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QUATERNIONIC ESSENTIAL NUMERICAL RANGE OF COMPLEX

OPERATORS

LUÍS CARVALHO, CRISTINA DIOGO, SÉRGIO MENDES, AND HELENA SOARES

Resumo. We study the essential numerical range of complex operators on a quaternionic

Hilbert space and its relation with the essential S-spectrum. We give a new characteriza-

tion of the essential numerical range relating it to the complex essential numerical range.

Moreover, we show that the quaternionic essential numerical range of a normal operator

is the convex hull of the essential S-spectrum.

Introduction

Let F be the �eld of real numbers R, complex numbers C or the skew �eld H of Hamilton

quaternions. Let H be a right Hilbert space over F and let T be a bounded linear operator

on H. The numerical range of T is the set

WFpT q � txTx, xy : }x} � 1, x P Hu,
where x� , � y : H�H Ñ F is the inner product onH. It is well known that the numerical range

is a bounded (not necessarily closed) subset of F and that convexity ofWFpT q depends on the
ground �eld F. In fact, whenH is a real or a complex Hilbert space,WFpT q is always a convex
set, as stated by the Toeplitz Hausdor� Theorem (see [GR]), whereas in the quaternionic

setting the convexity is not guaranteed (for more details on quaternionic numerical range

see our papers on the subject [CDM1], [CDM2], [CDM3],[CDM4],[CDM5],[CDM6] and also

[K], [MBB], [Ye]).

The closure of the numerical range of T contains a non-empty compact subset called the

essential numerical range, de�ned by

We,FpT q �
£

KPKpHq
WFpT �Kq, (0.1)
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where KpHq denotes the set of compact operators on the F-Hilbert space H. Throughout the

paper we let W pT q � WHpT q denote the quaternionic numerical range of T and WepT q �
We,HpT q the quaternionic essential numerical range of T .

The notion of complex essential numerical range was introduced in [SW]. Later, in [FSW],

several new characterizations were obtained. A natural extension to the quaternionic setting

was given in [CDMS1]. Interestingly, it was proved in that paper that despite W pT q is not
convex in general, WepT q is always a convex set.

This work is concerned with the relationship between the quaternionic and the complex

essential numerical ranges for complex operators on a quaternionic Hilbert space. For this

matter, we introduce the rather natural notion of essential bild. In fact, since q P WepT q if
and only if rqs �WepT q, see [CDMS1], it is enough to study the subset of complex elements

in each similarity class, that is

BepT q � WepT q X C

�
£

KPKpHq
BpT �Kq,

where BpAq �W pAqXC denotes the bild of an operator A P BpHq. The set BepT q is called
the essential bild of T P BpHq and it is non-empty, closed and convex.

The article is organised as follows. We start Section 1 by recalling a few results about the

essential numerical range in the quaternionic setting. In Section 2 we recall complex and

real operators on a quaternionic Hilbert space (see [CDM6, De�nition 2.4]) and we give a

new characterization of the essential numerical range of these two classes of operators (see

Theorem 2.3). Each class (real and complex) determines the class of compact operators

necessary to build up the essential numerical range. Namely, we show that to compute the

quaternionic essential numerical range of a complex operator, the intersection in (0.1) can be

taken over the complex compact operators in place of quaternionic ones. For real operators,

it is enough to intersect over the real compact operators to obtain both the quaternionic

and the complex essential numerical ranges. This characterization allows us to compute the

essential bild of an operator T , and therefore infer about WepT q, in terms of the complex

essential numerical of T and T �, see Theorem 2.4. It follows that when T is a real operator,

BepT q � We,CpT q, see Corollary 2.5. In Section 3 we show that the essential S-spectrum

(de�nition in Section 1) of a complex operator is given by the similarity class of its essential

C-spectrum, see Propostition 3.2. From this and the invariance under approximately unitary

equivalence of the essential S-spectrum and the essential numerical range (Proposition 3.4),

we show that the quaternionic essential numerical range of a normal operator is the convex

hull of the essential S-spectrum (Theorem 3.5).
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1. Preliminaries

The division ring of real quaternions H, also known as Hamilton quaternions, is an algebra

over the �eld of real numbers with basis t1, i, j, ku and product de�ned by i2 � j2 � k2 �
ijk � �1. Given a quaternion q � q0�q1i�q2j�q3k, its conjugate is q

� � q0�q1i�q2j�q3k.

We call Repqq � q�q�

2 and Impqq � q�q�

2 the real and imaginary parts of q, respectively.

The norm of q is the nonnegative real number |q| � ?
qq�. Two quaternions q, q1 P H are

similar if there is a unit u P H such that u�qu � q1, in which case we write q � q1. This is

an equivalence relation and we denote the equivalence class of q by rqs.
Let H denote a right Hilbert space over H. In particular, the norm of x P H is de�ned

by the underlying H-inner product as }x} �
a
xx, xy. The space of bounded, right H-linear

operators on H is denoted by BpHq, its closed ideal of compact operators by KpHq and the

group of invertible operators by BpHq�1.

For an operator T P BpHq, let prT qx � pTxqr, for x P H and r P R. Furthermore, for

q P H, we de�ne ∆qpT q : H Ñ H by

∆qpT q � T 2 � 2RepqqT � |q|2I,
where I is the identity operator. Clearly, ∆qpT q P BpHq. The S-spectrum of T , see [CGSS],

is de�ned by

σSpT q � tq P H : ∆qpT q R BpHq�1u.
Let π : BpHq Ñ BpHq{KpHq denote the canonical quotient map and CpHq � BpHq{KpHq

the Calkin algebra. Let πpT q � rT s denote the equivalence class T � KpHq, for T P BpHq.
Then CpHq is a normed algebra with }rT s} � infKPKpHq }T �K} ¤ }T }. We say that T is

a Fredholm operator if the class rT s is invertible in CpHq. According to Atkinson Theorem,

T P BpHq is a Fredholm operator if and only if its range is closed and the kernels kerpT q and
kerpT �q are �nite dimensional, where T � P BpHq is the adjoint of T . The set of all Fredholm
operators in BpHq is denoted by FpHq.

The essential S-spectrum of T P BpHq is de�ned by

σS
e pT q � tq P H : ∆qpT q R FpHqu. (1.1)

This is a non-empty compact subset of σSpT q, see [MT]. One can show that σS
e pT q is

circular, that is, q P σS
e pT q is equivalent to rqs � σS

e pT q.
In [CDMS1], we de�ned the quaternionic essential numerical range of T P BpHq as the

set

WepT q �
£

KPKpHq
W pT �Kq.

The essential numerical range is a non-empty, compact and convex subset of H, contained
in the closed disc Dp0, }πpT q}q. Clearly, WepT q � W pT q. Moreover, σS

e pT q � WepT q.
Another important property of WepT q is that it is invariant under unitary equivalence, that
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is, WepUTU�q � WepT q, for every unitary operator U P BpHq. See [CDMS1] for further

details.

Alternative characterizations of the quaternionic essential numerical range were obtained

in [CDMS1, Theorem 2.2].

Theorem 1.1 ([CDMS1]). Let T P BpHq and q P H. The following conditions are equivalent:

(i) q PWepT q.
(ii) There exists a sequence pxnqn of unit vectors in H such that xn á 0 and limnÑ8xTxn, xny �

q.

(iii) There exists an orthonormal sequence penqn in H such that limnÑ8xTen, eny � q.

A sequence satisfying condition (ii) is called an essential sequence for q, see [CDMS1,

De�nition 2.3].

2. Complex operators

In this section we introduce the notion of complex operators on H, where H is a quater-

nionic Hilbert space, as de�ned in [CDM6]. This class of operators enjoys some interesting

properties allowing us to give a more detailed characterization of their quaternionic essential

numerical range.

For every orthonormal basis E � ten : n P Nu of H, there is a decomposition of H with

respect to E ,
H � HC `HCj, (2.1)

where HC � spanCtEu denotes the right C-vector space with orthonormal basis E . Hence,

every u P H decomposes uniquely as a sum u � x�yj, for some x, y P HC. For convenience,

we sometimes write H multiplicatively as H2
C, and represent u P H as a pair px, yq P H2

C.

Here, ` is used as a direct sum of real spaces.

We note that neither HC nor HCj are H-vector spaces, but HC is a complex Hilbert space

endowed with the C-inner product given by:

xx, yyC :�
A¸

n

enxn,
¸
m

emym

E
�
¸
n

y�nxn P C,

with x � °n enxn and y � °n enyn in HC. Clearly, this C-inner product coincides with the

inner product of H when x, y P HC.

De�nition 2.1. An operator T P BpHq is called a complex operator if there is an ortho-

normal basis E � ten : n P Nu of H such that

xT penq, emy P C, for every n,m P N.

For convenience, if xTen, emy P R, for all n,m P N, we call T a real operator. There are

many examples of complex (real) operators, for instance the quaternionic identity operator

or the quaternionic backward shift, just to name a couple. For more examples see [CDM6].
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Consider both a decomposition of H as in (2.1) and T P BpHq a complex operator with

respect to the basis E . We can take the restriction T| :� T|HC : HC Ñ H of T , the

composition of the maps T : H Ñ H and ι : HC ãÑ HC `HCj, where ι is the injective map

ιpxq � x � 0j. Although T| � T � ι is not a H-linear map, for HC is not a H-linear space,
we easily see that it is a right C-linear map on HC. Moreover, T|pHCq � HC. In fact, for

x P HC, we have

T|pxq � T pxq � T

�¸
n

enxn

�
�
¸
n

T penqxn (2.2)

and since T is complex,

xT|pxq, emy �
A¸

n

T penqxn, em
E
�
¸
n

xT penq, emyxn P C,

for every em P E . Hence, T|pHCq � HC and, for every x� yj P H � HC `HCj, we have

T px� yjq � T pxq � T pyqj � T|pxq � T|pyqj. (2.3)

Denote by BpHCq the set of bounded right C-linear operators on HC.

Let Pn be the projection of H onto span te1, . . . , enu. For a complex (real) operator T ,

let Kn be such that

T �Kn � pI � PnqT pI � Pnq, for each n P N.

Since xPnek, emy P t0, 1u, Pn and T are complex (real) operators with respect to the basis

E . Hence their composition is also a complex (real) operator with respect to the same basis,

and the same holds for the addition of complex (real) operators. Clearly, if we write

Kn � �PnT � TPn � PnTPn (2.4)

we see that Kn is a complex (real) compact operator.

Lemma 2.2. For a real or a complex operator T P BpHq, the following assertions are true:

(1) Let T P BpHq be a complex operator and Kn the complex compact operator as in

(2.4). Let pwnqn be a sequence with wn P W pT �Knq (resp. in WCpT �Knq) and

w a sublimit of wn. Then w PWepT q (resp. w PWe,CpT q).
(2) Let T P BpHq be a real operator and Kn the real compact operator as in (2.4). Let

pwnqn be a sequence with wn P WCpT �Knq (resp. WRpT �Knq) and w a sublimit

of wn. Then w PWe,CpT q (resp. w PWe,RpT q).

Demonstração. We will prove only part (1) in the case when pwnqn is a sequence inW pT �Knq.
The remaining cases are proved similarly, following [FSW, Corollary in page 189] for the

complex essential numerical range.

If w is a sublimit of wn then there is a subsequence convergent to w, which we still

denote by pwnqn for the sake of simplicity. Take ε � 1
2p (p P N). There exist np P N and



6 L. CARVALHO, CRISTINA DIOGO, S. MENDES, AND H. SOARES

wnp PW pT �Knpq such that

|wnp � w|   1

2p�1
. (2.5)

Note that we may choose np Ñ
p
8. For such np, there is wnp PW pT �Knpq such that

|wnp � wnp |  
1

2p�1
. (2.6)

Again for simplicity we denote wnp and Knp by wp and Kp.

From (2.5) and (2.6), we have

|wp � w|   1

2p
, for all p P N.

So we have just constructed a sequence pwpqp with wp PW pT �Kpq and wpÑw.

We will show that w P WepT q by �nding an essential sequence for w. Since wp P W pT �
Kpq, there exists xp P SH and

wp � xpT �Kpqxp, xpy
� xT pI � Ppqxp, pI � Ppqxpy
� xTyp, ypy,

where yp � pI � Ppqxp.
We claim that yp á 0. In fact, given z P H,

|xyp, zy| � |xpI � Ppqxp, zy
� |xxp, pI � Ppqzy|
¤ }pI � Ppqz}.

Since }z}2 � }Ppz}2 � }pI � Ppqz}2 and }Ppz}Ñ}z}, it follows that }pI � Ppqz}Ñ0. Hence,

xyp, zyÑ0, for every z P H.

The proof now splits into two cases.

Case 1: 0 PWepT q

If w � 0 then we are done. Suppose w � 0. Since

}yp} � }pI � Ppqxp} ¤ 1,�
}yp}

	
p
has a convergent subsequence, still denoted, for simplicity, by

�
}yp}

	
p
. Let }yp} Ñ

η. If η � 0 then

|wp| � |xTyp, ypy| ¤ }Typ}}yp},
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and so |wp| Ñ 0, contradicting our assumption that w � 0. Hence, η � 0 and we may take

ξp � yp
}yp} P SH. Clearly, ξp á 0 because yp á 0 and }yp} Ñ η � 0. We have

xTξp, ξpy � 1

}yp}2 xTyp, ypy

� 1

}yp}2wp Ñ w

η2
.

We conclude that pξpqp is an essential sequence for
w

η2
and Theorem 1.1 implies that

w

η2
P

WepT q. Writing w � p1�η2q0�η2 w
η2

it follows from the convexity ofWepT q that w PWepT q.
Case 2: 0 RWepT q
Since WepT q is non empty, we can choose q, q� P WepT q, (see [CDMS1, Proposition

2.5]). Convexity of the essential numerical range (see [CDMS1, Theorem 3.2]) implies that

WepT q X R � H. Then, there exists µ P WepT q X R, that is, 0 P WepT � µIq, see [CDMS1,

Proposition 2.5]. But wp P W pT �Kpq and therefore, using again the numerical range

translation property, wp � µ P W pT � µI �Kpq. We thus fall into case 1, replacing T by

T � µI. We conclude that w � µ PWepT � µIq, that is, w PWepT q.
■

A direct consequence of the previous lemma is that it is enough to intersect over complex

compact operators to obtain the quaternionic essential numerical range of a complex opera-

tor. Moreover, when T is a real operator, the intersection can be taken over the real compact

operators to obtain both the quaternionic and the complex essential numerical ranges. Let

KCpHq and KRpHq denote, respectively, the set of all compact complex and compact real

operators in H.

Theorem 2.3. Let T P BpHq.
1. If T is a complex operator, then WepT q �

�
KPKCpHqW pT �Kq.

2. If T is a real operator, then

(i) WepT q �
�

KPKRpHqW pT �Kq.
(ii) We,CpT q �

�
KPKRpHqWCpT �Kq.

Demonstração. Let T be a complex operator. It is clear that

WepT q �
£

KPKpHq
W pT �Kq �

£
KPKCpHq

W pT �Kq.

To prove the other inclusion, let w P W pT �Kq, for all K P KCpHq. In particular,

w P W pT �Knq, for the complex operators Kn de�ned in (2.4). The result follows from

Lemma 2.2 with wk � w, for all k P N.
A similar argument applies to prove the other statements, using Lemma 2.2.

■
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Next result characterizes the essential bild of a complex operator T P BpHq in terms of

the complex numerical range of T and T �.

Theorem 2.4. If T is a complex operator, then

BepT q � conv tWe,CpT q,We,CpT �qu.

Demonstração. We recall that We,CpT q �
�

KPKpHCq
WCpT �Kq, where KpHCq is the set of

compact operators on the complex Hilbert space HC.

Let us �rst prove that KpHCq � KCpHq. On the one hand, any operator K P KpHCq is
also in KCpHq through an extension K̂ : H Ñ H which we next describe. If K P KpHCq, K
is a compact operator in the complex Hilbert space HC, then xKen, emy P C. Considering

the vector space H � spanHtEu, de�ne the H-linear operator, K̂ : H Ñ H, by

K̂penq :� Kpenq.
Then clearly xK̂en, emy � xKen, emy P C and thus K̂ is a complex and compact operator.

On the other hand, any operator K P KCpHq is also in KpHCq through its restriction

K| : HC Ñ HC described in (2.2). Hence KCpHq � KpHCq. In fact, the processes of

extension and restriction are two isometries, with each serving as the inverse of the other.

Consequently, these two spaces are isometrically isomorphic.

Furthermore, from the fact that Kpxq � K̂pxq for x P HC, we have

xpT �Kqx, xy � xpT � K̂qx, xy,
we conclude that

We,CpT q �
£

KPKCpHq
WCpT �Kq.

It is common knowledge that WCpT �Kq �W pT �KqXC, and from Theorem 2.3 we have

We,CpT q � BepT q. Since WepT �q � WepT q, see [CDMS1, Proposition 2.5 (iii)], then also

We,CpT �q � BepT q. Using that the essential bild BepT q is convex, we conclude that
conv tWe,CpT q,We,CpT �qu � BepT q.

Let us now prove the converse inclusion. From Theorem 2.3 and [CDM6, page 11] we

have

BepT q �
£

KPKCpHq
BpT �Kq

�
£

KPKCpHq
conv tWCpT �Kq,WCpT � �K�qu.

Then,

BepT q �
£

KPKCpHq
conv tWCpT �Kq,WCpT � �K�qu.



QUATERNIONIC ESSENTIAL NUMERICAL RANGE OF COMPLEX OPERATORS 9

Take w P BepT q. Then w is a convex combination of elements in WCpT �Kq and

WCpT � �K�q for every complex compact operator K. In particular, for Kn as in (2.4),

we may write

ω � α1
nω

1
n � α2

nω
2
n, (2.7)

where α1
n, α

2
n ¥ 0, α1

n � α2
n � 1, ω1

n PWCpT �Knq and ω2
n PWCpT � �K�

nq.
Since ω1

n, w
2
n P Bp0, }T }q, we may take subsequences, denoted by pw1

nqn and pw2
nqn for the

sake of simplicity, convergent to, say, ω1 and ω2, respectively. From Lemma 2.2 we have

ω1 P We,CpT q and ω2 P We,CpT �q. Moreover, from the fact that αi
n P r0, 1s, i � 1, 2, there

are also convergent subsequences, still denoted by αi
n, such that αi

n Ñ αi, i � 1, 2. Taking

limits in (2.7) we conclude that ω � α1ω1 � α2ω2, and the result follows.

■

The previous result implies that the essential bild of a real operator T coincides with its

complex essential numerical range. Furthermore, since BepT q intersects the real line, we

have We,CpT q X R � H.

Corollary 2.5. If T is a real operator, then BepT q �We,CpT q.

As an example, let us apply the above result to compute the essential bild of the unilateral

quaternionic shift.

Example 2.6. The unilateral scalar weighted (quaternionic) shift on H with respect to an

orthonormal basis tenun is de�ned by

Sen � en�1wn, wn P H, n ¥ 1.

We denote S �u twku8k�1 for an operator S unitarily equivalent to the weighted shift whose

sequence of weights is twku8k�1.

Taking the unitary operator U � diag p1, c1, c1c2, . . .q, where cn � w�
n

|wn| pn ¥ 1q, one
easily checks that USU�en � |wn|en�1, i.e, S �u t|wk|u8k�1. Thus, we may assume that S

is real.

Let us consider two special cases. First, we suppose that the sequence t|wk|u8k�1 converges

to a ¥ 0. By part paq of [WW, Proposition 2.2] we know that We,CpSq � Dp0, aq. Applying
Corollary 2.5, we have that BepSq � Dp0, aq.

For the second case assume that twku8k�1 is a periodic injective shift, that is, wk � 0, for

every k. It is known thatWCpSq is an open circular disk about the origin, see [S, Proposition
6] and [R]. Therefore, from [S, Proposition 7] and Corollary 2.5, it follows that BepSq is a
closed circular disk about the origin.

We can also �nd the quaternionic essential numerical range of a complex block diagonal

operator using the results from [CDMS2].
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Example 2.7. Let A PMkpCq and let T �ÀnPNA be a complex block diagonal operator.

From [CDMS2, Example 4], we know that We,CpT q �W pAq. Then, using Theorem 2.4, we

conclude that

BepT q � conv tWCpAq,WCpA�qu.

Theorem 2 in [CDMS2] can be extended to the quaternionic setting. We omit the proof,

since it follows along the same lines.

Theorem 2.8. Let T �ÀnPNAn P BpHq. Then,

WepT q � conv
� £

k¥1

¤
n¥k

W pAnq
	
.

A simple application of the above theorem allows us to observe that the quaternionic

essential numerical range of a quaternionic block diagonal operator T � ÀnPNA, where

A P MkpHq, is given by WepT q � conv pW pAqq. In particular, in the space of quaternionic

sequences H � ℓ2pHq, if T is the operator of pointwise left multiplication by q P H, that is,
T � qI, where I denotes the identity operator, the quaternionic essential numerical range

can be easily computed.

Example 2.9. Let T � qI, with q P H, so that T is the block diagonal operator T �À
nPNAn, where An � rqs P M1pHq, for all n P N. We can write q � q0 � qIm P H, where

q0 � Re pqq and qIm � Im pqq. From Theorem 2.8, we have that

WepqIq � conv
�
W pqq

	
� Dpq0, |qIm |q,

where we used the well known fact that W pqq � BDpq0, |qIm |q.
We can also conclude that Dpq0, |qIm |q � WepqIq � W pqIq � Dpq0, |qIm |q, that is,

W pqIq � Dpq0, |qIm |q.

3. Essential S-spectrum and essential numerical range

The right multiplication by a complex number λ is the right C-linear operator IHC � λ P
BpHCq given by pIHC �λqpxq � xλ, for every x P HC, where IHC denotes the identity operator

on HC. In particular, if T P BpHCq is a complex operator, then for every λ P C, T � IHC � λ
belongs to BpHCq. Next de�nition of complex essential spectrum is the natural notion of

spectrum in right complex Hilbert spaces.

De�nition 3.1. For any complex operator T P BpHq, the complex essential spectrum of T

is the subset of C given by

σepT q :� σepT|q � tλ P C : T| � IHC � λ is not Fredholm in BpHCqu.

Recall that in (1.1) we de�ned the essential S-spectrum of T P BpHq by
σS
e pT q � tq P H : ∆qpT q R FpHqu.
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To characterize the essential S-spectrum of a complex operator in terms of the complex

essential spectrum, observe that ∆λpT q is also a complex operator and hence we can consider

its restriction to HC,

∆λpT q| : HC Ñ HC.

We have

∆λpT qpHCq � ∆λpT q|pHCq � ∆λpT|qpHCq (3.1)

and so, it follows from the decomposition H � HC `HCj that

∆λpT qpHq � ∆λpT qpHCq `∆λpT qHCj

� ∆λpT|qpHCq `∆λpT|qHCj.

Proposition 3.2. Let T be a complex operator. Then

σS
e pT q � rσepT qs,

where rσepT qs �
�

λPσepT q
rλs.

Demonstração. Let us start by proving the inclusion σS
e pT q � rσepT qs. Since σS

e pT q is

circular, it is enough to take λ P σS
e pT qXC and prove that λ P σepT q, i.e. T|� IHC �λ is not

Fredholm in BpHCq.
We will �rst show that the operator ∆λpT q| is not Fredholm in BpHCq. In fact, if ∆λpT q|

were Fredholm in BpHCq then dimkerp∆λpT q|q   8 and dim coker p∆λpT q|q   8.

In case dimkerp∆λpT q|q were �nite then, using that

kerp∆λpT qq � kerp∆λpT q|q ` kerp∆λpT q|qj,
it would follow that dimkerp∆λpT qq would also be �nite. A similar argument shows that in

case dim coker p∆λpT q|q   8 then dim coker p∆λpT qq   8 using that

coker p∆λpT qq � coker p∆λpT q|q ` coker p∆λpT q|qj.
So in either case ∆λpT q would be Fredholm in BpHq, leading us to a contradiction.

Now we are able to prove that T|�IHC �λ is not Fredholm in BpHCq. Since T is a complex

operator, we can write

∆λpT|q � pT| � IHC � λ�qpT| � IHC � λq. (3.2)

Therefore, πpT|� IHC �λ�qπpT|� IHC �λq is not invertible in BpHCq{KpHCq, that is, either
πpT| � IHC � λ�q or πpT| � IHC � λq is not invertible in BpHCq{KpHCq. It follows that either
T| � IHC � λ or T| � IHC � λ� is not Fredholm in BpHCq, i.e. λ or λ� is in σepT q. Hence,

λ P rσepT qs.
To prove the converse inclusion suppose that λ R σS

e pT q, that is ∆λpT q is Fredholm in

BpHq. Since dimkerp∆λpT qq   8 then kerp∆λpT|qq is a �niteH� subspace, for kerp∆λpT|qq �
kerp∆λpT qq as H� subspaces. Clearly, kerp∆λpT|qq is also a �nite C� subspace. Because
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∆λpT|q P BpHCq, we can use (3.2) to conclude that kerpT|�IHC �λq � kerp∆λpT|qq. It follows
that dimkerpT| � IHC � λq is �nite.

The same reasoning proves that dim coker p∆λpT qq   8 then dim coker pT �
| �IHC �λq   8.

In this case, we use the fact that ∆λpT q can be written in the form ∆λpT|q � pT| � IHC �
λqpT| � IHC � λ�q.

Both dimkerpT|�IHC �λq and dim coker p∆λpT qq   8 allows us to conclude that λ R σepT q.
■

As we have seen in Example 2.6, known results in the complex setting regarding the

numerical range can be used to reach similar ones in the quaternionic setting. The same

can be said about the S-spectrum.

Example 3.3. Let S be an injective unilateral quaternionic scalar weighted shift. Then, as

seen in Example 2.6, S �u t|wk|u8k�1. From the above proposition the essential S-spectrum

of S is the set of the similarity classes of σepSq, known to be the annulus (see [LJS, p. 417])

tλ P C : r1pSq ¤ |λ| ¤ rpSqu,
where rpSq is the spectral radius, r1pSq � limkpmpSkqq1{k and mpSq � inf t}Sx} : }x} � 1u
is called the lower bound of S.

In [CDMS1, Theorem 2.6] the authors prove that σS
e pT q � WepT q, for every T P BpHq.

The convexity of the essential numerical range [CDMS1, Theorem 3.2] implies that conv tσS
e pT qu �

WepT q. When T is a quaternionic normal operator this inclusion is an equality, as we next

prove. We observe that this class of operators is contained in the class of complex ope-

rators, up to approximate unitary equivalence. Thus, before we need to show that the

essential S-spectrum and the essential numerical range are invariant under this equiva-

lence relation. Recall that two operators T,R P BpHq are approximate unitary equivalent,

and we write T �a R, if there exists a sequence of unitary operators pUnqnPN such that

limnÑ8 }UnRU�
n � T } � 0.

Proposition 3.4. If T,R P BpHq are such that T �a R then

(i) σS
e pRq � σS

e pT q,
(ii) WepRq �WepT q.
Demonstração.

Let pUnqn be a sequence of unitary operators such that Rn � UnRU�
n Ñ T .

Let us �rst prove (i). We will start by showing that lim supσS
e pRnq � σS

e pT q. The equality
then follows from symmetry. Recall furthermore that lim sup σS

e pRnq is a closed subset of H
and that q P lim supσS

e pRnq if, and only if, there is an increasing sequence pnkqk of positive

integers such that qnk
P σS

e pRnk
q for all k and qnk

Ñ q.

Let q P lim supσS
e pRnq and suppose q R σS

e pT q. The set FpHq of Fredholm operators is

the inverse image, under the canonical surjection π : BpHq Ñ BpHq{KpHq, of the open set
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formed by the group of invertible elements in the Calkin algebra. Since π is continuous then

FpHq is open. Hence, there is ε ¡ 0 such that Bεp∆qpT qq � FpHq.
Now, let pnkqk be an increasing sequence of positive integers such that qnk

P σS
e pRnk

q for
all k and qnk

Ñ q. Since Rn Ñ T , there is k0 P N such that ∆qnk
pRnk

q P Bεp∆qpT qq for all
k ¥ k0. In fact, fully writing ∆qnk

pRnk
q and ∆qpT q, we see that }∆qnk

pRnk
q�∆qpT q} Ñ 0

as k Ñ8. So, for k ¥ k0, qnk
R σS

e pRnk
q and we get a contradiction.

Then, σS
e pRq � lim supσS

e pRnq � σS
e pT q.

We now prove (ii). Let q P WepT q. By Theorem 1.1 (iii), there exists an orthonor-

mal sequence penqn such that q � limnÑ8xTen, eny. For a �xed m P N, the sequence�
xU�

mRUmen, eny
	
n¥1

is bounded and hence it has a subsequence
�
xU�

mRUmenk
, enk

y
	
k¥1

convergent to, say, µm. We have

|µm � q| � | lim
kÑ8

xpU�
mRUm � T qenk

, enk
y|

¤ }U�
mRUm � T }.

Since T �a R it follows that limmÑ8 µm � q. By [CDMS1, Lemma 2.1], we have µm �
limkÑ8xpU�

mRUm � Kqenk
, enk

y, for every compact operator K P KpHq. Therefore, µm P
W pU�

mRUm �Kq, for every compact operator K P KpHq and so µm P WepU�
mRUmq. Since

WepU�
mRUmq �WepRq and this is a closed set, we must have q PWepRq.

We have proved that WepT q �WepRq and the converse inclusion follows from symmetry.

■

Theorem 3.5. Let T P BpHq be a normal operator. Then

WepT q � conv tσS
e pT qu.

Demonstração. As observed above, it remains to prove that

WepT q � conv tσS
e pT qu.

From Proposition 4.1 in [CDM6] there exists a diagonal operator D P BpHq with respect

to an orthonormal basis ten : n P Nu of H, where Dpenq � endn, with dn P C�, such that

T �a D. By Proposition 3.4, we have WepT q � WepDq and σS
e pT q � σS

e pDq. Hence it is

enough to show that WepDq � conv tσS
e pDqu, that is,

BepDq � conv tσS
e pDqu X C. (3.3)

From Theorem 2.4, we have

BepDq � conv tWe,CpDq,We,CpD�qu.
Using [SW, Theorem 8], we haveWe,CpDq � conv tσepDqu � C� andWe,CpD�q � conv tσepD�qu �
C�. Therefore, BepDq � conv tσepDq, σepD�qu. Proposition 3.2 and the fact that σS

e pDq �
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σS
e pD�q (see [MT]), imply that σepDq � σS

e pDq X C� and σepD�q � σS
e pDq X C�. Then

BepDq � conv tσS
e pDq X C�, σS

e pDq X C�u,
� conv tσS

e pDqu X C.

■
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