂ρ(i, j)

∂t

∣∣∣∣∣∣r
n+1,θn+1

rn,θn

=
ρ(i, j)(rn+1, θn+1) − ρ(i, j)(rn, θn)

∆t
,

(20)

(∇ · j)r(i, j) = −
∂ρ(i, j)

∂t

∣∣∣∣∣∣r
n+1,θ̄

rn,θ̄

=
ρ(i, j)(rn+1, θ̄) − ρ(i, j)(rn, θ̄)

∆t
, (21)

where θ̄ = (θn+1 +θn)/2. Then, we compute (∇·j)θ = ∇·j−(∇·j)r.
Finally, we invert the nabla operators,

(∇ · j)r(i, j) = 3
[ r2

i+1/2 jr(i+1/2, j) − r2
i−1/2 jr(i−1/2, j)

r3
i+1/2 − r3

i−1/2

]
, (22)

(∇ · j)θ(i, j) =
3
2

r2
i+1/2 − r2

i−1/2

r3
i+1/2 − r3

i−1/2

×

×

[ sin θ j+1/2 jθ(i, j+1/2) − sin θ j−1/2 jθ(i, j−1/2)

cos θ j−1/2 − cos θ j+1/2

]
, (23)

to find the current components. The inversion of (∇ · j)θ(i, j)
is simple, because the second term in the square brackets of
Eq. (23) is always zero given that the particle motion is restricted
to cell (i, j). The same is applicable to the inversion of (∇ · j)r(i, j)
for most particle positions in cell (i, j); however, due to the fact
that the particle expands with rp, it can deposit current at the
grid position (i − 1/2, j) when rp is close to ri. When this hap-
pens, we determine (∇ · j)r(i−1, j) using Eq. (21), invert the cor-
responding operator to obtain jr(i−1/2, j) and use it to solve for
jr(i+1/2, j) in Eq. (22). When particles cross two cells from xn to
xn+1, we split their trajectory such that each split is within a sin-
gle cell, and apply the method described before to each trajectory
split. The same strategy is applied in the algorithms proposed
in Villasenor & Buneman (1992) and Esirkepov (2001). This
method does not impose any restriction on the azimuthal current
component, which we take to be simply jφ(i, j) = ρ(i, j)vφ, where
vφ is the macro-particle velocity in the azimuthal direction. Also,
we adapt the integration regions as described in Sect. 2.2 to cor-
rect the evaluation of Eqs. (16) and (23) on the poloidal axes.
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Fig. 5. Schematic representation of the current-deposition algorithm in (a) Cartesian and (b) spherical coordinates (see text for details).

Finally, we note that Eqs. (16) and (22)-(23) can also be
derived by applying the algorithms in Villasenor & Buneman
(1992) or Esirkepov (2001) (in first-order) in a Cartesian logical
space with the spherical coordinates metric; that is, applying a
coordinate transformation to (r̃, θ) ≡ (log r, θ). In this Cartesian-
like logical space, the grid becomes uniform and the cell cen-
ter is located at ri+1/2 = exp ((ri + ri+1)/2), thus rendering the
particle shape function S asymmetric in polar spherical coordi-
nates. These special coordinates are less intuitive from a physical
perspective but solve the particle shrinking/expansion problem
described in this section, not requiring the special integration
limit verification. A similar approach using logical coordinates
was taken in (Belyaev 2015b). The method introduced in this
paper is generic and conserves charge to machine precision even
when adopting nonuniform grids, as we shall now demonstrate.

We benchmarked the current deposition method presented
here by initializing particles all over the simulation domain with
a random velocity (fixed number of particles per cell), depositing
their current over a time step ∆t and evaluating

∆Continuity =
∆t
ρ(i, j)

(
∂ρ(i, j)

∂t
+ (∇ · j)(i, j)

)
, (24)

∆Gauss =
1
ρ(i, j)

(
(∇ · E)(i, j) − 4πρ(i, j)

)
. (25)

Both ∆Continuity and ∆Gauss should be zero if the continuity equa-
tion and Gauss’ law are satisfied. Figure 6 shows that these quan-
tities are both of the order of machine precision, 10−15 − 10−11.
The value of both ∆Continuity and ∆Gauss tends to be larger when
closer to the star. Particles crossing cell boundaries lead to the
accumulation of round-off errors. Closer to the star the resolution
is higher, and thus there are more crossing operations, which jus-
tifies the radial error dependence. The shrinkage and expansion
of particles due to the use of a nonuniform grid with symmetric
particle shape function S aggravates this error, as one single par-
ticle may deposit charge and current in three consecutive cells (in
a single direction). The choice of logical coordinates reduces this
number to two consecutive cells, thus performing better. Nev-
ertheless, we have verified that the accuracy of the method is
maintained over multiple time steps for a nonuniform grid by
ensuring that the evolution of the grid integrals of ∆Continuity and

∆Gauss remain at machine precision level, for both single and
multi-particle tests.

This current deposition method thus accurately conserves
charge, avoiding the need for other correcting algorithms. It
is also inexpensive, since most factors in Eqs. (20)–(23) can
be precomputed and reused throughout a simulation. Also, this
method can be generalized for curved spacetime configura-
tions (Torres et al. 2024).

2.5. Typical scales and normalizations

In the benchmarks presented above, the normalization units of
distances, times, and fields varied according to what best suits
the respective tests. However, for pulsar magnetosphere simu-
lations, we adopt a common normalization that we introduce
here. We choose to normalize distances to the stellar radius r∗
and times to r∗/c. Electric and magnetic fields are normalized
to mec2/er∗, however we typically represent them in units of
enGJr∗, where nGJ = ΩB∗/2πec is the surface Goldreich-Julian
(GJ) (Goldreich & Julian 1969) particle number density. The GJ
density also defines a typical frequency ωp,GJ =

√
4πe2nGJ/me

and an electron skin depth de,GJ = c/ωp,GJ. The time step and
grid spacing are chosen to resolve these temporal and spatial
scales, respectively.

In pulsar magnetosphere simulations, the main parameter
responsible for setting the typical temporal, spatial and energy
scales is the normalized value of the surface magnetic field,
B∗(er∗/mec2). For realistic parameters, B∗ ' 1012 G and r∗ '
10 km, we have B∗(er∗/mec2) ∼ 1015. Global simulations are
not feasible with such values, since they would have to resolve
scales of the order of ∼tens of r∗ down to de,GJ ∼ 10−7 r∗. For this
reason, we use more modest values of B∗(er∗/mec2) ∼ 103−106,
such that we respect the ordering in these objects, Ω � ωp,GJ �

ωc, where ωc = eB∗/mec is the cyclotron frequency associated
with a field magnitude B∗.

3. Global simulations of pulsar magnetospheres

In this Section, we present global PIC simulations of
pulsar magnetospheres obtained with the OSIRIS frame-
work (Fonseca et al. 2002, 2008). We start by allowing
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Fig. 6. Current deposition benchmarks, showing that both
(a) the continuity equation and (b) Gauss’ law are satisfied to
machine precision.

electron-positron pairs to be artificially and abundantly injected
in our simulations, and then make increasingly realistic assump-
tions about the plasma supply processes, in particular regarding
the regions of space where pair cascades operate, and the sepa-
ration between kinetic and system scales.

All simulations presented here have a similar initial con-
figuration: the system starts in vacuum and with an initial
dipolar magnetic field of polar surface magnitude B∗; that is,
with components Br(r, θ) = B∗(r∗/r)3 cos θ and Bθ(r, θ) =
(1/2)B∗(r∗/r)3 sin θ. The inner radial boundary is treated as a
rotating conductor of angular velocity Ω = Ωẑ; at the sur-
face of the neutron star, we impose the co-rotation electric field
E = −(vrot × B)/c, with vrot = Ω × (r∗r̂). In all simulations,
we consider the stellar rotation frequency to be initially zero and
increase it linearly over a time trisec/r∗ = 1.5 to Ωr∗/c = 0.125.
For times t > trise, the stellar frequency is kept constant. The
stellar period is T = 2π/Ω = 50 r∗/c and the light-cylinder
radius is RLC/r∗ = 8. All simulations use also rmin/r∗ = 1 and
rmax/r∗ = 20, such that the plasma dynamics can be captured up
to r/RLC > 2. The value of B∗ is chosen to satisfy the ordering
Ω � ωp,GJ � ωc described in Sect. 2.5 while maintaining simu-
lations numerically feasible. This choice and others regarding for
example grid resolution vary according to the injection scheme
and parameter regime under study, and are detailed alongside the
corresponding simulations.

3.1. Volume injection

In this section, we inject plasma everywhere in the simulation
domain where the local electric field component parallel to the
magnetic field satisfies the condition E‖c/r∗ΩB∗ > klim, where
klim is a constant. Similar injection criteria have been used in
Belyaev (2015a), whereas in Philippov & Spitkovsky (2014),
Kalapotharakos et al. (2018), Brambilla et al. (2018) plasma is
only injected if the local magnetization is also above a given
threshold. Physically, this injection scheme is equivalent to
assuming that electron-positron pair cascades may develop
wherever E‖ is sufficiently large, as it neglects any role of the
local magnetic field magnitude or curvature. Since all fields
(and in particular E‖) decay with r, the choice of klim can
also be interpreted as a spatial limitation to the plasma sup-
ply: infinitely small values of klim allow plasma to be injected

up to r � r∗, whereas klim ∼ 1 restricts the plasma sup-
ply to radii r ∼ r∗. A macro-electron-positron pair with parti-
cle weight wvol = kvolVpE‖/er∗ and carrying a number density
nvol = wvol/Vp, with kvol = 0.2 and Vp being the macro-particle’s
volume, is injected at rest in each cell and time step in which
the injection condition is met. The choice of kvol is such that a
few macro-particles are required to supply the charge density
that screens E‖ and stops the injection. We can also interpret
kvol as a parameter proportional to the local GJ density, since
E‖/er∗ ∼ nGJ. In all the simulations presented in this section,
B∗er∗/mec2 = 8 × 103, Nr × Nθ = 10002 and ∆tc/r∗ = 10−3. In
these conditions, c/ωp,GJr∗ ' 0.022, whereas the minimum grid
spacing is min(∆ri)/r∗ ' 0.003.

In Fig. 7, we present an overview of the quasi-steady-state
solution obtained with klim = 0.005. This solution is achieved
after a time ∼25 r∗/c ∼ T/21. In the first half stellar period,
the simulation undergoes a transient stage in which the vac-
uum co-rotation fields are established and plasma is created. The
solution presented in Fig. 7 resembles the canonical force-free
regime of pulsar magnetospheres: the magnetosphere is divided
in two regions permeated by closed and open magnetic field
lines (shown in white/black solid lines in all panels), with the
last closed field line crossing the equatorial plane at the light-
cylinder radius (shown in a white/black dashed vertical line in
all panels). The open and closed field line regions are respec-
tively negatively and positively charged, even if electrons and
positrons exist in both regions – see Fig. 7a-c, showing the
electron and positron number density and the total charge den-
sity, respectively. As shown in Fig. 7d, a negative radial cur-
rent density jr (blue) is conducted from the polar regions and
along the open field lines, which is compensated by return cur-
rent layers (red) established on the last closed field line. The
return current layers are connected with each other at a distance
r ' RLC on the equatorial plane, where the poloidal magnetic
field lines resemble a Y shape. A radial current density layer
extends along the equatorial plane to large distances, support-
ing a strong gradient in the toroidal magnetic field component

1 This is not a universal result. In fact, the time required by the system
to achieve a steady-state (or quasi steady-state) solution varies with the
injection scheme, the stellar ramp-up time trise, and other initial and/or
boundary conditions.
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Fig. 7. Force-free magnetosphere obtained with volume
injection. Panels (a-f) show the electron and positron den-
sity, total charge density, radial current density, azimuthal
magnetic field, and electric field component parallel to
the local magnetic field, respectively. Quantities are multi-
plied by powers of r to enhance the features at large radii.
Black and white solid lines represent magnetic field lines,
and vertical dashed lines show the location of the light
cylinder.

Bφ, illustrated in Fig. 7e. The poloidal magnetic field lines have
also opposite polarity in opposite sides of this equatorial cur-
rent layer, and reconnect sporadically, leading to the forma-
tion of outflowing plasmoids – see the large density structures
at r/r∗ ' 12 in Fig. 7a-b. The plasma supply in this simula-
tion is large enough such that E‖ is effectively screened in the
whole simulation domain, as shown in Fig. 7f, and thus lies
well within the assumptions of the force-free regime for pulsar
magnetospheres.

The quasi-steady-state shown in Fig. 7 is sustained via inter-
mittent injection, mainly along the return current layers. In these
regions, E‖ is less efficiently screened, leading to the injection
of plasma which, in turn, screens the field as it flows along the
return current layers. As we shall demonstrate, this intermittency
has a period of '0.3−0.5 T , and it may play a significant role
in the temporal evolution of the magnetospheric state. However,
for klim = 0.005 the solution never deviates significantly from
the force-free regime.

In order to demonstrate how the magnetospheric solution
changes with klim, in Fig. 8 we compare the total charge den-
sity of the solutions obtained with klim = {0.005, 0.01, 0.1}. We
reiterate the fact that klim is the minimum value of E‖c/r∗ΩB∗
for which we inject plasma. It is clear that the force-free regime
is only observed for klim = 0.005. For klim = 0.01, the equato-
rial current sheet (positively charged region at r & RLC) is wide
and the return current layers are not positively charged every-
where, and for klim = 0.1 the solution does not even produce
an outflow. In fact, by increasing klim, we are limiting the plasma
supply to regions closer and closer to the stellar surface. This can
be understood by noting that this parameter compares the local
E‖ with the reference value ΩB∗r∗/c (i.e., the surface magnitude
of the electric field in vacuum). Since the typical magnitude of
E‖ decreases with r, increasing klim limits plasma injection to
smaller radii. In the klim = 0.01 run, this supply occurs only
up to radii r/r∗ ' 3, and the solution shows the same intermit-
tency observed for klim = 0.005. However, the injection stage
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Fig. 9. Poynting flux in simulations with volume injection. Values are
normalized to the theoretical value L0 = µ2Ω4/c3.

is not as efficient in this case, and the equatorial outflow is not
dense enough to produce a thin current sheet. For klim = 0.1, only
regions close to the surface can initially fulfil the injection crite-
ria, and no plasma is supplied to large radii. The system relaxes
in this case to a fully charge-separated configuration, with only
electrons (positrons) in the poles (equatorial region). This solu-
tion is often denominated as the disk-dome or electrosphere
solution (Jackson 1976; Krause-Polstorff & Michel 1985). In the
charged regions, the electric field is screened, injection ceases
and no plasma outflows are formed.

An important property of the magnetospheric solution is the
integrated Poynting flux L(r), defined as

L(r) =
c
2

∫ π

0
(E × B)r r2 sin θdθ . (26)

Figure 9 shows L(r) as a function of time for the three simula-
tions described before. This quantity is normalized to the the-
oretical value of the spindown luminosity, L0 = µ2Ω4/c3, with
µ = B∗r3

∗ . We observe a large spindown at early times for all
simulations, which is a consequence of the initial transient stage.
After this transient, the klim = 0.1 simulation converges to a sur-
face Poynting flux L∗/L0 � 1, which is a consequence of the
inactivity of disk-dome solution. On the contrary, the simula-
tions with lower klim have L∗/L0 ∼ 1. The Poynting flux remains
approximately constant within the light-cylinder for these runs,
and decays with r for r > RLC, which is a signature of the con-
version from magnetic to kinetic energy due to magnetic recon-
nection in the equatorial plane. The surface Poynting flux shows
variations of periodicity 0.3−0.5 T , which are correlated with
the intermittency of the solution identified above in this section.
The time-averaged radial dependence of the luminosity 〈L〉 after
a stellar period and the temporal dependence of L∗ is shown in
Fig. 10.

The simulations presented in this section show that the effi-
ciency of the plasma supply critically determines the global
structure of the pulsar magnetosphere. Independently of the
injection criteria variants, the volumetric prescription of plasma
allows for efficient screening of all magnetospheric gaps, thus
approaching the force-free solution everywhere, as documented
in similar works (Philippov & Spitkovsky 2014; Belyaev 2015a;
Kalapotharakos et al. 2018; Brambilla et al. 2018). In the present
study, we show that klim effectively controls the radial extent
of the plasma supply, demonstrating that quasi-force-free solu-
tions can only be achieved when the outer gap is, at least,
partially screened. This fact is physically very relevant, as it
determines the amount of fully open magnetic field lines con-
tributing towards the stellar spin-down power, reflected in the
observed luminosity and also in the poloidal extent of the polar
cap. Here, we show that pulsars with quasi-force-free magneto-
spheres (e.g., klim = 0.005 simulation) must be observed with
〈L〉 ∼ L0 and the radio beam poloidal extent, if resolved, must
be close to the polar cap angle provided by force-free models,
θPC ∼

√
r∗/RLC. This is in contrast with subforce-free magne-

tospheres (e.g., klim = 0.01 simulation), resembling the weak-
pulsar solution (Gruzinov 2015), characterized by an outer gap,
wider equatorial current sheet, and a thinner open flux tube from
the polar cap due to the expansion of the volumetric return cur-

A229, page 10 of 18



Cruz, F., et al.: A&A, 690, A229 (2024)

rent (see Fig. 8). Consequently, such pulsars must be observed
with smaller spin-down luminosities, 〈L〉 . 0.8L0, and thinner
radio beams, due to the compression of the polar cap, making
them distinguishable from regular force-free pulsars.

Although the volumetric plasma injection allows for a
spatially regulated prescription of plasma, we point out that
this plasma prescription method may lead to unphysical over-
injection of plasma close to the rotation axis, as seen in Figs. 7
and 8, enabled by parallel electric field fluctuations. This effect
is particularly noticeable for the klim = 0.005 simulation, which
possesses the minimum value of E‖c/r∗ΩB∗. Also, the efficiency
of pair production must not be spatially uniform in the magne-
tosphere, as this model assumes. In particular, pair production at
radii comparable to the light-cylinder radius is only possible for
pulsars with sufficient optical depth for the activation of the γ−γ
pair-production channel (Cheng et al. 1986). It is then impor-
tant to assess if more realistic injection and/or pair-production
schemes can provide the plasma supply required for the mag-
netosphere to be in the force-free regime. In the next sections,
we address this question by considering plasma supply schemes
limited to regions close to the stellar surface.

3.2. Surface injection

In this section, we limit injection to occur only at the stellar sur-
face. In doing so, we phenomenologically introduce the impor-
tant role of the magnetic field amplitude in our treatment of
the magnetospheric plasma supply. As in Sect. 3.1, we do not
allow particles to emit photons and/or pairs. We adopt two dif-
ferent criteria for the injection and vary the density and veloc-
ity of the surface-injected plasma. The parametrization of the
plasma flow injected from the stellar surface is similar to that
presented in Cerutti et al. (2015). However, our criteria for injec-
tion differ slightly from that work, which also assumes a mini-
mum threshold for the local plasma magnetization. In all simu-
lations presented in this section, we use B∗er∗/mec2 = 8 × 103,
Nr × Nθ = 5002 and ∆tc/r∗ = 3 × 10−3.

The first injection criterion is based on the local value of E‖.
We inject a macro-electron-positron pair in each cell just above
the stellar surface (r = r∗) that satisfies E‖c/r∗ΩB∗ > klim. In this
case, we consider a fixed klim = 0.002 and vary the properties of
the injected pairs, namely their density ns = ws/Vp = ksnGJ and
poloidal velocity vs. These pairs are also injected with a toroidal
velocity that matches the local linear velocity of the stellar sur-
face, vφ = Ωr sin θ.

Despite the large range of injection parameters considered,
ks = ns/nGJ = {0.2, 0.5, 1} and vs/c = {0, 0.1, 0.5, 0.99}, the solu-
tions obtained for long times, t/T & 2, always converge to the
disk-dome solution identified in Sect. 3.1. Figure 11 shows the
charge density ρ and E‖ of two runs with ks = ns/nGJ = 1 and
vs = {0, 0.99} after a time t/T ' 4. After an initial transient,
the system settles to a charge-separated solution and effectively
screens E‖ at the stellar surface, precluding further injection.

The second injection criterion does not depend on the local
surface field conditions. Instead, injection is allowed in all cells
above the stellar surface in which the combined local number
density of positrons and electrons satisfies n+ + n− < 5 nGJ, to
ensure that enough plasma exists everywhere to screen the local
electric field parallel to the magnetic field. We emphasize that
nGJ = ΩB∗/2πec is the pole GJ density and not its local value.
This criterion allows injection to occur even if E‖ ∼ 0, and is
thus harder to motivate from first-principles arguments. Here,
we shall interpret it as a means of producing a set plasma den-
sity over a layer near the stellar surface of width smaller than
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Fig. 10. Radial and temporal dependencies of Poynting flux in simula-
tions with volume injection. Panel (a) shows the time-averaged lumi-
nosity 〈L〉 as a function of r after a stellar rotation period, and panel
(b) shows the temporal evolution of the surface Poynting flux L∗. The
dashed lines in (a) and (b) identify the light-cylinder radius and the the-
oretical surface Poynting flux L0 = µ2Ω4/c3, respectively.

the local resolution of the simulation grid. In pulsars, such layer
can be as small as ∼100 m (Ruderman & Sutherland 1975). We
consider that the injected electron-positron pairs carry a number
density ns = ksnGJ and poloidal velocity vs.

In Fig. 12, we show the charge density distribution of the
solutions obtained for a fixed ks = ns/nGJ = 0.2 and varying vs
for a time t/T = 1. With vs = 0, the system converges to the
electrosphere solution. Particles injected at early times develop
a space-charge limited flow, driving E‖ to zero near the stel-
lar surface and thus inhibiting freshly injected particles to be
pulled away from or towards the star. For vs > 0, we observe
that the system develops a positively charged outflow along the
equatorial plane. This outflow occurs in a narrower current sheet
for larger values of vs, which can be understood as a mecha-
nism to support the stronger toroidal magnetic field driven by
the stronger poloidal currents of these regimes. However, we do
not observe a current sheet as thin as that characteristic of the
force-free regime. Instead, the current sheet remains wide even
for vs/c = 0.99. This may indicate that the plasma launched into
this region is not dense enough, a question that we address below
in this section.

Figure 13 shows the time-averaged Poynting flux produced
by the simulations described above with surface injection as
a function of the radial coordinate r and its surface value as
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Fig. 11. Magnetospheric solutions obtained with sur-
face injection proportional to E‖. Panels (a1-2) show the
total charge density and E‖, respectively for a simula-
tion with vs/c = 0 and panels (b1-2) show the same but
for a simulation with vs/c = 0.99. Solid lines represent
magnetic field lines, and vertical dashed lines show the
location of the light cylinder.

a function of time. We see once again that an electrosphere
solution (vs/c = 0) produces no spindown luminosity, and that
it increases overall with increasing vs. The same decrease for
r > RLC observed in Sect. 3.1 is observed here. We note that the
vs/c = 0.99 run shows a surface Poynting flux larger than L0,
which is a consequence of the smaller size of the co-rotation
region (and thus a smaller effective light-cylinder radius and
larger effective L0). This particular simulation demonstrates that
the over-injection drives the system to expand the effective polar
cap area, supporting an artificially stronger than force-free mag-
netospheric current, which agrees with the discussion on the
polar cap adaptation to the global magnetospheric current in
Sect. 3.1.

We also performed a set of simulations with fixed vs/c = 0.5
and varying ks = ns/nGJ = {0.1, 0.2, 0.5}. The charge den-
sity obtained in the steady-state (or quasi-steady-state) of these
simulations is shown in Fig. 14. These results confirm that the
denser the injected plasma is, the more the solution approaches
the force-free regime (see in particular the solution obtained for
ks = 0.5). This injection density requirement seems to be critical
in the launching of high-density plasma to large radii, in particu-
lar along the return current layers that connect the surface to the
equatorial current sheet. This result highlights the critical role
of populating/screening the outer gap in promoting the steady-
state magnetospheric solution from charge-starved to force-free,
having implications on the observed spin-down luminosity and
radio beam width.

Consistently with simulations presented in Sect. 3.1, inter-
mediate supply of plasma leads to a subforce-free magneto-
spheric solution with a thick current sheet configuration (see
Figs. 8b, 12b-d and 14a-b). At the location of the light-cylinder
radius, we estimate the most energetic particles to possess a

gyroradius of about 2.8R∗, which is larger than the measured
width of the current sheet. This difference may indicate that the
most energetic particles are lost and the current sheet is mainly
supported electrostatically by a colder population, similarly to
the solution detailed in Contopoulos et al. (2014). The inclusion
of radiation reaction cooling significantly reduces the gyration
of these particles, which leads to a thinner current sheet con-
figuration (Uzdensky & McKinney 2011; Philippov et al. 2015a;
Hakobyan et al. 2019, 2023; Schoeffler et al. 2023). This effect
on the global magnetospheric structure and current sheet config-
uration is still overlooked, particularly for weak pulsar magneto-
spheres.

In summary, some of the parameters used in simulations pre-
sented in this section yield active magnetospheric solutions, with
L∗/L0 ∼ 1 and a global configuration similar to the force-free
regime. Weak partially charge-starved pulsar magnetospheric
solutions with persistent outer gaps and lower time-averaged
luminosities were also presented. Both regimes are consistent
with the results presented in Cerutti et al. (2015). However, it is
hard to motivate the injection criteria and the choice of numeri-
cal parameters required to observe such regimes.

3.3. Pair production

The results presented in Sects. 3.1 and 3.2 are in good
agreement with similar previous works. In particular, both
Philippov & Spitkovsky (2014) and Cerutti et al. (2015) observe
a transition from electrosphere to active solutions with more
abundant plasma supply. While in Philippov & Spitkovsky
(2014) pairs are injected up to large radii, in Cerutti et al. (2015)
only surface injection is considered, showing trends with ks and
vs very similar to our results.
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Fig. 12. Magnetospheric solutions obtained with surface injection pro-
portional to nGJ with fixed ks = ns/nGJ = 0.2 and varying vs/c.

The convergence to a force-free regime in the asymptotic
limit of large plasma supply with both volume and surface injec-
tion is reassuring. However, an important question remains open
when translating global simulations with volume and surface
injection schemes to realistic systems: how is this plasma sup-
plied, if strong field pair production operates efficiently only
near the stellar surface? Is this pair-production channel enough
to supply the plasma to fill the whole magnetosphere?

In young and rapidly rotating pulsars (e.g., the Crab pulsar
and other gamma-ray pulsars), pairs can also be created via the
γ-γ channel (Cheng et al. 1986). In this process, for which the
cross-section peaks at around a center of mass energy ∼2 mec2,
gamma-rays produced via synchrotron emission and/or inverse
Compton scattering in the equatorial current sheet collide with
photons from a low energy bath (e.g., supplied by synchrotron
radiation from leptons in the weaker magnetic fields of the outer
magnetosphere), producing pairs (Cheng et al. 1986). However,
slower pulsars are not expected to have a sufficiently dense low-
energy photon bath for this process to be relevant, and strong
field pair production remains the main plasma supply channel
(Sturrock 1971).

In this section, we use global simulations that include pair
production only near the stellar surface to understand whether
it can provide enough plasma to maintain an active magneto-
spheric solution. We use the heuristic pair-production model
described in Cruz et al. (2021b, 2022), in which a lepton emits a
pair of combined energy γpairmec2 whenever it achieves a thresh-
old Lorentz factor γthr. We keep the ratio γthr/γpair constant,
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Fig. 13. Radial and temporal dependencies of Poynting flux in simula-
tions with surface injection proportional to nGJ with fixed ks = ns/nGJ =
0.2 and varying vs/c. a) shows the time-averaged luminosity 〈L〉 as a
function of r after a stellar rotation period, and b) shows the temporal
evolution of the surface Poynting flux L∗. The dashed lines in a) and
b) identify the light-cylinder radius and the theoretical surface Poynting
flux L0 = µ2Ω4/c3, respectively.

and vary the ratio η ≡ γmax/γthr, where γmax = eΦpc/mec2 is
the maximum energy achievable by the particles in the voltage
Φpc = B∗r3

∗Ω
2/c2 induced by the rotating star across the polar

cap. In general, γpair � γthr � γmax in real systems; however, it
is very hard to achieve a large separation between these scales in
global PIC simulations. For instance, previous works, consider-
ing a similar pair-production model (Chen 2017; Philippov et al.
2015a), have used η ∼ 10 and γthr/γpair ∼ 2, which severely lim-
its the efficiency of the pair cascades and the plasma multiplic-
ity. In this Section, we present simulations with fixed γpair = 16
and γthr = 25 and a range of large values of η. We achieve this
by controlling the surface magnetic field amplitude B∗. In doing
this, besides increasing the scale separation between pair pro-
duction and the dynamical scales, we also decrease the plasma
kinetic scales. For this reason, we adopt a varying number of grid
cells and time steps in our simulations to be able to resolve these
scales. For η = 5 we use Nr × Nθ = 5002 and ∆tc/r∗ = 3 × 10−3,
for η = {25, 50} we use Nr × Nθ = 10002 and ∆tc/r∗ = 10−3 and
for η = {100, 150}we use Nr×Nθ = 20002 and ∆tc/r∗ = 5×10−4.

In order to mimic the relevance of the large magnetic field
required for pair production to occur, we limit pair production
to only occur at radii r/r∗ < 3. We also forbid pair production
for θ < 0.01, to reproduce the suppression of the correspond-
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Fig. 15. Magnetospheric solutions obtained with pair production. Pan-
els a-d) show the total charge density for simulations with η =
{5, 25, 50, 150}. Solid lines represent magnetic field lines, and vertical
dashed lines show the location of the light-cylinder.

ing QED cross-section in this region (Cruz et al. 2021a). Seed
electron-positron pairs are provided at the stellar surface when-
ever E‖c/r∗ΩB∗ > klim, with klim = 0.1. Each pair is injected at
rest and carrying a density ns = ksE‖/er∗, with ks = ns/nGJ =

0.2. We stress that in these conditions, we obtained an electro-
sphere configuration in simulations without pair production (see
section 3.2).

In Figure 15, we show the charge density obtained at a time
t/T ' 2 for a relevant subset of the simulations performed. We
observe a transition from electrosphere to force-free-like config-
urations by increasing η. Physically, this corresponds to allow-
ing the creation of more pairs per particle, increasing the plasma
supply of the system. For η = 5, pair production is not efficient
enough, and after an initial transient with some pair production,
the accelerating electric field is screened and the system settles
to an inactive solution. For η ∼ 10−50, the system is able to
launch plasma towards the light-cylinder and produce a posi-
tively charged equatorial outflow. This plasma is launched along
the return current layers due to pair production at r/r∗ < 3; how-
ever, because of the limited effectiveness of the pair production
in this range of η, the plasma produced is not dense enough to
screen the outer gap and to confine the equatorial current sheet
to a thin region, and it becomes wide for large distances from
the stellar surface. For η & 100, the system converges to a near
force-free regime, with magnetic field lines open to infinity and
a thin equatorial current sheet. In these simulations, pair produc-
tion is very effective, and launches a large density (n ∼ few nGJ),
quasi-neutral plasma to the light-cylinder. In this region, part of
the plasma escapes along the equatorial field lines; however, a
fraction of the particles flows back to the star. The majority of
these particles are electrons, such that the return current layers
are negatively charged.

The time-averaged radial dependence of the Poynting flux
and its surface value as a function of time for the simulations
described above are presented in Figure 16. The observed radial
dependence is similar to the regimes previously observed, with
the η & 100 simulations approaching the force-free spindown
luminosity L0 within the light-cylinder. In the equatorial current
sheet, a fraction of 0.3−0.4 L∗ is dissipated between r ∼ RLC
and r ∼ 2 RLC and converted into particle kinetic energy. For all
η < 100 runs, the surface luminosity decreases over time, and we
expect them to eventually converge to the electrosphere solution
for t/T � 1. However, for η & 100, the surface Poynting flux
remains stable over time.

All simulations present some temporal variability. We see
small-scale fluctuations on the charge and current densities in the
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Fig. 16. Radial and temporal dependencies of Poynting flux in simula-
tions with pair production with varying η. a) shows the time-averaged
luminosity 〈L〉 as a function of r after a stellar rotation period, and
b) shows the temporal evolution of the surface Poynting flux L∗. The
dashed lines in a) and b) identify the light-cylinder radius and the theo-
retical surface Poynting flux L0 = µ2Ω4/c3, respectively.

open field line outflows, due to the E‖ screening process result-
ing from pair cascades. These fluctuations occur on a temporal
scale ∼r∗/ηc. We also observe a quasi-periodic launch of plasma
towards the light-cylinder region along the return current layers
with a temporal scale ∼0.3−0.5 T . We show one of these events
in Figure 17 for a simulation with η = 100. As plasma is injected
along the last closed field lines, most of it escapes along the
equatorial current sheet. As this happens, the return current den-
sity drops close to r ∼ RLC, allowing E‖ to grow. Electrons flow-
ing back to the star are thus accelerated along these field lines
and produce a large number of pairs when they enter the pair
producing region r/r∗ < 3 – see for example Figure 17a1) and
b1). The secondary particles then advect to large radii along the
return current layers, re-establishing jr and effectively screening
the E‖ responsible for triggering the process – see Figure 17d1-
3). This process produces a larger fraction of the total pair pro-
duction events for 10 . η . 50. As in Sect. 3.1, the solutions
obtained in this range resemble that of weak pulsars (Gruzinov
2015), with screened surface E‖ but unscreened outer gaps and
wide equatorial current sheets as a result of inefficient pair pro-
duction. The process presented here is similar to that described
in Chen et al. (2020), Bransgrove et al. (2023).

The periodicity of the cyclic behavior driven by pair produc-
tion along the return current layers is ∼0.3−0.5 T . We believe

that this periodicity can depend on the multiplicity from the pair
cascade near r/r∗ ∼ 3, since if more pairs outflow during the
active phase, more electrons can be stored in the Y-point charge
cloud, which takes longer to deplete. If this is true, a larger multi-
plicity should translate to a longer duty cycle. A detailed study of
the importance of the cascade multiplicity on the cyclic behavior
is deferred to a future work.

Finally, we note that apart from the effective pair dis-
charges along the return current layers, we also observe abun-
dant pair production within the polar cap region for all simu-
lations with η > 5 – see Figure 18 for an illustrative exam-
ple. This occurs because the density supplied from the stel-
lar surface is insufficient to screen E‖ in this region. With
stronger surface injection, we expect this pair production to
be less significant. However, we do not expect the overall
structure of the magnetosphere to be meaningfully modified.
Interestingly, the polar cap pair production observed in this
regime resembles that expected when general relativity effects
are taken into account. When corrections due to the strong grav-
itational field of the neutron star are considered, we expect
pair creation activity within the polar cap even if the sur-
face can supply a charge density ±enGJ (Philippov et al. 2015a;
Chen et al. 2020; Bransgrove et al. 2023), since general relativ-
ity requires a current in this region | jr | > enGJ (Beloborodov
2008; Belyaev & Parfrey 2016; Gralla et al. 2016; Torres et al.
2024). This current starvation state was shown to promote
efficient particle acceleration in the polar cap (Philippov et al.
2015a; Chen et al. 2020; Bransgrove et al. 2023; Torres et al.
2024), reducing the minimum η for which the temporal evolu-
tion of the surface Poynting flux in Fig. 16b is stable. Besides
driving this difference in the time-dependent nature of the polar
cap, general relativity also reduces the polar cap poloidal exten-
sion (Belyaev & Parfrey 2016; Gralla et al. 2016), affecting the
radio emission profile of more compact or rapidly rotating low-
obliquity pulsars (Torres et al. 2024).

4. Conclusions

In this work, we presented a systematic study of the differ-
ent global regimes of pulsar magnetospheres. Namely, we
performed simulations with three distinct plasma sources: in
volume, from the stellar surface, and via pair production. Our
results, presented in Sect. 3, show that all plasma sources
produce near force-free solutions in the regime of large
plasma supply. In the opposite regime, we obtain inactive
electrosphere solutions with all sources. These results are in
overall good agreement with other works that independently
consider volume (Philippov & Spitkovsky 2014; Belyaev
2015a; Kalapotharakos et al. 2018; Brambilla et al. 2018) or
surface-injection schemes (Cerutti et al. 2015; Hakobyan et al.
2023), and those that use heuristic pair-production mod-
els (Chen & Beloborodov 2014; Philippov et al. 2015b,a;
Chen et al. 2020; Guépin et al. 2020; Bransgrove et al. 2023).

While volume- and surface-plasma injection serve as a
means to efficiently fill the pulsar magnetosphere and produce
a near force-free configuration, as shown in Sects. 3.1 and
3.2, respectively, these are hard to motivate from first-principle
arguments. On one hand, the pair cascades that these injection
schemes aim to mimic develop only when the local magnetic
field is close to the Schwinger field, and as such they should only
operate near the stellar surface. On the other hand, these cascades
produce plasma with a complex energy distribution that depends
on the local electric and magnetic field geometry for example.
Thus, any volume or surface-injection scheme is a substantial
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Fig. 17. Cyclic pair production along the return current layers. Columns labeled 1-3 correspond to different times and rows labeled a-d show the
electron and positron densities, radial current and E‖, respectively. Results obtained for η = 100. Solid lines represent magnetic field lines.

simplification of the highly nonlinear plasma supply from pair
cascades in pulsars. Understanding whether or not and how pair
production alone can fill the whole pulsar magnetosphere is thus
crucial, in particular in order to reliably determine observational
signatures.

The simulations including pair production presented in
Sect. 3.3 show that pair discharges operating close to the stel-
lar surface produce a range of solutions of the pulsar magne-
tosphere. The character of the solution depends critically on
the ratio between the maximum attainable particle energy and

the energy at which leptons emit pair-producing photons, η =
γmax/γthr, which quantifies the efficiency of the pair discharges.
Our results show that when η & 100, a sufficient number of pairs
are created to fill the magnetosphere and reach a near force-free
surface Poynting flux, with dissipation occurring in an equato-
rial current sheet beyond the light cylinder. In the opposite limit,
η . 10, the magnetosphere settles to a fully charge-separated,
static solution, with E‖ = 0 near the surface, which produces
a negligible Poynting flux. For η ∼ 10−50, we observe an inter-
mediate solution (Gruzinov 2015), with a wide equatorial current
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Fig. 18. Pair-production sites for the same sim-
ulation and times shown in Figure 17. The color
indicates the number of pair-production events
between data dumps ('0.3 r∗/c) in each grid cell.

sheet and with a surface Poynting flux that is 50−80% below that
expected in the force-free regime.

Our simulations show that the pair production along the
return current layers is essential in order to feed plasma
to the light-cylinder region and beyond in near force-free
regimes, in line with the results reported in other works,
such as Chen & Beloborodov (2014). We also identify a time-
dependent mechanism similar to that presented in Chen et al.
(2020), Bransgrove et al. (2023), which results from periodic
openings of an outer gap in which particles flowing back to the
star are able to accelerate, producing pairs when they get close
to the stellar surface.

Although all simulations presented in this study use small
values of RLC/r∗, corresponding to millisecond-type pulsars, we
believe that the presented results are applicable to a wider range
of stellar rotation periods. In particular, we expect our simu-
lations to model pulsars approaching their death line; that is,
when the magnetosphere becomes fully charge-starved and pair
production is no longer possible (disk–dome solution). From
an observational standpoint, we may distinguish these solutions
from the regular force-free magnetospheres by exploring the
compression of the open-flux tube caused by the presence of
a persistent outer gap and volumetric return currents, as seen
for all plasma-injection methods. For more compact magne-
tospheres, capable of γ − γ pair production near the Y-point
(Cheng et al. 1986), these may lead to episodic switches of the
whole magnetosphere between weak and near force-free solu-
tions, which could be observed as intermittent pulsars (Li et al.
2012). Following the discussion in Sect. 3.1, we hypothesize
that the continuous adaptation of the polar cap poloidal exten-
sion to the fluctuating global magnetospheric current should also
imprint similar spatiotemporal features in the observed radio
beam properties (e.g., beam width).

The simulations presented here use a very simple heuris-
tic model to describe pair production in strong magnetic fields.
In this work, we only explored the influence of the parameter
η on the magnetospheric structure and left the ratio γthr/γpair
unchanged. This ratio plays an important role in the multiplic-
ity of pair cascades, and was kept low to make simulations fea-
sible. Larger values of γthr/γpair will likely provide even more
abundant pairs to large radii, such that smaller values of η may
be enough to set the magnetosphere in a force-free regime. We
defer further exploration of this topic to future work.

The pair-production model considered here provides an ade-
quate description of pair cascades when the curvature photon

mean free path is negligible; that is, when pair production is
local. In global models, however, it is easy to conceive that pho-
tons emitted in some regions of the magnetosphere may decay
into pairs in others. For instance, photons emitted by electrons
traveling toward the star along the return current layer may decay
in the polar cap region. It would thus be interesting to include
more sophisticated pair-production models in these simulations
to assess whether or not nonlocal pair production plays a signif-
icant role in, for example, coherent emission processes.

In this work, we also describe a spherical grid that can
be used to perform global PIC simulations of pulsar magne-
tospheres. We provide details of (a) an electromagnetic field
solver –based on the Yee solver– that uses an integral form
of Maxwell’s equations (Sect. 2.2), (b) particle pushers that
solve the particle equations of motion in Cartesian coordi-
nates (Sect. 2.3), and (c) a charge-conserving current deposi-
tion scheme (Sect. 2.4) for a nonuniform, curvilinear spherical
grid. While the field solver and particle pusher techniques are
also implemented in other similar codes, the current deposition
scheme presented here is a novel development. By ensuring that
the continuity equation (and, consequently, Gauss’ law) is sat-
isfied in the current deposition, this method does not require
that other numerical algorithms be used to correct for artificial
charges in the grid. For each of the numerical schemes presented
here, we provide comprehensive benchmarks for a variety of
test scenarios. All numerical schemes presented here have been
implemented in the PIC code OSIRIS.
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