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Short-term load forecasting using time series clustering
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ABSTRACT

Short-term load forecasting plays a major role in energy planning. Its accuracy has a
direct impact on the way power systems are operated and managed.

We propose a new Clustering-based Similar Pattern Forecasting algorithm (CSPF) for
short-term load forecasting. It resorts to a K-Medoids clustering algorithm to identify
load patterns and to the COMB distance to capture differences between time series.
Clusters’ labels are then used to identify similar sequences of days. Temperature
information is also considered in the day-ahead load forecasting, resorting to the
K-Nearest Neighbor approach.

CSPF algorithm is intended to provide the aggregate forecast of Portugal's national
load, for the next day, with a 15-minute discretization, based on data from the
Portuguese Transport Network Operator (TSO). CSPF forecasting performance, as
evaluated by RMSE, MAE, and MAPE metrics, outperforms three alternative/baseline
methods, suggesting that the proposed approach is promising in similar applications.

KEYWORDS

Clustering time series, Distance measures, Load pattern, Sequence Pattern, Similar
Pattern Method, Short-term load forecasting.
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1. INTRODUCTION

Short-term load forecasting (STLF) can be defined as the forecast of load with a time
horizon varying from one day to two weeks (Hong and Shahidehpour 2015), and it is
fundamental for several operational processes used by the electrical industry. Among
these processes are the economic dispatch of generators, unit commitment, security
assessment, and maintenance plans (llic et al. 2013). Accurate load forecasts are key
for unit commitment because, on the one hand, an overestimation of the load might
lead to the start-up of more production units than required, supplying more reserve
than needed; on the other hand, an underestimation could lead to a low level of
spinning reserve, rendering the power system vulnerable to failures (Fan and Hyndman
2012). Also, in deregulated electricity markets, it is of utmost importance for market
participants to have an accurate load forecast, since profits and market shares can be
compromised by forecasting errors (llic et al. 2013; Fan and Chen 2006). Even at a
disaggregated level, with the increasing importance of smart grids, load forecasting
can be key for demand side management (DSM) activities, such as load control and
voltage regulation (Hong 2010).

Given the volatile, non-linear, and non-stationary nature of the load time series, as well
as the diversity of factors that influence it, namely, meteorological (e.g. temperature),
calendar (e.g. working and non-working days), and random factors, different
techniques and approaches have been applied to STLF which can be found in many
literature reviews (Hong and Shahidehpour 2015; Kuster et al. 2017).

Similar Pattern methods are a specific approach to the STLF problems. Their goal is
to find similar daily load patterns in the historical dataset and, within these selected
similar days, obtain a prediction by using an aggregation measure or some Machine
Learning algorithm (Fallah et al. 2019). Different approaches and alternative similarity
measures for identifying load patterns have been proposed in the literature (Fallah et
al. 2019).

In this paper, a new STLF method is proposed: the Clustering-based Similar Pattern
Forecasting (CSPF) method. It implements a Similar Pattern approach (so referred to
by the typology of methods proposed by Fallah et al. (2019)) and is a two-step
procedure: 1) CSPF first conducts a clustering analysis on daily loads time-series
resorting to the use of K-Medoids, capitalizing on its ability to rely on medoids and to
use different distance measures; 2) CSPF identifies sequences of days (allocated to
clusters previously identified) and then proposes the use of the K-Nearest Neighbour
algorithm as an instrument to filter the referred sequences, resorting to temperature
data. The filtered days are finally used to provide the target day forecast.

The main contributions of this work may be summarized as follows:

— In step 1) of CSPF, we propose an innovative use of K-Medoids clustering
analysis which is based on COMB distance (Cardoso et al. 2021, Cardoso and
Martins in press). COMB is a convex combination of four (normalized)
distance measures that offer complementary perspectives on the differences
between two-time series: the Euclidean distance which captures differences in
scale; a Pearson correlation-based measure that takes into account linear
increasing and decreasing trends over time; a Periodogram based measure that
expresses the dissimilarities between frequencies or cyclical components of the
series; and a distance between estimated Autocorrelation structures, comparing
the series in terms of their dependence on past observations.

— In step 2) of CSPF, we proposed a CSPF temperature-based filtering process
which is expected to provide improved forecasts, since the sequences of days
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that are considered in the final forecast are not only exhibiting similar
consumption profiles, but also similar temperature profiles.

— Furthermore, the target days are categorized (e.g. considering special holidays)
so that similar sequences are considered as a base for forecasting precede days
of the same type.

The paper is organized as follows. In section 2, a literature review is conducted
comprising STLF methods with a special focus on the Similar Pattern-based
approaches to STLF. Then, in section 3, the new Clustering-based Similar Pattern
Forecasting (CSPF) method is presented. Afterward, in section 4, a case study applied
to the Portuguese power system illustrates the proposed approach together with a
comparative analysis between CSPF, daily seasonal Naive method, Pattern Sequence-
based Forecasting (PSF) method, and a Semi-Parametric Additive method. Finally, we
present some conclusions and directions for further research in section 5.

2. LITERATURE REVIEW

Among the different methods devoted to Short-term load forecasting (STLF),
Statistical methods, such as Linear Regression methods or Semi-Parametric additive
models, are commonly used. Machine Learning techniques have also been widely used
for STLF. In the following literature review, after a brief examination of the several
approaches used to STLF, we specifically focus on a particular Machine Learning
approach - the Similar Pattern approach- which inspires our contribution in the
domain.

2.1 Short-term load forecasting methods

The methods used for load forecasting are very diverse and include Statistical methods
as well as Machine Learning techniques. However, despite the multiplicity of
methodologies, there is no consensus on which one is the best (Hong and Fan 2016).
The best methodology depends on the specific application at hand and the
characteristics of the data. Currently, hybrid methods, that combine various
methodologies and learning strategies, are generally viewed as enhancers of successful
approaches in the field of forecasting and STLF in particular.

Among the statistical methods, Multiple Linear Regression methods have been applied
to perform STLF (Hong 2010; Ruzic 2003; Wang et al. 2016; Charlton. and Singleton
2014). In Ruzic et al. (2003), the model’s parameters are estimated using a set of days
with loads and weather conditions similar to the ones expected in the target day
(Euclidean distance is used to access this similarity). In Hong (2010), the relationship
between load and temperature is modeled by a third-degree polynomial. In Wang
(2016), to model the recency of the effect of temperature on load, the previous model
is complemented with lagged temperature values and moving averages of daily
temperature. In Charlton and Singleton (2014), a regression model of load as a function
of temperature and day of the year is refined by combining models from multiple
weather stations, removal of outliers, and analysis of public holidays.

Also, Semi-Parametric Additive models, which allow accommodating the nonlinear
relationship between temperature and demand, and the autocorrelation of model
residues, have been used in STLF — (Fan and Hyndman 2012; Goude et al. 2014;
Gaillard et al. 2016). The authors in Fan and Hyndman (2012) develop a Semi-
Parametric Additive model for the logarithmic demand. Cubic Splines are used to
model temperature and annual load effects. A Bootstrap method is also proposed to
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obtain prediction intervals. In Goude et al. (2014), the authors suggest an approach
based on generalized additive models that estimate the relationship between load and
temperature, calendar variables, and others, where the temperature is modeled by
exponential smoothing. In Gaillard et al. (2016), a quantile generalized additive model
is fitted in a load forecasting approach that, firstly, produces temperature scenarios that
then are used in a probabilistic forecasting load model.

Machine Learning techniques, in the field of Artificial Intelligence, do not generally
require determining explicit complex functional relationships while dealing with non-
linearities of time series modeling (Metaxiotis et al. 2003). However, these techniques,
typically, do not allow to fully understand the relationships between load and its
determinants. Among the most used Machine Learning techniques are the Artificial
Neural Networks (ANN) — (llic et al. 2013; Azadeh et al. 2014; Fan and Chen 2006;
Sharifzadeh et al. 2019; Mohandes 2002; Cheng and Wei 2010; Dedinec et al. 2016;
Heydari et al. 2020). In llic et al. (2013), a feed-forward multi-layer perceptron ANN
is used to perform STLF of a Serbian utility. The ANN is used with a preprocessing
unit that allows reducing the size of the input space, thus, improving the training time
and the generalization capability of the ANN. Azadeh et al. (2014) also use ANN that
captures seasonal features of the load to forecast the Iranian electricity market load. In
Sharifzadeh et al. (2019), conventional ANN, Support Vector Machines (SVM), and
Gaussian process regression are used to predict wind and solar power, and demand.
From the models used, only ANN successfully performed the forecasting of demand.
The use of SVM for load forecast has the advantage of achieving higher generalization
performance since it tends to avoid over-fitting (Fan and Chen 2006). Considering Fan
and Chen (2006), a hybrid network with Self-Organizing Map (SOM) and SVM is
used. The SOM network clusters the input data into subsets that then are used in the
SVM to predict the next day's load profile. The studies of Sharifzadeh et al. (2019) and
Mohandes (2002) are also examples of the use of SVM to perform STLF. With a
different approach, Cheng and Wei (2010) use an Adaptive-Network-based Fuzzy
Inference System (ANFIS) to forecast the regional electricity load in Taiwan. Firstly,
the authors incorporate the one-step ahead method into the ANFIS model. Then, to
improve the forecasting capability, they use an adaptive forecasting model to modify
the forecast produced by the ANFIS model. In its turn, Dedinec et al. (2016) applies a
deep belief network constituted by multiple layers of restricted Boltzmann machines
to forecast the Macedonian hourly electricity consumption from 2008 to 2014. The
authors use a layer-by-layer unsupervised training procedure to train previously the
initial values of the weights in the network, then use a supervised back-propagation
training method to fine-tune the parameters. Heydari et al. (2020) propose a combined
model that includes a mixed data model based on variational mode decomposition and,
a combination of a generalized regression neural network and gravitational search
algorithm used as a feature selection model to select the best features of different load
and price forecasting signals. The combined model is tested with data from the
Pennsylvania-New Jersey-Maryland (PJM) and Spanish power markets, as well as
from the real load of the Favignana Island power grid.

2.2 Similar Pattern methods

Similar Patterns methods address the heterogeneity of the data first, commonly relying
on some measure of distance, providing a preliminary data analysis that can potentially
precede and be incorporated in several Machine Learning and Pattern Recognition
algorithms (Duch 2000). In time series forecasting, these methods generally resort to
measures of similarity between sections — e.g., seasonal cycles - of the historical data.
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Regarding STLF, the load time series data are divided into daily cycles with length n
(e.g., n=24 for hourly data, n=96 for 15-minute interval data) and the goal is to find
similar daily load patterns within the historical dataset. Considering the selected
similar days, a prediction can then be obtained by using an aggregation measure or
some Machine Learning algorithm. The authors of Fallah et al. (2019) present a review
of Similar Pattern methods including different techniques and alternative similarity
measures for identifying load patterns.

The simpler approach resorts to searching, in the historical dataset, the most similar
days — similar weather, day of the week, and date — to the forecast day. For example,
Chen et al. (2010) propose the identification of similar days, considering the weekday
index, the day-of-year neighboring, and weather conditions — wind-chill temperature,
air temperature, wind speed, humidex, and dew-points. Days with similar weather
conditions are selected by minimizing the Euclidean distance of the weather conditions
between the target day and historical days with the same weekday and time of the year.
In Mu et al. (2010), each day of the historical dataset is described by a vector of indexes
stating the impact of several factors, namely weather conditions, the weekday, and
special holidays. The similarity measure between two days is the cosine of the angle
between the corresponding vectors. The load forecasting is then a weighted average of
daily loads in which the larger weights express higher similarity between daily
characteristics. In Mandal et al. (2006), it is proposed an ANN where a weighted
Euclidean distance is used for selecting similar days using load deviations and load
slope deviations between forecast day and historical days and temperature deviations.
The weights are determined using the least squares regression model. The selection of
similar days is limited to the same season where the target day is included.

Clustering time series for pattern discovery aims to determine a set of patterns that
most accurately represent the original data set, in a way that every time series data can
be identified with one of the patterns discovered (Iglesias and Kastner 2013). The
authors of Zheng et al. (2017) propose an approach for similar days selection using a
weighted Euclidean distance and resorting to the K-Means clustering procedure.
Weights considered refer to features and are obtained through an extreme gradient
boosting algorithm (Xgboost). Features included referring to climate factors, day type
(e.g. weekend or weekday), and also the day-ahead peak load.

In Martinez-Alvarez et al. (2010), it is proposed an approach called Pattern Sequence-
based Forecasting (PSF). First, PSF relies on the K-Means algorithm (using Euclidean
distance) to cluster the daily (normalized) load data. The selection of the number of
clusters results from voting of three clustering validity indices — the average of
Silhouette, the Dunn index, and the Davies-Bouldin index. Afterward, the pattern
sequences are extracted i.e., days before the forecast day are labeled according to the
cluster they belong to. Finally, all the sequences in the historical data that match the
sequence referring to the target day are considered for prediction.

In Jin et al. (2015), the authors use a cluster pattern sequence approach and ANN
techniques for STLF. In Jin et al. (2015) work, SOM is used to cluster daily load time
series and each cluster label is represented by its unique topological coordinates
yielded by the algorithm. Considering the pattern sequences of days (represented by
their coordinates), an ANN is trained to predict the pair of coordinates of the day to
forecast.

The present work capitalizes on the Similar Patterns methods general approach by first
dealing with the time-series heterogeneity. Although the consumption of electric
energy presents annual and weekly seasonal behavior, not all days of the same type
present a similar daily load profile. For example, a working day after a holiday, or
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between a holiday and a weekend, does not have the same energy consumption as a
normal weekday. This is important, particularly in countries such as Portugal where
working days that fall in between a holiday and a weekend have distinct load profiles
of the same day of the week that falls between a weekend and a working day. E.g., a
Monday that precedes a Tuesday that is a public holiday has a different load profile
than a regular Monday. Furthermore, the definition of yearly seasonal effects is not
clear, especially in the spring and autumn periods. Thus, for discovering groups of
days with similar load profiles we resort to a Cluster analysis.

Also, it follows the general two-step approach proposed by Martinez-Alvarez et al.
(2010), by conducting clustering of daily time series first and then extracting similar
sequences of days. However, we try to address the following specific issues: i) the
need to consider centroids (means of time-series) for clustering, which occurs in K-
Means as well as in SOM; ii) the consideration of a very specific measure of
dissimilarity between time-series, which can bias the way differences between time-
series are viewed and is a common practice (e.g. by using Euclidean distance emphasis
is placed on differences in scale); iii) the consideration of sequences of days without
including relevant information on the target days’ type (e.g. special holidays).

We, therefore, propose the use of K-Medoids to conduct the clustering analysis since
it does not resort to centroids but to medoids (a specifically observed time series that
can be viewed as the representant of a cluster); furthermore, K-Medoids allow the
incorporation of diverse distance measures and thus we can use a convex combination
of four distance measures (Euclidean, Pearson-based, Periodogram-based and
Autocorrelation-based) in an attempt to capture different features of time series. Also,
in the second phase of the method, the forecasting phase, we take into consideration
the type of day to forecast (weekdays, holidays, and special holidays) when choosing
the days that have a similar pattern sequence of days previous to the target day.
Finally, the forecast of the target day load also considers the temperature profiles of
the days within the extracted similar sequences of days.

3. THE PROPOSED ALGORITHM

The proposed Clustering-based Similar Pattern Forecasting algorithm (CSPF) is
intended to provide the aggregate forecast of Portugal's national load, for the next day,
with a 15-minute discretization, based on data from the Portuguese Transport Network
Operator (TSO). The CSPF method is a two-step approach illustrated in Fig. 1:

Step 1) A clustering algorithm resorting to COMB distance (a combination of diverse
distance measures) is used for discovering clusters of days (n periods long time series)
exhibiting similar load patterns. Thus, each day a cluster label is allocated, and load
pattern sequences are formed. Then, days with the same type of day as the target day
to forecast and exhibiting similar sequences of clusters labels in the previous days are
selected.

Step 2) Among the days selected in step 1), we consider their temperature profile and
implement a search for nearest neighbors. The load forecasting is then obtained based
on these neighbors' days’ loads. In the following, a more detailed explanation will be
given.



Load time series

Clustering
Type of day
Load pattern sequences
Temperature data Temperature pattern

The next day load forecast

Fig. 1 The CSPF algorithm overview

3.1 Clustering

Consider that the load time series data is divided into N daily cycles represented by
X1, X5, .., Xy, Where x4 = (Xd,p X2, ...,xd_n), (d =1,...,N) represents a daily load
data with n periods — for example for hourly data n = 24, for 15-minute interval data,
n = 96.

To cluster load time-series data and constitute well-separated groups of days, with each
cluster including days having similar load profiles, we adopt the K-Medoids algorithm,
Kaufman and Rousseeuw (2009). K-Medoids aims at the minimization (for all
clusters) of the distance between time-series belonging to a cluster from the cluster’s
Medoid i.e. a time-series that exhibits the smallest distance to all the other elements of
the cluster. It is somewhat more flexible in terms of cluster shapes and more robust to
outliers and noise than K-Means. Also, by considering a Medoid (a member of the data
set), it overcomes the need to determine a Centroid, based on an averaging of different
series, which can be a problematic issue.

Furthermore, the K-Medoids capacity of dealing with several distance measures is a
critical aspect of our approach. We resort to the COMB distance (Cardoso et al. 2021)
a convex combination of four (normalized) distance measures: the Euclidean distance,
druct, Captures differences in values; a Pearson correlation based distance, dpearson.
emphasize differences in trends; the Euclidean distance between periodograms,
captures differences in cyclical behaviors and the Euclidean distance between
estimated autocorrelation functions stresses the differences regarding the dependence
on past observations.

As Pearson-based distance, we consider the rooted normalized one-minus-correlation
distance measure proposed by Rodrigues (2008):
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1 - pxdl,xdz

Apearson = f' (1)

with p, diXd, representing the Pearson correlation between the load time series x,;, and

Xgq,, at days d; and d,, respectively. This distance is invariant to scale and

The Euclidean distance between x,, and x,, is a one-to-one measure that considers
the closeness of the observations indexed in time (e.g. Montero and Vilar 2014 ).

2\ /2 .
Adpyer = (Z?:l(xdl,t - xdz,t) ) . (2)The Euclidean

distance between the periodograms, (Caiado et al. 2006), is also adopted, expressing
the contribution of the various frequencies or cyclical components to the variability of
the daily load series. Thus, we consider this distance between

—itw 12 Citw 12

Peo, (W) = (V) |Z1 xa e ™| and P, (W) = (/) |Ztor Xay 61|
the periodograms’ for x4, and xg4,, respectively, at frequencies w; = 2mj/n,j =
1,2,...,[n/2] (where [n/2] is the largest integer less or equal to n/2).

Finally, we consider the estimated autocorrelations functions ACF(xdl) and
ACF(xdz) that represent the autocorrelations functions of x,, and x,,, respectively,

and adopt the Euclidean distance between these estimated functions, comparing the
series in terms of their dependence on past observations, (Montero and Vilar 2014).
Before combining the distances, each one of the distances is normalized using a min-
max transformation,

x—min(x)
max(x)—min(x)

xnorm - (3)
where x represents a distance measure, and min(x) and max(x) are the minimum and
maximum of x, thus guaranteeing normalized values range from 0 to 1. Then, a convex
combination of the four (normalized) distances referred is considered in the clustering
procedure (Cardoso et al. 2021).

For determining the best number of clusters, the K-Medoids algorithm is used
considering a range for the number of clusters. For each of these solutions, four
measures are calculated: Average Silhouette (Kaufman and Rousseeuw 2009),
Calinski and Harabasz (Calinski and Harabasz 1974), Dunn modified index (Bezdek
and Pal 1998) and the relative improvement or rate of change in within clusters’
variation between two successive solutions (with k — 1 and k clusters). A higher value
of each of these indices suggests a better clustering solution, that is a solution with
more compact and well separated clusters. All indices’ values are normalized, using
(3), and then, for each candidate number of clusters, a summated indicator of all indices
is calculated with its maximum value indicating the best number of clusters, according
to these indices.

For the implementation of K-Medoids we use R package “cluster” (Maechler et al.
2013). All distance measures are implemented in the R package ”TSclust” (Montero
and Vilar 2014). The cohesion-separation measures are all implemented in the ”fpc”
R package (Hennig 2020). These are auxiliary packages for the R implementation of
CSPF.
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3.2 Load pattern sequences

The goal of this phase is to select the days in the historical dataset that have load
patterns in the preceding days that are similar to the load patterns (sequences of clusters
labels) in the days prior to target day. Also, these selected days must be of the same
type as the target day to forecast. For each day d (d = 1, ..., N) is known the type of
day, wk,, which includes the days of the week (Sunday, Monday, ..., Saturday), a
Holiday category, and where some especial holidays can also be considered.

The load pattern sequences procedure is summarized in Fig. 2 The CSPF algorithm
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Fig. 2 The CSPF algorithm

As result of the clustering procedure a sequence of labeled days is obtained,
Ly, L,, ..., Ly where L is the label of the cluster of the day d (d = 1, ..., N). Consider
also the sequence of labels of the p days immediately before the target day to forecast:
L" = Ly_p41s +» Ly-3,Ly—2, Ly—1, Ly. The objective is to search in the dataset for all
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11

the sequences equal to L* that also are followed by a day of type wky ., (type of day
corresponding to target). Finally, all the days immediately after the selected sequences
are kept. Let x4, x5, ..., xy, be the load of these selected N; days which have a load
profile in the previous days like the load profile of the days before the day to forecast
and also are of the same type of day as the target day.

If in the data available there is not any day that fulfills these two conditions, the number
p of previous days is reduced (subject to N; > 1).

3.3 Temperature pattern

Having selected the N; days, that are of the same type as the target day and have similar
load profile (clusters’ sequence) in the preceding days as the days before the target
day, we now conduct a filtering process according to information available on
temperature. Let T,,T,,...,Ty, Ty;(d =1,..,N) represent the temperature time
series data in daily cycles, where in each day the temperature is recorded in m
intervals, Ty = (Ty1, Ta2 ) Tam),d =1, ..., N.

Let P be a proportion of the number of N; days, identified in the previous step, a
parameter to be set by the analyst. Then, the N, = round (P * Ny, 0) filtered days to
keep will provide the ground for forecasting the target day.

The selection of these N, days is conditional to temperature patterns: we consider the
temperature of each of the N; days and also of the g days preceding them, that is, the
time series with m = (q + 1) observations

T'y = (Ta—qs1, - Ta-1,Tq), d=1,..,N;. Then, we measure the distances
d(T*,T';) between T'; and the temperatures time series referring to the forecast day
T" = (Ty_g+1, .., Tn,Tyyq). Finally, we keep the N, nearest neighbor’s days
according to temperature.

Note that for evaluation purposes we consider a test dataset in which x,; and Ty,
are known and Tyyq = Tyoq -

3.4 The next day load forecast
The goal of this last step of the algorithm is to predict the forecast for day N+1,
Zvi1 = (Bvi11 Zni1,2 0 Zvs1n) Using the load of the selected N, days,

X1, Xy, ..., Xy,. For this end we compute a weighted mean of loads x4, x5, ..., xy,

N, dio(T*iT' 1)
a=1 2221 dio(T* 0T 41)

Xniri = > Xgi i=1,..,n (4)

were the weights considered, d, o(T*, T';), are the distances d(T*, T ;) transformed,
dl.O(T*rT’d) =1- d(T*’ T’d)norm (5)

with d(T*, T' ;) norm defined by (3), such that values near zero indicate higher
distances and thus less weight in the forecasting.

3.5 Forecasting accuracy

For evaluating the forecasting accuracy, we resort to three measures most commonly
used in the literature (e.g., Hyndman and Athanasopoulos 2021) namely, RMSE (Root
Mean Square Error), MAE (Mean Absolut Error) and MAPE (Mean Absolute
Percentage Error). The forecast errors in period t, e;, is defined as the difference
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between the observations and the corresponding forecasted values, e; = x; — X;.
Considering the daily load data with n periods, the accuracy measures are defined by:

(5)
n
1
MAE = —Zletl (6)
n
t=1
T
100 e
MAPE = — ) |=. (7)
n o xt

Both RMSE and MAE are on the same scale as the data and the MAPE is unit-free.

4. CASE STUDY

The proposed approach is applied to the years 2014-2017 time series data of the
Portuguese Transmission System Operator (TSO) including load (referred to as
emission which includes the losses) and temperature data, both in 15-minutes intervals.
The data were obtained through the operators’ website. These data are used to obtain
the day-ahead load forecast with the discretization of 96 periods. For implementation
reasons, due to different winter and summer times, the raw data have one missing hour
(Daylight Saving Time), which was imputed by the average of the two nearest hour
data, and also a redundant hour data that was removed.

4.1 Data analysis

Load time series are volatile, non-linear, and non-stationary and depend on multiple
factors, namely, meteorological (e.g., temperature), calendar (e.g., holidays,
weekends, working days), network topology (e.g., load shifting), and random noise.
The electrical load time series data is presented in Fig. 3 where the annual seasonality
is clear. The empirical autocorrelation function is exhibited in Fig. 4 where we can
realize the daily and weekly variation. Moreover, the electricity consumption depends
on the type of weekday as can be seen in Fig. 5, with a larger difference between
weekend and non-weekend days.

As load and temperature data are in 15-minutes intervals, n = m = 96. From the
available dataset, the year 2017 dataset is separated and considered for testing the
forecasting procedure. Thus, the remaining dataset, N = 1096 days with n =m =
96 are considered for learning with the proposed CSPF algorithm.
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Fig. 3 The load time series for the 2014-2017 period.

0 200 400 600 800 1000 1200 1400

Fig. 4 The load time series ACF.

4000

Time

Fig. 5 Weekly load data: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
and Saturday.

The non-linearity relationship between load and temperature is presented in Fig. 6
where it is also exhibited its dependence on the hour of the day.
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Fig. 6 The relationship between electricity consumption and temperature.

4.2 Parametrization and CSPF results

Several empirical experiments and experts' consultations were considered to tune the
algorithm parameters.

For the Portuguese data we consider three special holidays - Christmas, New Year, and
Carnival.

For the clustering of daily load data, the four distances were given the same (uniform)
weights.

The clustering results indicate two very well-separated daily pattern groups. The
characterization of these clusters indicate that Group 1 contains almost all weekend days
and Group 2 the weekdays — Fig 7. It is worth noting that Group 1 also includes several
days before, after, or between holidays, days that have a similar load profile to weekend
days. In addition, in Group 2, there are several days that, despite being working days,
have a load profile similar to weekend days, and this similarity was captured by the
Cluster analysis.

N = 1096 days
342 'Weekend'

754 'Weekdays'

Group 1 - 349 days Group 2 - 747 days
335 'Weekend' 7 'Weekend'
14 'Weekdays' 740 'Weekdays'
Group 1.1 Group 1.2 Group 2.1 Group 2.2
'Weekend' 'Weekend' 'Weekdays' 'Weekdays'
Winter/Autumn Spring/Summer Winter/Autumn Spring/Summer

Fig 7 The clustering results
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In order to go further in the categorization of the daily load cycles, we cluster once again
the observations within each group. Each of the groups resulting from the first clustering
procedure is then divided into two groups — Fig 7 and Table 1.

Table 1 Clusters' characterization by month

Jan | Feb | Mar | April | May | June | July | Aug | Sep | Out | Nov | Dec
Group1ll |31|25]| 7 0 0] 0] 0|0 ]0]4]28]|35
Groupl2 | 0| 0 | 22| 31 | 3128|2633 |24]24] 010
Group21 |62|58 |47 | 6 0] 0] 0| 0]0] 3|4 |54
Group22 | 0| 2 |17 | 53 | 62 | 62 |67 |60 |66]|62]|17 | 4

Clusters obtained capture also the differences regarding the season of the year, while
uncovering the different daily load patterns - Fig 8 The clusters medoids

8000
7000 T T N~~~ N
6500 _ Y ..

; / “-‘ -\-"’ ~’_-\-<- 'O--"‘\V
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--------- "Weekend-Winter/Autumn" - 27/11/2016
= "Weekend-Spring/Summer" - 25/04/2014
— = "Weekdays-Winter/Autumn" - 12/01/2016
----- "Weekdays-Spring/Summer" - 21/05/2014

Fig 8 The clusters medoids

For the load pattern sequence search, we considered a window with the last five days,
p =5.

For the filtering based on temperature profiles, only the Euclidean distance was
considered. This was decided as a result of various empirical experiences carried out,
where the value itself of the temperature was revealed to be more important than other
movements in the daily profile.

For the temperature pattern, only the two days preceding the target day were considered,
i.e. g =2. Finally, P = 0.2, that is 20% of the most similar days, according to
temperature, was considered to estimate the day-ahead load.

The algorithm was applied to predict the day-ahead load corresponding to 96 periods of
15 minutes. The results of forecasting accuracy of CSPF method are summarized in
Worth noticing is the fact that the maximum MAPE obtained across all remaining
months is 4.8%.
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The best forecasting performance were achieved in May, August and November, with
MAPE values between 2.7% and 2.8%. Forecasting in December proved to be the most
difficult task, with greater forecasting errors. It is worth mentioning that in Portugal this
month has many holidays turning searching similar patterns more difficult due to
historical dataset limitations. Worth noticing is the fact that the maximum MAPE
obtained across all remaining months is 4.8%.

4.3 Comparative Performance

For comparison purposes we resort to the following approaches:

A. The Seasonal Naive (SN) method is one of the simplest benchmark methods
for seasonal data. Considering the daily seasonality, each forecast is equal to
the last observed value for the same period of the day.

B. Analgorithm from the same family of Similar Patterns based methods: the Pattern
Sequence-based Forecasting (PSF) algorithm (Martinez-Alvarez et al. 2010)
with R implementation in package “PSF” (Bokde et al. 2016).

C. A Semi-Parametric Additive (SPA) method to forecast half-hourly electricity
demand, implemented in R - Hyndman and Athanasopoulos (2021). SPA deals
with multiple seasonality using harmonic regression. The type of day —
working or non-working day is also considered. The temperature is modeled
with a piece-wise linear function. Finally, an ARIMA model is selected using
the AICc criterion.
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1
2
3 Table 2 CSPF forecasting comparative performance
4
RMSE MAE MAPE RMSE MAE MAPE
MW)  (MW) (%) MW)  (MW) (*0)
January July
CSPF 315.6 260.3 4.0 CSPF 307.0 271.9 4.8
SN 661.2 424.8 7.2 SN 597.9 397.1 7.3
PSF 1541.2 1356.8 20.2 PSF 779.8 624.0 10.3
SPA 470.7 370.0 5.8 SPA 294.6 230.7 4.1
February August
CSPF 417.8 270.6 4.5 CSPF 200.3 151.7 2.7
SN 557.0 374.2 6.4 SN 416.2 273.2 51
PSF 747.6 538.2 9.5 PSF 574.8 417.6 8.0
SPA 368.4 272.1 4.4 SPA 269.6 187.8 3.4
March September
CSPF 395.8 249.3 4.3 CSPF 267.3 216.4 3.8
SN 567.7 368.4 6.7 SN 560.1 350.4 6.6
PSF 558.1 435.8 7.7 PSF 568.0 374.2 7.3
SPA 319.1 248.8 4.3 SPA 291.6 242.7 4.6
April October
CSPF 291.5 172.1 3.4 CSPF 283.3 197.3 3.6
SN 5725 404.4 8.1 SN 595.0 393.8 7.6
PSF 694.8 553.0 114 PSF 942.38 745.3 12.7
SPA 355.5 254.0 4.8 SPA 280.9 219.5 4.2
May November
CSPF 280.7 1415 2.7 CSPF 223.5 162.5 2.8
SN 544.2 349.1 7.0 SN 599.4 395.9 7.4
PSF 557.2 486.65 9.1 PSF 605.8 434.0 8.2
SPA 322.2 230.4 4.4 SPA 344.7 252.7 4.4
June December
CSPF 330.0 258.0 4.0 CSPF 426.38 313.3 5.1
SN 602.1 3925 7.2 SN 611.8 408.1 6.9
PSF 584.4 411.4 7.6 PSF 851.8 687.1 10.8
SPA 345.8 262.1 4.6 SPA 617.5 471.4 7.7
5
6
7 Considering the monthly results presented in Table 2, referring to the three metrics of
8 forecasting errors, RMSE, MAE and MAPE, the CSPF method presents the best results
9 overall: in eight months (excluding February, March, July and October) the CSPF
10  achieves the lowest values on all three metrics.
11  To infer from these 12 months’ data, we first conduct three Friedman tests (Siegel and
12 Castellan 1988) to compare the performance of CSPF forecasting with the referred
13 methods (SN, PSF and SPA). Results obtained are presented in Table 3, referring to
14 Pairwise Comparisons (note that p-values values have been adjusted by the Bonferroni
15  correction for multiple tests). Considering a 0.05 significance level, according to the
16  Friedman tests’ results, and in the context of the four methods considered, CSFP approach
17  exhibits significant differences with all approaches except with SPA; we can also point
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out that SPA and SN approaches, as well as SN and PSF, do not show significant
differences.

Since, for the task at hand, the main competitor of CSPF is the SPA approach, we further
focus on these two methods to better understand their comparative performance. Results
from the Related-Samples Wilcoxon Signed Rank Test (Siegel and Castellan 1988) are
in Table 4. According to them, in terms of MAE and MAE metrics, the CSPF
performance significantly surpasses the SPA approach performance; also, if we consider
a higher significance level, 0.1, we could state the same referring to the RMSE metric.
The results obtained show that, for the application considered, the CSPF method
compares favorably with the baseline methods SN, PSF and SPA, thus being a promising
approach for STLF.

Table 3 CSPF comparative performance: Friedman tests’ Pairwise Comparisons

RMSE MAE MAPE
Test Adj. Test Adj. Test Adj.
Statistic  p-value  Statistic p-value  Statistic  p-value
CSPF- SN -1.750 0.005 -1.750 0.005 -1.708 0.007
CSPF-PSF  -2.500 0.000 -2.833 0.000 -2.792 0.000
CSPF-SPA  -0.417 1.000 -0.750 0.928 -0.667 1.000
SPA - SN 1.333 0.068 1.000 0.347 1.042 0.289
SPA - PSF -2.083 0.000 -2.083 0.000 -2.125 0.000
SN -PSF -0.750 0.928 -1.083 0.239 -1.083 0.239

Table 4- CSPF comparative performance with SPA: Wilcoxon tests’ results

SPA-CSPF differences
. . . . .. Standardized
Positive Negative Ties| Test Statistic Test Statistic p-value
RMSE 8 4 0 60.0 1.647 0.099
MAE 10 2 0 70.0 2.432 0.015
MAPE 9 2 1 60.5 2.447 0.014

5. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we propose a new Clustering-based Similar Pattern Forecasting
algorithm (CSPF), for short-term load forecasting. CSPF is a two-step approach. In
Step 1) we address the heterogeneity of the historical data, using a clustering algorithm
— K-Medoids - and resort to COMB distance, a combination of various distance
measures to capture different aspects of the time series dissimilarities: values
(Euclidean distance), trends (Pearson based distance), cyclical behaviors (Euclidean
distance between periodograms) and autocorrelation structures (Euclidean distance
between estimated autocorrelation functions); to each day is then allocated a cluster
label and load pattern sequences are considered those precede days of the same type
(weekday, holidays and special holidays) as the target day. In Step 2) among the
sequences of days previously determined, we consider subsequences revealing similar
temperature profiles as the temperatures estimated for the target and preceding days,
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including a search for Nearest Neighbors sequences. The load forecasting is then
obtained based on these neighbor-days’ loads.

The proposed algorithm integrates a Similar Pattern approach with expert’s knowledge
that is mapped to its parametrization - e.g., deciding which types of days to consider
or which percentage of load sequences to retain, based on the temperature criterion.
The CSPF approach was applied to three years time series data in 15-minutes
resolution of the Portuguese Transmission System Operator. Considering the year
2017, the load forecasts obtained for the 96 periods of the day-ahead exhibit very good
indicators of performance (e.g., monthly MAPE in the range [2.7% - 5.1%]) when
compared to an alternative Pattern Sequence-based Forecasting (PSF) (e.g., monthly
MAPE in the range [7.3% - 20.2%]). After investigating the comparative performance
of CSPF with three baseline methods — the Seasonal Naive (SN) method, the Pattern
Sequence-based Forecasting (PSF) algorithm, and a Semi-Parametric Additive (SPA)
method - we conclude the proposed method shows a significant advantage for the task
at hand.

In future research, the proposed method should be used for different data sets, namely
with longer time series. We will also further investigate the algorithm parametrization
so that it gains (informed) autonomy.
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