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ABSTRACT 27 

Short-term load forecasting plays a major role in energy planning. Its accuracy has a 28 

direct impact on the way power systems are operated and managed. 29 

We propose a new Clustering-based Similar Pattern Forecasting algorithm (CSPF) for 30 

short-term load forecasting. It resorts to a K-Medoids clustering algorithm to identify 31 

load patterns and to the COMB distance to capture differences between time series. 32 

Clusters’ labels are then used to identify similar sequences of days. Temperature 33 

information is also considered in the day-ahead load forecasting, resorting to the  34 

K-Nearest Neighbor approach. 35 

CSPF algorithm is intended to provide the aggregate forecast of Portugal's national 36 

load, for the next day, with a 15-minute discretization, based on data from the 37 

Portuguese Transport Network Operator (TSO). CSPF forecasting performance, as 38 

evaluated by RMSE, MAE, and MAPE metrics, outperforms three alternative/baseline 39 

methods, suggesting that the proposed approach is promising in similar applications. 40 

KEYWORDS 41 

Clustering time series, Distance measures, Load pattern, Sequence Pattern, Similar 42 

Pattern Method, Short-term load forecasting. 43 
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1. INTRODUCTION 1 

Short-term load forecasting (STLF) can be defined as the forecast of load with a time 2 

horizon varying from one day to two weeks (Hong and Shahidehpour 2015), and it is 3 

fundamental for several operational processes used by the electrical industry. Among 4 

these processes are the economic dispatch of generators, unit commitment, security 5 

assessment, and maintenance plans (Ilic et al. 2013). Accurate load forecasts are key 6 

for unit commitment because, on the one hand, an overestimation of the load might 7 

lead to the start-up of more production units than required, supplying more reserve 8 

than needed; on the other hand, an underestimation could lead to a low level of 9 

spinning reserve, rendering the power system vulnerable to failures (Fan and Hyndman 10 

2012). Also, in deregulated electricity markets, it is of utmost importance for market 11 

participants to have an accurate load forecast, since profits and market shares can be 12 

compromised by forecasting errors (Ilic et al. 2013; Fan and Chen 2006). Even at a 13 

disaggregated level, with the increasing importance of smart grids, load forecasting 14 

can be key for demand side management (DSM) activities, such as load control and 15 

voltage regulation (Hong 2010). 16 

Given the volatile, non-linear, and non-stationary nature of the load time series, as well 17 

as the diversity of factors that influence it, namely, meteorological (e.g. temperature), 18 

calendar (e.g. working and non-working days), and random factors, different 19 

techniques and approaches have been applied to STLF which can be found in many 20 

literature reviews (Hong and Shahidehpour 2015; Kuster et al. 2017). 21 

Similar Pattern methods are a specific approach to the STLF problems. Their goal is 22 

to find similar daily load patterns in the historical dataset and, within these selected 23 

similar days, obtain a prediction by using an aggregation measure or some Machine 24 

Learning algorithm (Fallah et al. 2019). Different approaches and alternative similarity 25 

measures for identifying load patterns have been proposed in the literature (Fallah et 26 

al. 2019).  27 

In this paper, a new STLF method is proposed: the Clustering-based Similar Pattern 28 

Forecasting (CSPF) method. It implements a Similar Pattern approach (so referred to 29 

by the typology of methods proposed by Fallah et al. (2019)) and is a two-step 30 

procedure: 1) CSPF first conducts a clustering analysis on daily loads time-series 31 

resorting to the use of K-Medoids, capitalizing on its ability to rely on medoids and to 32 

use different distance measures; 2) CSPF  identifies sequences of days (allocated to 33 

clusters previously identified) and then proposes the use of the K-Nearest Neighbour 34 

algorithm as an instrument to filter the referred sequences, resorting to temperature 35 

data. The filtered days are finally used to provide the target day forecast. 36 

The main contributions of this work may be summarized as follows:  37 

− In step 1) of CSPF, we propose an innovative use of K-Medoids clustering 38 

analysis which is based on COMB distance (Cardoso et al. 2021, Cardoso and 39 

Martins in press). COMB is a convex combination of four (normalized) 40 

distance measures that offer complementary perspectives on the differences 41 

between two-time series: the Euclidean distance which captures differences in 42 

scale; a Pearson correlation-based measure that takes into account linear 43 

increasing and decreasing trends over time; a Periodogram based measure that 44 

expresses the dissimilarities between frequencies or cyclical components of the 45 

series; and a distance between estimated Autocorrelation structures, comparing 46 

the series in terms of their dependence on past observations.  47 

− In step 2) of CSPF, we proposed a CSPF temperature-based filtering process 48 

which is expected to provide improved forecasts, since the sequences of days 49 
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that are considered in the final forecast are not only exhibiting similar 1 

consumption profiles, but also similar temperature profiles.  2 

− Furthermore, the target days are categorized (e.g. considering special holidays) 3 

so that similar sequences are considered as a base for forecasting precede days 4 

of the same type. 5 

The paper is organized as follows. In section 2, a literature review is conducted 6 

comprising STLF methods with a special focus on the Similar Pattern-based 7 

approaches to STLF. Then, in section 3, the new Clustering-based Similar Pattern 8 

Forecasting (CSPF) method is presented. Afterward, in section 4, a case study applied 9 

to the Portuguese power system illustrates the proposed approach together with a 10 

comparative analysis between CSPF, daily seasonal Naïve method, Pattern Sequence-11 

based Forecasting (PSF) method, and a Semi-Parametric Additive method. Finally, we 12 

present some conclusions and directions for further research in section 5.  13 

 14 

2. LITERATURE REVIEW  15 

Among the different methods devoted to Short-term load forecasting (STLF), 16 

Statistical methods, such as Linear Regression methods or Semi-Parametric additive 17 

models, are commonly used. Machine Learning techniques have also been widely used 18 

for STLF. In the following literature review, after a brief examination of the several 19 

approaches used to STLF, we specifically focus on a particular Machine Learning 20 

approach - the Similar Pattern approach- which inspires our contribution in the 21 

domain.  22 

2.1 Short-term load forecasting methods 23 

The methods used for load forecasting are very diverse and include Statistical methods 24 

as well as Machine Learning techniques. However, despite the multiplicity of 25 

methodologies, there is no consensus on which one is the best (Hong and Fan 2016). 26 

The best methodology depends on the specific application at hand and the 27 

characteristics of the data. Currently, hybrid methods, that combine various 28 

methodologies and learning strategies, are generally viewed as enhancers of successful 29 

approaches in the field of forecasting and STLF in particular. 30 

Among the statistical methods, Multiple Linear Regression methods have been applied 31 

to perform STLF (Hong 2010; Ružic 2003; Wang et al. 2016; Charlton. and Singleton 32 

2014). In Ružic et al. (2003), the model’s parameters are estimated using a set of days 33 

with loads and weather conditions similar to the ones expected in the target day 34 

(Euclidean distance is used to access this similarity). In Hong (2010), the relationship 35 

between load and temperature is modeled by a third-degree polynomial. In Wang 36 

(2016), to model the recency of the effect of temperature on load, the previous model 37 

is complemented with lagged temperature values and moving averages of daily 38 

temperature. In Charlton and Singleton (2014), a regression model of load as a function 39 

of temperature and day of the year is refined by combining models from multiple 40 

weather stations, removal of outliers, and analysis of public holidays. 41 

Also, Semi-Parametric Additive models, which allow accommodating the nonlinear 42 

relationship between temperature and demand, and the autocorrelation of model 43 

residues, have been used in STLF – (Fan and Hyndman 2012; Goude et al. 2014; 44 

Gaillard et al. 2016). The authors in Fan and Hyndman (2012) develop a Semi-45 

Parametric Additive model for the logarithmic demand. Cubic Splines are used to 46 

model temperature and annual load effects. A Bootstrap method is also proposed to 47 
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obtain prediction intervals. In Goude et al. (2014), the authors suggest an approach 1 

based on generalized additive models that estimate the relationship between load and 2 

temperature, calendar variables, and others, where the temperature is modeled by 3 

exponential smoothing. In Gaillard et al. (2016), a quantile generalized additive model 4 

is fitted in a load forecasting approach that, firstly, produces temperature scenarios that 5 

then are used in a probabilistic forecasting load model. 6 

Machine Learning techniques, in the field of Artificial Intelligence, do not generally 7 

require determining explicit complex functional relationships while dealing with non-8 

linearities of time series modeling (Metaxiotis et al. 2003). However, these techniques, 9 

typically, do not allow to fully understand the relationships between load and its 10 

determinants. Among the most used Machine Learning techniques are the Artificial 11 

Neural Networks (ANN) – (Ilic et al. 2013; Azadeh et al. 2014; Fan and Chen 2006; 12 

Sharifzadeh et al. 2019; Mohandes 2002; Cheng and Wei 2010; Dedinec et al. 2016; 13 

Heydari et al. 2020). In Ilic et al. (2013), a feed-forward multi-layer perceptron ANN 14 

is used to perform STLF of a Serbian utility. The ANN is used with a preprocessing 15 

unit that allows reducing the size of the input space, thus, improving the training time 16 

and the generalization capability of the ANN. Azadeh et al. (2014) also use ANN that 17 

captures seasonal features of the load to forecast the Iranian electricity market load. In 18 

Sharifzadeh et al. (2019), conventional ANN, Support Vector Machines (SVM), and 19 

Gaussian process regression are used to predict wind and solar power, and demand. 20 

From the models used, only ANN successfully performed the forecasting of demand. 21 

The use of SVM for load forecast has the advantage of achieving higher generalization 22 

performance since it tends to avoid over-fitting (Fan and Chen 2006). Considering Fan 23 

and Chen (2006), a hybrid network with Self-Organizing Map (SOM) and SVM is 24 

used. The SOM network clusters the input data into subsets that then are used in the 25 

SVM to predict the next day's load profile. The studies of Sharifzadeh et al. (2019) and 26 

Mohandes (2002) are also examples of the use of SVM to perform STLF. With a 27 

different approach, Cheng and Wei (2010) use an Adaptive-Network-based Fuzzy 28 

Inference System (ANFIS) to forecast the regional electricity load in Taiwan. Firstly, 29 

the authors incorporate the one-step ahead method into the ANFIS model. Then, to 30 

improve the forecasting capability, they use an adaptive forecasting model to modify 31 

the forecast produced by the ANFIS model. In its turn, Dedinec et al. (2016) applies a 32 

deep belief network constituted by multiple layers of restricted Boltzmann machines 33 

to forecast the Macedonian hourly electricity consumption from 2008 to 2014. The 34 

authors use a layer-by-layer unsupervised training procedure to train previously the 35 

initial values of the weights in the network, then use a supervised back-propagation 36 

training method to fine-tune the parameters. Heydari et al. (2020) propose a combined 37 

model that includes a mixed data model based on variational mode decomposition and, 38 

a combination of a generalized regression neural network and gravitational search 39 

algorithm used as a feature selection model to select the best features of different load 40 

and price forecasting signals. The combined model is tested with data from the 41 

Pennsylvania-New Jersey-Maryland (PJM) and Spanish power markets, as well as 42 

from the real load of the Favignana Island power grid.  43 

2.2 Similar Pattern methods 44 

Similar Patterns methods address the heterogeneity of the data first, commonly relying 45 

on some measure of distance, providing a preliminary data analysis that can potentially 46 

precede and be incorporated in several Machine Learning and Pattern Recognition 47 

algorithms (Duch 2000). In time series forecasting, these methods generally resort to 48 

measures of similarity between sections – e.g., seasonal cycles - of the historical data. 49 
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Regarding STLF, the load time series data are divided into daily cycles with length n 1 

(e.g., n=24 for hourly data, n=96 for 15-minute interval data) and the goal is to find 2 

similar daily load patterns within the historical dataset. Considering the selected 3 

similar days, a prediction can then be obtained by using an aggregation measure or 4 

some Machine Learning algorithm. The authors of Fallah et al. (2019) present a review 5 

of Similar Pattern methods including different techniques and alternative similarity 6 

measures for identifying load patterns.  7 

The simpler approach resorts to searching, in the historical dataset, the most similar 8 

days – similar weather, day of the week, and date – to the forecast day. For example, 9 

Chen et al. (2010) propose the identification of similar days, considering the weekday 10 

index, the day-of-year neighboring, and weather conditions – wind-chill temperature, 11 

air temperature, wind speed, humidex, and dew-points. Days with similar weather 12 

conditions are selected by minimizing the Euclidean distance of the weather conditions 13 

between the target day and historical days with the same weekday and time of the year. 14 

In Mu et al. (2010), each day of the historical dataset is described by a vector of indexes 15 

stating the impact of several factors, namely weather conditions, the weekday, and 16 

special holidays. The similarity measure between two days is the cosine of the angle 17 

between the corresponding vectors. The load forecasting is then a weighted average of 18 

daily loads in which the larger weights express higher similarity between daily 19 

characteristics. In Mandal et al. (2006), it is proposed an ANN where a weighted 20 

Euclidean distance is used for selecting similar days using load deviations and load 21 

slope deviations between forecast day and historical days and temperature deviations. 22 

The weights are determined using the least squares regression model. The selection of 23 

similar days is limited to the same season where the target day is included. 24 

Clustering time series for pattern discovery aims to determine a set of patterns that 25 

most accurately represent the original data set, in a way that every time series data can 26 

be identified with one of the patterns discovered (Iglesias and Kastner 2013). The 27 

authors of Zheng et al. (2017) propose an approach for similar days selection using a 28 

weighted Euclidean distance and resorting to the K-Means clustering procedure. 29 

Weights considered refer to features and are obtained through an extreme gradient 30 

boosting algorithm (Xgboost). Features included referring to climate factors, day type 31 

(e.g. weekend or weekday), and also the day-ahead peak load. 32 

In Martinez-Alvarez et al. (2010), it is proposed an approach called Pattern Sequence-33 

based Forecasting (PSF). First, PSF relies on the K-Means algorithm (using Euclidean 34 

distance) to cluster the daily (normalized) load data.  The selection of the number of 35 

clusters results from voting of three clustering validity indices – the average of 36 

Silhouette, the Dunn index, and the Davies-Bouldin index. Afterward, the pattern 37 

sequences are extracted i.e., days before the forecast day are labeled according to the 38 

cluster they belong to. Finally, all the sequences in the historical data that match the 39 

sequence referring to the target day are considered for prediction. 40 

In Jin et al. (2015), the authors use a cluster pattern sequence approach and ANN 41 

techniques for STLF. In Jin et al. (2015) work, SOM is used to cluster daily load time 42 

series and each cluster label is represented by its unique topological coordinates 43 

yielded by the algorithm. Considering the pattern sequences of days (represented by 44 

their coordinates), an ANN is trained to predict the pair of coordinates of the day to 45 

forecast.  46 

The present work capitalizes on the Similar Patterns methods general approach by first 47 

dealing with the time-series heterogeneity. Although the consumption of electric 48 

energy presents annual and weekly seasonal behavior, not all days of the same type 49 

present a similar daily load profile. For example, a working day after a holiday, or 50 
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between a holiday and a weekend, does not have the same energy consumption as a 1 

normal weekday.  This is important, particularly in countries such as Portugal where 2 

working days that fall in between a holiday and a weekend have distinct load profiles 3 

of the same day of the week that falls between a weekend and a working day. E.g., a 4 

Monday that precedes a Tuesday that is a public holiday has a different load profile 5 

than a regular Monday. Furthermore, the definition of yearly seasonal effects is not 6 

clear, especially in the spring and autumn periods. Thus, for discovering groups of 7 

days with similar load profiles we resort to a Cluster analysis. 8 

Also, it follows the general two-step approach proposed by Martinez-Alvarez et al. 9 

(2010), by conducting clustering of daily time series first and then extracting similar 10 

sequences of days. However, we try to address the following specific issues: i) the 11 

need to consider centroids (means of time-series) for clustering, which occurs in K-12 

Means as well as in SOM; ii) the consideration of a very specific measure of 13 

dissimilarity between time-series, which can bias the way differences between time-14 

series are viewed and is a common practice (e.g. by using Euclidean distance emphasis 15 

is placed on differences in scale); iii) the consideration of sequences of days without 16 

including relevant information on the target days’ type (e.g. special holidays). 17 

We, therefore, propose the use of K-Medoids to conduct the clustering analysis since 18 

it does not resort to centroids but to medoids (a specifically observed time series that 19 

can be viewed as the representant of a cluster); furthermore, K-Medoids allow the 20 

incorporation of diverse distance measures and thus we can use a convex combination 21 

of four distance measures (Euclidean, Pearson-based, Periodogram-based and 22 

Autocorrelation-based) in an attempt to capture different features of time series. Also, 23 

in the second phase of the method, the forecasting phase, we take into consideration 24 

the type of day to forecast (weekdays, holidays, and special holidays) when choosing 25 

the days that have a similar pattern sequence of days previous to the target day.  26 

Finally, the forecast of the target day load also considers the temperature profiles of 27 

the days within the extracted similar sequences of days. 28 

3. THE PROPOSED ALGORITHM 29 

The proposed Clustering-based Similar Pattern Forecasting algorithm (CSPF) is 30 

intended to provide the aggregate forecast of Portugal's national load, for the next day, 31 

with a 15-minute discretization, based on data from the Portuguese Transport Network 32 

Operator (TSO). The CSPF method is a two-step approach illustrated in Fig. 1: 33 

Step 1) A clustering algorithm resorting to COMB distance (a combination of diverse 34 

distance measures) is used for discovering clusters of days (𝑛 periods long time series) 35 

exhibiting similar load patterns. Thus, each day a cluster label is allocated, and load 36 

pattern sequences are formed. Then, days with the same type of day as the target day 37 

to forecast and exhibiting similar sequences of clusters labels in the previous days are 38 

selected.  39 

Step 2) Among the days selected in step 1), we consider their temperature profile and 40 

implement a search for nearest neighbors. The load forecasting is then obtained based 41 

on these neighbors' days’ loads. In the following, a more detailed explanation will be 42 

given.  43 

 44 

 45 
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 1 
Fig. 1  The CSPF algorithm overview 2 

3.1 Clustering  3 

Consider that the load time series data is divided into 𝑁 daily cycles represented by 4 

𝒙1, 𝒙2, … , 𝒙𝑁, where  𝒙𝑑 = (𝑥𝑑,1,  𝑥𝑑,2, … , 𝑥𝑑,𝑛), (𝑑 = 1, … , 𝑁) represents a daily load 5 

data with 𝑛 periods – for example for hourly data 𝑛 = 24, for 15-minute interval data, 6 

𝑛 = 96. 7 

To cluster load time-series data and constitute well-separated groups of days, with each 8 

cluster including days having similar load profiles, we adopt the K-Medoids algorithm, 9 

Kaufman and Rousseeuw (2009). K-Medoids aims at the minimization (for all 10 

clusters) of the distance between time-series belonging to a cluster from the cluster’s 11 

Medoid i.e. a time-series that exhibits the smallest distance to all the other elements of 12 

the cluster. It is somewhat more flexible in terms of cluster shapes and more robust to 13 

outliers and noise than K-Means. Also, by considering a Medoid (a member of the data 14 

set), it overcomes the need to determine a Centroid, based on an averaging of different 15 

series, which can be a problematic issue.  16 

Furthermore, the K-Medoids capacity of dealing with several distance measures is a 17 

critical aspect of our approach. We resort to the COMB distance (Cardoso et al. 2021) 18 

a convex combination of four (normalized) distance measures: the Euclidean distance, 19 

𝑑𝐸𝑢𝑐𝑙, captures differences in values; a Pearson correlation based distance, 𝑑𝑃𝑒𝑎𝑟𝑠𝑜𝑛, 20 

emphasize differences in trends; the Euclidean distance between periodograms, 21 

captures differences in cyclical behaviors and the Euclidean distance between 22 

estimated autocorrelation functions stresses the differences regarding the dependence 23 

on past observations. 24 
As Pearson-based distance, we consider the rooted normalized one-minus-correlation 25 
distance measure proposed by Rodrigues (2008): 26 
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𝑑𝑃𝑒𝑎𝑟𝑠𝑜𝑛 = √
1 − 𝜌𝒙𝑑1 ,𝒙𝑑2

2
,                                         (1) 1 

with 𝜌𝒙𝑑1 ,𝒙𝑑2
 representing the Pearson correlation between the load time series 𝒙𝑑1

 and 2 

𝒙𝑑2
, at days 𝑑1 and 𝑑2, respectively. This distance is invariant to scale and  3 

0 ≤ 𝑑𝑅𝑁𝑂𝑀𝐶 ≤ 1. 4 

The Euclidean distance between 𝒙𝑑1
 and 𝒙𝑑2

 is a one-to-one measure that considers 5 

the closeness of the observations indexed in time (e.g. Montero and Vilar 2014 ).  6 

𝑑𝐸𝑢𝑐𝑙 = (∑ (𝒙𝑑1,𝑡 − 𝒙𝑑2,𝑡)
2𝑛

𝑡=1 )
1

2⁄

.                                         (2)The Euclidean 7 

distance between the periodograms, (Caiado et al. 2006), is also adopted, expressing 8 
the contribution of the various frequencies or cyclical components to the variability of 9 
the daily load series. Thus, we consider this distance between 10 

 𝑃𝒙𝑑1
(𝑤𝑗) = (1

𝑛⁄ )|∑ 𝒙𝑑1,𝑡𝑒−𝑖𝑡𝑤𝑗𝑛
𝑡=1 |

2
 and 𝑃𝒙𝑑2

(𝑤𝑗) = (1
𝑛⁄ )|∑ 𝒙𝑑2,𝑡𝑒−𝑖𝑡𝑤𝑗𝑛

𝑡=1 |
2
 11 

the periodograms’ for 𝒙𝑑1
 and 𝒙𝑑2

, respectively, at frequencies 𝑤𝑗 = 2𝜋𝑗 𝑛⁄ , 𝑗 =12 

1,2, … , [𝑛/2] (where [𝑛/2] is the largest integer less or equal to 𝑛/2).  13 
 14 

Finally, we consider the estimated autocorrelations functions 𝐴𝐶𝐹(𝒙𝑑1
) and 15 

𝐴𝐶𝐹(𝒙𝑑2
) that represent the autocorrelations functions of 𝒙𝑑1

 and 𝒙𝑑2
, respectively, 16 

and adopt the Euclidean distance between these estimated functions, comparing the 17 

series in terms of their dependence on past observations, (Montero and Vilar 2014).    18 

Before combining the distances, each one of the distances is normalized using a min-19 

max transformation,  20 

                                          𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
                                                       (3) 21 

 22 

where 𝑥 represents a distance measure, and 𝑚𝑖𝑛(𝑥) and 𝑚𝑎𝑥(𝑥) are the minimum and 23 

maximum of 𝑥, thus guaranteeing normalized values range from 0 to 1. Then, a convex 24 

combination of the four (normalized) distances referred is considered in the clustering 25 

procedure (Cardoso et al. 2021). 26 

For determining the best number of clusters, the K-Medoids algorithm is used 27 

considering a range for the number of clusters. For each of these solutions, four 28 

measures are calculated: Average Silhouette (Kaufman and Rousseeuw 2009), 29 

Calinski and Harabasz (Calinski and Harabasz 1974), Dunn modified index (Bezdek 30 

and Pal 1998) and the relative improvement or rate of change in within clusters’ 31 

variation between two successive solutions (with k − 1 and k clusters). A higher value 32 

of each of these indices suggests a better clustering solution, that is a solution with 33 

more compact and well separated clusters.  All indices’ values are normalized, using 34 

(3), and then, for each candidate number of clusters, a summated indicator of all indices 35 

is calculated with its maximum value indicating the best number of clusters, according 36 

to these indices. 37 

For the implementation of K-Medoids we use R package ”cluster” (Maechler et al. 38 

2013).  All distance measures are implemented in the R package ”TSclust” (Montero 39 

and Vilar 2014). The cohesion-separation measures are all implemented in the ”fpc” 40 

R package (Hennig 2020). These are auxiliary packages for the R implementation of 41 

CSPF. 42 
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3.2 Load pattern sequences 1 

The goal of this phase is to select the days in the historical dataset that have load 2 

patterns in the preceding days that are similar to the load patterns (sequences of clusters 3 

labels) in the days prior to target day. Also, these selected days must be of the same 4 

type as the target day to forecast. For each day 𝑑 (𝑑 = 1, … , 𝑁) is known the type of 5 

day, 𝑤𝑘𝑑, which includes the days of the week (Sunday, Monday, …, Saturday), a 6 

Holiday category, and where some especial holidays can also be considered.  7 

The load pattern sequences procedure is summarized in Fig. 2 The CSPF algorithm 8 

 9 
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 1 
Fig. 2 The CSPF algorithm 2 

 3 

As result of the clustering procedure a sequence of labeled days is obtained, 4 

𝐿1, 𝐿2, … , 𝐿𝑁  where L is the label of the cluster of the day 𝑑 (𝑑 = 1, … , 𝑁). Consider 5 

also the sequence of labels of the 𝑝 days immediately before the target day to forecast: 6 

𝐿∗ = 𝐿𝑁−𝑝+1, … , 𝐿𝑁−3, 𝐿𝑁−2, 𝐿𝑁−1, 𝐿𝑁. The objective is to search in the dataset for all 7 
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the sequences equal to 𝐿∗ that also are followed by a day of type 𝑤𝑘𝑁+1 (type of day 1 

corresponding to target). Finally, all the days immediately after the selected sequences 2 

are kept. Let 𝒙1, 𝒙2, … , 𝒙𝑁1
 be the load of these selected 𝑁1 days which have a load 3 

profile in the previous days like the load profile of the days before the day to forecast 4 

and also are of the same type of day as the target day. 5 

If in the data available there is not any day that fulfills these two conditions, the number 6 

𝑝 of previous days is reduced (subject to 𝑁1 ≥ 1).  7 

3.3 Temperature pattern  8 

Having selected the 𝑁1 days, that are of the same type as the target day and have similar 9 

load profile (clusters’ sequence) in the preceding days as the days before the target 10 

day, we now conduct a filtering process according to information available on 11 

temperature. Let  𝑻1, 𝑻2, … , 𝑻𝑁 ,  𝑻𝑑(𝑑 = 1, … , 𝑁)  represent the temperature time 12 

series data in daily cycles, where in each day the temperature is recorded in 𝑚 13 

intervals, 𝑻𝑑 = (𝑇𝑑,1, 𝑇𝑑,2, … , 𝑇𝑑,𝑚), 𝑑 = 1, … , 𝑁.  14 

Let 𝑃 be a proportion of the number of 𝑁1 days, identified in the previous step, a 15 

parameter to be set by the analyst. Then, the 𝑁2 = 𝑟𝑜𝑢𝑛𝑑(𝑃 ∗ 𝑁1, 0) filtered days to 16 

keep will provide the ground for forecasting the target day.  17 

The selection of these 𝑁2  days is conditional to temperature patterns: we consider the 18 

temperature of each of the 𝑁1 days and also of the 𝑞 days preceding them, that is, the 19 

time series with 𝑚 ∗ (𝑞 + 1) observations 20 

𝑻′𝑑 = (𝑻𝑑−𝑞+1, … , 𝑻𝑑−1, 𝑻𝑑), 𝑑 = 1, … , 𝑁1. Then, we measure the distances 21 

𝑑(𝑻∗, 𝑻′𝑑)  between 𝑻′𝑑 and the temperatures time series referring to the forecast day  22 

𝑻∗ = (𝑻𝑁−𝑞+1, … , 𝑻𝑁 , 𝑻̂𝑁+1). Finally, we keep the 𝑁2 nearest neighbor’s days 23 

according to temperature.   24 

Note that for evaluation purposes we consider a test dataset in which  𝒙𝑁+1 and 𝑻𝑁+1 25 

are known and  𝑻̂𝑁+1 = 𝑻𝑁+1 .    26 

3.4 The next day load forecast  27 

The goal of this last step of the algorithm is to predict the forecast for day N+1,    28 

𝒙̂𝑁+1 = (𝑥̂𝑁+1,1, 𝑥̂𝑁+1,2, … , 𝑥̂𝑁+1,𝑛) using the load of the selected 𝑁2 days, 29 

𝒙1, 𝒙2, … , 𝒙𝑁2
. For this end we compute a weighted mean of loads 𝒙1, 𝒙2, … , 𝒙𝑁2

 30 

 31 

             𝒙𝑁+1,𝑖 = ∑
𝑑1.0(𝑻∗

𝑖,𝑻′
1,𝑖)

∑ 𝑑1.0(𝑻∗
𝑖,𝑻′

𝑑,𝑖)
𝑁2
𝑑=1

𝑥𝑑,𝑖
𝑁2
𝑑=1   , 𝑖 = 1, … , 𝑛                                 (4) 32 

 33 

were the weights considered, 𝑑1.0(𝑻∗, 𝑻′𝑑), are the distances 𝑑(𝑻∗, 𝑻′𝑑) transformed, 34 

 35 

                            𝑑1.0(𝑻∗, 𝑻′𝑑) = 1 − 𝑑(𝑻∗, 𝑻′𝑑)𝑛𝑜𝑟𝑚                                  (5) 36 

 37 

with 𝑑(𝑻∗, 𝑻′𝑑)𝑛𝑜𝑟𝑚 defined by (3), such that values near zero indicate higher 38 

distances and thus less weight in the forecasting. 39 

  40 

3.5 Forecasting accuracy 41 

For evaluating the forecasting accuracy, we resort to three measures most commonly 42 

used in the literature (e.g., Hyndman and Athanasopoulos 2021) namely, RMSE (Root 43 

Mean Square Error), MAE (Mean Absolut Error) and MAPE (Mean Absolute 44 

Percentage Error).  The forecast errors in period 𝑡, 𝑒𝑡, is defined as the difference 45 
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between the observations and the corresponding forecasted values, 𝑒𝑡 = 𝑥𝑡 − 𝑥̂𝑡. 1 

Considering the daily load data with 𝑛 periods, the accuracy measures are defined by: 2 

 3 

 4 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ 𝑒𝑡

2

𝑛

𝑡=1

                                                              (5) 5 

 6 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑡|

𝑛

𝑡=1

                                                                   (6) 7 

 8 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ |

𝑒𝑡

𝑥𝑡
| .

𝑇

𝑡=1

                                                          (7) 9 

  10 

Both RMSE and MAE are on the same scale as the data and the MAPE is unit-free. 11 

4. CASE STUDY 12 

The proposed approach is applied to the years 2014-2017 time series data of the 13 

Portuguese Transmission System Operator (TSO) including load (referred to as 14 

emission which includes the losses) and temperature data, both in 15-minutes intervals. 15 

The data were obtained through the operators’ website. These data are used to obtain 16 

the day-ahead load forecast with the discretization of 96 periods. For implementation 17 

reasons, due to different winter and summer times, the raw data have one missing hour 18 

(Daylight Saving Time), which was imputed by the average of the two nearest hour 19 

data, and also a redundant hour data that was removed. 20 

4.1 Data analysis 21 

Load time series are volatile, non-linear, and non-stationary and depend on multiple 22 

factors, namely, meteorological (e.g., temperature), calendar (e.g., holidays, 23 

weekends, working days), network topology (e.g., load shifting), and random noise.  24 

The electrical load time series data is presented in Fig. 3 where the annual seasonality 25 

is clear. The empirical autocorrelation function is exhibited in Fig. 4 where we can 26 

realize the daily and weekly variation. Moreover, the electricity consumption depends 27 

on the type of weekday as can be seen in Fig. 5, with a larger difference between 28 

weekend and non-weekend days. 29 

As load and temperature data are in 15-minutes intervals, 𝑛 = 𝑚 = 96. From the 30 

available dataset, the year 2017 dataset is separated and considered for testing the 31 

forecasting procedure.  Thus, the remaining dataset, 𝑁 = 1096 days with 𝑛 = 𝑚 =32 

96 are considered for learning with the proposed CSPF algorithm. 33 

 34 

 35 
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 1 
 2 

Fig. 3 The load time series for the 2014-2017 period. 3 

 4 

 5 

 6 
 7 

Fig. 4 The load time series ACF. 8 

 9 

 10 
 11 

Fig. 5 Weekly load data: Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 12 

and Saturday. 13 

The non-linearity relationship between load and temperature is presented in Fig. 6 14 

where it is also exhibited its dependence on the hour of the day.   15 

 16 
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 1 
Fig. 6 The relationship between electricity consumption and temperature. 2 

4.2 Parametrization and CSPF results 3 

Several empirical experiments and experts' consultations were considered to tune the 4 

algorithm parameters. 5 

For the Portuguese data we consider three special holidays - Christmas, New Year, and 6 

Carnival.  7 

For the clustering of daily load data, the four distances were given the same (uniform) 8 

weights.  9 

The clustering results indicate two very well-separated daily pattern groups. The 10 

characterization of these clusters indicate that Group 1 contains almost all weekend days 11 

and Group 2 the weekdays – Fig 7. It is worth noting that Group 1 also includes several 12 

days before, after, or between holidays, days that have a similar load profile to weekend 13 

days. In addition, in Group 2, there are several days that, despite being working days, 14 

have a load profile similar to weekend days, and this similarity was captured by the 15 

Cluster analysis. 16 

 17 

 18 
Fig 7 The clustering results 19 
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 1 

In order to go further in the categorization of the daily load cycles, we cluster once again 2 

the observations within each group. Each of the groups resulting from the first clustering 3 

procedure is then divided into two groups – Fig 7 and Table 1.  4 

  5 

Table 1 Clusters' characterization by month 6 

  Jan Feb Mar April May June July Aug Sep Out Nov Dec 

Group 1.1 31 25 7 0 0 0 0 0 0 4 28 35 

Group 1.2 0 0 22 31 31 28 26 33 24 24 0 0 

Group 2.1 62 58 47 6 0 0 0 0 0 3 45 54 

Group 2.2 0 2 17 53 62 62 67 60 66 62 17 4 

 7 

Clusters obtained capture also the differences regarding the season of the year, while 8 

uncovering the different daily load patterns - Fig 8 The clusters medoids 9 

 10 

 11 

 12 

 13 
 14 

Fig 8 The clusters medoids 15 

 16 

For the load pattern sequence search, we considered a window with the last five days, 17 

𝑝 = 5.  18 

For the filtering based on temperature profiles, only the Euclidean distance was 19 

considered. This was decided as a result of various empirical experiences carried out, 20 

where the value itself of the temperature was revealed to be more important than other 21 

movements in the daily profile.  22 

For the temperature pattern, only the two days preceding the target day were considered, 23 

i.e. 𝑞 = 2. Finally, 𝑃 = 0.2, that is 20% of the most similar days, according to 24 

temperature, was considered to estimate the day-ahead load.  25 

The algorithm was applied to predict the day-ahead load corresponding to 96 periods of 26 

15 minutes. The results of forecasting accuracy of CSPF method are summarized in  27 

Worth noticing is the fact that the maximum MAPE obtained across all remaining 28 

months is 4.8%. 29 
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The best forecasting performance were achieved in May, August and November, with 1 

MAPE values between 2.7% and 2.8%. Forecasting in December proved to be the most 2 

difficult task, with greater forecasting errors. It is worth mentioning that in Portugal this 3 

month has many holidays turning searching similar patterns more difficult due to 4 

historical dataset limitations. Worth noticing is the fact that the maximum MAPE 5 

obtained across all remaining months is 4.8%. 6 

 7 

4.3 Comparative Performance 8 

For comparison purposes we resort to the following approaches:  9 

A. The Seasonal Naïve (SN) method is one of the simplest benchmark methods 10 

for seasonal data. Considering the daily seasonality, each forecast is equal to 11 

the last observed value for the same period of the day. 12 

B. An algorithm from the same family of Similar Patterns based methods: the Pattern 13 

Sequence-based Forecasting (PSF) algorithm (Martinez-Alvarez et al. 2010) 14 

with R implementation in package “PSF” (Bokde et al. 2016).  15 

C. A Semi-Parametric Additive (SPA) method to forecast half-hourly electricity 16 

demand, implemented in R - Hyndman and Athanasopoulos (2021). SPA deals 17 

with multiple seasonality using harmonic regression. The type of day – 18 

working or non-working day is also considered. The temperature is modeled 19 

with a piece-wise linear function. Finally, an ARIMA model is selected using 20 

the AICc criterion.  21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 
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 1 

 2 

Table 2 CSPF forecasting comparative  performance  3 

 4 

 RMSE 

(MW) 

MAE 

(MW) 

MAPE  

(%) 

 RMSE 

(MW) 

MAE 

(MW) 

MAPE  

(%) 

January 

   CSPF 

   SN 

   PSF 

   SPA 

 

315.6 

661.2 

1541.2 

470.7 

 

260.3 

424.8 

1356.8 

370.0 

 

4.0 

7.2 

20.2 

5.8 

July 

   CSPF 

   SN 

   PSF 

   SPA 

 

307.0 

597.9 

779.8 

294.6 

 

271.9 

397.1 

624.0 

230.7 

 

4.8 

7.3 

10.3 

4.1 

February 

   CSPF 

   SN 

   PSF 

   SPA 

 

417.8 

557.0 

747.6 

368.4 

 

270.6 

374.2 

538.2 

272.1 

 

4.5 

6.4 

9.5 

4.4 

August 

   CSPF 

   SN 

   PSF 

   SPA 

 

200.3 

416.2 

574.8 

269.6 

 

151.7 

273.2 

417.6 

187.8 

 

2.7 

5.1 

8.0 

3.4 

March 

   CSPF 

   SN 

   PSF 

   SPA 

 

395.8 

567.7 

558.1 

319.1 

 

249.3 

368.4 

435.8 

248.8 

 

4.3 

6.7 

7.7 

4.3 

September 

   CSPF 

   SN 

   PSF 

   SPA 

 

267.3 

560.1 

568.0 

291.6 

 

216.4 

350.4 

374.2 

242.7 

 

3.8 

6.6 

7.3 

4.6 

April 

   CSPF 

   SN 

   PSF 

   SPA 

 

291.5 

572.5 

694.8 

355.5 

 

172.1 

404.4 

553.0 

254.0 

 

3.4 

8.1 

11.4 

4.8 

October 

   CSPF 

   SN 

   PSF 

   SPA 

 

283.3 

595.0 

942.38 

280.9 

 

197.3 

393.8 

745.3 

219.5 

 

3.6 

7.6 

12.7 

4.2 

May 

   CSPF 

   SN 

   PSF 

   SPA 

 

280.7 

544.2 

557.2 

322.2 

 

141.5 

349.1 

486.65 

230.4 

 

2.7 

7.0 

9.1 

4.4 

November 

   CSPF 

   SN 

   PSF 

   SPA 

 

223.5 

599.4 

605.8 

344.7 

 

162.5 

395.9 

434.0 

252.7 

 

2.8 

7.4 

8.2 

4.4 

June 

   CSPF 

   SN 

   PSF 

   SPA 

 

330.0 

602.1 

584.4 

345.8 

 

258.0 

392.5 

411.4 

262.1 

 

4.0 

7.2 

7.6 

4.6 

December 

   CSPF 

   SN 

   PSF 

   SPA 

 

426.38 

611.8 

851.8 

617.5 

 

313.3 

408.1 

687.1 

471.4 

 

5.1 

6.9 

10.8 

7.7 

 5 

 6 

Considering the monthly results presented in Table 2, referring to the three metrics of 7 

forecasting errors, RMSE, MAE and MAPE, the CSPF method presents the best results 8 

overall:  in eight months (excluding February, March, July and October) the CSPF 9 

achieves the lowest values on all three metrics.  10 

To infer from these 12 months’ data, we first conduct three Friedman tests (Siegel and 11 

Castellan 1988) to compare the performance of CSPF forecasting with the referred 12 

methods (SN, PSF and SPA). Results obtained are presented in Table 3, referring to 13 

Pairwise Comparisons (note that p-values values have been adjusted by the Bonferroni 14 

correction for multiple tests). Considering a 0.05 significance level, according to the 15 

Friedman tests’ results, and in the context of the four methods considered, CSFP approach 16 

exhibits significant differences with all approaches except with SPA; we can also point 17 
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out that SPA and SN approaches, as well as SN and PSF, do not show significant 1 

differences. 2 

Since, for the task at hand, the main competitor of CSPF is the SPA approach, we further 3 

focus on these two methods to better understand their comparative performance. Results 4 

from the Related-Samples Wilcoxon Signed Rank Test (Siegel and Castellan 1988) are 5 

in Table 4. According to them, in terms of MAE and MAE metrics, the CSPF 6 

performance significantly surpasses the SPA approach performance; also, if we consider 7 

a higher significance level, 0.1, we could state the same referring to the RMSE metric.  8 

The results obtained show that, for the application considered, the CSPF method 9 

compares favorably with the baseline methods SN, PSF and SPA, thus being a promising 10 

approach for STLF. 11 

 12 

Table 3 CSPF comparative performance: Friedman tests’ Pairwise Comparisons 13 

  RMSE MAE MAPE 

 

Test 

 Statistic 

Adj.  

p-value 

Test 

Statistic 

Adj.  

p-value 

Test 

Statistic 

Adj.  

p-value 

CSPF- SN -1.750 0.005 -1.750 0.005 -1.708 0.007 

CSPF - PSF -2.500 0.000 -2.833 0.000 -2.792 0.000 

CSPF - SPA -0.417 1.000 -0.750 0.928 -0.667 1.000 

SPA - SN 1.333 0.068 1.000 0.347 1.042 0.289 

SPA - PSF -2.083 0.000 -2.083 0.000 -2.125 0.000 

SN -PSF -0.750 0.928 -1.083 0.239 -1.083 0.239 

 14 

 15 

Table 4- CSPF comparative performance with SPA: Wilcoxon tests’ results 16 

 17 

  SPA-CSPF differences    

  
Positive Negative Ties Test Statistic 

Standardized 

 Test Statistic 
p-value 

RMSE 8 4 0 60.0 1.647 0.099 

MAE 10 2 0 70.0 2.432 0.015 

MAPE 9 2 1 60.5 2.447 0.014 

 18 

5. CONCLUSIONS AND FURTHER RESEARCH 19 

In this paper, we propose a new Clustering-based Similar Pattern Forecasting 20 

algorithm (CSPF), for short-term load forecasting.  CSPF is a two-step approach. In 21 

Step 1) we address the heterogeneity of the historical data, using a clustering algorithm 22 

– K-Medoids - and resort to COMB distance, a combination of various distance 23 

measures to capture different aspects of the time series dissimilarities: values 24 

(Euclidean distance), trends (Pearson based distance), cyclical behaviors (Euclidean 25 

distance between periodograms) and autocorrelation structures (Euclidean distance 26 

between estimated autocorrelation functions); to each day is then allocated a cluster 27 

label and load pattern sequences are considered those precede days of the same type 28 

(weekday, holidays and special holidays) as the target day. In Step 2) among the 29 

sequences of days previously determined, we consider subsequences revealing similar 30 

temperature profiles as the temperatures estimated for the target and preceding days, 31 
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including a search for Nearest Neighbors sequences. The load forecasting is then 1 

obtained based on these neighbor-days’ loads.  2 

The proposed algorithm integrates a Similar Pattern approach with expert’s knowledge 3 

that is mapped to its parametrization - e.g., deciding which types of days to consider 4 

or which percentage of load sequences to retain, based on the temperature criterion. 5 

The CSPF approach was applied to three years time series data in 15-minutes 6 

resolution of the Portuguese Transmission System Operator. Considering the year 7 

2017, the load forecasts obtained for the 96 periods of the day-ahead exhibit very good 8 

indicators of performance (e.g., monthly MAPE in the range [2.7% - 5.1%]) when 9 

compared to an alternative Pattern Sequence-based Forecasting (PSF) (e.g., monthly 10 

MAPE in the range [7.3% - 20.2%]). After investigating the comparative performance 11 

of CSPF with three baseline methods – the Seasonal Naïve (SN) method, the Pattern 12 

Sequence-based Forecasting (PSF) algorithm, and a Semi-Parametric Additive (SPA) 13 

method - we conclude the proposed method shows a significant advantage for the task 14 

at hand. 15 

In future research, the proposed method should be used for different data sets, namely 16 

with longer time series. We will also further investigate the algorithm parametrization 17 

so that it gains (informed) autonomy. 18 

 19 
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