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Abstract

Aortic stenosis (AS) stands as a significant cardiovascular ailment necessitating accurate diagnosis for
effective patient management. This study introduces an innovative Al-based approach for AS detection
in MRl scans. Our research aims to find a robust CNN model combined with computer vision techniques
for the classification of AS in MRI, further refined through fine tuning.

We evaluated five CNN models combined with computer vision techniques, where VGG16
model got the best results in our research work, with 95% in recall and 95% in F1-score. In this test
four Data Augmentation techniques were implemented including Translation, Rotation, Flip and
Brightness, enhancing the model’s robustness and generalization, encompassing real-world image
variations encountered in clinical settings.

This validation reaffirms the model's clinical applicability, promising streamlined diagnostics
while allowing medical professionals to focus on intricate decision-making and personalized care.

In conclusion, our study underscores the potential of Al-driven AS detection in MRI. The
merger of transfer learning and data augmentation yields high accuracy rates, validated in real clinical

cases, signifying a significant advancement in precise cardiovascular diagnosis.

Keywords: MRI Imaging Techniques; Aortic Disease Classification; Artificial Intelligence; Deep Learning
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Resumo

A estenose adrtica (EA) é uma doenga cardiovascular significativa, que requer um diagndstico exato
para uma gestado eficaz dos doentes. Este estudo apresenta uma abordagem inovadora baseada em IA
para a detecdo de EA em exames de RM. A nossa investigacdo tem como objetivo encontrar um
modelo CNN robusto, combinado com técnicas de visdao por computador, para a classificacdo de EA
em RM, aperfeicoado através de Fine Tuning.

Avalidmos cinco modelos CNN combinados com técnicas de visdo computacional, tendo o
modelo VGG16 obtido os melhores resultados no nosso trabalho de investigacdao, com 95% de recall e
95% de F1-Score. Neste teste foram implementadas quatro técnicas de Data Augmentation, incluindo
Translacdo, Rotacdo, Inverter e Brilho, aumentando a robustez e a generalizacio do modelo,
abrangendo variacGes de imagens do mundo real encontradas em ambientes clinicos.

Esta validacdo reafirma a aplicabilidade clinica do modelo, prometendo diagndsticos
simplificados e permitindo que os profissionais médicos se concentrem na tomada de decisGes
complexas e nos cuidados personalizados.

Em conclusdo, nosso estudo ressalta o potencial da detecdo de EA orientada por IA em RM. A
fusdo de aprendizagem por transferéncia e aumento de dados produz taxas de precisdo elevadas,
validadas em casos clinicos reais, significando um avanco significativo no diagndstico cardiovascular

preciso.

Palavras-chave: Técnicas de Imagem por RM; Classificagdao de Doengas da Aorta; Inteligéncia Artificial;

Aprendizagem Profunda

vii



Index

ACKNOWIBAGMENTS ..ttt e et e e e e bre e e e e bte e e e ebteeeesabteeeeeabteeeesastaaesaseneesassneansnnes iii
F N0 u i ot OO OSSP UPRRTRRRURTOON v
LRT=E] 0 0 o TR PP PPPPPPTTO vii
[y o) B 7= (U U PROTSTN ix
LISt Of TaBIES ...ttt b e s b e sa e ettt e bt e s bt e sae e san e sar e e b e reennees X
(€] (o T Y- | VPSSP Xii
(@ T o1 =T ol R Tl d o o [T o1 4 o] o PP UPR 3
A O] o1 =Y ot 4 YT PRSP 4
ST Y 114 oo Yo [o] oY -V AN SRR 5
1.4. Outline Of the DiSSertation .........coiieiiiiiieieiere ettt st s 6
Chapter 2 - STate Of The At ..o e et e et e e e et e e e s e ab e e e e e ateeeeenbeeeeennbeeeeennsenas 7
B Y/ =1 i o To To I T O T U PO SO PPV P U PPTOUSTROPPPTO 7
2.2, Data EXEraCtioN ..cceei et e s e e s e e s s e e e e s ereeeeeeanee 7
2,30 RESUIES ettt ettt h e s h e s h e et b e bt s be e she e et e et e e beenbeenaneeas 8
2.4, Goals and OULCOMES ANAIYSIS .....eeiieciiiieeciiiee ettt e e e crre e e e stre e e e stae e e seareeeeesasaeeesnraneanas 10
CHAPTER 3 - CRISP-DIM MethOdOIOZY .......ceiiiiiiiiiiiiiei ettt setee st e e e e svee e s sbae e e 13
3.1. Business & Data UNderstanding .......ccuueeieciiiiiiiiiieccciiee e sitee et e e st e e st e s s saraee s sanaeeeeas 13
3.2. Data Preparation ....cccii i iiiiieee ettt ettt e e e s e sttt e e e e s s e st e e e e e s e e st ateeeeeseananbraaeeens 14
I 301\, o T 1=1 1 1 oY= S USRS 20
CHAPTER 4 - Evaluation and DiSCUSSION ......couiiiiiieeieerieesite sttt ettt ettt sttt sbeesbeesaeesaeeeaee s 23
CHAPTER 5 = CONCIUSIONS ..ttt ettt st sttt ettt st b e me e smeesmeeeaneennees 29
CHAPTER 6 = FUTUIE WOTK. . .eiiiiiiieeeeeeee ettt ettt sttt et enne s 30
RETEIEINCES ...ttt ettt e bt e b e st e s et st e e bt e bt e s b et s ae e st e eaneer e e reesreenane e 31

viii



List of Figures

Figure 1 - Methodology Crisp-adm [12]......cccoiciiiiiciiiie ettt e erre e e rre e e et e e e e raaae e e sabaeeesensaeeeean 5
Figure 2 - PRISMA WOTKFIOW DI@Bram.......cccccuuiiiieiiiieeciieeeeecitee e ectee e e sciteeeeseataeesssanaeessnnsaeessnnsaeeesnnsaneenas 8
Figure 3 - Evolution on eligible studies published by year........cccoccvviiviiiiiiiiie e 8
Figure 4 - Percentage of topic mentioned in the articles.........ccevcviieeciii e 9
Figure 5 - Number of articles including each imaging technique..........ccueeeecieeiiiciie e 9
Figure 6 - MRIIMages WIthOUL VaIVE .........ooiiiiii e 15

Figure 7 - MRI of the aortic valve, where the column of images (a) represents the images without AS
and column (b) represents the images that have AS .........cooiii e 16
Figure 8 - Representation of the rotation technique applied at the default MRI, where (a) represents
the default MRI and (b) represents the MRI with 90, 180, and 270 rotation degrees, respectively.... 17
Figure 9 - Representation of the translation technique applied at the default MRI, where (a)

represents the default MRl and (b) represents vertical translation. ..........cccccvveeeeeieeeeeciieececciree e, 17
Figure 10 - Representation of the flip technique applied at the default MRI, where (a) represents the
default MRI and (b) represents the flipped MRIS.........cooiii i e 18
Figure 11 - Representation of the brightness technique applied at the default MRI, where (a)
represents the default MRl and (b) represents the brighter MRIs. ........cccoooeiiiiiicciiee e, 18
Figure 12 - Summarization of the data preparation..........cceceee e e 19
Figure 13 - Percentage of test and train iMages ......ueveeiiiiiiiiiii e 21
Figure 14 - Developed CNN archit@CtUIE. .......uiiiiiiiiieecee et e ree e e bee e e et e e e e eab e e e e e nreeas 24
Figure 15 - Model performance: training vs TeSTING......ccuuviiiiiiiiii i 25



List of Tables

Table 1 - KEYWOId SEIECLION ...cceeiiiee ettt et e e e et e e e e bte e e e ebae e e e sabtaeesenstaeeesnraeaesanes 7
B o (S AR Y ol [T o1V o ] ok 10
Tabela 3 - Results of the custom CNN model with the different datasets........c.cccocveeeviiiniieniecniennne 24
Table 4 - Results of the models with different Datasets........ccccovveerceiiniieniiececee e 27



Xi



Glossary

Al - Artificial Intelligence

AS - Aortic Stenosis

AVR - Aortic Valve Replacement

BVA - Bicuspid Aortic Valve

CAD - Coronary Artery Disease

CFR - Coronary Flow Reserve

CFVR - Coronary Flow Velocity Reserve

CMR - Cardiac Magnetic Resonance

CMR - Cardiovascular Magnetic Resonance
CNN - Convolutional Neural Networks
CRISP-DM - Cross-Industry Standard Process for Data Mining
CT - Computed Tomography

CTA - Computed Tomography Angiography
CV - Computer Vision

CVD - Cardiovascular Disease

DCNN - Deep Convolutional Neural Network
DL - Deep Learning

FCDL - FC-DenseNet and the level set method
FCN - Fully Convolutional Neural Networks
FN - False Negatives

FP - False Positives

HSM - Hospital Santa Maria

LV - Left Ventricular

MBF - Myocardial Blood Flow

MF - Myocardial Fibroses

ML - Machine Learning

MPI - Myocardial Perfusion Imaging

NR - Normalization Region

PC-MRI - Phase-Contrast Cine Magnetic Resonance Imaging
PD - Pressure Drop

PET - Positron Emission Tomography

PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PVS - Prosthetic Valve Size

xii



RDIR - Reverse Double Inversion-Recovery

ROI - Region of Interest

RQ - Research Question

RV - Right Ventricular

TAVR - Transcatheter Aortic Valve Replacement
TN -True Negatives

TP - True Positives

UL - U-Net + level set

WoSCC - Web of Science Core Collection

xiii












Chapter 1 - Introduction

Cardiovascular disease (CVD) is the leading cause of death worldwide and has been increasing
gradually over time [1], [2]. According to the World Health Organization (WHO), CVDs are the leading
cause of death globally [1]. In 2019, an estimated 17.9 million people died from CVDs, accounting for
32% of all global deaths [1]. Of these deaths, 85% were due to heart attack and stroke [1]. Over three
quarters of CVD deaths take place in low and middle-income countries [1].

Aortic Stenosis (AS) is a CVD that represents a form of heart valve disease primarily affecting
the left ventricle, where the valve gradually becomes calcified. The calcification process leads to valve
thickening, narrowing, and weakening, impeding its full opening. Consequently, blood flow through
the aortic valve diminishes, giving rise to complications such as blood clots, strokes, heart failure, and
even cardiac rhythm irregularities. The prevalence of AS is on the rise, driven not only by an aging
population, with approximately 6% to 12.4% of elderly individuals afflicted by this condition [3], [4],
but also exacerbated by the emergence of the COVID-19 pandemic in 2019.

The introduction of COVID-19 has brought with it an abundance of issues, most notably a
significant problem with accessing hospital-based cardiovascular care, which has resulted in a drop in
necessary cardiovascular diagnostic tests. As a result, fewer patients received timely diagnoses. This
situation was further aggravated by the pandemic's effect on myocardial health, which manifested as
larger infarct sizes, more widespread microvascular blockage, a greater frequency of intramyocardial
bleeding, and a higher prevalence of AS disease [5]. Remarkably, patients with AS were discovered to
be a large group contributing to COVID-19-related mortality [6].

In the context of these challenges, Magnetic Resonance Imaging (MRI), among other imaging
modalities, has emerged as a fundamental technology. When compared to standard
echocardiographic investigations, MRI has showed superiority in terms of repeatability and accuracy
in detecting clinically relevant changes in Left Ventricular (LV) size and function [7].

To overcome the increase of AS disease, applying artificial intelligence (Al) to analyze cardiac
MRIs has demonstrated a drastic improvement in the ability to detect early signs or future risk [8].
Using this solution would not only improve patient care, but it will implement better early strategies
for treatment, achieving better outcomes [8]. Convolution Neural Networks (CNN) were introduced as
deep-learning algorithms, allowing accurate and fully automated image analysis. These Al-based
analyses are considered feasible, reproducible, and demonstrate valuable prognostic in patients with
AS disease, saving time and making clinical routine easier [7]. The fundamental benefit of CNNs over
more traditional Machine Learning (ML) algorithms is that, during training, feature extraction is

handled automatically without the need for pre-existing notions about what features to extract. This



means if you have a ML algorithm to train, it needs the images classified with the different features
[9]. On the other hand, a Deep Learning (DL) algorithm will learn the features automatically without
any a priori definition [9].

Consequently, this research investigates the application of Al for automatic classification of
MRIs of patients suffering from AS. By reducing the workload of healthcare professionals, we aim to
mitigate the disease's impact, reduce resource allocation, and minimize healthcare expenses.

In the ever-evolving landscape of healthcare and medical research, the collaboration between
academic institutions and hospitals plays an important role in advancing our understanding of complex
medical phenomena, improving patient care, and driving innovation in the field [10]. This master's
thesis represents the culmination of a collaborative effort between Iscte and Hospital Santa Maria
(HSM), aimed at contributing to the forefront of healthcare research.

The overarching objective of this research endeavor is to explore, analyze, and contribute to
the multifaceted world of healthcare through a lens that fuses theory with practice. By bridging the
gap between academia and clinical practice, we aim to address critical questions, innovate new
methodologies, and unearth solutions that hold the potential to transform patient outcomes and

enhance the quality of healthcare delivery.

1.2. Objectives
This study aims to find a robust CNN model combined with computer vision techniques for the

classification of AS in MRI, originating the Research Question (RQ) “How can we effectively use Al to
automatically classify MRI scans from patients suffering from AS?”.

In order to answer the RQ and classify MRI images a CNN model combined with computer
vision techniques needs to be implemented and tested so we can successfully distinguish between
cases with AS and those without. This classification task involves the binary decision of whether or not
aortic valve stenosis is present.

To accomplish our objectives and address our research question, we have adopted the CRISP-
DM (Cross-Industry Standard Process for Data Mining) methodology [11], for image data. This
methodology guides us through various stages, such as data selection and collection, preprocessing,
feature extraction, model development, training, validation, evaluation, and deployment, to achieve
specific research goals.

Throughout our research, we should emphasize the clinical significance of the work and how
it can reduce the medical workload when classifying the MRIs, a condition that has significant

implications for patients' cardiovascular health.



1.3. Methodology

The CRISP-DM, see Figure 1, is a framework for data mining and analysis initiatives. CRISP-DM offers a
disciplined and systematic approach to resolving complicated issues in the field of computer vision,
enabling a full and effective analysis of the data and its properties. This methodology, which covers
the complete data mining process from start to finish, is especially well-suited for computer vision
users [11]. This includes describing the issue, collecting and understanding the data, putting the data

in order, cleaning it, creating and validating models, and using the models to address the issue at hand.

. Busme“. Data . Dam‘ Modeling Evaluation Deployment
Understanding Understanding Preparation - H
Determine Collect Initial Data Data Set Select Modeling Evaluate Results Plan Deployment
Business Objectives i/nitial Data Collection i Data Set Description Technique Assessment of Data Deployment Plan
Background Report Modeling Technique Mining Results w.r.r.

Business Objectives
Business Success
Criteria

Assess Situation

Inventory of Resources

Requirements,
Assumptions, and

Constraints Data Quality Report Derived Attributes Model Description List of Possible Actions
Risks and Contingencies; Generated Records Decision Review Project
Terminology Assess Model Experience
Costs and Benefits Integrate Data Model Assessment Documentation

Merged Data Revised Parameter

Determine Settings

Data Mining Goals Format Data
Data Mining Goals Reformatted Data

Data Mining Success
Criteria

Produce Project Plan

Project Plan

Initial Assessment of
Tools and Techniques

Describe Data
Data Description Report

Explore Data
Data Exploration Report

Verify Data Quality

Select Data
Rationale for Inclusion
Exclusion

Clean Data
Data Cleaning Report

Construct Data

Modeling Assumptions

Generate Test Design
Test Design

Build Model
Parameter Settings
Models

Business Success
Criteria
Approved Models

Review Process
Review of Process

Determine Next Steps

Figure 1 - Methodology crisp-dm [12]

Plan Monitoring and
Maintenance

Monitoring and
Maintenance Plan

Produce Final Report
Final Report
Final Presentation

This methodology has 6 phases, each one focusing on different tasks as shown next:

1.
2.

Business understanding: To understand the problem we are studying.

Data understanding: To understand with which images we are working with and what

methods should be used to develop the work.

Data preparation: Prepare and filter data to create a reliable Dataset to train and test the

models that can be trained and tested.

4. Modeling: Investigate and explain the model used.
5. Evaluation: Evaluate the model and analyze the output of each model.
6. Deployment: Our deployment phase is represented by this master thesis and an article

that has been submitted and that we are waiting for review.



1.4. Outline of the Dissertation
After the goals and strategy have been set, there will be six chapters, including the Introduction. In the

following chapters were included:

Chapter 2: A literature review on the state-of-the-art of calcium scoring and calcification from
MRI images, using computer vision, and explanation and task from PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) method.

Chapter 3: Following the Methodology CRISP-DM, we create the Dataset, use Data
Augmentation techniques and explain the models used in the research.

Chapter 4: Result and Discussion.

Chapter 5: Conclusions and Future Work, along with a discussion of the research's findings.



Chapter 2 - State of the Art

2.1. Method

Based on the PRISMA approach, this systematic review statement was developed to assist authors in
better reporting systematic reviews and meta-analyses [13]. Although PRISMA can also be used as a
foundation for presenting systematic reviews of other research forms and notable evaluations of

therapies, it has been mostly used to report randomized trials.

2.2. Data Extraction
The search was done in Scopus and Web of Science Core Collection (WoSCC) databases performed in

2023. To make this search, a query was created with an interception between the columns with a
limitation, only journal papers, articles, and reviews from the last 5 years, and written in English, as

shown in Table 1.

Table 1 - Keyword Selection

Concept Population Context Limitations
"Artificial Intelligence" | "Magnetic Resonance | "Aortic stenosis" Last 5 years
"Computer Vision" Imaging" "Calcium Score" Only journal papers,
"Deep Learning" "MRI" "Aortic Calcification" | articles, reviews and
“Image Processing” written in English

530,296 Documents

25,876 Documents

63 Documents




2.3. Results
After applying the query to both WoS and Scopus databases, 63 documents were found. However, by

removing duplicates and excluding some articles without the information needed, only 40 papers were

used in this research study. These steps are shown in Figure 2.

[ Identification of studies via databases

c
2 Records identified
= through database Records after duplicates
= searching: removed
b Web of Science (n = 8], (n =54)
a Scopus (n = 34)
= A 4
=
c Records screened Records excluded
@ (n =54) (n=8)
(¥}
[}
.3. i}
= Full-text articles assessed Full-text articles
= for eligibility excluded, with reasons
o= (n = 46) (n=27)
w
¥
=
- Studies included in
E quantitive synthesis
E {n=19)

Figure 2 - PRISMA Workflow Diagram

Considering Al is becoming a more used technology for medical care, researchers are making

more studies, making a relevance growth in research work published each year, Figure 3.

22% 22% 25%
20%
15%
10%

5%

0%
2016 2017 2018 2019 2020 2021 2022

—— Dercentage Linear (percentage)

Figure 3 - Evolution on eligible studies published by year



After reading the selected articles for this research work and analyzing the topics studied in it,

Aortic Disease, MRI, and Al are the most common topics, as shown in Figure 4.

25%
21%20%

20%
15% 13%

10% .,
10% 2

6% 5%
5% 4% 39 3%
I I I 1/‘31% 1% 1% 1% 1% 1%

0 - - - -

2 P
(_,Q\" ,b}(\ - 0% 9
N b

voé i & 6Q\‘\ ? &

X

Figure 4 - Percentage of topic mentioned in the articles

As shown in Figure 5, the majority of articles discuss MRI as an imaging technique, followed by

CT-scans and echocardiography.

0% 5% 10% 15% 20% 25%

MRI 20%

Echocardiography 5%

Figure 5 - Number of articles including each imaging technique



2.4. Goals and Outcomes Analysis
Knowing that the main objective of this research work is to identify aortic stenosis disease by applying

Al on cardiac images, a table with a description of the main areas addressed in the papers is

summarized in Table 2.

Table 2 - Articles by topics

[31-(5], [7], [9], [14]-(40]

[31-[5], [8], [9], [14]-[16], [20]-[38], [41]-[44] 31 20%
(31, [5], [8], [91, [16], [18], [19], [23], [25], [31], [35],
20 13%
[37], [40], [42], [45]-(50]
(8], [9], [16], [17], [19], [22], [23], [26], [28], [29], [39],
14 9%
[41], [43], [45]
(3], [8], [9], [26], [32], [39], [40], [43] 8 5%
(7], (8], [14], [18], [24], [25], [51] 7 4%

In the field of cardiovascular imaging, the application of Al has led to significant advancements,
fundamentally changing the way cardiac diseases are detected and diagnosed
[3,6,13,14,18,20,26,32,36,38,42—-44]. This literature review provides a comprehensive overview of key
developments in this dynamic domain.

Al has proven effective in the classification of aortic calcification using MRI, consistently
achieving remarkable accuracy rates ranging from 90% to 93% [19]. However, these authors, when
discussing the outcomes of applying Al to aortic calcification, do not emphasize the metric of recall,
which is particularly crucial in health cases. For instance, if we have 100 cases and aim to identify those
with a specific condition, such as cancer, a scenario where the algorithm classifies everyone as healthy
could result in an accuracy of 99%. However, the recall in this case would be 0%, highlighting the
importance of considering recall in medical contexts.

Al applications, as discussed in [8], hold substantial promise for early detection of
cardiovascular risk factors and timely interventions. Extensive literature searches, as evidenced in [23],
have unearthed a growing body of studies leveraging Al across MRI and CT modalities. These studies
encompass diverse applications, from coronary calcium scoring to prognostic assessments for coronary

artery disease, signifying Al's potential to transform cardiac imaging for screening and monitoring. In

=

0



this study, the researchers discuss the scarcity of datasets and medical images for Al applications but
overlook the potential of data augmentation in addressing this issue. Failure to explore data
augmentation may limit the model’s ability to generalize from training data to real-world
environments.

Furthermore, review [5] confirms an increase in research in this area, particularly the
application of artificial intelligence in imaging patients with valvular heart disease. This method of
operation would allow for systematic screening for coronary artery disease as well as continued
monitoring of patients who have been diagnosed with coronary artery disease [47].

According to [25], ML techniques, particularly U-Net architectures, have rapidly advanced the
evaluation of aortic diseases, revolutionizing aortic segmentation and showing promise in monitoring
aortic aneurysm sizes. As mentioned in this article [19], it is underscored how deep learning applied to
MRI enhances image quality, automates analysis, and enhances disease detection and prognosis [9].
Moreover, [49] proposes a deep convolutional neural network (DCNN) based on ResNet50 and uses
fine-tuning to train the model for object identification.

The authors of [45] developed a densely connected convolutional network (ASTRO-X) to
diagnose cardioembolic stroke using chest radiographs, with a good and plausible classification
performance of 91% classified as non-cardiac stroke, demonstrating that transfer learning is an
effective strategy. Another paper [40] used the Chan—Vese algorithm, with extra techniques providing
more emphasis on the illumination of region of interest (ROI), obtaining accurate detection of the LV
chamber to diagnose the volume variations for aortic stenosis and detection of heart failure cases.
Motion correction was used to obtain better results and image quality in [16]. Reference [42] proposed
a fully automatic RV segmentation method that combines the FC-DenseNet and the level set method
(FCDL), making per-pixel semantic inference with ground truth, for smoothing and converging contours
to improve accuracy. This research faces a data limitation, comprising only 45 cases. To overcome this
constraint, the researchers employed data augmentation techniques to enrich their dataset.
Furthermore, the same research indicates that the FCDL method outperforms the U-Net + level set
(UL), indicating that the FCDL method is an efficient and suitable solution to RV segmentation. In [35],
a three-dimensional ResNet with noise reduction was implemented for MRI, achieving 92% F1-score
and 97% recall.

Following the research from [3], echocardiography was the primary technique for evaluating
aortic disease. However, due to image quality limitations and valve geometry deviations, MRI has
gained prominence. To address these challenges, [50] introduces a fully automated machine learning
approach, eliminating the need for manual border delineation.

In conclusion, our comprehensive literature review reveals a scarcity of articles and research

dedicated to the application of Al in the context of MRI. This lack of prior studies highlights the

11



promising nature of our research in this field. Al integration into cardiovascular imaging represents a
transformative era characterized by heightened accuracy, early disease detection, and advanced
image analysis capabilities [48]. Moreover, a common challenge among researchers is the
acknowledgment of limited data access. To address this issue, some studies overcome the challenge
by employing strategies such as data augmentation and transfer learning. These innovations hold
immense promise for the diagnosis and monitoring of a broad spectrum of cardiovascular conditions

[48].
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CHAPTER 3 - CRISP-DM Methodology

This research work aims to classify heart MRI by identifying calcification on the aortic valve. The CRISP-
DM Methodology, Figure 1, guided this research work, beginning with data preparation and ending in

the Deployment stage. The following sections will go into much greater detail.

3.1. Business & Data Understanding
In this chapter, we dive into the foundational aspects of our data, to understand better the data we

are working with. The data utilized was sourced from Hospital Santa Maria (HSM) and predominantly
comprised medical images. Our access to this extensive dataset, containing data from 512,764
patients, was facilitated through our collaboration with the aimhealth project [52]. Furthermore, we
ensured the requisite documentation was in place. This included a comprehensive data dictionary,
authorization from the CHULN services spanning Cardiology, Intensive Care Medicine, and the
Respiratory Intensive Care Unit. Additionally, we acquired the Curriculum Vitae of the respective
physicians overseeing the data. In a commitment to data integrity and security, all personnel with
access to the data signed a declaration of honor, affirming their adherence to General Data Protection
Regulation (GDPR) regulations. These regulations encompassed safeguarding sensitive information,
specifying authorized personnel, defining data retention periods, establishing data disposal
procedures, and preventing unauthorized utilization in other research contexts without explicit
consent, adhering to the principles outlined in both the Declaration of Helsinki and the Oviedo
Convention [53].

Upon successfully navigating the bureaucratic tasks, we received access to two data
repositories, where (1) a structured database contained an abundance of reports, patient information,
medical procedures, medication records, precautions, schedules, as well as other pertinent data, and
(2) a vast repository of medical images capturing various diseases, including Aortic Stenosis, COVID-
19, pneumonias, prosthesis-related cases, and fractures. Regrettably, none of these images were
labeled. Given our research focus on evaluating MRIs of AS patients, we needed to separate what was
relevant from what would be considered useless to our research objectives. This division allowed us
to correlate the database with our dataset, making it easier to retrieve relevant information for our
study.

In the course of analyzing the medical images supplied by HSM, we observed that they were
stored as DICOM files [54]. These files contain essential image metadata, including details such as size,
dimensions, bit depth, modality, and parameters related to image capture equipment. Each piece of
information is represented by a specific tag, enabling us to apply filters based on patient ID, image type

(MRI, CT-Scan, Echo), orientation, and other relevant criteria.
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Furthermore, we established a crucial association between the "Patient" and "Diagnoses"
tables within the structured database. This association was established through a unique "ID" linked
to each diagnosis, which corresponded to the "Patient ID." This strategic linkage allowed us to
selectively acquire data pertaining to patients directly relevant to our research, streamlining the

process of filtering the MRlIs essential for our investigation.

3.2. Data Preparation
In our quest to access a diverse range of medical images, our aim was to analyze only MRlIs of patients

suffering from Aortic Stenosis.

Our first task was to go through the large image pool and isolate those that were relevant to
our research. To accomplish this, we conducted a filtering process on each image in the dataset,
selecting only MRI scans that show the heart. This filtering was done based on the metadata contained
within each DICOM file, which offers important information about the image data. In our initial filtering
step, we selected images that (1) had the 'MRI' image type, represented by the tag (0008,0060) since
this tag stores the type of the data originally acquired (for example, CT-scans, MRlIs, Audio...) and by
(2) the images associated with “heart” examinations using the tag (0018, 0015) representing the “Body
Part examined”. This selection was necessary as our study primarily focused on heart MRIs. After
filtering we got 20,167 heart MRIs, but with multiple diseases outside of the scope of this work. Given
the wide variety of diseases, the selected images (MRIs) still went through another filter whereby using
a SQL query we have filtered only by the patients that were diagnosed with AS, from the database HSM
provided for us. To achieve this filtering, we had to get the IDs of each patient from the selected MRlIs
to get the diagnosis associated with each image. After this complex task, we ended up with 9,787 MRIs
from 24 patients that were diagnosed with AS. However, our endeavor to obtain images specifically
related to Aortic Stenosis proved to be challenging due to both the complexity of medical knowledge
required and the sheer volume of images involved.

To obtain the finals MRIs that are relevant to the final dataset we had two aspects: first, a
considerable portion of the acquired images could not be employed due to their inability to reveal the

aortic valve, as demonstrated in Figure 6.
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Figure 6 - MRI images without valve

To surpass this challenge, numerous meetings and discussions were held with the cardiology
specialist. These meetings were dedicated to imparting knowledge and carefully analyzing each image
to determine if it was suitability for our study. Regrettably, this meticulous selection process
culminated in a significantly reduced dataset, with only 91 images with AS of the 9,787 MRIs from the
last selection, alongside 8 images that were diagnosed without AS. To emphasize the gravity of the
situation, it is critical to recognize that a significant amount of time and effort was put into the selection
process. Dreadfully, a mere 1% of the initially acquired images found utility in our research.
Furthermore, this selection process inadvertently resulted in an imbalanced dataset, adding yet
another layer of complexity to our research endeavor. This issue extends beyond our research,
potentially affecting others navigating similar paths in the pursuit of medical image analysis.

To compensate for the fact that our dataset was too unbalanced, preventing our model from
achieving its full potential and producing the expected outcomes, we introduced a new benchmark
dataset, which was also used by the authors in [55]. Subsequently, after finishing and adding the new
images to the dataset, the cardiology specialist verified the images to ensure the dataset's reliability.

This way, our Data Preparation was completed, having 111 MRl images without Aortic Stenosis
and 91 MRI images with Aortic Stenosis. In Figure 7, we can see some examples of MRI images with

and without Aortic Stenosis.

15



b)

Figure 7 - MRI of the aortic valve, where the column of images (a) represents the images without AS and column (b)
represents the images that have AS

With a small dataset of 202 images, including 91 images of AS and 111 images without AS, it is
clear that the limitations of the dataset size may prevent this study from achieving the intended
research results.

Recognizing the limitations of our small dataset, and to improve its resilience we used data
augmentation. With this method we employed four augmentation procedures, each of which aims to
create more diverse images without compromising realism in order to improve the final results, where:

(1) We used rotational augmentation to rotate photos at 90, 180, and 270-degree angles,
depicted in Figure 8. This geometric modification not only increased the size of our dataset by

3 times, but it also created useful variations in orientation, increasing the information

available to our models. We only intended to spin the MRIs at four angles because rotating an

MRI to a random degree between those mentioned above would not be realistic, because the

patient is not in a 15 degree position during the exam, for example. This creates new 606 MRIs

out of the original dataset.
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a) b)

Figure 8 - Representation of the rotation technique applied at the default MRI, where (a) represents the default MRI and
(b) represents the MRI with 90, 180, and 270 rotation degrees, respectively.

(2) We executed translation along the x-axis, Figure 9, while meticulously ensuring that the aortic
valve remained within the frame, with this we created more 202 MRIs out of the original

dataset.

a) b)

Figure 9 - Representation of the translation technique applied at the default MRI, where (a) represents the default MRI
and (b) represents vertical translation.
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(3) We have applied horizontal flipping, Figure 10, further diversifying our dataset by creating
mirrored counterparts of existing images. With this process we created more 202 MRIs and

also introduced new perspectives for our models to learn from.

a) b)

Figure 10 - Representation of the flip technique applied at the default MRI, where (a) represents the default MRI and (b)
represents the flipped MRIs.

(4) Recognizing by the cardiology specialist the occasional presence of underexposed images, we
addressed this issue by enhancing brightness in the images, Figure 11. By compensating for
the darker images, we ensured that our dataset covered a wider spectrum of lighting
conditions, thus reinforcing the adaptability of our models. With this technique we created

more 404 MRIs.

a) b)

Figure 11 - Representation of the brightness technique applied at the default MRI, where (a) represents the default MRI
and (b) represents the brighter MRIs.



In summary, these data augmentation strategies helped us overcome the limitations imposed

by our initial dataset size. By injecting diversity, variability, and completeness into our dataset, we

equipped our models with the necessary ingredients to extract nuanced insights, leading to the

refinement and improvement of our research outcomes. With this our dataset for each test got:

(1) 1°* test (without Data Augmentation) - 202 images, 91 with calcification and 111 without

calcification.

(2) 2" test (Rotation, Flip and Translation) — 1,212 images, 546 with calcification and 666 without

calcification.

(3) 3™test (Rotation, Flip, Translation and Brightness) — 1,616 pictures, 729 with calcification and

888 without calcification.

The entire data preparation process is summarized in Figure 12.
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Figure 12 - Summarization of the data preparation.
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3.3 Modelling

In this sub-chapter, we strike at the core of our research, utilizing CNNs for the classification of MRI
scans to detect AS.

CNNs are an important component of deep learning, achieving excellence in image-related
tasks due to their innate ability to learn hierarchical features from input data [56]. Their distinctive
architecture, characterized by convolutional layers applying filters to input data for automatic feature
extraction, makes CNNs highly effective in capturing subtle patterns and feature hierarchies. These
attributes render them ideal for intricate image classification tasks like AS detection.

For this experiment, we developed and implemented our own CNN model, conducting
multiple experiments to achieve optimal results. To address the inherent limitations of our dataset,
stemming from both the results obtained and the restricted dataset access, we employed CNNs in
conjunction with transfer learning and data augmentation techniques. As demonstrated in the
literature review, and by previous studies, transfer learning is often employed to overcome the
challenge of limited labeled data in medical image analysis [57]. In our experiment, we utilized pre-
trained weights from the publicly available ‘ImageNet’ dataset [58], which covers a wide range of
classes. Specifically, we selected the VGG16 [59], ResNet-50 [60], and Xception [61] models based on
established research findings [45,60—-62]. In a comprehensive review [62], the authors identified these
models as suitable for medical image classification. Additionally, other works, including [63], [64],
highlight ResNet50 as a suitable algorithm for MRI classification, and [63] not only confirms the efficacy
of ResNet50 but also demonstrates the implementation of VGG16.

All the pre-trained models utilized in our investigation required robust feature extraction to
distinguish various regions within MRI scans and identify the aortic valve for precise classification. To
meet this objective, we augmented each model with four additional dense layers, simplifying training
with our data. These adjustments produced promising results, aligning closely with the specific feature
requirements of our study.

Nonetheless, certain refinements were deemed necessary to fully use the potential of these
models. Given our binary classification task, the model’s output layer featured a single neuron with
sigmoid activation. We implemented a five-fold cross-validation strategy to enhance model
performance and mitigate overfitting concerns. This process involved randomizing the dataset and
training the model five times, ensuring robustness and generalization.

Additionally, we explored the use of fine-tuning, as suggested in the literature review. This
technique involves retraining the last layers of the model while keeping the upper layers untrainable,
harnessing the pre-trained model’s knowledge and feature extraction capabilities to efficiently adapt
it to our specific task-classifying aortic stenosis. This not only enhances model performance but also

optimizes time and computing resources.
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For modelling, we have splitted our data in the proportion of 80% for training and 20% test to

train and test the models [65], see Figure 13.
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Figure 13 - Percentage of test and train images

We hoped to leverage the full power of CNN models in our pursuit of precise AS categorization

by incorporating these adjustments and fine-tuning procedures.
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CHAPTER 4 - Evaluation and Discussion

In this chapter, we evaluate and compare the results and performance of the three CNN models that

were used in this research work, using the dataset created with images from Hospital Santa Maria and

from the benchmark dataset [55].

For the evaluation of the models and Data Augmentation techniques, three tests with different

types of image augmentation were conducted. The models in each test remained unmodified and were

defined with the following parameters:

Input shape was defined based on the architecture of each model, where on VGG16 and
ResNet50 was (224, 224, 3) and for the Xception was (299, 299, 3).
The number of batches was set to 32 based on the following formula (1), where N is the

number of samples divided with B the batch size multiplied by E number of epochs [66].

Number of Batches = B—L @

The number of epochs was set to 30 based on a considerable number of tests. Initially, we
began with 10 epochs, but through experimentation, we observed that the model could be
effectively trained for additional epochs without compromising the results. As we increased
the number of epochs, we found that not a single test could reach 30 epochs. This was due to
the implementation of the early stopping function, indicating that the models were reaching
their full capacity. Our early stopping function was defined with a 'patience' parameter set to
4. This means that if, during training, we didn't see better results for four consecutive epochs,
the model would stop. This approach was implemented to reduce overfitting while preserving

model performance, ultimately saving both time and computational resources.

As previously mentioned, the model parameters remained consistent across all tests. We

employed a progressive data augmentation approach, where each test included all the augmentation

techniques from the previous test. Consequently, the number of images increased with each test due

to the incremental application of these techniques. This approach allowed us to systematically explore

the impact of various augmentation methods on our model's performance.

(1) The first test was without Data Augmentation with 202 MRIs, 91 with calcification and 111

without calcification.

(2) The second test we applied Flip, Rotation and Translation techniques, ending up with 1,212

MRIs, 546 with calcification and 666 without calcification.
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(3) Inthe third and final test, we added images to the dataset created in the second test using an
extra technique known as brightness. The collection now has 1,616 MRIs, 729 with
calcification and 888 without calcification.

As we work with MRI classification, we seek to reduce the amount of false negatives (FNs) in
order to mitigate patient harm, delayed diagnosis and treatment, and legal and ethical consequences
for medical professionals and healthcare institutions if a FN diagnosis harms a patient [67]. So, the
Recall measure is the one with the most weight when evaluating different models and data
augmentation strategies. The remaining performance metrics serve as supplementary criteria, poised
to serve as tiebreakers in cases where models exhibit similar recall rates.

At the outset of this research study, we developed and implemented our custom CNN model.
Due to the limited number of images, our optimal architecture consisted of two convolutional layers,
each paired with a pooling layer and a hidden layer with 256 neurons, complemented by a dropout
layer of 0.3, as depicted on Figure 14. While we experimented with different architectures, including
variations in the number of neurons and an additional hidden layer, the chosen architecture
consistently yielded superior results. Attempts to increase model complexity led to decreased
performance, highlighting the importance of a simpler architecture for better generalization on the

test set.

’~

Input: 224 x 244 x 3 Conv2D 1: 64 3x3 | | MaxPooling2D 1: 2x2 | l Conv2D 2: 64 3x3 | Dense 1: 256 Output: 1
Dropout: 0,3

Figure 14 - Developed CNN architecture.
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We conducted tests on this model, employing the three different data augmentation

techniques mentioned earlier. The results of these tests are detailed in Table 3.

Tabela 3 - Results of the custom CNN model with the different datasets.

Test Accuracy Recall Precision F1-Score

1. Original Dataset 0.77 0.77 0.77 0.77
2. Rotation, Flip, and Translation 0.78 0.78 0.78 0.78
3. Rotation, Flip, Translation, and Brightness 0.81 0.81 0.81 0.81
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Table 3 illustrates that the third test yielded the best results, underscoring the positive impact
of data augmentation on the model. This outcome also emphasizes the importance of a larger dataset
to enhance performance. Figure 10 depicts the performances of the third test for both training and
testing. Itis noticeable that, while the model continues to learn and achieves seemingly perfect results
(100%) on the training set, this level of results does not extend to the testing set. This discrepancy
suggests that our model struggles to generalize its training insights to the testing set. The test set is

the most important since it simulates real-world implementation conditions.
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Figure 15 - Model performance: training vs testing.

In light of the observed challenges in model generalization, particularly in real-world testing
conditions, we recognized the need for a more robust and adaptable approach. Given the limitations
revealed by our initial results, where the algorithm struggled to generalize effectively, we turned our
attention to the implementation of transfer learning. This strategic shift aims to take advantage of the
pre-trained models and their extensive knowledge to enhance our model’s ability to handle diverse
and challenging scenarios as we seek to overcome the limitations encountered in the initial model
evaluations. As a pivotal step toward improving generalization and model robustness, the
incorporation of transfer learning brings a fresh perspective to our approach in addressing the
intricacies of aortic stenosis classification in MRI scans.

Consistent with the data augmentation tests outlined in the experiment in Table 3, we have
applied these tests to the selected pre-trained models.

The initial test with the original dataset of 202 images revealed distinct performance patterns
among the models. VGG16 demonstrated moderate performance, while fine-tuning notably improved

its recall, precision, and Fl-score. ResNet50 exhibited decent performance, and fine-tuning led to
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significant enhancements across all metrics. Xception delivered overall good performance, although
fine-tuning showed a decrease in all metrics.

Introducing data augmentation techniques (rotation, flip, and translation) with an expanded
dataset of 1212 images resulted in notable improvements. VGG16 consistently showed enhanced
performance in all metrics. VGG16 with fine-tuning maintained generally good performance,
experiencing a slight decrease in recall. ResNet50 consistently achieved high performance across all
metrics, with fine-tuning demonstrating excellent results. Xception consistently displayed good
performance, and fine-tuning showed a decrease in recall while maintaining good precision and F1-
score.

Extending data augmentation to include brightness, with a larger dataset of 1616 images,
further refined model performance. VGG16 demonstrated excellent performance across all metrics.
VGG16 with fine-tuning exhibited good precision and Fl-score, with a slight decrease in recall.
ResNet50 maintained good precision and F1-score, with a slight decrease in recall. ResNet50 with fine-
tuning demonstrated excellent performance, with a slight decrease in recall. Xception consistently
delivered good performance, and fine-tuning resulted in a decrease in recall while maintaining good
precision and F1-score.

From these tests, and as summarized in Table 4, data augmentation significantly contributed
to enhancing model performance, while fine-tuning generally improved the results. VGG16 and
ResNet50 consistently performed well, offering robust performance. Xception, although displaying
good performance, exhibited more variability across the tests. The choice of a model may depend on

specific study goals, emphasizing the trade-offs between precision and recall.
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Table 4 - Results of the models with different Datasets

Test

1. Original Dataset

2. Rotation, Flip, and Translation

3. Rotation, Flip, Translation and
Brightness

Models
VGG16
VGG16-FT
ResNet50
ResNet50-FT
Xception
Xception-FT

VGG16
VGG16-FT
ResNet50

ResNet50-FT

Xception

Xception-FT

VGG16
VGG16-FT
ResNet50

ResNet50-FT

Xception

Xception-FT

Recall Precision F1-Score
0.5 0.5 0.5
0.75 0.88 0.88
0.6 0.86 0.86
0.8 0.94 0.94
0.85 0.85 0.85

0.546 0.586 0.586
0.9 0.92 0.92
0.85 0.96 0.96
0.88 0.97 0.97
0.93 1 1
0.86 0.86 0.86
0.73 0.87 0.87
0.95 0.96 0.96
0.85 0.98 0.98
0.82 0.95 0.95
0.89 0.96 0.96
0.86 0.86 0.86
0.64 0.87 0.74
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CHAPTER 5 - Conclusions

In conclusion, we have successfully answered the purposed RQ, achieving its primary objectives, which
were implemented, and we tested the best CNN model combined with computer vision techniques for
the classification of aortic diseases from MRI data. The model’s ability to accurately classify MRl images
into categories representing the presence or absence of aortic diseases has been demonstrated, with
promising results regarding recall and precision.

As highlighted in the literature review, the application of Al for MRI classification has been
relatively scarce. While this presented challenges due to the limited prior knowledge and references,
it also unveiled a significant research gap.

Because we did not have a dataset, a great deal of time was invested to create one; this made
us deflect our attention to the main RQ in a way that we could not implement more techniques.

Despite the limited number of images, the results of this study are promising. We achieved a
recall of 81% with a model specifically developed for this problem, utilizing data augmentation without
the incorporation of transfer learning. Having a noticeable overfitting problem in this model, we used
pre-trained models, where we tested them with three data augmentation techniques. We can see that,
just by employing rotation, flip, and translation techniques (used in the second test), the results
improved by 8%, and, with the addition of another data augmentation technique used in the third test,
the results improved by 2%, where, in each test, the dataset is also augmenting its size. As a result, the
VGG16 model used with the dataset of the third test is the best in detecting AS in MRI scans, with 95%
recall and 96% precision.

The outcomes of this study not only advance the field of medical image analysis but also offer
practical implications for healthcare. The CNN model combined with the computer vision techniques
used has the potential to be a significant tool for radiologists and clinicians in their daily practice,
helping to achieve more sensitive, precise, and quick aortic disease diagnosis. As we can see from the
results achieved, this application of computer vision and artificial intelligence can reduce the workload
of radiologists and clinicians.

Additionally, it highlights the greater potential of computer vision and artificial intelligence to
transform healthcare and improve patient outcomes.

In conclusion, this study represents a significant step forward in the attempt to harness the
potential of computer vision for identifying and managing aortic diseases, providing hope for more

future effective and efficient healthcare procedures.
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5.1 Future Work
For future research, further improvements and iterations to the work would be beneficial.

As pointed in this thesis our dataset was very limited and not versatile because of the lack of
images with different perspectives, so an improved dataset needs to be the focus. The next dataset
should incorporate a greater diversity of images from AS, thereby fortifying the model's ability to
deliver precise and reliable disease diagnoses. By exposing the model to a wider spectrum of images,
we intend to elevate its diagnostic sensitivity and the trustworthiness of its outcomes.

The application of Image Segmentation and object detection to identify the aortic valve (ROI)
techniques can refine our model’s diagnostic proficiency. The purpose of this addition is to enable
precise localization and identification of pathological regions within medical images. This strategic
enhancement promises to elevate the diagnostic precision and furnish clinicians with invaluable
insights.

Finally, introducing severity assessment will significantly improve patient care and clinical
decision-making. This implementation will empower our model to evaluate the stage and severity of
diseases. As a result, the models will distinguish advanced disease stages, reducing even more the

medical workload.
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