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QUATERNIONIC ESSENTIAL NUMERICAL RANGE OF COMPLEX
OPERATORS

LUIS CARVALHO, CRISTINA DIOGO, SERGIO MENDES, AND HELENA SOARES

REsuMoO. We study the essential numerical range of complex operators on a quaternionic
Hilbert space and its relation with the essential S-spectrum. We give a new characteriza-
tion of the essential numerical range relating it to the complex essential numerical range.
Moreover, we show that the quaternionic essential numerical range of a normal operator

is the convex hull of the essential S-spectrum.

INTRODUCTION

Let F be the field of real numbers R, complex numbers C or the skew field H of Hamilton
quaternions. Let H be a right Hilbert space over F and let T be a bounded linear operator

on H. The numerical range of T is the set
We(T) = (T, 2y |2 = 1,a € M),

where (-,-) : HxH — [ is the inner product on H. It is well known that the numerical range
is a bounded (not necessarily closed) subset of F and that convexity of Wr(T') depends on the
ground field F. In fact, when H is a real or a complex Hilbert space, Wg(T') is always a convex
set, as stated by the Toeplitz Hausdorff Theorem (see [GR]), whereas in the quaternionic
setting the convexity is not guaranteed (for more details on quaternionic numerical range
see our papers on the subject [CDMI], [CDMZ2|, [CDM3],[CDM4|,[CDM5],|[CDM6| and also
[K], [MBB], [Ye)).

The closure of the numerical range of T contains a non-empty compact subset called the

essential numerical range, defined by

Wer(T)= [ We(T +K), (0.1)
KeK(H)
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where IC(H) denotes the set of compact operators on the F-Hilbert space H. Throughout the
paper we let W(T') = Wg(T') denote the quaternionic numerical range of 7' and W,(T') =
Wem(T) the quaternionic essential numerical range of T'.

The notion of complex essential numerical range was introduced in [SW]. Later, in [FSW],
several new characterizations were obtained. A natural extension to the quaternionic setting
was given in [CDMSI]. Interestingly, it was proved in that paper that despite W (T') is not
convex in general, W, (T) is always a convex set.

This work is concerned with the relationship between the quaternionic and the complex
essential numerical ranges for complex operators on a quaternionic Hilbert space. For this
matter, we introduce the rather natural notion of essential bild. In fact, since ¢ € W, (T) if
and only if [¢q] € W.(T), see [CDMSI], it is enough to study the subset of complex elements
in each similarity class, that is

B(T) = W (T)nC

(| BT +K),
KeK(H)

where B(A) = W(A) n C denotes the bild of an operator A € B(H). The set B.(T) is called
the essential bild of T' € B(H) and it is non-empty, closed and convex.

The article is organised as follows. We start Section 1 by recalling a few results about the
essential numerical range in the quaternionic setting. In Section 2 we recall complex and
real operators on a quaternionic Hilbert space (see [CDMG6, Definition 2.4]) and we give a
new characterization of the essential numerical range of these two classes of operators (see
Theorem [2.3). Each class (real and complex) determines the class of compact operators
necessary to build up the essential numerical range. Namely, we show that to compute the
quaternionic essential numerical range of a complex operator, the intersection in can be
taken over the complex compact operators in place of quaternionic ones. For real operators,
it is enough to intersect over the real compact operators to obtain both the quaternionic
and the complex essential numerical ranges. This characterization allows us to compute the
essential bild of an operator T', and therefore infer about W,(T'), in terms of the complex
essential numerical of T and T*, see Theorem [2.4] It follows that when T is a real operator,
B(T) = Wec(T), see Corollary 2.5} In Section 3 we show that the essential S-spectrum
(definition in Section 1) of a complex operator is given by the similarity class of its essential
C-spectrum, see Propostition[3.2] From this and the invariance under approximately unitary
equivalence of the essential S-spectrum and the essential numerical range (Proposition ,
we show that the quaternionic essential numerical range of a normal operator is the convex

hull of the essential S-spectrum (Theorem [3.5).
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1. PRELIMINARIES

The division ring of real quaternions H, also known as Hamilton quaternions, is an algebra
over the field of real numbers with basis {1,4, 5, k} and product defined by i? = j? = k% =
ijk = —1. Given a quaternion g = qo+q1i+q2j+qsk, its conjugate is ¢* = qo—q1i—q2j —g3k.
We call Re(q) = % and Im(q) = % the real and imaginary parts of ¢, respectively.
The norm of ¢ is the nonnegative real number |g| = 1/q¢*. Two quaternions ¢,q € H are
similar if there is a unit v € H such that u*qu = ¢/, in which case we write ¢ ~ ¢/. This is
an equivalence relation and we denote the equivalence class of g by [q].

Let ‘H denote a right Hilbert space over H. In particular, the norm of x € H is defined
by the underlying H-inner product as |z| = 4/(z,z). The space of bounded, right H-linear
operators on H is denoted by B(H), its closed ideal of compact operators by K(#H) and the
group of invertible operators by B(H)™!.

For an operator T' € B(H), let (rT)xz = (T'x)r, for x € H and r € R. Furthermore, for
q € H, we define A (T) : H — H by

Ay(T) = T? = 2Re(q)T + |q|*1,

where [ is the identity operator. Clearly, Ay(T") € B(#H). The S-spectrum of T', see [CGSS],
is defined by
os(T) = {g e H: Ay(T) ¢ BH)™'}.

Let 7 : B(H) — B(H)/K(H) denote the canonical quotient map and C(H) = B(H)/K(H)
the Calkin algebra. Let w(T) = [T] denote the equivalence class T + K(H), for T € B(H).
Then C(H) is a normed algebra with [|[[T]| = infgexep) [T + K| < |T]|. We say that T is
a Fredholm operator if the class [T'] is invertible in C(H). According to Atkinson Theorem,
T € B(H) is a Fredholm operator if and only if its range is closed and the kernels ker(7") and
ker(T*) are finite dimensional, where T* € B(#) is the adjoint of T'. The set of all Fredholm
operators in B(#) is denoted by F(H).

The essential S-spectrum of T' € B(H) is defined by

o2 (T) = {qe H: Ay(T) ¢ F(H)}. (1.1)

This is a non-empty compact subset of og(T), see [MT]. One can show that o3 (T) is
circular, that is, g € 05(T) is equivalent to [¢] € o5(T).

In [CDMSI], we defined the quaternionic essential numerical range of T' € B(H) as the
set

We(T) = [] W +K).
KeK(H)
The essential numerical range is a non-empty, compact and convex subset of H, contained

in the closed disc D(0, [7(T)|). Clearly, W.(T) < W(T). Moreover, o5(T) < W(T).

e

Another important property of W, (T') is that it is invariant under unitary equivalence, that
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is, We(UTU*) = W,(T), for every unitary operator U € B(H). See [CDMSI] for further
details.

Alternative characterizations of the quaternionic essential numerical range were obtained
in [CDMSI1, Theorem 2.2].

Theorem 1.1 ([CDMSI)|). Let T € B(H) and g € H. The following conditions are equivalent:
(i) q € We(T).
(ii) There exists a sequence (Ty,), of unit vectors in H such that x, — 0 and limy, ,oo{TTp, Tp)y =

q.
(113) There exists an orthonormal sequence (en)n in H such that lim, ,o(Ten, en) = q.

A sequence satisfying condition (ii) is called an essential sequence for ¢, see [CDMSI|
Definition 2.3].

2. COMPLEX OPERATORS

In this section we introduce the notion of complex operators on H, where H is a quater-
nionic Hilbert space, as defined in [CDM6|. This class of operators enjoys some interesting
properties allowing us to give a more detailed characterization of their quaternionic essential
numerical range.

For every orthonormal basis £ = {e,, : n € N} of H, there is a decomposition of H with
respect to &,

H =Hc ®Heyg, (2.1)
where He = m denotes the right C-vector space with orthonormal basis €. Hence,
every u € H decomposes uniquely as a sum v = x + yj, for some z,y € Hc. For convenience,
we sometimes write H multiplicatively as H(QC, and represent u € H as a pair (x,y) € ’H?C.
Here, @ is used as a direct sum of real spaces.

We note that neither Hc nor Hcj are H-vector spaces, but Hc is a complex Hilbert space
endowed with the C-inner product given by:

{x,y)c = <Zenxn,26mym> = Zy::xn eC,

with x = Zn enxn and y = Zn enyn in He. Clearly, this C-inner product coincides with the
inner product of H when z,y € Hc.

Definition 2.1. An operator T' € B(H) is called a complex operator if there is an ortho-
normal basis £ = {e, : n € N} of H such that

(T'(en),emy € C, forevery n,meN.

For convenience, if (Te,, e,y € R, for all n,m € N, we call T a real operator. There are
many examples of complex (real) operators, for instance the quaternionic identity operator
or the quaternionic backward shift, just to name a couple. For more examples see [CDMG].
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Consider both a decomposition of H as in and T' € B(H) a complex operator with
respect to the basis £. We can take the restriction T} := Tjy. : Hc — H of T, the
composition of the maps T': H — H and ¢ : He — Hce @ Hej, where ¢ is the injective map
((r) = x + 0j. Although T} = T o ¢ is not a H-linear map, for Hc is not a H-linear space,
we easily see that it is a right C-linear map on H¢. Moreover, T|(H<c) € Hc. In fact, for
x € Hc, we have

Ti(r)=T(x) =T (2 ena:n) = ZT(en)xn (2.2)

and since 7T is complex,
(T (@), emy = (3 T(en)tnsem ) = Y (Tlen), emdan € C,

for every e, € €. Hence, T{(Hc) € Hc and, for every z +yj € H = Hc @ Hcj, we have
T(x+yj) = T(x) + T(y)j = Tj(z) + T)(y)J. (2.3)

Denote by B(Hc) the set of bounded right C-linear operators on Hc.
Let P, be the projection of H onto span{ei,...,e,}. For a complex (real) operator T
let K,, be such that

T+K,=(I—-P,)T(I —P,), for each ne N.

Since (Pneg,emy € {0,1}, P,, and T are complex (real) operators with respect to the basis
E. Hence their composition is also a complex (real) operator with respect to the same basis,

and the same holds for the addition of complex (real) operators. Clearly, if we write
K,=-P,T-TP, + P, TP, (2.4)

we see that K, is a complex (real) compact operator.

Lemma 2.2. For a real or a complezx operator T € B(H), the following assertions are true:

(1) Let T € B(H) be a complex operator and K, the complex compact operator as in
. Let (Wy)n be a sequence with w, € W(T + K,,) (resp. in We(T + K,)) and
w a sublimit of Wy,. Then we W(T) (resp. we W.c(T)).

(2) Let T € B(H) be a real operator and K, the real compact operator as in (2.4). Let
(Wn)n be a sequence with W, € We(T + Ky,) (resp. Wr(T + K,)) and w a sublimit
of Wyp. Then we Wec(T) (resp. we Wer(T)).

Demonstragao. We will prove only part (1) in the case when (w,,),, is a sequence in W(T' + K,,).
The remaining cases are proved similarly, following [FSW., Corollary in page 189] for the
complex essential numerical range.

If w is a sublimit of w,, then there is a subsequence convergent to w, which we still
denote by (W,), for the sake of simplicity. Take ¢ = & (p € N). There exist n, € N and
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Wp, € W(T + K,,) such that
1
op+1°
Note that we may choose n, — 0o. For such n,, there is wy,, € W(T + K,,) such that
p

[y, —w| < (2.5)

1

ST (2.6)

|wnp — @np| <
Again for simplicity we denote wy, and K, by w, and K.

From (2.5) and (2.6)), we have

1
lwp, —w| < %’ for all pe N.

So we have just constructed a sequence (wp), with w, € W(T + K,) and wp,—w.
We will show that w € W (T') by finding an essential sequence for w. Since w, € W(T +
K,), there exists x, € Sy and

wp = (T + Kp)xp, xp)
=TI = Bp)zp, (I — Bp)xp)
= {TYp; Yp);
where y, = (I — P,)xp.
We claim that y, — 0. In fact, given z € H,
Kyp, )| = KU = Bp)p, 2)
= [@p, (I = Pp)2)|
< [T = Bp)z].
Since |z|? = |Py2|? + |(I — P,)z||? and | P,z||—|z], it follows that |(I — P,)z|—0. Hence,

(Yp, 2)—0, for every z € H.
The proof now splits into two cases.

Case 1: 0 W(T)

If w = 0 then we are done. Suppose w # 0. Since
lypll = (I = Pp)ayp| <1,

(HypH) has a convergent subsequence, still denoted, for simplicity, by (HypH) . Let |yp| —
P P
n. If n =0 then

lwpl = KTyp, yp)l < [Typll sl
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and so |wp| — 0, contradicting our assumption that w # 0. Hence, n # 0 and we may take

&= € Sy. Clearly, & — 0 because y, — 0 and |y,| — n # 0. We have

HypH

(T&p6) = (T 1)
I

1 w
= ——w, = —.
lypl2 P n?

We conclude that (§,), is an essential sequence for and Theorem H implies that % €
n

w

e

We(T). Writingw = (1—n )0+77 5 it follows from the convexity of W, (1) that w € W,(T').
Case 2: 0¢ W(T)

Since W,(T') is non empty, we can choose ¢,q* € W, (T), (see [CDMSI, Proposition
2.5]). Convexity of the essential numerical range (see [CDMSI, Theorem 3.2]) implies that
We(T) nR # . Then, there exists p € We(T) n R, that is, 0 € W (T — ul), see [CDMSI],
Proposition 2.5|. But w, € m and therefore, using again the numerical range

translation property, w, — p € W(T — pl + Kp). We thus fall into case 1, replacing T' by
T — pl. We conclude that w — p e W (T — pl), that is, w e W(T).
|

A direct consequence of the previous lemma is that it is enough to intersect over complex
compact operators to obtain the quaternionic essential numerical range of a complex opera-
tor. Moreover, when T is a real operator, the intersection can be taken over the real compact
operators to obtain both the quaternionic and the complex essential numerical ranges. Let
Kc(H) and Kr(H) denote, respectively, the set of all compact complex and compact real

operators in H.

Theorem 2.3. Let T € B(H).

1. If T is a complex operator, then We( ﬂKeIC W(T + K).
2. IfT is a real operator, then

(i) Wl ﬂKe,qR o W+ K).
(it) We (T) = Ngexzy WelT + K).

Demonstracao. Let T be a complex operator. It is clear that
W)= (| WIT+K)c (] W(T+K).
KeK(H) KeKc(H)

To prove the other inclusion, let w € W(T + K), for all K € K¢(H). In particular,
w e m, for the complex operators K, defined in 1} The result follows from
Lemma with w;, = w, for all k€ N.

A similar argument applies to prove the other statements, using Lemma [2.2]
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Next result characterizes the essential bild of a complex operator 7' € B(H) in terms of

the complex numerical range of T and T*.

Theorem 2.4. If T is a complex operator, then

Be(T) = conv {W, c(T), We c(T")}.

Demonstraggo. We recall that We c(T') = (gerc(pe) We(T + K), where KC(Hc) is the set of
compact operators on the complex Hilbert space Hc.

Let us first prove that K(Hc) = Kc(H). On the one hand, any operator K € K(Hc) is
also in K¢ (H) through an extension K : # — H which we next describe. If K € K(Hc), K
is a compact operator in the complex Hilbert space Hc, then (Ke,, e,y € C. Considering
the vector space H = spang{€}, define the H-linear operator, K:H —H, by

K(en) := K(ep).
Then clearly (Ke,, em) = (Kep, em) € C and thus K is a complex and compact operator.
On the other hand, any operator K € K¢(#H) is also in K(Hc) through its restriction
K| : Hc — Hc described in . Hence Kc(H) =~ K(Hc). In fact, the processes of
extension and restriction are two isometries, with each serving as the inverse of the other.
Consequently, these two spaces are isometrically isomorphic.
Furthermore, from the fact that K(z) = K(x) for 2 € Hc, we have

(T + K)z,2) = (T + K)z,z),
we conclude that
Wec(T) = [] WelT +K).
KeKc(H)
It is common knowledge that W (T + K) € W(T + K) nC, and from Theorem [2.3| we have

Wec(T) € Be(T). Since W (T*) = W(T), see [CDMSI, Proposition 2.5 (iii)], then also
We,c(T*) € Be(T). Using that the essential bild B.(T) is convex, we conclude that

conv {W, c(T), Wec(T*)} < Be(T).

Let us now prove the converse inclusion. From Theorem and [CDMG6, page 11] we

have
B(T) = ()| B(T+K)
KEICC(H)
c () conv{We(T+K),We(T* + K*)}.
KeKc(H)
Then,
B(T)c (] conv{We(T + K),We(T* + K*)}.

KEICC(H)
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Take w € B.(T). Then w is a convex combination of elements in W¢ (T + K) and
W for every complex compact operator K. In particular, for K, as in ,
we may write

w=alw +alw?, (2.7)
where ol 02 >0, al + a2 =1, w} € We(T + K,,) and w? € We(T* + K¥).
1

n’

Since w}, w2 € B(0,|T|), we may take subsequences, denoted by (w.),, and (w2),, for the
sake of simplicity, convergent to, say, w' and w?, respectively. From Lemma we have
w! € Wec(T) and w? € W c(T*). Moreover, from the fact that of, € [0,1], i = 1,2, there
are also convergent subsequences, still denoted by af, such that a! — af, i = 1,2. Taking
limits in (2.7) we conclude that w = alw! + a?w?, and the result follows.

The previous result implies that the essential bild of a real operator T coincides with its
complex essential numerical range. Furthermore, since B.(T) intersects the real line, we
have W c(T) nR # .

Corollary 2.5. If T' is a real operator, then B.(T) = W, c(T).

)

As an example, let us apply the above result to compute the essential bild of the unilateral

quaternionic shift.

Example 2.6. The unilateral scalar weighted (quaternionic) shift on H with respect to an

orthonormal basis {e,}, is defined by
Se, = epp1Wn, w, € Hon = 1.

We denote S ~, {wy}, for an operator S unitarily equivalent to the weighted shift whose
sequence of weights is {wy}75._;.
%

w
Taking the unitary operator U = diag(1,ci,cic2,...), where ¢, = "| (n > 1), one
Wn,

easily checks that USU"e,, = |wplent1, i.e, S ~y {|wil}jr,. Thus, we may assume that S

is real.

Let us consider two special cases. First, we suppose that the sequence {|wy|}}L, converges
to a = 0. By part (a) of [WW), Proposition 2.2] we know that W, c(S) = D(0,a). Applying
Corollary we have that B,(S) = D(0, a).

For the second case assume that {w}}2, is a periodic injective shift, that is, wy # 0, for
every k. It is known that W¢(.S) is an open circular disk about the origin, see [S, Proposition
6] and [R]. Therefore, from [S|, Proposition 7] and Corollary [2.5] it follows that B.(S) is a

closed circular disk about the origin.

We can also find the quaternionic essential numerical range of a complex block diagonal
operator using the results from [CDMS2].
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Example 2.7. Let Ae M (C) andlet T' = @, .y A be a complex block diagonal operator.
From [CDMS2, Example 4], we know that W c(T) = W(A). Then, using Theorem [2.4 we
conclude that

B(T) = conv {Wc(A), We(A*)}.

Theorem 2 in [CDMS2| can be extended to the quaternionic setting. We omit the proof,
since it follows along the same lines.

Theorem 2.8. Let T =@, . An € B(H). Then,

neN

We(T) = conv( ﬂ U W(An))

kz1nzk

A simple application of the above theorem allows us to observe that the quaternionic
nen A, where
A e My (H), is given by We(T') = conv (W (A)). In particular, in the space of quaternionic

essential numerical range of a quaternionic block diagonal operator T = @

sequences H = (2(H), if T is the operator of pointwise left multiplication by ¢ € H, that is,
T = ql, where I denotes the identity operator, the quaternionic essential numerical range
can be easily computed.

Example 2.9. Let T' = ¢ql, with ¢ € H, so that T is the block diagonal operator T' =
@, ey An, where A, = [q] € M;(H), for all n € N. We can write ¢ = o + ¢im € H, where
g0 = Re(q) and ¢y, = Im (g). From Theorem we have that

>) Do, atm -

(q
where we used the well known fact that W(q) = 6D(qo, |¢im |)-
= W( I) = W(qI) = D(QO;|QIm|)7 that is,

We(ql) = conv(

We can also conclude that D(qo,|qim|)
Wi(ql) = D(qo, |qmm )-

3. ESSENTIAL S-SPECTRUM AND ESSENTIAL NUMERICAL RANGE

The right multiplication by a complex number A is the right C-linear operator Iy, - A €
B(Hc) given by (I -A)(x) = x, for every x € Hc, where Iy, denotes the identity operator
on Hc. In particular, if T'e€ B(Hc) is a complex operator, then for every A e C, T' — Iy - A
belongs to B(Hc). Next definition of complex essential spectrum is the natural notion of
spectrum in right complex Hilbert spaces.

Definition 3.1. For any complex operator T' € B(H), the complex essential spectrum of T'
is the subset of C given by

0e(T) :=0e(T)) = {A€ C: T} — I3y - A is not Fredholm in B(Hc)}.
Recall that in (L.1)) we defined the essential S-spectrum of T € B(H) by

o2 (T) = {qe H: Ay(T) ¢ F(H)}.
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To characterize the essential S-spectrum of a complex operator in terms of the complex
essential spectrum, observe that Ay(7') is also a complex operator and hence we can consider
its restriction to Hc,
AX(T) : He — He.
We have
ANT)(He) = AN(T) (He) = Ax(T))(Hc) (3.1)

and so, it follows from the decomposition H = Hc @ Hcj that
AMTYH) = ANT)(He) @ AN(T)Hcj
= A\(T))(Hc) @ Ax(T)) Hcj.

~

Proposition 3.2. Let T be a complex operator. Then
0o (1) = [oe(T)],
where [0¢(T)] = Unreo. (1) [A]-

Demonstragdo. Let us start by proving the inclusion o5(T) < [oc(T)]. Since o5(T) is
circular, it is enough to take A € 09 (T') n C and prove that A € o.(T), i.e. T} — Iy - A is not
Fredholm in B(Hc).

We will first show that the operator Ax(T') is not Fredholm in B(Hc). In fact, if Ax(T),
were Fredholm in B(Hc) then dimker(A(T)|) < o and dim coker (A (7)) < co.

In case dim ker(A(T')|) were finite then, using that
ker(AX(T)) = ker(Ax(T)|) @ ker(Ax(T)))],

it would follow that dim ker(A(7")) would also be finite. A similar argument shows that in
case dim coker (Ax(7')|) < oo then dim coker (A)(7')) < o using that

coker (A)(T')) = coker (A\(T')|) @ coker (Ax(T')))J-

So in either case Ay(T") would be Fredholm in B(H), leading us to a contradiction.
Now we are able to prove that 7} — I3 - A is not Fredholm in B(Hc). Since T is a complex

operator, we can write
ANT)) = (T} = Ie - NI} = D - A)- (3-2)

Therefore, (T} — I3 - N*)m (T} — I3y - A) is not invertible in B(Hc)/K(Hc), that is, either
(T} — Ipge - N*) or w(T} — Iy - A) is not invertible in B(Hc)/KC(Hc). It follows that either
T} — Iyye - A or T} — Iy - A* is not Fredholm in B(Hc), i.e. A or A* is in 0.(7T). Hence,
A€ [o(T)].

To prove the converse inclusion suppose that \ ¢ af (T'), that is Ax(T') is Fredholm in
B(H). Since dim ker(A) (7)) < oo then ker(Ax(7})) is a finite H— subspace, for ker(Ax(7})) =
ker(A\(T)) as H— subspaces. Clearly, ker(A,(7})) is also a finite C— subspace. Because
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Ax(T}) € B(Hc), we can use to conclude that ker(7] — I3 - A) S ker(Ax(7])). It follows
that dimker(7] — I3 - A) is finite.

The same reasoning proves that dim coker (A (7)) < oo then dim coker (T|* — I3 \) < 0.
In this case, we use the fact that Ay\(T') can be written in the form A\(T}) = (7] — Iy, -
N(T| = e - X°).

Both dim ker(7]—I3;,-A) and dim coker (A)(7")) < oo allows us to conclude that A ¢ oc(T).

|

As we have seen in Example known results in the complex setting regarding the
numerical range can be used to reach similar ones in the quaternionic setting. The same

can be said about the S-spectrum.

Example 3.3. Let S be an injective unilateral quaternionic scalar weighted shift. Then, as
seen in Example , S ~u {|wgl}r;- From the above proposition the essential S-spectrum
of S is the set of the similarity classes of o.(5), known to be the annulus (see [LJS| p. 417])

{AeC:ri(S) <N < r (9},

where 7(S) is the spectral radius, r1(S) = limy(m(S*))/* and m(S) = inf {|Sz| : |z = 1}
is called the lower bound of S.

In [CDMSI, Theorem 2.6] the authors prove that o5 (T) € W.(T), for every T € B(H).
The convexity of the essential numerical range [CDMSI, Theorem 3.2] implies that conv {2 (T)} S
We(T). When T is a quaternionic normal operator this inclusion is an equality, as we next
prove. We observe that this class of operators is contained in the class of complex ope-
rators, up to approximate unitary equivalence. Thus, before we need to show that the
essential S-spectrum and the essential numerical range are invariant under this equiva-
lence relation. Recall that two operators T, R € B(?) are approximate unitary equivalent,
and we write T' ~, R, if there exists a sequence of unitary operators (Uy,)nen such that
limy, o |U, RUY — T|| = 0.

Proposition 3.4. If T, R € B(H) are such that T ~4 R then
(i) o2 (R) = o2(T),
(“) We(R) = We(T)'

Demonstracao.

Let (U,)n be a sequence of unitary operators such that R, = U,RU} — T.

Let us first prove (i). We will start by showing that limsup o2 (R,,) S ¢5(T). The equality
then follows from symmetry. Recall furthermore that limsup o2 (R,,) is a closed subset of H
and that ¢ € limsup 0 (R,,) if, and only if, there is an increasing sequence (nj), of positive
integers such that g,, € 05 (Ry, ) for all k and ¢, — q.

Let ¢ € limsup o5 (R,,) and suppose ¢ ¢ 05 (T). The set F(H) of Fredholm operators is
the inverse image, under the canonical surjection 7 : B(H) — B(H)/K(H), of the open set
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formed by the group of invertible elements in the Calkin algebra. Since 7 is continuous then
F(H) is open. Hence, there is € > 0 such that B.(A4(T)) ¢ F(H).

Now, let (ny), be an increasing sequence of positive integers such that g, € o2 (Ry,) for
all k and gn, — ¢. Since R, — T, there is ko € N such that Ay, (Rn,) € Be(Ag(T)) for all
k = ko. In fact, fully writing Ay, (Rn,) and Ag(T), we see that [Ag, (Rn,)—A(T)| — 0
as k — o0. So, for k > ko, qn, ¢ 02 (Ry,) and we get a contradiction.

Then, 09 (R) = limsup o?(R,) € o2 (T).

We now prove (ii). Let ¢ € W.(T'). By Theorem (iii), there exists an orthonor-
mal sequence (ep), such that ¢ = lim, ,,(Tey,,e,). For a fixed m € N, the sequence
((U;‘LRUmen, en>> is bounded and hence it has a subsequence <<UW*LRUmenk,enk>)

n

=1 =1

convergent to, say, fm,. We have
< |ULRU, — T,

Since T ~, R it follows that lim,,— e it = ¢. By [CDMSI, Lemma 2.1|, we have p,, =

limy oo (U}, RUp, + K)ey, , en, ), for every compact operator K € IC(H). Therefore, p, €

W (U RU,, + K), for every compact operator K € K(H) and so p,, € W(U} RU,,). Since
We (U RU,,) = We(R) and this is a closed set, we must have g € W.(R).

We have proved that W (T) € W,.(R) and the converse inclusion follows from symmetry.

|

Theorem 3.5. Let T € B(H) be a normal operator. Then

We(T) = conv {¢2(T)}.

Demonstracao. As observed above, it remains to prove that
We(T) < conv {¢5(T)}.

From Proposition 4.1 in [CDM6| there exists a diagonal operator D € B(#H) with respect
to an orthonormal basis {e, : n € N} of H, where D(e,) = e,dy,, with d,, € C*, such that
T ~4 D. By Proposition 3.4, we have W.(T) = W.(D) and ¢5(T) = ¢(D). Hence it is
enough to show that W,(D) < conv {o (D)}, that is,

B.(D) < conv {¢7 (D)} n C. (3.3)
From Theorem we have
B.(D) = conv {W, c(D), W, c(D*)}.

Using [SW], Theorem 8|, we have W, ¢ (D) = conv {c.(D)} c CT and W, c(D*) = conv {o.(D*)}
C~. Therefore, B.(D) = conv {oc(D),c.(D*)}. Proposition and the fact that o5 (D) =
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o2 (D*) (see [MT]), imply that o.(D) = 05(D) n C* and o.(D*) = 05(D) n C~. Then
B.(D) = conv{c?(D)nC",05(D)nC},

conv {o2(D)} n C.
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