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ON THE CONVEXITY OF THE QUATERNIONIC ESSENTIAL
NUMERICAL RANGE

LUIS CARVALHO, CRISTINA DIOGO, SERGIO MENDES, AND HELENA SOARES

ABSTRACT. The numerical range in the quaternionic setting is, in general, a non convex
subset of the quaternions. The essential numerical range is a refinement of the numerical
range that only keeps the elements that have, in a certain sense, infinite multiplicity. We
prove that the essential numerical range of a bounded linear operator on a quaternionic
Hilbert space is convex. A quaternionic analogue of Lancaster theorem, relating the closure
of the numerical range and its essential numerical range, is also provided.

INTRODUCTION

Let F be the field of complex numbers or the skew field H of Hamilton quaternions. Let
‘H be a Hilbert space over F and let T' be a bounded linear operator on H. The numerical
range of T is the set

W(T) =Wp(T) = {{Tx,z): ||z| =1,z € H},

where (-,-): H x H — F is the inner product on H. This subset of F was introduced and
studied by Toeplitz in 1918, who proved that, when F = C, the outer boundary of W (T') is a
convex curve and conjectured that the whole numerical range was convex, see [To]. Shortly
after, in 1919, Hausdorff [Ha] proved the conjecture. Since then, this result is known as the
Toeplitz-Hausdorff Theorem.

Over the years, the investigation of the numerical range continuously increased, including
the cases of linear operators on infinite dimensional complex Hilbert spaces and complex
Banach spaces. In 1951, Kippenhahn [Ki| introduced the study of numerical range for
quaternionic operators, i.e, when F = H. Soon it became evident that, although sharing
many properties of its complex counterpart, the quaternionic numerical range was no longer
always convex. The bild of an operator T', also introduced in [Ki], is the intersection B(T') =
Wu(T) n C. Since every quaternion is, up to unitary equivalence, a complex number, many
properties of the numerical range are encoded in the bild, including convexity. In fact,
Wn(T) is convex if, and only if, B(T') is convex, see [CDM3|. However, the upper bild
B*(T), which is the intersection of Wy (7T) with the closure of the upper half-plane, is
always convex. The pursuit of convexity remained an important issue in the quaternionic
setting, with Au-Yeung establishing in [Yel] necessary and sufficient conditions for Wy (7T')
to be convex.

In a series of recent papers [CDMI]| - [CDM5] the convexity and shape of the numerical
range of quaternionic matrices have been studied by the first three named authors. The
notion of S-spectrum (see [CGK] [CSS|) and its relation with the numerical range on infinite
dimensional quaternionic Hilbert spaces was addressed in the recent paper [CDMG6]. Another
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2 L. CARVALHO, CRISTINA DIOGO, S. MENDES, AND H. SOARES

geometric object in the realm of infinite dimensional Hilbert spaces is the essential numerical
range of an operator T'. It is defined as the set

We(T) =W.p(T)= | W({T+K),
Kel(H)

where IC(H) denotes the set of compact operators on the F-Hilbert space H. Taking K to
be the zero operator in the above definition, we see that W, z(T') < W (T).

This paper is devoted to the study of the essential numerical range in the quaternionic
setting. The main result is theorem where we show that, for ' = H, the essential
numerical range We(T') = W, (T) is always a convex set. Thus, at least convexity of this
essential part of the numerical range is guaranteed even in the quaternionic setting. We
emphasize that this is a surprising and unexpected result since the essential numerical range
is the intersection of non-convex sets and nothing indicates it is convex in its formulation.

To secure this result we use a general property (lemma : given a pair of unitary

sequences xsll),w,(f) and T € B(H), a judicious choice of N and M shows that the following
vectors are close to orthogonal

N, ym) ~ Tan,ym) ~ T zn, ym) ~ 0.
We can then form an essential sequence (see definition [2.3) for the convex combination

2w + 5203 WM W2 e W,(T), with elements of the form ax%) + ﬁyﬁ). The referred
quasi orthogonality implies that

o) + B3P & 02, ol + 52 2y = 1
<T(04:U§\1,) + ﬂl’g\?), oz:vg\l,) + B$§\24)> ~ a2<Tx5\1,), 335\1,)> + ﬁ2<Tl'S\24),SL‘§5[)> ~ a?w) 4+ f2w®).

We finish the paper with theorem where we prove a quaternionic version of Lancaster
theorem relating the numerical range and the essential numerical range, see [L]. Due to the
nonconvexity of the numerical range, we need to introduce the notion of inter-convex hull (see
(3.7)). The result asserts that the closure of the quaternionic numerical range is precisely
the inter-convex hull of the quaternionic essential numerical range and the quaternionic
numerical range, i.e W(T) = iconv {W,(T), W(T)}. In spite of the formal similarities with
its complex counterpart, there are worth mentioning differences. Foremost we can not
infer that the numerical range is closed when it contains the essential numerical range (see
remark as in complex Hilbert spaces [Ll Corollary 1|. This is because the quaternionic
numerical range lacks convexity and the quaternionic Lancaster theorem uses the weaker
notion of inter-convex hull. In addition, remark tells us that, even though the upper bild
is convex, we still do not recover Lancaster theorem in its complex form.

1. NOTATION AND PRELIMINARIES

The division ring of real quaternions Hl, also known as Hamilton quaternions, is an algebra
over the field of real numbers with basis {1,4, 7, k} and product defined by i? = j? = k% =
ijk = —1. Given a quaternion ¢ = qo+q1i+q2j+qsk, its conjugate is ¢* = qo—q1i—q2j —g3k.
We call Re (¢q) = # and Im (q) = # the real and imaginary parts of g, respectively.
The norm of ¢ is the nonnegative real number |q| = 1/q¢*. Two quaternions ¢, ¢ € H are
similar if there is a unitary w € H such that u*qu = ¢/, in which case we write ¢ ~ ¢/. This

is an equivalence relation and we denote the equivalence class of ¢ by [q].
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Let H denote an infinite dimensional two-sided Hilbert space over H. In particular, the
norm of z € H is defined by the underlying H-inner product as ||z|| = 4/{x,z). The inner
product verifies the usual Cauchy-Schwartz inequality: |(z,y)| < |z||y], for every z,y € H.
The space of bounded, right H-linear operators on H is denoted by B(H), its closed ideal of
compact operators by K(H) and the group of invertible operators by B(#H)~!.

Every linear operator 1" considered in the text will be a bounded linear operator in B(H).
Given ¢ € H and T € B(#H), we define the operator Ay (T") : H — H by

Ay(T) = T? = 2Re ()T + |¢|*I,
where I is the identity operator. Clearly, Ay(T") € B(H). The S-spectrum is the set
oS(T) = {ge H: Ay(T) ¢ B(H)™'},

which seems to be the appropriate notion for spectral analysis of linear operators on infinite
dimensional quaternionic Hilbert spaces, see [CGK| ICSS].

Let m: B(H) — B(H)/K(H) denote the canonical quotient map and C(H) = B(H)/K(H)
the Calkin algebra. Let 7w(T') = [T'] denote the equivalence class T + K(H), for T € B(H).
Then C(H) is a normed algebra with [|[T]|| = inf xec(p) |7 + K|| < [|T||. We say that T' is
a Fredholm operator if the class [T'] is invertible in C(H). According to Atkinson Theorem,
T € B(H) is a Fredholm operator if and only if its range is closed and the kernels ker(7") and
ker(7T™) are finite dimensional, where T € B(#) is the adjoint of T'. The set of all Fredholm
operators in B(H) is denoted by F(H).

The essential S-spectrum of 7" € B(H), defined by

o2 (T) = {qe H: Ay(T) ¢ F(H)},

is a non-empty compact subset of o°(T), see [MT].

In the sequel, we will be working in the quaternion setting, that is, the quaternions H are
our ground field (skewfield to be more precise). Therefore, when we write W (T') or W(T),
we always refer to the quaternionic numerical range or quaternionic essential numerical
range.

Finally, define the essential bild and the essentials upper and lower bilds to be, respectively,
Be(T) = Wo(T) nC, BH(T) = We(T) n C*, and B, (T) = We(T) n C~, where C* is the
closure of the respective half-planes.

2. PROPERTIES OF THE ESSENTIAL NUMERICAL RANGE

This section is devoted to elementary properties of the essential numerical range and to
prove some criteria for a quaternion to be in the essential numerical range of an operator.
The results and their proofs are identical to the complex case with some adjustments. For the
sake of completeness full proofs are provided. We start with an auxiliary result concerning
compact operators.

Lemma 2.1. An operator T is compact if and only if (T'ey, e,y — 0 for every orthonormal
set (en)n.

Proof. Let T' € B(H) be compact and let (e,), be an orthonormal set. Let P, be the
projection onto span {ej,...,e,}. Since T' is compact, it is the limit of a sequence of finite
rank operators, i.e., lim,_,||P,T — T|| = 0 (see [C, Corollary 4.5]). Then

lim [[(I = P,)T(I = Bl < lim [|T — P,T[[[I — Pyl = 0.
n—0o0 n—0
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Since (I — P,)en+1 = ept1, and using the Cauchy-Schwarz inequality, we have
KTent1,eni1)l = KT = Poent1, (I = Po)eny)l
< (= P)T(I = P

Hence, (Tey,, e,) — 0.
For the converse, suppose that T € B(H) is such that (Te,, e,y — 0, for every orthonormal
set (€n)n. From ||T'[| = supj,—|y|=1 [{T'x, )|, there exist unit vectors x1,y1 € H such that

[}
[Tyl = 5

A straightforward computation shows the following “polarization identity”, for all z, y € H:

WTa,y) =(T(w+y), v +y)—T(a—y).a—y)+ (T +yi), o +yiy—T(a—yi),x —yi))i

k(T (@ +yk), 2 +yk)y—(T(@—yk), 2 —yk)) +k (T (@ +ys), 2 +j) —(T(w—ys) 2 —yj) )i
In particular, it follows that
KTy, y1)l < Z (KT, w,
uEU

where U = {x1 + ny1 : n = 1, i, =7, £k}. More precisely, for some ug € U we can write

T( 0 g
fecl ) Tl ‘

ug Uo
() 2

[uoll ) Juoll
where in the last inequality we used the fact that [Jugl| < 2. Set p1 = up/||uo| € H. Then,
p1 is a unit vector such that

Il _ 1Tl
— < T'pq, .
9 16 K f1 P1>\

Now, let P; be the orthogonal projection onto span {p;}. By applying the above argument
to the operator (I — P;)T'(I — Py), we can find a unit vector pa orthogonal to p; such that

(I = P)T( - P
16

Moreover, a recursive procedure allows us to construct an orthonormal sequence (py, ), such
that if P, is the projection onto the span of {p1,...,p,} then

(= Po)T(I = P)|
16

Since p,, is an orthonormal sequence, by assumption, we have lim,,_,5{T pn, prn) = 0, so that

lim ||(I — P,)T(I — P,)| = lim I|(P,T + TP, — P,TP,) —T| =0,
n—aoo n—0o0

8
(Txy,y1)| < Z|<TU0=UO>|=2

< 8

< Tz, y1)| < 8KT'p1, p1)| =

< KT p2, p2)l-

< |<Tpn+1>pn+1>|'

and thus T is compact (being the limit of the finite rank operators P, T+ TP, —P,TF,). 1
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Next result, well-known in the complex setting (see [FSW| Corollary in page 189]), gives
necessary and sufficient conditions for an element ¢ € H to belong to W.(T), for some
operator T' € B(H). A very important class of unitary vectors regarding the essential
numerical range, portrayed below in condition b), will be called an essential sequence, see
definition . As usual, we write x,, — x if a sequence (x,), in H converges to x € H in
the weak topology.

Theorem 2.2. Let g € H. The following conditions are equivalent:

a) ge W(T).

b) There exists a sequence of unit vectors (xy,)n in H such that z,, — 0 and {T'zy,x,) — q.
c) There exists an orthonormal sequence (ey,), in H such that (Te,, e,y — q.

Proof. b) = a). Suppose b) holds. To see that g € ﬂKeIC(’H) W(T + K), we will show that
{T + K)xp,xn) — q, for every compact operator K. At this point we need the following

well-known result: if K is compact and x,, — z, then Kz, — Kz strongly. In particular, if
Zy, — 0 then |Kz,| — 0. It follows that

<(T + K)xna an> = <T$na xn> + <Kwn7 37n> — (q,

since we have [(Kxy, x| < |[Kzy,|, for every n.

¢) = b). The result follows from the fact that e,, — 0 for every orthonormal sequence
(€n)n-

a) = ¢). Since W, (T) = [B(T)], it is enough to prove the result for the essential upper
bild. Let ¢ € BF(T). From B} (T) < B*(T), there is a sequence of unit vectors (&), in
H such that (T¢,,&,) € BY(T) and lim,,—,{(T&,,&,) = q. Take &7, which we call without
loss of generality &1, such that

(Ter, )~ dl < 5.

Let £y := span{{} and write H = L1 @ ﬁf. Denote P; : H — H the orthogonal
projection onto £;. From [CDM3| Corollary 3.3] we know that the quaternionic numerical
range of an operator, and therefore its upper bild, always intersects the real line. So, we can

take a real number p; € Bt ((I - Pl)T|£1l) N R.
Let Fy be the finite rank operator such that T+ Fy = u1 Py + (I — P1)T(I — Py). Then,
Fy compact and, since g € B (T), it follows that

qE B+(T + Fl) = B+(M1P1 + (I — Pl)T(I* Pl))

However, it is clear that
Bt (/J,lpl + (I - Pl)T(I — Pl)) =
= {<(M1P1 + (I - Pl)T(I — Pl))(.’L’l + 172),131 + l‘2> : (1'1,1'2) € Q} NnCT
T2 T
= {llal? 4 e - POTZL E  @m)e0f nc,
[EPY N ERY
where Q = {(z1,22) 1 21 € L1, 32 € L1, |J21]]* + ||lz2]? = 1}.
Since 1 € Bt ((I - Pl)T|£1L) AR and Bt ((I - P1)T|E1L> is convex (see [Yell Corollary
1]) we obtain

B* (P, + (I — P)T(I—P,)) = B* ((I - Pl)Tw%).
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Hence, g€ BT ((I — Pl)T|£1L). So there is a unit vector & € £1 such that

(I = P)T| 182, €2) — < e \<Tf2=52>—q’<2i2'

922
If &,...,&, are orthonormal vectors such that |(T&,,&,) — ¢q| < 2%, we can repeat the
above procedure with £,, := span{¢1,...,&,}, P, the orthogonal projection onto L,, p, €

B* ((I - Pn)T|£L) AR and F, such that T + F, = pnPy + (I — P)T(I — P,). We thus
obtain a unit vector &,+1 orthogonal to each & for 1 < k < n such that

1
[T&nt1,&nt1) —ql < DYESE

By recursion, there exists an orthonormal sequence (&), in H such that (T'¢,,&,) — q.
|

We will call any sequence satisfying b) an essential sequence for ¢, as stated in the following
definition.

Definition 2.3. An essential sequence (z,), < H for ¢ is a sequence of unit vectors such
that x, — 0 and (T'zy,, z,) — q.

An immediate consequence of theorem is the non-emptiness of the essential numerical

range. In fact, for any orthonormal sequence (ey),, the sequence <<Ten, en>> is bounded
n

by |T||. Then, it has a convergent subsequence. By ¢) in theorem [2.2] we have that We(T) is
non-empty. Moreover, it is clear that W, (T") is a compact set since it is closed and bounded
in H. These properties are summarized in the corollary below.

Corollary 2.4. W.(T) is a non-empty and compact set.

The essential numerical range in the quaternionic setting shares many properties with
either the complex essential numerical range or the quaternionic numerical range. We collect
some of such properties below. The proofs are direct and for that reason only a short hint
is provided.

Proposition 2.5. The following properties of the quaternionic essential numerical range

hold.
(i) We(T + K) = W(T), for all K € K(H).

(11) q € W.(T) if and only if [q] € We(T).

(m) We(T*) = We(T)'

(i) Wo(T) < B0, [=(D)]).

(v) If a,be R, We(aT + bl) = aW(T) + b.

(vi) We(T 4+ 8) € We(T') + We(S).

(vii) If U € B(H) is unitary, then W (UTU*) = W,(T).
(viii) We(T') contains all eigenvalues of T of infinite multiplicity.

Proof. (i) follows from K + K(H) = K(H), for any K € K(H); (i) results from ¢ € W(T') if
and only if [¢q] € W(T), for every operator T'; (iii) is a consequence of W (T*) = W (T, for
every T' € B(H); the inclusion W(T') < D(0, |7T||) implies (iv); (v) holds because W (aT' +
bI) = aW(T) + b, for a,b e R; from K(H) + K(H) = K(H) and W(T +S) < W(T) + W(S)
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we obtain (vi); (vii) follows from W(UTU*) = W(T'); for (viii) note that the orthonormal
set (en)n of eigenvectors satisfying Te,, = eyq is an essential sequence for q. |

From [CDM6|, Theorem 2.9] we know that 0 (T +K) < W(T + K), for every K € K(H).
Using the notion of Weyl S-spectrum, o2 ﬂKE,C (T + K), and that o5 (T) <

o3 (T) < 0%(T) (see Definition 6.1 and Theorem 6.6 in [MT]) we have the following result.
Theorem 2.6. o5 (T) < W(T).

3. CONVEXITY

In this section we establish the main result of the paper which asserts that the quaternionic
essential numerical range is convex. To see this we will show that for any two elements
w® w® in W, (T'), their convex combination can be arbitrarily approximated by elements
(T'z,z), where z € H is generated by an essential sequence for w® and an essential sequence
for w®. To construct such elements z € H we need a preparatory lemma which states a
general property enjoyed by a pair of unitary sequences weakly vanishing and a bounded
linear operator.

Lemma 3.1. Let T € B(H) and (:cgf))n, 1 = 1,2, be unitary sequences in H such that

xﬁf) — 0. For any5>0 and N € N, there is M € N such that M = N and

K N? M ’ € ’<T Ty ,x(2)>} <S¢, and ’<T*$§\lf)’xM>’

Proof. Let § > 0. Let (ex)xr be an orthonormal basis for H and Pg be the projection onto
span{ei,...,ex}. Since (I — Pg)y ST 0 for every y € H, then, for the above § > 0 and
—00

N € N, we may find K € N such that
11— P2l <6, (I - P)Ta)| <6 and (- Po)T*ay| <5 (3.1)
We can find an M € N that depends on §, N, K, such that M > N and

0
(@7 el < 5, for every 1< k < K. (32)

Inequality 1D follows from the fact that (1‘%2))” vanishes weakly, and that implies coordi-
natewise convergence to zero. It follows that

Z <x§51)’ek>ekH2: Z ’<x§\24),€k>‘2

1<k<K 1<k<K
and therefore,
| P < 6. (3.3)
: Wy ,.@ —
Noting that ||z || = ||}/ | = 1, we have
(1) (I - Pg) P @)
(zy 795M <5UN ) xM> <33 KThf)

(I = Pro)ey || |57 | + | [P’y |

26 (from (3.1) and (3.3)).

<
<
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Using a similar reasoning, we can show that
(T i) < I = P)Ta)| || + | T || P’y |

n(f — P)Tz| + T 6

<
<5+ |76

and [(T*z{), 25| < 6 + |T| 5. Letting 6 be such that max{2,1 + |T|}§ < & the lemma
follows. |

Theorem 3.2. W.(T) is convex.

Proof Convexity of W, (T) will be proved by showing that o?w® + 52w e W, (T) for
any o? + 8% = 1, When w( ),w® lie in W,(T). For that we will prove there is an essential
sequence (%), for a?w®) + ﬁQw(Q)

Let ( %))n be an essential sequence for w® and denote wﬁf) = <T:L‘£,,i),x§f)>, for i = 1,2.
For any p € N let ¢ = 1/p. One of the conditions for the sequence (:r:,(f)) to be essential for
w® is that wﬁb) — w® when n — . Hence, for the given ¢, there exists N > p satisfying

lw —wW| <eand [w? —wP@| <e, forn=N. (3.4)

Pick M according to the previous lemma. For the fixed o and 3, let z = a:cg\l,) + Bxg\?

Since a? + 82 =1 and aff < %, we easily verify that
1
1217 = 1] < Koy, 23] < (3.5)

A simple computation shows that
(5,25 = (0% + B3| = apTa, o)y + T*al) 2| <o
From (B.4), it follows that
(72,2 = (2w + 820®)| < |(a%f)) + B2) — (a%® + g2®)|
+ ’<Tz, 2 — () + B%J}\?)‘
< aQ‘wj(Vl) — w(1)| + 52‘(»](\3) — w(2)| + ‘<Tz, 2y — (aQw](\P + ﬁ%dj(\?)‘
< 2. (3.6)

Observing that the fixed integers N and M depend on €, that is on p € N, we denote
them by N, and M,; likewise, we denote z by z,. To get an essential sequence we have
to normalize (z,),. Write z, = ”zﬁ From 1} lzp| = 1 (p — ), and so (z,), is well
(2) 1 (2

defined. By definition, z, = ozxg\,) + Bxy/ " and TN Ty, — 0, when p — o0. By linearity
and since |z,| — 1, we have that Z, — 0. Fmally, from (3.6) it follows that
s 3 1 2, 4 52,
(Tzp, 2p) = W<sz,zp> — a‘w' + frw
P

The sequence (Z,),, is essential for 2w + 32053 and thus, by theorem , o2w® + 523
W, (T). n
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Next result establishes the relation between the boundary of the numerical range and the
essential numerical range. This is the quaternionic analogue of Lancaster’s theorem for the
complex numerical range, see [Ll Theorem 1]. Since the quaternionic numerical range is not
always convex, a modification is imposed and we need to introduce the notion of inter-convex
hull of sets (see [CDM2, Definition 3.2]).

The inter-convex hull of the sets A and B, denoted by iconv { A, B}, closes the set A u B
to the convex combinations with one element of each sets,

iconv{A,B} ={aa+ (1—a)b:ac A, be B, 0 < a < 1}. (3.7)
Theorem 3.3. The closure of the numerical range is W(T') = iconv {W.(T), W(T)}.

Proof. We start proving that iconv {W,(T"), W(T')} < W(T). Let w € iconv {W,(T), W (T)}.
Then @ = o?w + B%w, with w € W(T),w. € W.(T) and o? + 8% = 1. In particular, we can
take a unitary y € H such that w = (T'y,y) and an essential sequence (yy), for we. Since
yYn — 0, we have that lim (y,,y) = limy,, Ty) = limy,, T*y) = 0. Let z, = ay + Byn.
Then,

Tz, 20y = &XTy,y) + BTy, yn) + B (<Ty, Yn) + (Tyn, y>) — o’w + fPwe = w.
Furthermore,
lznlP = 0?ul? + 82yl + 8 (<5 ) + o)) — 1
Thus W(T') s<{T H;ZH ||an> w, and w e W(T).

To prove the converse inclusion, take & € W (T'). There is a sequence (yy),, in H satisfying
|lyn| = 1 and wy, = (Tyn,yn) — w. Since this sequence is in the unit circle, there is an
element y € H in the unit disk such that y, converges weakly to y.

If y = 0, then (yy,), is an essential sequence for w. From theorem [2.2f we have w € W,(T).

If |y|| = 1, we have that y, — y, with [ly| = 1 = |y,|. It is well-known that in this case
Yn — y (strongly). Thus, (T'yn,yn) — (T'y,y), that is, W = (T'y,y) e W(T).

Assume now that [ly| # 0,1. Using that {y,, h) — {(y, h) for any h € H, we can prove
that lim (T'yy,, y) = lim (Ty, y,) = (T'y,y) and therefore

W (Tyn, yn) = lim [Ty, y) + (T(Yn = y), yn — y)].-
It is easy to see that lim |y, — y|?> = 1 — ||ly|>. Then

=t () =t [P 0 o (T ]
mn T T+ 1o Tom = yumn w

)
(T T 4 (1 ) i (T2 2.
Tl ol R

We have just written @ as a convex combination of w = (T’ ||yH’ HyH> e W(T) and w, =

lim (T =4
Tyn— y\
sequence for we, to conclude that w, € W, ( ). Therefore, w € iconv {W,(T"), W(T')}.

E Hyn yH> We use theorem again, observing that (H H) is an essential

As in other results concerning the quaternionic numerical range, next corollary shows
that we can simply consider what happens in the complex plane. Given a quaternion g =
qo + q1i + q2j + g3k, we define m(1)(q) = Re (q¢) = qo and 7(;y(q) = q1.

Corollary 3.4. Let T'€ B(H). Then B(T) = iconv {B.(T"), B(T)}.
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Proof. From theorem [3.3] we have

iconv {B.(T),B(T)} n C € iconv {W(T),W(T)} nC=W(T) nC.

We obtain that iconv {B.(T"), B(T)} < B(T).
For the converse inclusion, take an element w € B(T). According to theorem there
are w € W(T), we € We(T') and « € [0, 1], such that

w=oaw+ (1—a)we. (3.8)

Observe that when a = 0 or o = 1 the inclusion immediately follows. So suppose a # 0, 1.
We can write w = a + bq and w. = ¢ + dg., where a,b,c,d € R, ¢ € Im (q), g. € Im (ge)
and |g| = |ge| = 1. Therefore, we have

w=(a+ (1 —a)c)+ (abg + (1 — a)dge).

Note that abg + (1 — a)dge € span {i}, since @ € C. Assume that @ € C*. If © € C, the
proof is analogous.

By the axial circularity over the reals of the numerical range, there are w;) € [w] "CT in
the bild and w, () € [we] N CT. We can write w; = a + [bli and we; = ¢ + |d[i.

Define @; = aw; + (1 — a)we i, which can be written as

w; = (aa+ (1 —a)e) + (afb] + (1 — a)|d|)i.

Clearly, m1)(@) = m1)(@;). On the other hand, since abg + (1 — a)dg. € span {i} and
gl = lge| = 1, we have

0 < 73y (@) = |y (@)i]
= ‘abq + (1 — a)dge

<alb| + (1 —a)ld]

= T() ((Dz)

* .. otherwise, define

Assuming that a[b| — (1 — a)|d| = 0, let now &; = aw; + (1 — Q)w; ;

@i = aw] + (1 — a)we;. Clearly, @; € C* and m(1)(0;) = 7(1)(@). We have
0 < oy (@) = [albl = (1= a)ld]|

= |albg| — (1 — a)|dg;|

< |abg — (1 — a)dg?

= |abg + (1 — a)dge

= 733y (@),

since abq + (1 — «)dge € span {i} and we CT.
Then we have found two elements @; and @;, both in iconv {B.(T), B(T')}, such that

w1y (@) = ma) (@) = 7 (@)
0 <7 ((I)Z) < T(G) (w) < () ((IIZ)
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Now we will show that @ is also in iconv { B.(T"), B(T')}. Consider the affine transformation
f:B(T)—C
f(2) = aw; + (1 — a)=.

*

Since Be(T') is convex, [w};,

we have

Wei] © Be(T). Affine transformations map lines into lines so

f(lwei we,il) = @i, @il
Observe that @&; # w;, since « # 1.
Since W € [&;,w;], there exists n € [w};,wei] © Be(T) such that f(n) = w, that is,

aw; + (1 — a)n = w. We conclude that @ € iconv {B.(T"), B(T')}. [ ]

Remark 3.5. In the complex setting [Ll, Corollary 1] proves that the numerical range is
closed if and only if the W ((T') is a subset of the W¢(T'). The relation in the previous
result induces the idea that the same result might hold for quaternions. However, that is
not the case.

Take the operator T' = diag {—1 + i, 1 + i} @ diag{sy}, where s, is a sequence that runs
over (—1/2,1/2)i n Qi. Applying theorem and theorem we have

B(T) = [=i/2,i/2].
From theorem 4.2 in [CDMG6], it follows

BF(T) = conv{—1+4,1 +14,—1/3,1/3]}.

Nevertheless, the upper bild, and therefore the bild, is not closed. For example, the boundary
line segment joining —1/3 to —1 + i does not belong to B(T). Thus we have B.(T') =
[—i/2,i/2] < B(T') but B(T) is not closed.
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