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Resumo

Considerando o crescimento populacional, prevê-se a necessidade do aumento da pro-

dutividade das culturas. Contudo pragas e doenças são um grande obstáculo deste au-

mento. Por conseguinte, é importante desenvolver métodos tecnológicos que ultra-

passem este obstáculo em culturas como as do tomate, que são valiosas fontes de vita-

minas e minerais.

Neste sentido, esta dissertação associou-se ao projeto europeu ANDANTE cujo obje-

tivo é automaticamente prever o aparecimento de doenças e pestes com base em dados

meteorológicos e de imagens de armadilhas de insetos, multiespectrais aéreas e de plan-

tas ao nível do solo de plantações de tomate. Como tal, esta dissertação teve o objetivo

de desenvolver quatro módulos que criam métricas, relativas aos dados, que potenciam

a predição. Estabeleceu-se ainda o objetivo de realizar uma revisão de literatura para a

sistematização do conhecimento existente, sendo publicado um artigo. Parte dos dados

utilizados nesta dissertação foram providenciados por parceiros do ANDANTE.

O primeiro módulo consistiu num sistema de informação web que otimiza o acesso

e análise dos dados e a aplicabilidade dos restantes módulos. O segundo consistiu num

modelo de deteção e contagem de insetos nas armadilhas cujo melhor resultado foi

94.4% de mAP_0.5 no YoloV5x. O terceiro consistiu na verificação, através de proces-

samento de imagem, investigação e dados providenciados, dos índices de vegetação

apropriados e adquiríveis. No quarto, devido às condições dos dados das imagens ao

nível do solo utilizaram-se dados do PlantVillage para classificar a saúde de folhas

de tomate utilizando-se transferência de conhecimento, sendo 98% de precisão no

ResNet152V2 o melhor resultado.
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Abstract

Considering population growth, the need for increased crop productivity is expected.

However diseases and pests are a major obstacle to this increase. Therefore, it is im-

portant to develop technological methods that overcome this obstacle in crops such as

tomatoes, which are valuable sources of vitamins and minerals.

This dissertation was associated with the European project ANDANTE whose objective

is to automatically predict the appearance of diseases and pests based on meteorolog-

ical data and insect traps images, aerial multispectral images and ground-level plant

images of tomato crops. As such, this dissertation aimed to develop four modules that

create metrics, relative to the data, that enhance the prediction. It was also estab-

lished the objective of carrying out a literature review for the systematization of the

existing knowledge, resulting in the publication of an article. Part of the data used in

this dissertation was provided by ANDANTE partners.

The first module consisted in an web information system that optimises data access

and analysis and the applicability of the remaining modules. The second consisted of

a model of detection and counting of insects in traps whose best result was 94.4% of

mAP_0.5 on YoloV5x. The third consisted of verification, through image processing,

investigation and provided data, of the appropriate and acquireable vegetation indices.

In the fourth, due to the conditions of the ground level image data the PlantVillage

data-set was used to classify the health of tomato leaves using transfer learning, with

98% accuracy in ResNet152V2 representing the best result.

Keywords: Smart farming; precision agriculture; machine learning; artificial intelli-

gence; plant diseases and pests; tomato crops; classification; detection; forecasting.

v





Contents

Acknowledgements i

Resumo iii

Abstract v

List of Figures ix

List of Tables xi

Glossary xiii

Chapter 1. Introduction 1

1.1. Motivation 1

1.2. Overview 4

1.3. Objectives 6

1.4. Methodology 7

1.5. Outline of the dissertation 8

Chapter 2. State of the art 9

2.1. Research methodology based on PRISMA 9

2.2. Related work 11

Chapter 3. Data organisation and collection towards image analysis modules 23

3.1. Web information system 23

3.2. Data-sets 27

Chapter 4. Image analysis modules 35

4.1. Object detection in insect trap images 35

4.2. Vegetation indices acquisition of UAV images 43

vii



4.3. Disease classification on tomato leaves images 45

Chapter 5. Conclusion 51

5.1. Limitations 54

5.2. Future work 55

References 59

Appendix A. Web application interfaces 73

Appendix B. Results of disease classification on tomato leaves images 77

Appendix C. Articles 79

viii



List of Figures

1 Examples of tomato leaves from PlantVillage 2

2 Dissertation scope 6

3 Design science research methodology. 8

4 Recognition of tomatoes [31]. 12

5 YOLO model detection [53]. 15

6 Model proposed in [75]. 18

7 Procedure for building a potato late blight forecast model by [103]. 21

8 Django models Unified Modeling Language (UML). 26

9 Web application interface for the insect trap images data analysis. 27

10 Examples of insect traps images data-set. 29

11 Examples of UAV images data-set. 30

12 Examples of data-set Ground level images. 32

13 Pipeline for insect detection. 36

14 Illustration of an insect cut by tiles obtained without overlap 38

15 Yellow sticky card splitting approaches. 39

16 Illustration of an insect cut by tiles obtained with overlap. 40

17 Precision-recall curve for YoloV5x OSS approach. 42

18 Examples of calculated VI. 44

19 Model architecture possibilities with Keras Tuner configurations. 47

20 Best final models for each pre-trained model. 48

ix



21 Confusion Matrix’s of the best leaf classification models 49

22 Web application interface in the case of disease event. 73

23 Web application interface in the case of plant image import. 74

24 Web application interface in the case of plant analysis. 74

25 Web application interface in the case of weather analysis. 75

26 Confusion Matrix’s of the worst leaf classification models 77

x



List of Tables

1 Exclusion and inclusion filters 10

2 Filtering process of related works. 11

3 Information on the tomato crop fields where data was acquired. 28

4 Numbers of the insect traps images. 29

5 UAV images information. 30

6 Meteorological data information. 33

7 YoloV5 Insect trap images parameters. 37

8 YoloV5s yellow sticky card model results. 37

9 YoloV5 Insect Model results for ODS. 41

10 YoloV5 Insect Model results for OSS. 41

11 VI studied. 43

12 Results in ground level images. 47

13 MobileNetV2 additional metrics. 50

14 ResNet152V2 additional metrics. 50

15 VGG16 additional metrics. 78

16 InceptionV3 additional metrics. 78

xi





Glossary

AI - Artificial Intelligence

API - Application Programming Interface

ANDANTE - Ai for New Devices ANd Technologies at the Edge

ANN - Artificial Neural Network

BPNN - Back-Propagation Neural Network

BNDVI - Blue Normalized Difference Vegetation Index

CNN - Convolutional Neural Network

CVAT - Computer Vision Annotation Tool

DaP - Diseases and Pests

DSRM - Design Science Research Methodology

DT - Decision Tree

EXIF - Exchangeable Image File Format

GAs - Genetic Algorithms

GBNDVI - Green and Blue Normalized Difference Vegetation

GNDVI - Green Normalized Difference Vegetation

GRNDVI - Green and Red Normalized Difference Vegetation

GRNN - Generalized Regression Neural Network

H2020 - European Union’s Horizon 2020

INOV - INOV-INESC Innovation

IoM - Intersection-over-Minimum

IoT - Internet of Things

IoU - Intersection-over-Union

JU - ECSEL Joint Undertaking

KNN - k-nearest neighbor

xiii



LSTM - Long Short Term Memory

MAE - Mean Absolute Error

mAP - mean Average Precision

ML - Machine Learning

NB - Naïve Bayes

NDRE - Normalized Difference Red Edge Index

NDVI - Normalized Difference Vegetation Index

NIR - Near Infra-Red

NMS - Non-Maximum Suppression

NN - Neural Network

OSS - Overlapping with Same Size

ODS - Overlapping with Different Size

PS - Pure Split

PSB - Pure Split with Borders

PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analysis

RBNDVI - Red and Blue Normalized Difference Vegetation

R-CNN - Region-based Convolutional Neural Network

RF - Random Forest

SGD - Stochastic Gradient Descent

SVM - Support Vector Machine

SVR - Support Vector Regression

UML - Unified Modeling Language

VI - Vegetation Indices

xiv



CHAPTER 1

Introduction

In this chapter, a motivation associated to the theme of this dissertation is carried out in

order to introduce the topic. The next section provides an overview of what this thesis

is about, as well as an explanation of the scope of this work inside the infrastructure

where it was inserted. Following this, the objectives of this dissertation are presented.

Next, the methodology adopted in this thesis is addressed and explained. Finally, a brief

explanation of the sequence and meaning of the remaining chapters of this dissertation

is depicted.

1.1. Motivation

Due to extremely high infant mortality, the planet’s human population slowly increased

until the year 1700. The first billion was reached around 1800, followed by the second

billion in 1928, the third billion in 1960 and its seventh billion in 2017. The rapid popu-

lation growth in recent decades is mainly due to better healthcare. The United Nations

forecasts that the world population will reach 9.7 billion people in 2050, and 10.9 billion

people in 2100 [1].

Rapid population growth in recent decades has increased demand for agricultural

goods, resulting in a significant rise in cultivation area [2]. Crop productivity will need

to double by 2050 to fulfill the expanding population demands for food, bio-fuels, and

animal production. To achieve this target, main crop yields need increase by 2.4% each

year, but currently this growth is only about 1.3% per year [3]. However, this condition

harms the environment by reducing biodiversity and increasing greenhouse gas emis-

sions. It is thus important to make efficient use of resources, such as water and soil,

to enable high yield crops, as traditional agricultural production is not sustainable from

an economic or environmental point of view [2], as there is less caution, due to less

knowledge, in the choice and application of chemicals.
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Furthermore, crop production is constantly endangered by insect pests. It is esti-

mated that, globally, the food supplement decreases annually with an average of 40%

due to plant diseases and insect attacks [4]. Plant diseases and invasive insects cost the

world economy roughly $220 billion and $70 billion, respectively, each year [5].

The rise in global temperature, induced by climate change, has an impact on pest

damage and development. Insects metabolic rate increases when the temperature rises,

forcing them to eat more food and cause more harm. Temperature also affects the pace

of population expansion in numerous insect species. Global crop losses due to insect

pests are predicted to grow between 10% and 25% with every degree of average global

warming of the earth’s surface [6].

Tomato is a fruit vegetable that has great potential to be cultivated since it is a source

of vitamins and minerals. In terms of improving yields and fruit quality, tomatoes rank

among the horticultural commodities with high economic value that still require careful

handling [7]. It is critical to preserve this type of plantations against Diseases and Pests

(DaP), in order to improve the quality and quantity of the crop [8]. According to data

from the Food and Agriculture Organization of the United Nations, tomato production in

Western Europe has increased considerably from at least 2000 to 2019 [9].

(a) Tomato leaf

affected by the

mosaic virus

disease.

(b) Tomato leaf

affected by the late

blight disease.

Figure 1. Examples of tomato leaves affected by diseases from PlantVillage data-set

[10].
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Numerous fungal, bacterial, and viral diseases have severely afflicted this plant, with

symptoms appearing in various areas of the plant, such as the leaf, stem, fruit, etc.

Wilt, rot, stains on fruit, browning of foliage, and stunted development are some of the

symptoms [11]. An example of these symptoms on plant leaves is shown in Figure 1.

The traditional method of detecting and identifying plant diseases involves an obser-

vation by experts. This takes time and talent, and it is not practical for monitoring huge

farms. Therefore, to overcome the limitations of manual detection, automated meth-

ods for detecting and forecasting pests and illnesses are required [12]. A system with

these capabilities is addressed in this dissertation. A structure capable of performing

these tasks will prevent huge losses and the excessive use of pesticides and chemicals,

reducing its associated costs as well as the damage done to the environment [12].

The increasing availability of big data analysis approaches, provide the capability to

boost the research and development towards smarter farming, contributing to overcome

the challenge of producing high yield crops in a larger scale and in a more sustainable

way. The development towards smarter farming may support farmers in different tasks

such as plant DaP detection and forecasting, or water and soil management, while safe-

guarding natural resources and protecting physical ecosystems [13].

Artificial Intelligence (AI) and Machine Learning (ML) approaches have been success-

fully utilised in a variety of areas, including the medical sector for illness detection from

medical images [14], image classification in big data-sets [15], self-driving automobiles

[16], and academic research fields such as physics [17].

ML in agriculture is still in its early stages, but it is showing promise. Disease classifi-

cation can be done by using popular Convolutional Neural Networks (CNNs) architectures

for different plants with different diseases [18]. Relationships between weather data and

pest occurrence can be retrieved using Long Short Term Memory (LSTM) for forecasting

future pest attacks [19]. Insect detection on leaves can be performed by using object

segmentation and deep learning techniques [20].
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1.2. Overview

With the recent technological advances that have been applied to agriculture using ML,

this thesis seeks to contribute to the continuous development in this direction. There-

fore this dissertation was associated to a project that aims to help monitoring tomato

plantations, more specifically in forecasting the outbreak of DaP in the plantations, by

developing a system to this effect. This project is called “Ai for New Devices ANd Tech-

nologies at the Edge” (ANDANTE) and it is funded and supported by the ECSEL Joint

Undertaking (JU) and European Union’s Horizon 2020 (H2020) [21]. The development of

the ANDANTE system and, consequently, parts of this dissertation, were performed at

Iscte and at INOV-INESC Innovation (INOV). The ANDANTE consortium represents 30 part-

ners from seven European countries, where four are from Portugal (INOV, CCTI, TerraPro

- Technologies and Italagro). ANDANTE considers various use cases, one of which is “Use

case 2.2: Tomato pests and diseases forecast” [22], that is the use case assigned to the

Portuguese partners and explored on this dissertation.

ANDANTE proposes a system capable of acquiring data automatically, using Internet

of Things (IoT) devices, making detections and classifications from that data and forecast

the appearance of DaP in tomato crops based on all this data and metrics acquired from

the detections and classifications. The data is captured by ANDANTE partners and is

based on Unmanned Aerial Vehicle (UAV) and ground level images of tomato crops and

images of insect traps in those plantations, as well as meteorological information.

In the context of this dissertation and ANDANTE, the results of the work associated

with the detection and classification of objects in images are associated with the acqui-

sition of metrics. However, the development to obtain the metrics is distinct and two

aspects were considered. One associated with the object detection phase, i.e. object

annotation, and other associated with the phase where object detection is not applied

or has already been applied, i.e. metrics acquisition. In the context of this dissertation

the first aspect is related to the automatic detection of insects in insect traps. The

second is associated with the classification of tomato leaf disease and the acquisition of

vegetation indices (VI) from the plantation. The first phase will therefore be referred

to in this dissertation as object detection and the second as metrics acquisition.
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In the context of ANDANTE the object detection and metrics acquisition of the im-

ages should be done in two ways: one, in a first phase, associated to devices such as a

computer (that allows the use of any type of AI models, designated in this dissertation

as “Normal Models”); other, at a later stage, associated to IoT devices (which causes a

limitation of the AI models to be used, designated in this dissertation as “Tiny Models”)

that need to consume as little energy as possible because will be used in the field to

collect images, acquire metrics from them and send that information to the database.

This dissertation focused on the development of mechanisms associated to devices

such as a computer, for the analysis, metrics acquisition and object detection of the

data. The full system for forecasting the appearance of DaP using all possible data

modalities is out of this dissertation’s scope. This is due to the fact that while writing

this dissertation, data-sets from the partners with an extensive and varied record were

not yet available with sufficient maturity, leading to the impossibility of forecasting.

This dissertation ends up having a role in the development of the mechanisms that will

allow the creation of these data-sets necessary for the forecast.

Additional contributions to the system as a whole were also performed, namely the

development of a web information system, which arose out of a need, for easier access,

management and storage of data collected in the tomato crop fields. In short, this dis-

sertation is the first step towards the development of the system proposed by ANDANTE,

by having developments concerning a web information system and mechanisms that al-

low the acquisition of metrics and object detection from the images. This will enable

the forecast of the appearance of DaP at a later project´s stage. Figure 2 depicts the

dissertation’s scope in the context of ANDANTE in Portugal.
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Periodic captures

IoT & Sensors

Images

Meteorolo-
-gical data

Normal
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Tiny
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Data
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Graphical 

interface

Object detected &

meta-data acquired

Automatic object
detection & Meta-
data acquisition

User import

User

Forecast of
disease and

pest
outbreaks

Alerts

Dissertation scope

Figure 2. Dissertation scope inside of the Portuguese context of ANDANTE in the “Use

case 2.2: Tomato pests and diseases forecast”.

1.3. Objectives

The objectives of this dissertation emerged from the necessity to develop mechanisms

to improve crop production, in particular tomatoes. This is important in order to combat

DaP in time and as effectively as possible. In summary, this dissertation aimed to develop

modules that will contribute to the development of an AI system for tomato plantations,

denominated in the literature review as precision agriculture [23].

The main goal of this dissertation was to develop four modules using data provided

by ANDANTE and image processing and ML techniques, namely:

• Web information system : The acquired data must be stored and organised,

therefore an information system was developed for enabling an easier submis-

sion, storage, annotation and analysis of the project data;

• Insect trap images : Development of a model for the detection of insects present

in insect trap images;

• UAV images : Literature review in order to gain knowledge of which VI could

and would make sense to be tested in this context;

• Ground level images : Testing of different models to verify which is the best

for classification of diseases present on tomato leaves.

Taking into account the association to ANDANTE, which is a project of more than 3

years, some data and information was not available at the time of the development of
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this dissertation. Therefore, there was also an aim to carry out a literature review in

order to condense the knowledge that exists on the subject of applying AI to combat

DaP in agriculture and enhance the future work of the project so that the forecasting of

the appearance of DaP in tomato plantations could be done in the most effective and

optimised way possible.

1.4. Methodology

Since the goal of this dissertation is the development of modules that enhance the de-

velopment of a system, a methodology known as “Design Science Research Methodology”

(DSRM) [24] was used. This choice was due to the nature of this dissertation and the char-

acteristics of this methodology - DSRM is characterised by the direction and conceptual

model for presenting the results of digital scientific research artifacts.

This dissertation started from the use of the “problem-centred approach”, since the

problem that this dissertation tries to solve has already been previously defined, as

is demonstrated in section 1.2 and through the literature review in section 2.2. The

motivation associated with the problem is present in section 1.1.

The second phase, related to the definition of objectives for the solution, was pre-

sented in section 1.3, where the objectives of this dissertation were depicted. The next

step, which is the design and development of the artefact, represents the development

of the solution to the problem mentioned and is present in sections 3 and 4. In this case,

this phase involves the development of the necessary mechanisms to perform the object

detection and metrics acquisition in tomato crops. In addition, the development of the

web information system is also associated to this phase.

The fourth step involves putting into practice the mechanisms developed taking into

account the real problem presented. In the case of the mechanisms associated with the

images of insect traps and tomato plants at ground level this involves testing the mech-

anisms developed through data-sets called test sets, data never used in the developed

mechanisms. In the other cases there were delays in the annotation of data and in the

use of developed mechanisms which did not allow certain tests to be carried out.
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The evaluation phase was performed through feedbacks from ANDANTE partners. Ob-

ject detection and metrics acquisition from images were also evaluated by comparing

their results with related work that performs similar tasks. At the time of the devel-

opment of this dissertation all the data and information from ANDANTE was not yet

available, such as annotations. Therefore, some evaluations, mainly those of the web

information system and of the developments performed through the UAVs images, could

not be carried out as planned. However, evaluations will be conducted in collaboration

with the ANDANTE project next year, utilising the new tomato season.

Identify Problem &
Motivate

Define objectives
of a Solution

Design &
Development Demonstration Evaluation Communication

Problem-
Centered
Initiation

Objective-
Centered
Solution

Design &
Development

Centered
Initiation

Client/Context
Initiated

Possible research entry points

Process Iteration

Figure 3. Design science research methodology.

Figure 3 summarises the iterative process followed by the DSRM, whose steps were

described along this section.

1.5. Outline of the dissertation

After the introduction, the remaining part of the dissertation is organised as follows:

• Chapter 2 : Presents the research methodology and literature review done;

• Chapter 3 : Provides an overview of the web information system developed and

the data-sets used;

• Chapter 4 : Presents, evaluates and discusses the results obtained in image

processing and analysis modules, including those of ML, developed in the context

of the dissertation;

• Chapter 5 : Presents the main conclusions of this dissertation, as well as its

limitations and suggestions for future work.
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CHAPTER 2

State of the art

In this section, a review of ML and image processing techniques applied to agriculture is

presented, considering the objectives and context of this dissertation. The related work

depicted along this section is focused on techniques that allow the object detection and

metrics acquisition from images and the forecast of events associated with the emer-

gence of DaP in crops. The methodology used for performing such literature review is

also presented. At the end, a brief conclusion is shown in order to identify the literature

gaps that can be addressed and explored by this dissertation.

2.1. Research methodology based on PRISMA

In order to find the relevant work related to the dissertation Scopus was used as the

primary source of research and Google Scholar as a secondary one.

The type of search conducted in the two databases was different. While in Scopus

a search was conducted through a query, in Google Scholar the search was conducted,

when needed, through keywords that lead to works that would complement those found

with Scopus. The search for documents in Scopus was done using three different queries,

each aiming to addressed one of the following subjects: detection, metrics acquisition

and agriculture events forecasting.

The query used for the detection subject was the following:

(Insect OR Insects OR Crop OR Crops OR Plantation OR Plantations OR Tomato OR Tomatoes)

AND (“Automatic Annotation” OR “Automatic data annotation” OR “Automatic detection” OR

“Bounding Box”) AND (“Deep Learning” OR “Machine Learning” OR “Neural Network” OR “Arti-

ficial Intelligence” OR “Convolutional Neural Networks”)

As for the metrics acquisition, the query used was the following:
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(Tomato OR Tomatoes OR Insect OR Insects) AND (“Feature extraction” OR Identification)

AND (“Deep Learning” OR “Machine Learning” OR “Neural Network” OR “Artificial Intelligence”

OR “Convolutional Neural Networks”)

And finally, for agriculture event forecasting, the query used was the following:

(“Tomato disease” OR “Tomato diseases” OR “Crop disease” OR “Crop diseases” OR “Planta-

tion disease” OR “Plantation diseases” OR “Tomato pest” OR “Tomato pests” OR “Crop pest” OR

“Plant disease” OR “Plant diseases” OR “Plant pest” OR “Plant pests” OR “Crop pests” OR “Plan-

tation pest” OR “Plantation pests”) AND (Prediction OR Forecasting) AND (“Deep Learning” OR

“Machine Learning” OR “Neural Network” OR “Artificial Intelligence” OR “Convolutional Neural

Networks”)

Besides this query-oriented search, a set of filters were also defined in order to

highlight the most relevant works among the enormous amount of results retrieved.

These filters are summarised in Table 1.

Including Exclusive

Articles Not being Articles

Written in English or Portuguese Written in other than Portuguese or English

From 2015 or later Older than 2015

In the area of Computer Science Not in the area of Computer Science

In the area of Engineering Not in the area of Engineering

In the area of Decision Science Not in the area of Decision Science

Free or inside ISCTE’s scientific license Paid works

Table 1. Exclusion and inclusion filters in the search for related work.

After filtering, an analysis and selection procedure similar to the one defined in

the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow

methodology [25] was adopted. Additional references discovered from the analysed

works were added to the final selection when their contents were considered relevant.

At the beginning there were 1135 related works and then, after the removal of the

duplicated ones and the application of the first phase of inclusion and exclusion criteria

of Table 1, 135 related works were left. The next step was to analyse the title and

abstract of the papers found. At the end of this step there were 120 papers left. As
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there were still too many documents out of the scope, a skimming read was performed

on each work, and in the end, 124 papers were selected. This increase in the number of

papers, compared to the previous step, was due to finding new relevant work referenced

by the articles under analysis. The application of the described procedures resulted on

a final selection consisting of 84 works. This process is summarised in the Table 2.

Filtering process phase Number of works

Initial search with the inclusion and exclusion cri-

teria
135

Analysis of the title and abstract of the documents 120

Skimming of documents and new relevant work

found in references
124

Documents analysed and used 84

Table 2. Filtering process of related works.

The selected documents were grouped, according to the themes addressed in them,

into three main groups: object detection, metrics acquisition and agriculture events

forecasting. This grouping is what led to the organisation of the following sections as

they are.

2.2. Related work

2.2.1. Object detection

To perform a wide variety of ML techniques associated with images is very important that

the objects are properly detected. In this way, the metrics acquisition from the detected

objects and the consequent forecast of events, based on the extracted information, will

have a better performance [20]. For example, if the bounding box of a diseased leaf of

a tomato plant is incorrect, when trying to classify the disease, i.e. to acquire metrics,

the classification may be incorrect due to different possibilities, such as: an important

area for the classification is cut off; the bounding box leaves large margins between

the objects and the limits of the bounding box, which leads to the existence of more

distractions for the model at the time of classification. For proper detection to happen

there needs to be some manual annotation in order to properly train the AI models.
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The work carried out in [26] aimed to detect, identify and count a specific pest

species in insect traps using deep learning. Here a colour correction utilising a varia-

tion [27] of the “grey-world” approach [28] was used to mitigate the impact of lighting

variability on detection performance. They suggest a sliding window-based detection

pipeline that applies a CNN to image patches at various locations to calculate the prob-

ability that they contain a certain pest kind. Their work was inspired by algorithms pro-

posed for pedestrian detection, analysed in [29]. The final detections were produced via

Non-Maximum Suppression (NMS) [30] and thresholding of image patches based on their

positions and related confidences. To evaluate the precision of the bounding boxes the

Intersection-over-Minimum (IoM) was computed. It was concluded that many of the er-

rors occur because the same moth could have various wing positions, occlusion levels,

lighting circumstances, and decay patterns throughout time, indicating that the algo-

rithm would improve in well-managed sites.

Figure 4. Recognition of tomatoes [31].

The work proposed in [31] uses Faster Region-based Convolutional Neural Network

(R-CNN) [32] to recognise and locate tomatoes in images. This recognition is related to

the creation of a bounding box in each tomato detected, Figure 4 shows an example for

the outcomes of this recognition. In addition, the authors performed a more accurate

detection by taking the resulting images from the bounding boxes and using gaussian

density function of H and S, in the HSV color space, followed by erosion and dilatation

on the tomato body to separate nearby tomatoes and eliminate periphery subpixels from
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all detected ripe tomatoes. They concluded that the Faster R-CNN classifier can quickly

and accurately locate tomatoes.

In paper [33] the authors perform an automatic insect detection where they first

use a spectral residual model and then extracted different colour features. In the end,

whitefly and thrips were identified using a Support Vector Machine (SVM) classifier. The

precision for the whitefly and thrips was 93.9% and 89.8%, respectively. As for the

detection of the trap, a precision of 93.3% was obtained.

In [34] a pheromone trapping device was developed. In this work the original image

was cropped into several sub-images without overlaps. These sub-images were then used

to train the tested models. At the end, the image is reconstructed taking into account

the detections made in each sub-image. The observed results showed a mean Average

Precision (mAP) of 94.7%.

Using IoT and deep learning frameworks, the work in [35] provides a real-time remote

insect traps monitoring system and insect identification algorithm. The authors used the

Faster R-CNN ResNet 50 and an average accuracy using different databases of 94% was

obtained.

To detect the location of a tomato leaf, in [36] the K-means algorithm was used to

cluster the images of diseased tomato leaves and to improve the anchors based on the

results, with the anchors representing initial guesses of the bounding boxes [37]. This

paper indicates that the applied method has better detections than the Faster R-CNN

alone. However, it must be taken into account that the data-set in question is lab-based

and that only one leaf at a time subject to detect.

A geometric-based detection approach is proposed as part of the work in [38]. Here

the goal was to obtain the cutting points of the peduncle based on the fruit bounding box

in order to have a autonomous system that harvests most types of crops with peduncles.

The Mask R-CNN [39] model was adapted and a geometric feature to detect the fruits

and the peduncle cutting points was used. The results indicated that the cutting point

can be recognised and the fruit cut at the proper peduncle location. Similarly, the work

in [40] also used the Mask R-CNN to individually segment blueberries from an input im-

age. In their work, the authors also suggest that the use of newer deep learning based
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segmentation models such as “YOLACT” [41], “SOLO” [42], “PolarMask” [43], “Blend-

Mask” [44] and “SOLOv2” [45], may achieve better performance than the one used in

their research.

In the case of [46], Faster R-CNN was used for the detection of rice seedling on

images. In this case the authors tested, separately, three CNN models (“ZF Net” [47]

“VGG_CNN_M_1024 Net” and “VGG_16 Net” [48]) in the Faster R-CNN. The best perfor-

mance was achieved when using the “VGG_CNN_M_1024 Net” and “Approximate Joint

Training” method, that is a method where the whole model is trained by setting a maxi-

mum number of iterations of the model [49]. Another work that used Faster R-CNN com-

bined with other deep residual networks (“Resnet 50”, “Resnet 101”, and “Inception-

Resnet-v2”) was proposed in [50]. Here, the best results were obtained using “Resnet

101”.

In [51], the authors main goal was to build a model that detects white-fly and thrips

from sticky trap images in greenhouse conditions. They developed a model based on

Faster R-CNN, calling it “TPest-RCNN”, and trained it using transfer learning with a pub-

lic data-set in a first phase. In a second phase they used their data-set with the weights

obtained from the first phase. The model was found to be reliable in detecting micro-

scopic pests on images with varying pest concentrations and light reflections. In addi-

tion, it was shown that, for recognising insect species from images captured at sticky

yellow traps, the best results were achieved by the proposed model, beating the Faster

R-CNN architecture and techniques employing manual feature extraction (color, shape,

texture).

Another type of method used to detect objects is the use of “YOLO”, whose concept

is simplified in Figure 5 and addressed in [52]. In [53], the authors used “YoloV3” [54]

and dealt with the problems of tomato detections under different lighting and occlusion

conditions. The authors tested using circular bounding boxes instead of rectangular ones,

which resulted in better Intersection-over-Union (IoU) values and a more accurate NMS.

Data augmentation was also used.

In the referenced work [53], the “YOLO-Tomato” model was proposed. The proposed

model is based on the “YoloV3” and incorporates the dense architecture proposed in
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Figure 5. YOLO model detection [53].

[55]. To evaluate the detection performance a comparison was done between the use of

different methods, data-set sizes and levels of illumination and occlusion in the images.

It was concluded that the best method among the ones tested (“YoloV3”, “YoloV2”,

Faster R-CNN and “YOLO-Tomato”) was the one proposed by the authors. The results

also showed that, for less than 450 images the F1-Score rises quickly as the number

grows, but when the the amount of images on the data-set is above 450, performance

increase is slower and begins to saturate. Finally, it was also verified that the proposed

model is robust to variations in the illumination and occlusion of objects in the images.

One method not yet mentioned was the one proposed in [56]. This method uses the

“CenterNet” algorithm [57] to detect vegetables and draw bounding boxes around them.

It is proposed to remove the weeds from the background by determining and evaluating

a color index using Genetic Algorithms (GAs) [58] according to bayesian classification

error. This approach achieved 95.6% precision.

Taking into account the methods discussed, open source solutions can be used to

help implement the detection process. In [59] this approach is performed, using the

Computer Vision Annotation Tool (CVAT)1 which contains a feature for automatic anno-

tation/labeling. This software can also be powered by Nuclio2, a serverless technology

1https://github.com/openvinotoolkit/cvat
2https://nuclio.io/
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that allows to deploy trained models to CVAT. This tool was analysed and it was con-

cluded that it could be interesting to use it given the infrastructure of the project, as

CVAT allows to create and carry out annotation tasks and, with Nuclio, deploy trained

models [60].

2.2.2. Metrics acquisition

It is possible to acquire a wide variety of information from images using ML algorithms

and/or using non-ML computations performed on the image domain. For instance, an

ML-based algorithm can be used for classifying the disease present on sick leaf, while

a non-ML technique, as a simple python script, can be used for determining the image

pixels within a given range of colors. The information can be acquired from the original

image, from bounding boxes present on the image, which can be tiles of the original

image focusing detected objects, or from the image with a type of processing, such as

the transformation of the original image to gray-scale.

Neural Network (NN), LR, Decision Tree (DT), SVM, k-nearest neighbors (knn), Naïve

Bayes (NB), and deep CNN are the most common AI methodologies for detecting and

classifying plant diseases [61].

A common type of metrics acquisition is the classification of the object present in the

image. Various works, performed this acquistion, performing the classification of insects

[62]–[65] or diseases in tomato leaves [66]–[69]. To obtain this type of information one

of the techniques used is transfer learning. [70] and [71] used this approach in their

work. Transfer learning consists of taking the relevant parts of a pre-trained ML model

and applying it to a new but similar problem.

Regarding the work done in [70], it is suggested “AlexNet”, “VGG-16 Net” and

“SqueezeNet” as three pre-trained deep networks, where transfer learning is applied,

in order to analyse and evaluate their performance in the categorisation of tomato leaf

diseases. The authors compared the proposed methods with each other and with the

state-of-the-art techniques. In addition they used two types of data-sets, a smaller and

a larger one. It was concluded that, in general, the proposed method using “AlexNet”

was the best among all the tests performed.
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In [71], the authors used “AlexNet”, “VGG16”, “GoogLeNet”, “MobileNetv2”, and

“SqueezeNet” and applied transfer learning to them to classify tomato plant leaves as

healthy or diseased, classifying the type of disease on the illness cases. The results

showed that “VGG16” achieved better performance.

This technique has also been applied in the area of insect classification. In [72] the

authors used transfer learning to classify kissing bugs (triatominae) and their specific

species. The results obtained show that “VGG16” achieved better performance among all

testing configurations, reaching 96% accuracy for the classification of different species

of kissing bugs.

Besides the simple classification of the objects of interest, other types of metrics can

be collected. For example, [73] proposed a model to classify tomato maturity based on

colours. Transfer learning was used and the obtained results outperformed other deep

learning and ML techniques used in recent works on image classification in the context

of tomato crops. Image pre-processing was applied by resizing, cutting and removing

the background. The background removal was performed in four steps: the first refers

to the transformation of the blue channel by setting the green and red channels to zero;

the second to the gray-scale transformation; the third refers to the development of a

binary mask using Otsu’s method [74]; the fourth concerns with the application of the

binary mask to the colour image.

Another type of metrics possible to collect is the nutrient stress in the tomato

plant [75][76]. In [75], transfer learning is applied to three pre-trained architectures

“Inception-V3”, “ResNet50” and “VGG16” combined with two classifiers, Random Forest

(RF) and SVM, to improve classification accuracy. The results showed that “Inception-

V3” alone achieved the highest accuracy. Using the classifiers, the best accuracy was

obtained combining “VGG16” with SVM. The proposed model is shown in Figure 6.

The work in [77] proposes an effective tomato experimental sorting method based

on machine vision. The authors developed an algorithm to analyse the images. The

parameters for sorting included shape, size, ripeness and defects, and these were the

features that the algorithm collected. The techniques used to obtain these parameters

were mostly based on image processing and mathematical methods. Image processing
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Figure 6. Model proposed in [75].

took place by converting the images to the HSI color space, and then, pixels whose

colours were outside the specified HSI range were filtered and put in black. The resulting

image was converted to RGB space and then its pixel colors were filtered in (0, 25) for red

and (0, 64) for the blue and green range. Finally, the image was transformed to gray-

scale and thresholded with Otsu’s algorithm. The accuracy for defect identification,

form, size, and the overall system, with all of the previous ones combined, was 84.4%,

90.9%, 94.5%, and 90%, respectively.

Due to differences in chlorophyll concentration, damaged leaves on diseased plants

exhibit a different spectral reflectance than those in healthy plants. Sick plants absorb

less visible light and more near-infrared light. Thus, reflectance information can be used

for identifying diseased plants [78]–[80]. In [78], were was done a study targeting the

late blight infection, a disease that affects different plant species including the tomato,

it was discovered that spectral changes between healthy and sick plants are minimal

in the visible spectrum, but substantial differences are observed in the Near Infra-Red

(NIR).

The Normalized Difference Vegetation Index (NDVI) [81] is a standard indicator for

measuring the level of vegetation in a region using leaf reflectance data. Satellite data

or customised cameras can be used to calculate NDVI [78][80]. The combination of NVDI

with the minimum temperature was shown to be more accurate than meteorological fac-

tors alone for forecasting the brown planthopper insect population. Relevance of NVDI

for forecast pest alongside with temperature was found in [82], where it is suggested

that NVDI may provide information regarding the relation between the crop growth stage

and pest development.
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Remote sensing may be used to get a variety of vegetation indexes [83]–[89]. Besides

NDVI, many other indices have been developed taking into account the characteristics of

the problem, developing NDVI variations such as Normalized Difference Red Edge Index

(NDRE) [86] or Green Normalized Difference Vegetation Index (GNDVI) [87].

2.2.3. Forecast of diseases and pests

Besides the correct detection and classification of DaP in crops, it is very important to

forecast their appearance.

For event forecast, it is important to understand which variables will have an impact

on what is forecast, which was a subject analysed in [90] and [91]. In agriculture, a model

introduced in [92] can be used to understand the impact of location and temperature

on crops. In addition to these, it was verified that variables such as soil, humidity,

rainfall and moisture can have an impact on the crop yield [93]. Long term analysis of

meteorological data collected by unmanned observation can also be used for forecasting

disease incidence [94].

A cloud-based platform that can handle the collection, analysis, and forecast of in-

formation about the agricultural environment, a smart farm service, was proposed in

[94]. The suggested integrated system operates and monitors farms and manages re-

lated devices, data, and models to provide support for high-level application services.

This system analyses environmental and growth data while registering, connecting, and

managing IoT devices. Here, General Infection Model [95] was used to develop a model

for forecasting Botrytis cinerea infection risk. It was concluded that an accurate plant

disease forecast systems can be built if such integrated systems are implemented and

various input data-sets necessary for system configurations and interrelationship analy-

ses are collected [94]. This demonstrates the importance of having a lot of data when

forecasting agriculture events.

A suggested model, proposed in [96], tried to identify a link between agrometeoro-

logical variables and the prevalence of four different types of rice illnesses. The authors

used an Artificial Neural Network (ANN) to perform detection, classification and fore-

cast of disease occurrence in rice crops. The data-set used was composed of weekly
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weather data from 1989 to 2019. Initially, the correlation between the variables was

evaluated and pre-processing of the data-set was carried out. Then, using the proposed

ANN model, the weather forecast was done. With the weather forecast done, disease

forecast was performed for those weather forecasts. The authors compared different

activation functions in the ANN model and came to the conclusion that Relu did the best

job when it came to weather forecasting and Softmax when it came to classification. A

Mean Absolute Error (MAE) of 0.46 was obtained for weather forecasting and an accuracy

of 92.15% for the classification.

It is also common to use LSTM method to perform event forecasting, such as the

work in [19] did. Initially, the authors used the Apriori algorithm to find the association

rules between weather variables and the occurrence of cotton pests. Forecasting the

presence of DaP was presented as a time series and an LSTM-based algorithm was devised

to tackle it. Other traditional classification methods such as SVM, KNN and RT, were

also implemented to compare with the use of LSTM. The model developed using LSTM

has outperformed the other methods. The results suggest that the LSTM network has

specific advantages in processing time-dependent problems and that model selection is

critical.

In [97] an ANN was used to carry out the forecast, resulting in a classification accord-

ing to three classes: no disease occurrence, low severity disease occurrence and high

severity disease occurrence. A data-set with meteorological data from 2011 to 2015 was

used and different activation functions and different splits of the data-set were tested.

The results concluded that if a larger data-set is used, a forecast with a higher accuracy

will occur. The maximum accuracy achieved was using the Sigmoid activation function

and it was 90.909%.

Other works, such as [98] and [99], also proposed a method that uses ANN to perform

a forecast. In [98] it is forecast the crop that can grow in a certain area based on soil

and weather related parameters. In [99] a technique to forecast food quality using Back-

Propagation Neural Network (BPNN) is developed. In [100] and [101] it is carried out a

study where a forecast for crop yield is provided by an ANN. In [100] it is tested different

types of NNs and came to the conclusion that increasing the number of neurons in the
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hidden layer does not contribute to increasing the accuracy of the system. The NN has

the structure in the form of one input layer neuron, two neurons in the hidden layer

and one neuron in the output layer. The results showed that ANN is better, in terms of

accuracy, than the traditional regression methods used in this case. In [101] agricultural

data collected over 30 years from a paddy field in Nepal was used. In addition climate

and fertilizer use data were also used as input for the forecast. The authors concluded

that the trained NN produced a minimal amount of error, indicating that the model is

competent to forecast Nepali crop yield.

In the case of the work done in [102], SVM was used to perform disease forecast

and it was concluded that SVM is better than conventional multiple regression and ML

algorithms, BPNN and Generalized Regression Neural Network (GRNN) in this case. The

authors based their forecast on six meteorological variables. As for the work in [103], the

BLITE-SVR, which is a potato late blight forecast model, was evolved using Support Vector

Regression (SVR) and 13 climatic variables. The procedure for building the potato late

blight forecast model is shown in Figure 7. Regarding the work in [104], the authors used

a linear model to forecast the crop growth period, but also used non-linear components

to increase the accuracy of the system. On the other hand in [105] the non-linear Quasi-

Newton multi-variate optimization method was used.

Figure 7. Procedure for building a potato late blight forecast model by [103].
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Various surveys have been done in the area of forecasting events related to agricul-

ture. For example, [106] has provided a survey article on the methodologies utilised

in the field of agricultural wheat crop forecasting. Statistical, meteorological, simu-

lation, agronomic, remote satellite sensed, synthetic and mathematical models were

studied in the research. The study shows a compact combination of all these models

that demonstrates why the NN model is important to other models for non-linear data

behavior systems such as wheat crop yield forecast. In [107], the authors analysed and

categorised research findings from the last ten years that forecast the start of disease

at an early or pre-symptomatic stage, i.e. symptoms that are not visible to the unaided

eye. They investigated the approaches and methods used, pre-processing techniques

and data used, performance metrics, and expected results, highlighting the issues en-

countered. The study’s findings show that this practice is still in its infancy and that

many obstacles must be overcome. In the case of [108], the authors performed a re-

view on studies that used ML methods applied to plant resistance genes discovery and

plant diseases classification. The research showed that techniques such as SVM, NB and

Markov clustering have been used to forecast plant diseases. It can be concluded from

the survey that ML techniques have a great potential in disease forecast. The report in

[109] outlines all of the models that have been developed for late blight of potato fore-

casting across the world. With these surveys, which addresses and summarise various

works, it is possible to reach a wide variety of works related to the forecast of events in

the context of agriculture.

2.2.4. Dissertation contribution

Taking into account that there is no work performing the forecast of the emergence of

DaP in tomato plantations using data from meteorological stations, as well as aerial,

ground level and insect traps images of tomato plantations, this dissertation seeks to

explore this gap by providing foundations that will enable the development of this fore-

cast.
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CHAPTER 3

Data organisation and collection towards image analysis modules

At the first stage of the development of this dissertation there was a whole process

of organising and selecting the data-sets. This process emerged from the quantity and

condition of the data and from a need demonstrated by the end users and partners as-

sociated with the project, in order to optimise the project’s progress. Taking this into

account, an information system, that includes a web application to facilitate farmers

inputs, was developed to help this process. This development aimed to facilitate the

remaining work associated to this dissertation as well as future work associated with

the ANDANTE project. In the following sections, details on the data-sets used and the

web information system developed are provided. The open source software CVAT, its

Application Programming Interface (API), and Nuclio (open source and managed server-

less) were used in the developments described below and in Chapter 4, making model

training, manual and automatic detection, and data management and selection easier.

3.1. Web information system

The development of a web information system that facilitates access to data, both for

visualisation and analysis, as well as support for training, testing and use of ML-based

mechanisms to predict the emergence of DaP in tomato crops, meets a need demon-

strated by the ANDANTE partners.

The idea of developing a web information system such as this emerged since the data

acquired was huge and was not organised and available for easy access and analysis. This

was considered fundamental in order to develop more efficient and optimised techniques

of object detection and metrics acquisition from the data provided. In addition, this

system was designed to facilitate the sharing of information (annotations, new data,

etc.) by end users.
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This idea in combination with requirements surveys performed before and during the

development of the other modules, with several meetings with the Portuguese partners

of the ANDANTE project, led to the development of the web information system useful

to those who were developing the project and to the end users. The meeting interac-

tions demonstrated the need for an application where it would be possible to access

information and conduct studies of metrics related to crop fields, such as the number of

insects in different traps over time. In addition, a retrospection of the work previously

done on the project was performed with INOV and it was concluded that it was necessary

to reorganise and structure the data obtained so far in order to enable faster project

development. This need was in line with the needs demonstrated by the partners.

The interface was developed on the basis of the results of the requirements survey,

and as result, the following functionalities were developed:

• Creation/edition of new/old insect trap stations;

• Visualisation of the insect trap stations and their characteristics;

• Manual import of insect trap images;

• Display of collected/imported insect trap images and their characteristics;

• Analysis (line-chart) of the number of insects over time, with the possibility of

filtering by date and trap station and/or cultivation field;

• Creation of tasks in CVAT of images that are not annotated and are in the system

already;

• Synchronisation of the latest detection in CVAT with the respective images

present in the system;

• Creation/edition of new/old weather stations;

• Visualisation of the weather stations and their characteristics;

• Manual import of weather data;

• Display of collected/imported weather data and their characteristics;

• Analysis (line chart) of the weather data over time, with the possibility of fil-

tering by date, weather station, cultivation field and/or measurement;

• Manual import of ground level images;
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• Display of collected/imported ground level images data and their characteris-

tics;

• Analysis (line chart) of the plant images import rate over time, with the possi-

bility of filtering by date and cultivation field;

• Manual import of UAV images;

• Display of collected/imported UAV images data and their characteristics;

• Creation/edition of new/old cultivation fields;

• Visualisation of the cultivation fields and their characteristics;

• Creation/edition of new/old diseases/pests;

• Form for the registration of diseases recorded in the crop field.

Some of the mechanisms developed within the scope of this dissertation, further

detailed in Chapter 4, can be integrated into the website in order to put them to effective

use, such as:

• Objects detection in imported insect trap images;

• Acquisition of Exchangeable Image File Format (EXIF) information from the dif-

ferent types of manually imported images;

• Automatic computation of VI when UAV images are imported.

This website was developed using Django [110] associated with SQLite [111] and Py-

forms [112]. Django was used because it is a widely used technology today and facilitates

communication with the database. The data models developed for the database, as well

as their relations, are represented in Figure 8.

A model (“DiseaseEvent” table) representing DaP appearing in the crop field (“Crop”

table) was created so events of the appearance of DaPs in areas of the crop field could

be registered and DaP could be associated to UAV images (“DroneImage” table), insect

traps images (“InsectsTrapImage” table) and plants images at ground level (“PlantsIm-

age” table). The model corresponding to the acquired UAV images (“DroneImage” table)

also registers the crop field (“Crop” table), the acquisition date, the location and the

different spectra of the respective UAV image. The model for the ground level plant im-

ages (“PlantsImage” table) also registers information about the date, crop field (“Crop”

25



Disease

disease_type (CharField)

name (CharField)

1

*

Crop

coordinates (jSONField)

name (CharField)

DiseaseEvent

crop (ForeignKey)

acquired_on (DateTimeField)

coordinates (jSONField)

DroneImage

crop (ForeignKey)

acquired_on (DateTimeField)

bbox (jSONField)

cvat_link (URLField)

img_visible (ImageField)

...

lat (FloatField)

long (FloatField)

InsectsTrap

crop (ForeignKey)

lat (FloatField)

long (FloatField)

name (CharField)

WeatherStation

crop (ForeignKey)

lat (FloatField)

long (FloatField)

name (CharField)

PlantsImage

crop (ForeignKey)

uploaded_by (ForeignKey)

accurate_lat_long (BooleanField)

acquired_on (DateTimeField)

cvat_link (URLField)

image (ImageField)

lat (FloatField)

long (FloatField)

rel_location (CharField)

InsectsTrapImage

insects_trap (ForeignKey)

acquired_on (DateTimeField)

cvat_link (URLField)

image (ImageField)

number_of_insects (IntegerField)

WeatherMeasure

Weather_station (ForeignKey)

acquired_on (DateTimeField)

air_humidity (FloatField)

air_temperature (FloatField)

...

wind_speed_med (FloatField)

1

*

1

*

*

1
1

*

*

*

*

* *

*

*

*

1

*

1

*

Figure 8. Django models Unified Modeling Language (UML).

table), location and acquisition date of the respective image. Regarding the models con-

cerning the insect traps images (“InsectTrapImage” table), which records information

about the number of insects and date of the respective image, and the meteorological

data (“WeatherMeasure” table), which registers information about the measurements

captured by the sensors, a model was created concerning the respective stations (“In-

sectsTrap” and “WeatherStation” table) where the data is acquired. The insect trap and

weather station models (“InsectsTrap” and “WeatherStation” table) register information

about the crop field (“Crop” table) and location of the respective station. These models

emerged in this way taking into account the existing variables and the communications

done with partners.

To help understand the developed web application and its functionalities, its inter-

face is shown in Figure 9. In this case a random example (unrealistic) of the graph
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visualisation of the number of insects in the trap 001 of the crop Test_Crop_1 over time

can be observed. Additional figures and information can be found on Appendix A.

Figure 9. Web application interface for the insect trap images data analysis.

The web-based information system has been tested by importing new data concerning

the tomato plantation in the Ribatejo area in Portugal in 2022 and data already acquired

from the 2021 season. The tests carried out mainly showed that the system was pre-

pared for the storage, access and analysis of imported data. For example, with the

system developed it became possible to clearly access and link an weather station and

its measurements or an insect trap and its images to a crop field. Taking into account

the tests performed it can be stated that there has been a significant improvement, with

needs that this system was intended to address being met.

3.2. Data-sets

The data-sets used are associated with Portuguese tomato plantations in the Ribatejo

region, more precisely in Valada, Castanheira and Lezíria, where ANDANTE Portuguese

partners performed the data acquisition. Information about these tomato crop fields

can be found in Table 3. The acquired data was organized into four data-sets:

• Insect Traps data-set : Images of insect traps present in the plantations;

• UAV images data-set : Aerial images of the crop captured by a UAVs.
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• Ground level images data-set : Images captured at ground level of the planta-

tions;

• Meteorological data-set : Meteorological data provided from meteorological

stations in the crops.

Location Area (ha) Planting date Central GPS point

Castanheira 23 19/04/2021 38.982300, -8.954110

Lezíria 27
27/04/2021 and

10/05/2021
39.006537, -8.881018

Valada 20 07/05/2021 39.067730, -8.772214

Table 3. Information on the tomato crop fields where data was acquired.

3.2.1. Insect traps data-set

This data-set consists of 5646 images of insect traps acquired by cameras located in front

of the traps. However, only 4637 images were valid since some of them did not corre-

spond to insect traps or were of insufficient quality to improve the models performance.

These images were manually verified and marked as invalid. Table 4 shows the results

of this filtering.

Figure 10 presents an example image for each of the six traps used and Table 4

shows additional information regarding the location and the image acquisition period on

each installation. The images were captured every day between the dates indicated in

Table 4. The acquisition was mostly done between 11 am and 8 pm at different times

of the day (11 am, 11.30 am, 12 midday, 4 pm, 4.30 pm, 5 pm, 7 pm, 7.30 pm and

8 pm), usually nine images were captured per day. The ANDANTE partners defined this

configuration based on their understanding of the insect’s behaviour.
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Trap 001 Trap 002 Trap 003 Trap 004 Trap 005 Trap 006

Field Valada Castanheira Valada Lezíria Lezíria Castanheira

Period of

operation

27/05/2021

to

03/09/2021

26/05/2021

to

08/09/2021

27/05/2021

to

08/09/2021

27/05/2021

to

23/09/2021

27/05/2021

to

24/09/2021

26/05/2021

to

06/09/2021

Total im-

ages
848 948 901 945 1071 933

Valid Im-

ages
733 756 784 763 845 756

Table 4. Numbers of the insect traps images.

(a) Insect Trap 001. (b) Insect Trap 002.

(c) Insect Trap 003. (d) Insect Trap 004.

(e) Insect Trap 005. (f) Insect Trap 006.

Figure 10. Examples of insect traps images data-set.
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3.2.2. UAV images data-set

The aerial images collected by UAVs were captured on a weekly basis and at 120 and 30

metres altitude in the crop fields under study. The images have six wavelengths: visible,

blue (450 nm ± 16 nm), green (560 nm ± 16 nm), red (650 nm ± 16 nm), red edge (730 nm

± 16 nm) and NIR (840 nm ± 26 nm). More information about this data-set is depicted in

Table 5. Figure 11 depicts examples of UAV images of the different fields in the visible

wavelength.

(a) Cas-

tanheira

at 120m.

(b) Cas-

tanheira

at 30m.

(c) Lezíria

at 120m.

(d)

Lezíria at

30m.

(e) Valada

at 120m.

(f) Valada

at 30m.

Figure 11. Examples of UAV images data-set.

Location First flight date Last flight date Number of flights Number of images

Castanheira 13/05/2021 09/08/2021
14 (120m and

30m)

4055 (120m) ,

5529 (30m)

Lezíria 31/05/2021 23/08/2021
11 (120m and

30m)

4548 (120m) ,

3752 (30m)

Valada 20/06/2021 23/08/2021 6 (120m and 30m)
1878 (120m) ,

2026 (30m)

Table 5. UAV images information.
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3.2.3. Ground level images data-set

This data-set consisted of images of plants of the crop fields under study captured man-

ually by the ANDANTE partners. This was done in order to simulate a future implemen-

tation of a station equipped with a camera that captures images of plants in a regular

and uniform manner. This image capture was done in order to detect and subsequently

classify diseased leaves and fruits. Due to the fact that the image acquisition was done

manually there was no frequency of capture as in the case of the insect traps images.

This data-set had a problem associated with the non-uniformity of the type of im-

ages, considering that there were images capturing multiple plants, others capturing

only a leaf and others only a fruit. Examples of this non-uniform capture process can

be observed in Figure 12. To increase the performance of object detection and met-

rics acquisition models, an assertive pre-selection of data, organising it into different

categories, was required. This is due to the necessity of different types of detections

depending on the image content. For instance, an image depicting a single leaf requires

different detections than those for an image depicting a large crop field area.

Due to the scarcity and non-uniformity of the data, it was decided not to use this

data-set and to use the PlantVillage [113] data-set to develop mechanisms that can be

used and adapted to the real data-set of the project in the future.

From PlantVillage data-set, a balanced sub data-set was obtained considering only

images associated to tomato plants. It consists of 11000 images of tomato leaves ac-

quired in a laboratory environment (Figure 1 depicts two examples), i.e. leaves taken

from the plant and placed on a background of mostly the same colour (grey), with 1100

images associated to each disease. In the data-set there are healthy tomato leaves

and with the following diseases: mosaic virus, target spot, bacterial spot, yellow leaf

curl virus, late blight, leaf mold, early blight, spider mites twospottedspider_mite and

septoria leaf spot.

3.2.4. Meteorological data-set

The meteorological data collected in the study fields were collected using real and syn-

thetic meteorological stations, with the real ones corresponding to three stations (one
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(a) Planting zone. (b) Planting zone.

(c) Mildew disease. (d) Bacterial

disease.

Figure 12. Examples of data-set Ground level images.

in each field) and the synthetic ones corresponding to four, whose values were obtained

by ANDANTE partners combining the physical station values.

The data collected through the stations are: cloud percentage, atmospheric pres-

sure, soil temperature, evapotranspiration amount, rainfall amount, air temperature,

solar radiation density, air humidity, wind speed, wind direction, dew point, wet leaf

percentage, plate temperature and the energy consumption of the station. The mea-

surements for the real stations were taken every 30 minutes, whereas the measurements

for the synthetic stations were taken every hour. Table 6 contains further information.

This data-set was not used in the scope of the dissertation due to delays in the provi-

sion of information by the ANDANTE partners which made it impossible to correlate the

data and attempt to predict the onset of DaP using only meteorological data.
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Location Period of operation
Number of data of each mea-

sure

Castanheira 26/05/2021 to 07/12/2021 9479

Lezíria 31/05/2021 to 31/12/2021 11062

Valada 17/06/2021 to 31/12/2021 11647

Azambuja (synthetic) 05/03/2021 to 08/11/2021 5975

Benfica do Ribatejo (synthetic) 05/03/2021 to 08/11/2021 5975

Leziria (synthetic) 05/03/2021 to 31/12/2021 7224

Salvaterra (synthetic) 05/03/2021 to 31/12/2021 7224

Table 6. Meteorological data information.
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CHAPTER 4

Image analysis modules

This chapter covers the work developed for the modules that perform image processing

and analysis, either with or without the use of ML techniques.

4.1. Object detection in insect trap images

This section addresses the developed work associated with object detection. In the

scope of this dissertation, this detection occurred in the images of insect traps, with

the aim of counting the insects present in them in order to correlate this metric with

other metrics gathered and contribute in the future development of the algorithm for

forecasting the appearance of DaP. The objects to be detected were the traps (yellow

sticky cards) and the insects present in them. Due to the fact that no annotation existed,

some manual annotations were done at first. This was necessary to enable the training

of the object detection models.

Due to the fact that insect traps are physically different between themselves and

are subject to different illumination conditions during image acquisition, it was opted to

use only AI models for object detection, discarding the use of manual image processing

mechanisms for the detection of insects. The fact that the colour of the insects is usually

the same as the colour of the lines present in the yellow sticky cards also led to the use of

only AI models. Taking this into account and the literature review [31][38][40][46][50]–

[53], where it was observed that AI models are being increasingly used, performing bet-

ter and replacing more traditional methods that involved manual image processing, the

manual image processing techniques were discarded.

The pipeline for insect detection was as follows: yellow sticky card present in the

original image is detected; the resulting bounding box is split into tiles; the insects

present on each tile are detected; the original image is reconstructed with all bounding
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boxes. For the sake of improving performance and results, the bounding box corre-

sponding to the yellow sticky card, i.e. the result of the yellow sticky card detection

model, was split into tiles which were used to train the insect detection models tested.

Figure 13 depicts this pipeline divided into two phases, A and B.

Input

Yellow
sticky
cards
model

detection

Yellow sitcky card annotation

Yellow sticky card model detection result

Image split
into tiles

Each tile

Reconstruction of the image with 

the detections performed

Insects
model

detection

Output

Phase A

Phase B

Figure 13. Pipeline for insect detection.

Considering the literature review performed [52]–[54], the YoloV5 object detection

model was used to perform the necessary detections. Transfer learning was applied for

training the model for this specific case of insects and yellow sticky cards detection.
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The YoloV5 model as different versions (YoloV5s with small size, YoloV5m with

medium size, YoloV5l with large size and YoloV5x with extra large size) and the ba-

sic structure of all these versions is the same. They differ only depending on the size of

the model because there is a multiplier that influence the width and the length of the

network. Generally, the larger the size of the model, the better the performance and

the more processing time and memory will be used [114].

The parameters presented in Table 7 were used in all developments involving the use

of YoloV5.

Epochs Batch Size Optimiser Patience

300 16
Stochastic Gradient De-

scent (SGD)
100

Table 7. YoloV5 Insect trap images parameters.

4.1.1. Yellow sticky cards model detection

Phase A, concerning yellow sticky card detection, was developed with the intention of

using the detection data to later detect the insects contained in the sticky cards.

From the valid images, explained in section 3.2.1, 1272 insect trap images were

manually annotated concerning the yellow sticky trap. 80% of the data-set was used for

training, 10% for validation and the remaining 10% for testing. The images were resized

to 640 by 640 pixels in the training process.

The lightweight YOLO model YoloV5s was enough to achieve near-perfect results, as

shown in Table 8. With the developed trap detection model getting good results, all the

images that had not been manually annotated were passed through the developed model

and it was verified the correct detection by the model.

Phase mAP_0.5 mAP_0.5-0.95 Precision Recall

Training 0.995 0.995 1 1

Testing 0.995 0.995 1 1

Table 8. YoloV5s yellow sticky card model results.
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4.1.2. Insects model detection

Insect detection model was developed considering only the bounding box corresponding

to the detection of the yellow sticky card. The YOLO model was again used, but in this

case more powerful versions of YoloV5 were tested.

Initially, the tiles were obtained with an increment of the base tile size and in cases

where these increment was not divisive of the width and/or length of the image, the tiles

in the margins (right and/or bottom) were smaller than the remaining tiles (Figure 15c),

this approach was denominated Pure Split (PS). In a second phase, in order to keep

all tiles always with the same dimensions, black/yellow/white borders were added to

the tiles with smaller dimensions (Figure 15d), this approach was denominated Pure

Split with Borders (PSB). However, these approaches were discarded, since with these

approaches it was possible for an insect to be split between tiles. This could lead to two

detections representing the same object, one corresponding to the part of the object

that was in a certain tile and the other to the part of the object that was in a tile in the

vicinity of the previous one. This situation is illustrated in Figure 14.

Tile 10Tile 00

Tile 11Tile 01

Figure 14. Illustration of an insect cut by tiles obtained without overlap
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This situation would complicate the process of reconstructing the bounding boxes in

the original image as the creation of the new bounding box based on the original ones

would become complex and there would be a wide variety of possibilities when verifying

which bounding boxes belong to the same object.

Arising this problem, the development concentrated on two new approaches, namely:

• Overlapping with Different Size (ODS) : Tiles get different dimensions depend-

ing on the position of the tiles relative to the image and overlapping occurs

(Figure 15a);

• Overlapping with Same Size (OSS) : Tiles are all of the same dimensions

(320x320px). Zones may have more overlapping areas than others (Figure 15b).

(a) ODS

approach.

(b) OSS

approach.

(c) PS

approach.

(d) PSB

approach.

(e) Original

image.

Figure 15. Yellow sticky card splitting approaches.

For all the tests performed, the amount of images used was the same, 248 insect

trap images. However, due to the different approaches to perform the splitting, the

amount of tiles used to train the models was different for each approach. For ODS and

OSS 11375 and 5092 tiles were used when training and testing the models, respectively.
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In all approaches, 80% of the data-set was used for train, 10% for validation and the

remaining 10% for test.

The overlapping of tiles was done with caution making sure that the overlapping zone

occupied an area of 160x160px (Figure 16). This was because by analysing the images,

the insects present in them and questioning experts in the area it was discovered that the

maximum area that a bounding box could occupy would be below these values. In this

way, the problem that arose was solved. This was due to the fact that if an insect is split

between tiles it will be partially detected in some tiles but will always be fully detected

on a neighbouring tile, this type of situation is illustrated in Figure 16. Thus, when

reconstructing the image it became only necessary to understand which detections are

overlapped, by checking and comparing each bounding box position, which ones have

the largest area and confidence and remove the duplicated ones. This way only the

bounding boxes detecting the whole object would remain.

Tile 10Tile 00

Tile 11Tile 01

Figure 16. Illustration of an insect cut by tiles obtained with overlap.

From tests carried out, some incorrect detections and detections to be performed

were observed, but they were in minority when compared to the accurate ones. These
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flaws can be suppressed when the values obtained in each image are associated with

groups, for example, between 0 and 20 few insects, between 20 and 100 some insects,

etc. This association is important when analysing the data and verifying the respective

correlations. This type of failures is reflected in the mAP_0.5-0.95 metric that is signifi-

cantly lower than the mAP_0.5 metric in all tests performed, this is depicted in Tables 9

and 10. These tables reflect that approach ODS and OSS had similar results with the

YoloV5x having the best results in both cases. However, due to the uniformity that OSS

provides to the dimensions of the tiles without the need for resizing, the OSS approach

was the one taken in to account for the development of the remaining work.

Model Phase mAP_0.5
mAP_0.5-

0.95
Precision Recall F1-Score

YoloV5s
Training 0.973 0.678 0.982 0.935 0.958

Testing 0.945 0.539 0.937 0.89 0.913

YoloV5m
Training 0.975 0.7 0.976 0.94 0.958

Testing 0.933 0.554 0.908 0.88 0.894

YoloV5l
Training 0.979 0.724 0.986 0.947 0.966

Testing 0.952 0.567 0.938 0.906 0.922

YoloV5x
Training 0.98 0.733 0.982 0.951 0.966

Testing 0.952 0.573 0.935 0.9 0.917

Table 9. YoloV5 Insect Model results for ODS.

Model Phase mAP_0.5
mAP_0.5-

0.95
Precision Recall F1-Score

YoloV5s
Training 0.964 0.632 0.963 0.940 0.951

Testing 0.923 0.497 0.912 0.853 0.882

YoloV5m
Training 0.975 0.691 0.982 0.946 0.964

Testing 0.946 0.542 0.946 0.874 0.909

YoloV5l
Training 0.973 0.694 0.981 0.939 0.960

Testing 0.937 0.543 0.951 0.862 0.904

YoloV5x
Training 0.976 0.713 0.983 0.95 0.966

Testing 0.944 0.559 0.942 0.88 0.910

Table 10. YoloV5 Insect Model results for OSS.

The results observed were even better or similar to related work, such as work done

in [33]–[35] that had a precision of 93.3%, a mAP of 94.7% and an accuracy of 94%,

respectively.
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An analysis of the context of the problem and communication with end users led to

the conclusion that it was important to perform an analysis regarding false positives and

false negatives. This is because if too many false detections (false positives) occur, it

would mean a possible acquisition by end users of products in vain or a constant check in

the field of the values reflected by the detections. On the other hand, if too many false

negatives occur it would mean the possible appearance of pests without alerting the end

user. Furthermore, the non-occurrence of false positives and negatives will always be

the best situation to ensure that the correlations performed with other data acquired

to predict the appearance of pests are not biased. Therefore, the precision-recall curve

was analysed since precision and recall reflect the false negatives and false positives

values, respectively. Figure 17 depicts the plot of the precision-recall curve.

Figure 17. Precision-recall curve for YoloV5x OSS approach.

An observation of the plot in Figure 17 suggests that it is possible to simultaneously

achieve high values for the precision and recall by choosing a suitable decision threshold

for the confidence associated to the bounding boxes outputted by the object detection

model. This means that low values for both false positive and false negative rates can

be kept, confirming the model’s good performance [115].
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4.2. Vegetation indices acquisition of UAV images

The acquisition of VI was performed in the UAV images since these technique is robust

to the variation of the sun illumination [87]. Table 11 lists the indices considered.

Indice Formula

NDVI (NIR - RED)/(NIR + RED) [81]

NDRE (NIR - RED_EDGE)/(NIR + RED_EDGE)[86]

GNDVI (NIR - GREEN)/(NIR + GREEN) [87]

BNDVI (Blue Normalized Difference Vegetation In-

dex)
(NIR - BLUE)/(NIR + BLUE) [88]

GRNDVI (Green and Red Normalized Difference

Vegetation Index)
(NIR - (GREEN + RED))/(NIR + (GREEN + RED)) [89]

GBNDVI (Green and Blue Normalized Difference

Vegetation Index)

(NIR - (GREEN + BLUE))/(NIR + (GREEN + BLUE))

[89]

RBNDVI (Red and Blue Normalized Difference Veg-

etation Index (RBNDVI)
(NIR - (RED + BLUE))/(NIR + (RED + BLUE)) [89]

CI_green (ChlorophyllIndex Green) (NIR/GREEN) - 1 [84]

CVI (Chlorophyll Index Vegetation) NIR * (GREEN/RED) - 1 [84]

ARI (Anthocyanin Reflectance Index) (1/GREEN) - (1/RED_EDGE) [87]

MARI (Modified Anthocyanin Reflectance Index) (1/GREEN) - (1/RED_EDGE) * NIR [87]

RGI (Redand Green Index) RED/GREEN [87]

ACI (Anthocyanin Content Index) GREEN/NIR [87]

MACI (Modified Anthocyanin Content Index) NIR/GREEN [87]

DVI (Difference Vegetation Index) NIR - RED [87]

RENDVI (Red-Edge-Normalized Difference Vegeta-

tion Index)
(RED_EDGE - RED)/(RED_EDGE + RED) [88]

ARVI (Atmospherically Resistant Vegetation Index)
(NIR – (2 * RED) + BLUE) / (NIR + (2 * RED) + BLUE)

[85]

NDWI (Normalized Difference Water Index) (GREEN – NIR) / (GREEN + NIR) [85]

OSAVI (Optimized Soil Adjusted Vegetation Index) (NIR – RED) / (NIR + RED + 0.16) [85]

VARI (Visible Atmospherically Resistant Index) (GREEN – RED) / (GREEN + RED – BLUE) [85]

SIPVI (Structure Intensive Pigment Vegetation In-

dex )
(NIR – BLUE) / (NIR – RED) [85]

RECl (Red-Edge Chlorophyll Vegetation Index) (NIR / RED) – 1 [85]

Table 11. VI studied.

The literature review and accessible spectra in UAV images were used to identify

which indices to acquire since they are derived using mathematical formulas based on

distinct spectrum bands. It was also sought the assistance of specialists in the field,

ANDANTE partners, to determine which indices would be most useful to utilise. Some
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of the indices studies are depicted in Figure 18. This work was developed with the

aim of understanding in the future which of the indices now studied are the ones that

effectively have a stronger correlation with the other acquired data in order to optimise

the algorithm for predicting the appearance of DaP.

(a) Original Image.
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(b) RBNDVI.

0 200 400 600 800 1000 1200 1400

0

200

400

600

800

1000

1200

NDRE

0.6

0.4

0.2

0.0

0.2

0.4

(c) NDRE.
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(d) NDVI.
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(e) GBNDVI.
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(f) GNDVI.

Figure 18. Examples of calculated VI.
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4.3. Disease classification on tomato leaves images

The development of mechanisms associated with the ground level images of tomato plan-

tations was performed using PlantVillage data-set, since the data-set from ANDANTE did

not have the necessary uniformity because it was collected by different people with

different devices, as explained in section 3.2.3. This data-set is composed of labo-

ratory images captured in a controlled environment with a uniform background. This

was the approach adopted due to the insufficiency of uniform images acquired on the

fields depicting tomato diseases. Nevertheless, training and testing the ML models using

the images on the PlantVillage data-set should be similar to using another tomato leaf

data-set. It is thus expected that, once sufficient uniform diseased tomato images are

acquired on the fields, the AI mechanisms described in this dissertation can be easily

adapted to the new data.

The disease classification problem associated to the tomato leaf images in the

PlantVillage data-set contains 10 classes, where nine correspond to the diseases men-

tioned in section 3.2.3 and the remaining belongs to the healthy plants. To achieve the

goal, the data was first organised into training, validation and testing sets. Then, differ-

ent pre-trained CNN models were trained and tested, using a transfer learning approach.

The network weights used for transfer learning were those associated to the ImageNet

[116], a widely used large public image data-set. Additionally, the Keras Tuner [117]

was used to build the most appropriate fully connected layer for the model in question.

Finally, for each pre-trained model, the best dense-layer architecture resulting from

Keras Tuner was used for training.

Keras Tuner is a library that helps choosing the ideal set of hyperparameters for

the model under development. Hyperparameters are variables that remain constant

throughout the training of the model and have direct impact on its performance. There

are two types of hyperparameters: model hyperparameters, which influence the final

model chosen and its structure, such as the number of hidden layers and their sizes; algo-

rithm hyperparameters, which influence the speed and quality of the learning algorithm,

such as the learning rate for the SGD. To perform the search for the best hyperparame-

ters, it is necessary to configure those that are considered. Then, Keras Tuner randomly
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trains the model according to the possibilities for each hyperparameter (e.g. if the num-

ber of neurons in a dense layer is set as a hyperparameter, a range of values must be

defined and, according to it, the Keras Tuner randomly chooses a value for the number

of neurons in that layer). The number of times the Keras Tuner randomly chooses hy-

perparameters and trains based on them, corresponds to the number of trials defined.

Each trial can have numerous runs, that is, a given trial/training associated to a set of

hyperparameters can be run more than once - this can be useful since simply initialising

the weights differently in the same model can lead to results with considerable differ-

ences. At the end, the model and respective hyperparameters that obtained the best

results among all the trials carried out are obtained.

The data-set was divided into three sets, with 8000 images associated to train, 2000

to validation and 1000 to test. The data was always balanced during this procedure,

with 1000 images of each class in the training set and 100 images in the validation set.

TensorFlow [118][119] library was used to make data augmentation and to generate

the matrices of the images with the respective labels. The models used were deep learn-

ing models from state of the art, namely: MobileNetV2 [71]; VGG16 [71]; ResNet152V2

[120]; InceptionV3 [75].

All performed tests share a common setup configuration, namely: the percentage

of images associated to test set, train set and validation set; the data augmentation

characteristics (rotation range of 30 degrees, zoom range of 0.15, width and height shift

range of 0.2, shear range of 0.15 and horizontal flip enabled); the characteristics of

the Keras Tuner and the respective hyperparameters configurations (Figure 19), with

Softmax used as the activation function of the last layer, since it is more suitable for

multi-class problems for associating probabilities to each class, and Relu used in the

hidden layers [121]; the callbacks used in the models training, with the validation set

loss used as the metric monitored and patience set to six; the way that the models

were compiled, with the Adam used as optimiser, because it is robust and suitable to

a wide range of optimisation problems in the ML field [122], and the categorical cross

entropy function used as loss function; batch size (32), target size (224,224), input shape

(224,224,3) and number of epochs (50).
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Figure 19. Model architecture possibilities with Keras Tuner configurations.

The best models obtained after the application of transfer learning and utilisation of

Keras Tuner were those represented in Figure 20.

After obtaining the best models the next step was the training of the models. The

best results from this training were the ones presented in Table 12, with additional

information about the results in Appendix B.

Model
Train set Validation set Test set

Accuracy Loss Accuracy Loss Accuracy Loss

Mo-

bileNetV2
0.99 0.046 0.99 0.060 0.97 0.087

VGG16 0.89 0.330 0.90 0.330 0.86 0.498

ResNet-

152V2
0.98 0.070 0.99 0.040 0.98 0.046

InceptionV3 0.86 0.410 0.87 0.450 0.80 0.600

Table 12. Results in ground level images.

The model that showed the best performance for this problem was ResNet152V2

followed closely by MobileNetV2, with both models achieving higher accuracy values

and lower loss values across all sets. Although it was not the best model, MobileNetV2

is a simpler model than ResNet152V2 and may be useful when computational power is

limited. There was also verified some, but not very significant, overfitting in VGG16 and

InceptionV3. In MobileNetV2 and ResNet152V2 there were realistic results, as there was

no overfitting and/or underfitting, as the results from validation, training and test sets
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(a) MobileNetV2 and VGG16.
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Figure 20. Best final models for each pre-trained model.

were always close. The best results obtained were quite similar to or surpassed similar

works in the literature review [70][71].

It can be inferred from the confusion matrix of the two best models (Figure 21),

with the values reflected in Tables 13 and 14, respectively, that MobileNetV2 had the

lowest recall values, reaching 85% (highlighted in bold in Table 13) in the classification

of disease spider mites twospottedspider_mite, while ResNet152V2 had the lowest value

at 96% for diseases mosaic_virus and late_light. In this perspective it can be said that

ResNet152V2 was the model that had a better performance classifying all classes.
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(a) Confusion Matrix of MobileNetV2.

(b) Confusion Matrix of ResNet152V2.

Figure 21. Confusion Matrix’s of the best leaf classification models
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Precision Recall F1-Score

bacterial spot 0.97 1.00 0.99

early blight 0.99 0.98 0.98

late blight 0.97 0.98 0.98

leaf mold 0.91 1.00 0.95

septoria leaf spot 0.98 0.98 0.98

spider mites two-

spotted spider_mite
0.97 0.85 0.90

target spot 0.99 0.96 0.97

yellow leaf curl virus 1.00 0.98 0.99

mosaic virus 1.00 1.00 1.00

healthy tomato 0.96 1.00 0.98

Accuracy - - 0.97

Macro average 0.97 0.97 0.97

Weighted average 0.97 0.97 0.97

Table 13. MobileNetV2 additional metrics.

Precision Recall F1-Score

bacterial spot 0.97 1.00 0.99

early blight 0.97 1.00 0.99

late blight 1.00 0.96 0.98

leaf mold 0.99 1.00 1.00

septoria leaf spot 0.95 0.99 0.97

spider mites two-

spotted spider_mite
0.99 0.97 0.98

target spot 1.00 0.97 0.98

yellow leaf curl virus 1.00 0.99 0.99

mosaic virus 0.99 0.96 0.97

healthy tomato 0.98 1.00 0.99

Accuracy - - 0.98

Macro average 0.98 0.98 0.98

Weighted average 0.98 0.98 0.98

Table 14. ResNet152V2 additional metrics.
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CHAPTER 5

Conclusion

The main objective of this dissertation was to develop four modules to contribute to

the development of a system capable to detect and acquire data from tomato crops and

forecast the appearance of DaP in those crops based in the data acquired. The data was

associated with weather stations, ground level and aerial images of tomato plantations

and insect traps in these plantations. Furthermore, the realisation of a literature review

that contributes to the future optimisation of the project was specified as an objective.

The initial aim was to perform DaP outbreak forecast through ML and image processing

techniques using data from weather stations and aerial, ground level and insect trap

images of tomato crops. However, this objective was discarded due to the quantity and

condition of the data provided (limitations that are detailed in section 5.1). Therefore,

the objectives in section 1.3 were defined and the work was thus developed in that

direction.

The first module developed in this dissertation, which came from a need, was the

development of an web information system, associated to a database where all data

related to the project could be stored in a structured and organized way. Consequently,

a web application was developed using the PyForms library and Django with the SQLite

database. It can be concluded that an web information system that was able to suppress

needs aroused was developed since with this application it became possible to access

and analyse collected data, as the analysis of the number of insects detected in a trap

on a certain field in a certain period.

Regarding object detection module, the second module developed, it was done in

the insect traps images. The detection associated to the yellow sticky card and the

subsequent training of AI models were performed in a first phase. In this phase optimal
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results were obtained using YoloV5s, and it was possible to perform the detection of

yellow stick cards in all data-set.

The second phase was dependent on the first, as it was supposed to use the bounding

box associated to the detection performed of the yellow sticky card in order to improve

the accuracy of the detections of the insects in the traps. At this stage a problem was

faced: how to perform the splits on the yellow sticky card bounding box image in a

way that maximises the quality of the model and minimises its complexity while not

causing insects to be lost during the process of splitting and reconstructing the bounding

boxes on the original image? The defined approach contemplated the use of overlapping

tiles. Within the tests carried out, the OSS approach ended up generally having the best

results. In this approach the tiles had the same dimensions and were overlapped and the

best results was 98.3% of precision with YoloV5x model.

It was possible to develop an insect detection model with the need for human su-

pervision at times since the number and location of the bounding boxes performed may

be inaccurate. However, these errors were never in substantial quantities and can end

up mostly suppressed when associating the amount of detections performed in an image

to a group. This association has advantages at the time of data treatment and anal-

ysis. This achievement was an important step as it provides fundamental future data

for forecasting the appearance of DaP or for simple data analysis associated with the

plantations.

Regarding the UAV images, the third module, only image processing was performed

and metrics concerning VI was acquired. These indices were calculated based on the

literature, the type of spectra of the images provided and the knowledge obtained from

specialists associated to the ANDANTE project. This was very important since, as men-

tioned in the literature, VI are very important data for the detection, classification and

forecast of DaP in crops. No evaluation could be done for this model due to delays by

partners in providing information on UAV images.

Finally, in relation to ground level images, the fourth module, it was intended to

perform a leaf and fruit detection and the subsequent classification of the type of dis-

eases, in case of illness. However, due to the condition of the data provided this was
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not possible. Therefore, only leaf health classification was performed and in a public

data-set. This happened since that the classification phase after the detection of the

leaves in the original image has a similar process to the one performed in this work,

serving this work as a basis for that phase.

The public data-set used was PlantVillage and positive results were obtained.

Through the use of Keras Tuner, which allowed testing various options and weights for

the constructed NN, the best models were obtained. It was concluded that the model

with the best performance was ResNet152V2 closely followed by MobileNetV2. This is

due to the fact that when the confusion matrix of each network was analysed, it was

concluded that ResNet152V2 had a better performance in classifying all the diseases in

question. However, if searching for the network with the lowest computational cost,

MobileNetV2 would be the best option as it is smaller and less complex.

In the context of this dissertation a paper was published in MDPI Agriculture [123].

This paper depicts a literature review on ML techniques used in the agricultural sector,

focusing on the classification, detection, and prediction of DaPs, with an emphasis on

tomato crops. This survey aims to contribute to the advancement of smart farming

and precision agriculture by encouraging the development of techniques that will allow

farmers to use fewer pesticides and chemicals while maintaining and improving crop

quality and productivity [124]. It was thus concluded that the objective of conducting a

review that would contribute to the project was achieved. In addition, this dissertation

resulted in another paper whose content is related to the work developed on insect

trap images (present mainly in Section 3.2.1 and Section 4.1). This paper was published

in MDPI Agriculture Special Issue “The Application of Machine Learning in Agriculture”.

More information about these papers is provided in Appendix C.

Taking into account the ANDANTE project, it can be concluded that this dissertation

contributes to the development of the collaborative system that is intended to be devel-

oped in ANDANTE, since this dissertation is the first step towards this system develop-

ment due to the modules and literature review performed. Thus, the primary objective

of this dissertation was met by contributing to the final goal of ANDANTE, which is the

prediction of the presence of DaP in tomato crops.
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5.1. Limitations

The results and type of work carried out suggest that the quantity and quality of the data

provided had a great influence on the objectives set and consequently on the results

obtained. This was very much due to the fact that this dissertation was associated with

an European project, suffering the problems and dependencies of a real project.

As far as quantity is concerned, this limited this dissertation as large and varied data-

sets are needed to train the developed AI models since in this way the models become

robust and prepared for future situations when they are put on the field. When this

does not happen, the results obtained may not reflect reality, and the model may be

performing well only for the few data that is used to train, validate and test the model.

Regarding the module associated with the web information system there were lim-

itations in the tests to be carried out due to the delay in using the application by the

ANDANTE partners. Besides, all the other limitations mentioned about the other modules

also limited the work developed, since the web information system should fully incor-

porate the remaining modules of the project, such as the detection and registration of

sick zones from UAV images at the moment of their import.

Concerning the module associated with the images of insect traps, there were limi-

tations due to the absence of manual annotations of insects made by the ANDANTE part-

ners, which made it impossible to develop models for the detection and classification of

insects trained with all the available images.

The UAV imagery module had limitations due to the lack of manual annotations of

tomatoes and diseased areas, making it impossible to develop detection and classifica-

tion models of tomatoes and/or areas affected by diseases and/or pests.

Regarding the module associated with the images at ground level of tomato crops,

there were limitations due to the non-existence of manual annotations concerning toma-

toes, leaves and diseased areas, making it impossible to develop models for the detection

and classification of tomatoes, leaves and/or areas affected by diseases and/or pests.

In addition the lack of quantity of diversified and uniformed images, due to the image

acquisition being done manually by different people, also limited the development in

this direction.
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Considering all the limitations, developments were carried out with the aim of using

the data-sets coming from ANDANTE whenever possible. In the case of the insect traps

images, since there were no manual annotations and the partners were not able to per-

form the annotations, a large number of images were manually annotated, concerning

the insects and the yellow sticky traps, in order to develop an object detection model

for insects and yellow sticky cards. Regarding the images at ground level, because there

were no annotations or uniformity to allow the implementation of what was intended to

be developed, a public data-set of sufficient quality was used. In the case of the images

from the UAVs, since the necessary annotations were not available, it was calculated

the VI and verified the appropriate ones to be used in the development of this project.

However, certain tests, which would serve to filter through correlations which indices

actually make sense in this problem, could not be carried out due to the delay and lack

of information already mentioned.

All these limitations meant that it was not possible to achieve the initial objective of

forecasting the appearance of DaP using historical data from aerial images, insect traps

images, plants at ground level images and weather stations in tomato plantations. This

is due to the fact that the objective required a diversity, quantity and uniformity of data

that did not exist in any of the data-sets, except for the meteorological data, which could

not be used individually to make the forecasts because there was no historical record

of the zones were DaP occurred in the 2021 season. That said, as it was not possible to

achieve such an objective, the objectives already mentioned were established.

5.2. Future work

Regarding future work, a direct link can be established if the limitations associated with

this dissertation are explored. That is, much of the future work will be focused on

developing new data acquisition processes in order to collect enough high-quality data

to realise the goal, which could not be defined, of forecast DaP onset.

Concerning insect traps images, future work may focus on performing a better manual

and/or semi-automatic annotation, using the models developed in this dissertation, of

at least the data-set associated with the 2021 season. This will allow the developed
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models to be more robust and accurate. This will also provide insight into whether

other methods and techniques need to be adopted for insect detection if the results

obtained are not as expected. Thus demonstrating that training with a larger amount of

annotations with more quality was not the only improvement to be performed for the

optimisation of results of the models. Part of the future work may also focus on the

differentiation of the insects detected in the yellow sticky cards, in which case it will

be necessary to have more images since a greater diversity of data is required in order

to cover the various types of insects to be identified.

Regarding the UAV images, with the proper manual annotation by experts of the

diseased areas, part of the future work may be to automatically identify diseased areas,

and in a second stage to classify the identified diseases. In addition, future work may

concern the acquisition of the fruit density present in the image using image processing

and ML techniques, although this work may be hampered due to atmospheric conditions

that create shadows and different luminosities in the plantation.

Concerning the images at ground level, part of the future work can include standar-

dising the acquired images in order to have a pipeline applicable to all images from the

crop field. The future work will involve the development of models that identify dis-

eased leaves and fruits and, in a second phase, classify these diseases. The development

of the classification part is already largely present in this dissertation.

A common future work can be applied to the different data-sets. This consists in test-

ing different models applying transfer learning with different pre-trained weights, dif-

ferent combinations of hyperparameters and different layers set as trainable. It should

also be noted that, taking into account the ANDANTE project, the use of tiny models in

the object detection and metrics acquisition models that run on IoT devices present in

the fields could be an interesting future work to be carried out.

Besides the future work applied individually to each set of data, there is also the

future work that consists of combining all the data in order to analyse it, check its

correlations and develop a model that enables the forecast of the onset of DaP.

Finally part of the future work may involve the improvement of the web application

developed in this dissertation. This in order that it becomes robust enough for farmers
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to receive alerts, forecasts, and input new data, and for developers, for the analysis,

access and management of the data collected so far.

Taking into account the knowledge acquired during this dissertation, it is expected

that it is possible to develop a system that predicts the appearance of diseases and

pests in tomato plantations, taking into account meteorological data and aerial, ground-

level and insect trap images of these plantations. However this will not be possible in

the short term, since this final goal depends on many other components, such as the

modules in this dissertation developed and their optimisations. Moreover these modules

also depend on other processes, such as the way the data is acquired. Therefore, it is

expected that it will be possible to achieve this goal but in the long term due to the

complexity and dependencies of the project.

57





References

[1] M. Roser and L. Rodés-Guirao, “Future population growth,” Our World in Data,

2013, https://ourworldindata.org/future-population-growth.

[2] D. Fróna, J. Szenderák, and M. Harangi-Rákos, “The challenge of feeding the

world,” Sustainability, vol. 11, no. 20, p. 5816, 2019.

[3] D. K. Ray, N. D. Mueller, P. C. West, and J. A. Foley, “Yield trends are insufficient

to double global crop production by 2050,” PloS one, vol. 8, no. 6, e66428, 2013.

[4] R. Thangaraj, S. Anandamurugan, P. Pandiyan, and V. K. Kaliappan, “Artificial

intelligence in tomato leaf disease detection: A comprehensive review and dis-

cussion,” Journal of Plant Diseases and Protection, pp. 1–20, 2021.

[5] FAO, “The future of food and agriculture: Trends and challenges,” 2017.

[6] C. A. Deutsch, J. J. Tewksbury, M. Tigchelaar, D. S. Battisti, S. C. Merrill, R. B.

Huey, and R. L. Naylor, “Increase in crop losses to insect pests in a warming

climate,” Science, vol. 361, no. 6405, pp. 916–919, 2018.

[7] A. Anton, S. Rustad, G. F. Shidik, and A. Syukur, “Classification of tomato plant

diseases through leaf using gray-level co-occurrence matrix and color moment

with convolutional neural network methods,” in Smart Trends in Computing and

Communications: Proceedings of SmartCom 2020, Springer, 2021, pp. 291–299.

[8] M. Brahimi, K. Boukhalfa, and A. Moussaoui, “Deep learning for tomato dis-

eases: Classification and symptoms visualization,” Applied Artificial Intelligence,

vol. 31, no. 4, pp. 299–315, 2017.

[9] FAO, “FAOSTAT: FAO statistical databases,” 2021. [Online]. Available: https:

//www.fao.org/faostat/en/#data/QCL (visited on 10/25/2021).

[10] PlantVillage tomato | diseases and pests, description, uses, propagation, https:

//plantvillage.psu.edu/topics/tomato/infos, Accessed: 2022-01-11.

59

https://www.fao.org/faostat/en/#data/QCL
https://www.fao.org/faostat/en/#data/QCL
https://plantvillage.psu.edu/topics/tomato/infos
https://plantvillage.psu.edu/topics/tomato/infos


[11] S. Verma, A. Chug, and A. P. Singh, “Prediction models for identification and di-

agnosis of tomato plant diseases,” in 2018 International Conference on Advances

in Computing, Communications and Informatics (ICACCI), IEEE, 2018, pp. 1557–

1563.

[12] P. Kartikeyan and G. Shrivastava, “Review on emerging trends in detection of

plant diseases using image processing with machine learning,” International Jour-

nal of Computer Applications, vol. 975, p. 8887, 2021.

[13] A. Kamilaris, A. Kartakoullis, and F. X. Prenafeta-Boldú, “A review on the practice

of big data analysis in agriculture,” Computers and Electronics in Agriculture,

vol. 143, pp. 23–37, 2017.

[14] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul,

C. Langlotz, K. Shpanskaya, M. P. Lungren, and A. Y. Ng, “CheXNet: Radiologist-

Level Pneumonia Detection on Chest X-Rays with Deep Learning,” arXiv e-prints,

arXiv:1711.05225, arXiv:1711.05225, Nov. 2017. arXiv: 1711.05225 [cs.CV].

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” Advances in neural information processing sys-

tems, vol. 25, pp. 1097–1105, 2012.

[16] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M. An-

driluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. A. Mujica, A. Coates, and

A. Y. Ng, “An empirical evaluation of deep learning on highway driving,” CoRR,

vol. abs/1504.01716, 2015. arXiv: 1504 . 01716. [Online]. Available: http : / /

arxiv.org/abs/1504.01716.

[17] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto,

and L. Zdeborová, “Machine learning and the physical sciences,” Reviews of Mod-

ern Physics, vol. 91, no. 4, p. 045 002, 2019.

[18] S. P. Mohanty, D. P. Hughes, and M. Salathé, “Using deep learning for image-based

plant disease detection,” Frontiers in plant science, vol. 7, p. 1419, 2016.

[19] Q. Xiao, W. Li, Y. Kai, P. Chen, J. Zhang, and B. Wang, “Occurrence prediction

of pests and diseases in cotton on the basis of weather factors by long short term

memory network,” BMC bioinformatics, vol. 20, no. 25, pp. 1–15, 2019.

60

https://arxiv.org/abs/1711.05225
https://arxiv.org/abs/1504.01716
http://arxiv.org/abs/1504.01716
http://arxiv.org/abs/1504.01716


[20] A. Gutierrez, A. Ansuategi, L. Susperregi, C. Tubío, I. Rankić, and L. Lenža,

“A benchmarking of learning strategies for pest detection and identification on

tomato plants for autonomous scouting robots using internal databases,” Journal

of Sensors, vol. 2019, 2019.

[21] Andante, https://www.andante-ai.eu/, Accessed: 2021-12-09.

[22] Andante use case 2.2: Tomato pests and diseases forecast, https://www.andante-

ai.eu/project/use-case-2-2-tomato-pests-and-diseases-forecast/, Ac-

cessed: 2021-12-09.

[23] Precision Agriculture, an international journal on advances in precision agricul-

ture, https://www.springer.com/journal/11119, Accessed: 2021-12-09.

[24] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, “A design science

research methodology for information systems research,” Journal of management

information systems, vol. 24, no. 3, pp. 45–77, 2007.

[25] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group, “Preferred re-

porting items for systematic reviews and meta-analyses: The prisma statement,”

PLoS medicine, vol. 6, no. 7, e1000097, 2009.

[26] W. Ding and G. Taylor, “Automatic moth detection from trap images for pest

management,” Computers and Electronics in Agriculture, vol. 123, pp. 17–28,

2016.

[27] D. Nikitenko, M. Wirth, and K. Trudel, “Applicability of white-balancing algo-

rithms to restoring faded colour slides: An empirical evaluation.,” Journal of

Multimedia, vol. 3, no. 5, 2008.

[28] G. Buchsbaum, “A spatial processor model for object colour perception,” Journal

of the Franklin institute, vol. 310, no. 1, pp. 1–26, 1980.

[29] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: An evalu-

ation of the state of the art,” IEEE transactions on pattern analysis and machine

intelligence, vol. 34, no. 4, pp. 743–761, 2011.

[30] J. Hosang, R. Benenson, and B. Schiele, “Learning non-maximum suppression,” in

Proceedings of the IEEE conference on computer vision and pattern recognition,

2017, pp. 4507–4515.

61

https://www.andante-ai.eu/
https://www.andante-ai.eu/project/use-case-2-2-tomato-pests-and-diseases-forecast/
https://www.andante-ai.eu/project/use-case-2-2-tomato-pests-and-diseases-forecast/
https://www.springer.com/journal/11119


[31] C. Hu, X. Liu, Z. Pan, and P. Li, “Automatic detection of single ripe tomato on

plant combining faster r-cnn and intuitionistic fuzzy set,” IEEE Access, vol. 7,

pp. 154 683–154 696, 2019.

[32] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” Advances in neural information pro-

cessing systems, vol. 28, pp. 91–99, 2015.

[33] W. Li, Z. Yang, J. Lv, T. Zheng, M. Li, and C. Sun, “Detection of small-sized insects

in sticky trapping images using spectral residual model and machine learning,”

Frontiers in Plant Science, vol. 13, 2022.

[34] W. Yun, J. P. Kumar, S. Lee, D.-S. Kim, and B.-K. Cho, “Deep learning-based sys-

tem development for black pine bast scale detection,” Scientific reports, vol. 12,

no. 1, pp. 1–10, 2022.

[35] B. Ramalingam, R. E. Mohan, S. Pookkuttath, B. F. Gómez, C. S. C. Sairam Borusu,

T. Wee Teng, and Y. K. Tamilselvam, “Remote insects trap monitoring system

using deep learning framework and iot,” Sensors, vol. 20, no. 18, p. 5280, 2020.

[36] Y. Zhang, C. Song, and D. Zhang, “Deep learning-based object detection improve-

ment for tomato disease,” IEEE Access, vol. 8, pp. 56 607–56 614, 2020.

[37] Y. Zhong, J. Wang, J. Peng, and L. Zhang, “Anchor box optimization for object

detection,” in Proceedings of the IEEE/CVF Winter Conference on Applications

of Computer Vision, 2020, pp. 1286–1294.

[38] T. Zhang, Z. Huang, W. You, J. Lin, X. Tang, and H. Huang, “An autonomous

fruit and vegetable harvester with a low-cost gripper using a 3d sensor,” Sensors,

vol. 20, no. 1, p. 93, 2020.

[39] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the

IEEE international conference on computer vision, 2017, pp. 2961–2969.

[40] X. Ni, C. Li, H. Jiang, and F. Takeda, “Three-dimensional photogrammetry with

deep learning instance segmentation to extract berry fruit harvestability traits,”

ISPRS Journal of Photogrammetry and Remote Sensing, vol. 171, pp. 297–309,

2021.

62



[41] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance segmen-

tation,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision, 2019, pp. 9157–9166.

[42] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “Solo: Segmenting objects by

locations,” in European Conference on Computer Vision, Springer, 2020, pp. 649–

665.

[43] E. Xie, P. Sun, X. Song, W. Wang, X. Liu, D. Liang, C. Shen, and P. Luo, “Polar-

mask: Single shot instance segmentation with polar representation,” in Proceed-

ings of the IEEE/CVF conference on computer vision and pattern recognition,

2020, pp. 12 193–12 202.

[44] H. Chen, K. Sun, Z. Tian, C. Shen, Y. Huang, and Y. Yan, “Blendmask: Top-down

meets bottom-up for instance segmentation,” in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 2020, pp. 8573–8581.

[45] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic, faster and

stronger,” arXiv e-prints, arXiv–2003, 2020.

[46] S. Lin, Y. Jiang, X. Chen, A. Biswas, S. Li, Z. Yuan, H. Wang, and L. Qi, “Automatic

detection of plant rows for a transplanter in paddy field using faster r-cnn,” IEEE

Access, vol. 8, pp. 147 231–147 240, 2020.

[47] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-

works,” in European conference on computer vision, Springer, 2014, pp. 818–

833.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[49] J. Fan, T. Huo, X. Li, T. Qu, B. Gao, and H. Chen, “Covered vehicle detection in

autonomous driving based on faster rcnn,” in 2020 39th Chinese Control Confer-

ence (CCC), IEEE, 2020, pp. 7020–7025.

[50] Y. Mu, T.-S. Chen, S. Ninomiya, and W. Guo, “Intact detection of highly occluded

immature tomatoes on plants using deep learning techniques,” Sensors, vol. 20,

no. 10, p. 2984, 2020.

63



[51] W. Li, D. Wang, M. Li, Y. Gao, J. Wu, and X. Yang, “Field detection of tiny pests

from sticky trap images using deep learning in agricultural greenhouse,” Comput-

ers and Electronics in Agriculture, vol. 183, p. 106 048, 2021.

[52] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A review of yolo algorithm develop-

ments,” Procedia Computer Science, vol. 199, pp. 1066–1073, 2022.

[53] G. Liu, J. C. Nouaze, P. L. Touko Mbouembe, and J. H. Kim, “Yolo-tomato: A

robust algorithm for tomato detection based on yolov3,” Sensors, vol. 20, no. 7,

p. 2145, 2020.

[54] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv preprint

arXiv:1804.02767, 2018.

[55] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected

convolutional networks,” in Proceedings of the IEEE conference on computer vi-

sion and pattern recognition, 2017, pp. 4700–4708.

[56] X. Jin, J. Che, and Y. Chen, “Weed identification using deep learning and image

processing in vegetable plantation,” IEEE Access, vol. 9, pp. 10 940–10 950, 2021.

[57] X. Zhou, D. Wang, and P. Krähenbühl, “Objects as points,” arXiv preprint

arXiv:1904.07850, 2019.

[58] L. Tang, L. Tian, and B. L. Steward, “Color image segmentation with genetic

algorithm for in-field weed sensing,” Transactions of the ASAE, vol. 43, no. 4,

p. 1019, 2000.

[59] C. Günther, N. Jansson, M. Liwicki, and F. Simistira-Liwicki, “Towards a machine

learning framework for drill core analysis,” in 2021 Swedish Artificial Intelligence

Society Workshop (SAIS), IEEE, 2021, pp. 1–6.

[60] M. Guillermo, R. K. Billones, A. Bandala, R. R. Vicerra, E. Sybingco, E. P. Dadios,

and A. Fillone, “Implementation of automated annotation through mask rcnn ob-

ject detection model in cvat using aws ec2 instance,” in 2020 IEEE region 10

conference (TENCON), IEEE, 2020, pp. 708–713.

[61] M. Agarwal, S. K. Gupta, and K. Biswas, “Development of efficient cnn model

for tomato crop disease identification,” Sustainable Computing: Informatics and

Systems, vol. 28, p. 100 407, 2020.

64



[62] T. Kasinathan, D. Singaraju, and S. R. Uyyala, “Insect classification and detection

in field crops using modern machine learning techniques,” Information Processing

in Agriculture, vol. 8, no. 3, pp. 446–457, 2021.

[63] L. Nanni, A. Manfè, G. Maguolo, A. Lumini, and S. Brahnam, “High performing

ensemble of convolutional neural networks for insect pest image detection,” Eco-

logical Informatics, vol. 67, p. 101 515, 2022.

[64] Q. Dai, X. Cheng, Y. Qiao, and Y. Zhang, “Agricultural pest super-resolution and

identification with attention enhanced residual and dense fusion generative and

adversarial network,” IEEE Access, vol. 8, pp. 81 943–81 959, 2020.

[65] D. J. Patel and N. Bhatt, “Insect identification among deep learning’s meta-

architectures using tensorflow,” Int. J. Eng. Adv. Technol, vol. 9, no. 1, pp. 1910–

1914, 2019.

[66] S. M. Hassan, A. K. Maji, M. Jasiński, Z. Leonowicz, and E. Jasińska, “Identifica-

tion of plant-leaf diseases using cnn and transfer-learning approach,” Electronics,

vol. 10, no. 12, p. 1388, 2021.

[67] S. U. Habiba and M. K. Islam, “Tomato plant diseases classification using deep

learning based classifier from leaves images,” in 2021 International Conference

on Information and Communication Technology for Sustainable Development

(ICICT4SD), IEEE, 2021, pp. 82–86.

[68] H. Hong, J. Lin, and F. Huang, “Tomato disease detection and classification by

deep learning,” in 2020 International Conference on Big Data, Artificial Intelli-

gence and Internet of Things Engineering (ICBAIE), IEEE, 2020, pp. 25–29.

[69] P. Tm, A. Pranathi, K. SaiAshritha, N. B. Chittaragi, and S. G. Koolagudi, “Tomato

leaf disease detection using convolutional neural networks,” in 2018 eleventh

international conference on contemporary computing (IC3), IEEE, 2018, pp. 1–5.

[70] S. M. Gharghory, “Performance analysis of efficient pre-trained networks based

on transfer learning for tomato leaf diseases classification,”

[71] S. Wagle and H. Ramachandran, “A deep learning-based approach in classification

and validation of tomato leaf disease,” Traitement du Signal, vol. 38, pp. 699–

709, Jun. 2021. DOI: 10.18280/ts.380317.

65

https://doi.org/10.18280/ts.380317


[72] B. A. Abdelghani, S. Banitaan, M. Maleki, and A. Mazen, “Kissing bugs identifica-

tion using convolutional neural network,” IEEE Access, vol. 9, pp. 140 539–140 548,

2021.

[73] P. Das, J. K. P. Singh Yadav, and A. K. Yadav, “An automated tomato maturity

grading system using transfer learning based alexnet.,” Ingénierie des Systèmes

d’Information, vol. 26, no. 2, 2021.

[74] N. Otsu, “A threshold selection method from gray-level histograms,” IEEE trans-

actions on systems, man, and cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[75] V. Kusanur and V. S. Chakravarthi, “Using Transfer Learning for Nutrient Defi-

ciency Prediction and Classification in Tomato Plant,” International Journal of

Advanced Computer Science and Applications, vol. 12, no. 10, pp. 784–790, 2021,

ISSN: 21565570. DOI: 10.14569/IJACSA.2021.0121087.

[76] L. Zhang, J. Jia, Y. Li, W. Gao, and M. Wang, “Deep learning based rapid diagnosis

system for identifying tomato nutrition disorders,” KSII Transactions on Internet

and Information Systems (TIIS), vol. 13, no. 4, pp. 2012–2027, 2019.

[77] O. O. Arjenaki, P. A. Moghaddam, and A. M. Motlagh, “Online tomato sorting

based on shape, maturity, size, and surface defects using machine vision,” Turkish

Journal of Agriculture and Forestry, vol. 37, no. 1, pp. 62–68, 2013.

[78] J. M. Duarte-Carvajalino, D. F. Alzate, A. A. Ramirez, J. D. Santa-Sepulveda,

A. E. Fajardo-Rojas, and M. Soto-Suárez, “Evaluating late blight severity in potato

crops using unmanned aerial vehicles and machine learning algorithms,” Remote

Sensing, vol. 10, no. 10, p. 1513, 2018.

[79] W. Dake and M. Chengwei, “The support vector machine (svm) based near-

infrared spectrum recognition of leaves infected by the leafminers,” in First Inter-

national Conference on Innovative Computing, Information and Control-Volume

I (ICICIC’06), IEEE, vol. 3, 2006, pp. 448–451.

[80] Measuring Vegetation ndvi and evi, https : / / earthobservatory . nasa . gov /

features/MeasuringVegetation/measuring_vegetation_2.php, Accessed: 2022-

01-11.

66

https://doi.org/10.14569/IJACSA.2021.0121087
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php


[81] J. Rouse Jr, R. Haas, J. Schell, and D. Deering, “Monitoring vegetation systems

in the great plains with erts,” in Third Earth Resources Technology Satellite-

1 Symposium: The Proceedings of a Symposium Held by Goddard Space Flight

Center at Washington, DC on, vol. 351, 1973, p. 309.

[82] S. Skawsang, M. Nagai, N. K Tripathi, and P. Soni, “Predicting rice pest population

occurrence with satellite-derived crop phenology, ground meteorological obser-

vation, and machine learning: A case study for the central plain of thailand,”

Applied Sciences, vol. 9, no. 22, p. 4846, 2019.

[83] J. Xue and B. Su, “Significant remote sensing vegetation indices: A review of

developments and applications,” Journal of sensors, vol. 2017, 2017.

[84] J. Abdulridha, Y. Ampatzidis, S. C. Kakarla, and P. Roberts, “Detection of target

spot and bacterial spot diseases in tomato using uav-based and benchtop-based

hyperspectral imaging techniques,” Precision Agriculture, vol. 21, no. 5, pp. 955–

978, 2020.

[85] Earth Observing System vegetation indices to drive digital agri solutions, https:

//eos.com/blog/vegetation-indices/, Accessed: 2022-01-11.

[86] C. Evangelides and A. Nobajas, “Red-edge normalised difference vegetation in-

dex (ndvi705) from sentinel-2 imagery to assess post-fire regeneration,” Remote

Sensing Applications: Society and Environment, vol. 17, p. 100 283, 2020.

[87] J. Albetis, S. Duthoit, F. Guttler, A. Jacquin, M. Goulard, H. Poilvé, J.-B. Féret,

and G. Dedieu, “Detection of flavescence dorée grapevine disease using un-

manned aerial vehicle (uav) multispectral imagery,” Remote Sensing, vol. 9,

no. 4, p. 308, 2017.

[88] A. K. Chandel, L. R. Khot, and B. Sallato, “Apple powdery mildew infestation de-

tection and mapping using high-resolution visible and multispectral aerial imaging

technique,” Scientia Horticulturae, vol. 287, p. 110 228, 2021.

[89] F.-M. Wang, J.-F. Huang, Y.-L. Tang, and X.-Z. Wang, “New vegetation index and

its application in estimating leaf area index of rice,” Rice Science, vol. 14, no. 3,

pp. 195–203, 2007.

67

https://eos.com/blog/vegetation-indices/
https://eos.com/blog/vegetation-indices/


[90] D. Henderson, C. J. Williams, and J. S. Miller, “Forecasting late blight in potato

crops of southern idaho using logistic regression analysis,” Plant disease, vol. 91,

no. 8, pp. 951–956, 2007.

[91] E. Lasso, D. C. Corrales, J. Avelino, E. de Melo Virginio Filho, and J. C. Corrales,

“Discovering weather periods and crop properties favorable for coffee rust inci-

dence from feature selection approaches,” Computers and Electronics in Agricul-

ture, vol. 176, p. 105 640, 2020.

[92] D. Diepeveen, L. Armstrong, and Y. Vagh, “Identifying key crop performance traits

using data mining,” 2008.

[93] N. N. Patil and M. A. M. Saiyyad, “Machine learning technique for crop recom-

mendation in agriculture sector,” International Journal of Engineering and Ad-

vanced Technology, vol. 9, no. 1, pp. 1359–1363, Oct. 2019, ISSN: 22498958. DOI:

10.35940/ijeat.A1171.109119.

[94] S. Kim, M. Lee, and C. Shin, “Iot-based strawberry disease prediction system for

smart farming,” Sensors, vol. 18, no. 11, p. 4051, 2018.

[95] X. Yin, M. J. Kropff, G. McLaren, and R. M. Visperas, “A nonlinear model for crop

development as a function of temperature,” Agricultural and Forest Meteorology,

vol. 77, no. 1-2, pp. 1–16, 1995.

[96] R. R. Patil and S. Kumar, “Predicting rice diseases across diverse agro-

meteorological conditions using an artificial intelligence approach,” PeerJ Com-

puter Science, vol. 7, e687, 2021.

[97] P. Sharma, B. Singh, and R. Singh, “Prediction of potato late blight disease based

upon weather parameters using artificial neural network approach,” in 2018 9th

International Conference on Computing, Communication and Networking Tech-

nologies (ICCCNT), IEEE, 2018, pp. 1–13.

[98] S. S. Dahikar and S. V. Rode, “Agricultural crop yield prediction using artifi-

cial neural network approach,” International journal of innovative research in

electrical, electronics, instrumentation and control engineering, vol. 2, no. 1,

pp. 683–686, 2014.

68

https://doi.org/10.35940/ijeat.A1171.109119


[99] Z. Liu, L. Meng, W. Zhao, and F. Yu, “Application of ann in food safety early

warning,” in 2010 2nd International Conference on Future Computer and Com-

munication, IEEE, vol. 3, 2010, pp. V3–677.

[100] O. Trenz, J. Št’astnỳ, and V. Konečnỳ, “Agricultural data prediction by means of

neural network,” Agricultural Economics, vol. 57, no. 7, pp. 356–361, 2011.

[101] T. Ranjeet and L. Armstrong, “An artificial neural network for predicting crops

yield in nepal,” 2014.

[102] R. Kaundal, A. S. Kapoor, and G. P. Raghava, “Machine learning techniques in

disease forecasting: A case study on rice blast prediction,” BMC bioinformatics,

vol. 7, no. 1, pp. 1–16, 2006.

[103] Y. Gu, S. Yoo, C. Park, Y. Kim, S. Park, J. Kim, and J. Lim, “Blite-svr: New fore-

casting model for late blight on potato using support-vector regression,” Comput-

ers and Electronics in Agriculture, vol. 130, pp. 169–176, 2016.

[104] A. Murynin, K. Gorokhovskiy, and V. Ignatie, “Efficiency of crop yield forecasting

depending on the moment of prediction based on large remote sensing data set,”

in Proceedings of the International Conference on Data Science (ICDATA), The

Steering Committee of The World Congress in Computer Science, Computer …,

2013, p. 1.

[105] A. K. Prasad, L. Chai, R. P. Singh, and M. Kafatos, “Crop yield estimation model

for iowa using remote sensing and surface parameters,” International Journal of

Applied earth observation and geoinformation, vol. 8, no. 1, pp. 26–33, 2006.

[106] L. Vikas, V. Dhaka, et al., “Wheat yield prediction using artificial neural network

and crop prediction techniques (a survey).,” International Journal for Research

in Applied Science and Engineering Technology, vol. 2, no. 9, pp. 330–341, 2014.

[107] G. Fenu and F. M. Malloci, “Forecasting plant and crop disease: An explorative

study on current algorithms,” Big Data and Cognitive Computing, vol. 5, no. 1,

p. 2, 2021.

[108] X. Yang and T. Guo, “Machine learning in plant disease research,” March, vol. 31,

p. 1, 2017.

69



[109] R. Arora, S. Sharma, and B. Singh, “Late blight disease of potato and its manage-

ment,” Potato J, vol. 41, no. 1, pp. 16–40, 2014.

[110] Django, https://www.djangoproject.com/, Accessed: 2022-01-10.

[111] Sqlite, https://www.sqlite.org/index.html, Accessed: 2021-12-09.

[112] Pyforms, https://pyforms.readthedocs.io/en/v3.0/, Accessed: 2022-01-10.

[113] Plantvillage, https://plantvillage.psu.edu/, Accessed: 2022-01-11.

[114] D. Dlužnevskij, P. Stefanovic, and S. Ramanauskaite, “Investigation of yolov5 effi-

ciency in iphone supported systems,” Baltic Journal of Modern Computing, vol. 9,

no. 3, pp. 333–344, 2021.

[115] R. Padilla, S. L. Netto, and E. A. Da Silva, “A survey on performance metrics

for object-detection algorithms,” in 2020 international conference on systems,

signals and image processing (IWSSIP), IEEE, 2020, pp. 237–242.

[116] Imagenet, https://www.image-net.org/index.php, Accessed: 2022-01-11.

[117] Keras | keras tuner, https://keras.io/keras_tuner/, Accessed: 2022-01-11.

[118] Tensorflow, https://www.tensorflow.org/, Accessed: 2022-01-11.

[119] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A.

Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.

Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.

Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, Tensorflow: Large-scale machine

learning on heterogeneous distributed systems, 2015. [Online]. Available: http:

//download.tensorflow.org/paper/whitepaper2015.pdf.

[120] V. K. Shrivastava, M. K. Pradhan, and M. P. Thakur, “Application of pre-trained

deep convolutional neural networks for rice plant disease classification,” in 2021

international conference on artificial intelligence and smart systems (ICAIS),

IEEE, 2021, pp. 1023–1030.

[121] S. Sharma, S. Sharma, and A. Athaiya, “Activation functions in neural networks,”

towards data science, vol. 6, no. 12, pp. 310–316, 2017.

70

https://www.djangoproject.com/
https://www.sqlite.org/index.html
https://pyforms.readthedocs.io/en/v3.0/
https://plantvillage.psu.edu/
https://www.image-net.org/index.php
https://keras.io/keras_tuner/
https://www.tensorflow.org/
http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf


[122] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[123] Mdpi agriculture, https : / / www . mdpi . com / journal / agriculture, Accessed:

2022-01-11.

[124] T. Domingues, T. Brandão, and J. C. Ferreira, “Machine learning for detection

and prediction of crop diseases and pests: A comprehensive survey,” Agriculture,

vol. 12, no. 9, 2022, ISSN: 2077-0472. DOI: 10.3390/agriculture12091350. [On-

line]. Available: https://www.mdpi.com/2077-0472/12/9/1350.

71

https://www.mdpi.com/journal/agriculture
https://doi.org/10.3390/agriculture12091350
https://www.mdpi.com/2077-0472/12/9/1350




APPENDIX A

Web application interfaces

Figure 22 shows an example of a record in the web application of two diseases (test1

and test2) that appeared in the crop field Test_Crop_1 along with the marking on the

map of the zone where the occurrence was found. As for Figure 23, it shows the layout

and fields at the moment of importing ground level images and Figure 24 shows the

interface where the number of this type of imported images over time can be analysed.

Regarding Figure 25, it can be observed the interface when it is intended to analyse the

meteorological data over time and the respective filtering options.

Figure 22. Web application interface in the case of disease event.
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Figure 23. Web application interface in the case of plant image import.

Figure 24. Web application interface in the case of plant analysis.
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Figure 25. Web application interface in the case of weather analysis.

75





APPENDIX B

Results of disease classification on tomato leaves images

Figure 26 shows graphs that correspond to the data found in Tables 15 and 16. From

the graph it is possible to verify the poor performance of these two models as the recall

values are much lower than those of MobilteNetV2 and ResNet152V2.

(a) Confusion Matrix of VGG16.

(b) Confusion Matrix of InceptionV3.

Figure 26. Confusion Matrix’s of the worst leaf classification models
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Precision Recall F1-Score

bacterial spot 0.91 0.97 0.94

early blight 0.86 0.70 0.77

late blight 0.78 0.89 0.83

leaf mold 0.94 0.75 0.83

septoria leaf spot 0.71 0.88 0.79

spider mites two-

spotted spider_mite
0.74 0.94 0.83

target spot 0.95 0.55 0.70

yellow leaf curl virus 0.97 0.92 0.94

mosaic virus 0.85 0.98 0.91

healthy tomato 0.98 0.97 0.97

Accuracy - - 0.85

Macro average 0.87 0.86 0.85

Weighted average 0.87 0.85 0.85

Table 15. VGG16 additional metrics.

Precision Recall F1-Score

bacterial spot 0.84 0.81 0.83

early blight 0.87 0.60 0.71

late blight 0.65 0.95 0.77

leaf mold 0.83 0.76 0.79

septoria leaf spot 0.74 0.79 0.76

spider mites two-

spotted spider_mite
0.74 0.82 0.78

target spot 0.73 0.60 0.66

yellow leaf curl virus 0.97 0.91 0.94

mosaic virus 0.83 0.85 0.84

healthy tomato 0.88 0.88 0.88

Accuracy - - 0.80

Macro average 0.81 0.80 0.80

Weighted average 0.81 0.80 0.80

Table 16. InceptionV3 additional metrics.
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Abstract: Considering the population growth rate of recent years, a doubling of the current worldwide
crop productivity is expected to be needed by 2050. Pests and diseases are a major obstacle to
achieving this productivity outcome. Therefore, it is very important to develop efficient methods
for the automatic detection, identification, and prediction of pests and diseases in agricultural crops.
To perform such automation, Machine Learning (ML) techniques can be used to derive knowledge
and relationships from the data that is being worked on. This paper presents a literature review on
ML techniques used in the agricultural sector, focusing on the tasks of classification, detection, and
prediction of diseases and pests, with an emphasis on tomato crops. This survey aims to contribute
to the development of smart farming and precision agriculture by promoting the development of
techniques that will allow farmers to decrease the use of pesticides and chemicals while preserving
and improving their crop quality and production.

Keywords: plant diseases and pests; classification; detection; forecasting; precision farming; machine
learning; smart farming

1. Introduction

Due to extremely high infant mortality, the human population of the planet increased
slowly until the year 1700. The first billion was reached in ca. 1800, followed by the second
billion in 1928, the third billion in 1960. In 2017, the world’s population reached its seventh
billion. The fast population growth over recent decades is mainly due to better medical
care. According to predictions from the United Nations, the world’s population is expected
to reach 9.7 billion in 2050, and 10.9 billion in 2100 [1].

Rapid population growth over recent decades has resulted in an increased demand for
agricultural goods, which in turn has lead to a large expansion of cultivation [2]. To meet
rising population demands for food, bio-fuels, and animal products, crop yield production
must double its output by 2050. In order to achieve this goal, key crop yields must improve
by 2.4% each year, but they are now only increasing by roughly 1.3% per year [3]. However,
fulfilling this condition will have negative consequences for the ecosystem, including
the loss of biodiversity and increased greenhouse gas emissions. Traditional agricultural
production is not sustainable from an economic or environmental standpoint; hence, it is
critical to optimize the use of resources such as water and soil to enable high yield crops [2].

Moreover, crop output is continually threatened by diseases and insect pests. It is
estimated that between 20% to 40% of yearly crop production is lost due to plant diseases
and insect assaults across the world, costing the global economy $220 billion and $70
billion, respectively. The amount of these losses varies across the globe and often occurs
due to transboundary plant pests and diseases. For instance, the spread of crop pests and
pathogens between 1950 and 2000 was greater in North America when compared with
other world regions [4].

Pest damage and development are affected by the rise in global temperature brought
by climate change. When the temperature rises, the metabolic rate of insects increases,
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driving them to consume more food and inflict more damage. Growth rates of several
insect species are also affected by temperature. For each degree of average global warming
of the earth’s surface, worldwide agricultural losses due to insect pests are expected to
increase by 10% to 25% [5].

Pesticides and chemical treatments have long been used by farmers to keep pests away.
The use of pesticides for crop protection is on the rise [6], with negative consequences for
human health and increased environmental damage to soil and groundwater. On the other
hand, this also increases the risk of pests developing pesticide resistances [5].

The traditional method of detecting and identifying plant diseases involves naked
eye observation by experts. This takes time and talent, and is not a practical solution
for monitoring large farms. Therefore, to overcome the limitations of manual detection,
automated methods for crop monitoring and forecasting are required [7]. A system capable
of performing such tasks can play an important role in avoiding the excessive use of
pesticides and chemicals, reducing both the damage caused to the environment and the
production costs associated with the use of pesticides and chemicals [7].

The growing availability of big data analysis methods has the potential to spur even
more research and development in smart farming. Besides promoting higher yield crops
in a more sustainable manner, it also aims to contribute to event forecasting, detection of
diseases, and management of water and soil. Big data is coming to the agriculture domain
by collecting data from meteorological stations, remote sensors, historical data, and publicly
available data-sets [8].

ML approaches have been successfully utilized in a variety of areas, including illness
detection from medical images [9], image classification on large data-sets [10], self-driving
automobiles [11], and academic research fields such as physics [12].

ML-based applications for agriculture are still young, but are already showing promise.
For instance, disease classification from images can be done using popular Convolutional
Neural Network (CNN) architectures for different plants with different diseases [13];
relationships between weather data and pest occurrence can be retrieved using Long Short
Term Memory (LSTM) networks for forecasting future pest attacks [14]; insect detection on
leaves can be performed using object segmentation and deep learning techniques [15].

Commercial tools and services for smart farming that make extensive use of machine
learning are currently available to farmers. A few examples are as follows. Plantix, created
by the German startup Progressive Environmental and Agricultural Technologies (PETA), is an
android-based farming assistant tool that provides crop health information, helping with
identification of plant diseases using computer vision and deep learning techniques [16].
Other examples of similar applications are Agrio [17] and CropDiagnosis [18]. Gamaya
is a startup company based on Switzerland that offers a wide variety of smart farming
services services based on the analysis of images images acquired by drones connected
to IoT systems [19]. The asian iFarmer [20] is another company that offers IoT-based soil
analysis and satellite imaging-based crop monitoring solutions. See & Spray, developed by
California-based Blue River Technology, is a large tow-behind herbicide sprayer, that uses
computer vision and deep learning-based algorithms to automatically locate and identify
weeds (in real time), applying herbicides to the specific locations found rather than to the
entire field [21].

Some related surveys can be found in the literature, but most of them are focused on
traditional ML techniques: in [22], a comparison of ML algorithms for predicting the yield
of soybean crops is presented; in [23] research papers from the last ten years for predicting
the start of disease at an early or presymptomatic stage are analysed and categorised; in [24],
the possibility of using different ML techniques in agriculture are discussed, but most of the
present work is about statistical forecasting methods from weather data for predicting wheat
yield. Since the mentioned surveys do not simultaneously cover forecasting, detection, and
classification of diseases and pests, and do not fully explore recent deep learning-based
techniques, the review performed in this paper aims to fill the gaps on these subjects.
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The literature review presented in this paper also aims to provide guidance on the
development of such ML-based tools, in order to provide farmers with data-driven decision
making assistance systems. In this way, farmers can be assisted with lowering the need for
pesticide application and the harm that comes with it, while also preserving and enhancing
crop quality and yield. This contributes to the continued availability of food to meet global
population demands while doing less damage to the planet.

The application of ML-based techniques has promoted the emergence of projects that
have enriched the development and the evolution of smart farming [25]. With this in mind,
this article also contributes to the progression, development, and success of such projects.

2. Literature Review

Data gathering, data pre-processing (i.e., data preparation that includes feature extrac-
tion), and ML classification models are the three basic steps of ML applications, represented
in Figure 1. The following sections present and discuss different approaches used in these
three stages.

Data acquisition  Data pre-processing Machine Learning

Model Clasification

Figure 1. Simplification of the ML pipeline.

2.1. Data Acquisition

Data acquisition is the process of gathering data from various sources systems [26].
Previous studies gather their data various sources to be used for ML techniques. Some of
them produce their own images by taking pictures of plants in greenhouses, such as in
the studies from Gutierrez et al. [15] and Raza et al. [27]. However, image data acquisition
using manual processes, as done by many, generally results in small image data-sets, which
can compromise the development of effective ML-based models. Weather data collection is
also proposed in the literature using for instance sensors in greenhouses, as done by Rustia
and Lin [28]. Meteorological data can also be obtained from weather stations of regional
areas, which typically store records for a longer period of time [14,29].

Images can be collected using search engines on their own [30,31]. This approach
can get a large number of images, but ground truth must be checked by domain experts,
and data cleaning is frequently used to filter out images that do not meet the requirements.

Remote sensing images from satellites and drones have the advantage of being able
to retrieve image data for large agricultural areas. Remote sensing data from satellites
typically consists of multi-temporal and hyper-spectral imagery data, which can be used
to assess the development of the crops. This task can be performed by monitoring the
evolution of vegetation indices [32], which provide important information about the de-
velopment status of the crop fields. Spectral imagery can be used for computing different
vegetation indexes, such as those proposed in [33–39], which are robust to variations
on the sun illumination [37], an important advantage when compared to visible light
spectrum imagery.

Images retrieved from drones can also be used, but have additional needs: to define the
path of the device; to coordinate the drone position with the camera for image acquisition;
and to correct geometric distortions on each acquired image in order to merge the different
acquired images in order to reconstruct a larger image of the whole field [40].

Therefore, it can be stated that data consists of different modalities and variables.
With ML-based and data analysis techniques it can be possible to understand their inter-
action and how they relate to a studied outcome. In the context of the cultivation fields,
the questions are usually: which disease is affecting crops? What pest is causing damage?
What is the relation between weather data and disease and pest occurrence? The most
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important variables related to the appearance of plant diseases and pests are reviewed in
Section 2.1.1.

Freely available data-sets can also be utilised for the development of ML-based ap-
plications. This enables researchers to directly compare the performance of different ML
techniques and approaches. In Section 2.1.2, a brief summary of the main available data-sets
is presented.

The data conditions a significant impact on the performance of ML models. Section 2.1.3
addresses this issue. Data-sets should be representative and include enough records for the
model to perform an effective generalization.

2.1.1. Variables Influencing Crop Diseases and Pests

It’s crucial to be able to predict the arrival of diseases and pests in crops, in addition to
correctly detecting and identifying them. Real-time meteorological data obtained by un-
manned observation planes, as well as long-term data analysis from weather stations, have
been used to create models capable of anticipating disease occurrence. In [41], the General
Infection Model, proposed in [42], was used for assessing the prediction capabilities of the
system. It was found that, if integrated systems such as this are implemented and various
input data-sets essential for interrelationship analyses are collected, accurate plant disease
prediction systems can be constructed.

When it comes to forecasting occurrences, it’s crucial to know which variables will
have an influence on what is being forecast. In the work by Henderson et al. [43] this
was done by discovering which weather variables influence the forecast. On the other
hand, Lasso et al. [44] determined the time period window for each weather variable and
crop-related feature that is the most significant for the appearance of coffee leaf rust disease
in coffee crops.

In [45], Small et al. used weather data, information on potato and tomato crops re-
sistance to late blight (from published literature and field experiments), and management
strategies, to create a web-based decision support system that allows the dynamic pre-
diction of disease outbreaks, with an emphasis on the late blight disease on tomato and
potato crops.

The work proposed by Ghaffari et al. [46] addresses the very early detection of diseases
in tomato crops using atmospheric data and volatile organic compounds. Plants produce
a wide spectrum of volatile organic compounds in reaction to physical and biotic stress,
as well as infection [47]. In [46], the diseases under study were the powdery mildew and
spider mites.

A model developed by Diepeveen et al. in [48] can be used in agriculture to understand
the influence of location and temperature on crops. In addition, elements such as soil,
humidity, rainfall, and moisture were found to have an influence on crop yield [49].

Plant diseases and pest development are greatly influenced by weather and environ-
ment conditions [50]. Humidity is a favorable condition for the development of fungus
diseases. The humidity can be caused by the weather or by poor watering practices that
cause a high wetness among the leaves, making tomatoes more susceptible to diseases,
e.g., leaf mold or bacterial spot [51].

In addition, temperature is a primary driver of insect development, affecting their
metabolic rate and population growth [5].

Plants absorb part of the radiation coming from the sun and reflect the rest. Depending
on the health of the plant, the amount of radiation absorbed and reflected differs. This
difference can be used to distinguish between healthy and diseased plants and to assess
the severity of the damage [52]. The concept is illustrated in Figure 2.
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Figure 2. Absorbed and reflected radiation for plant’s health estimation (adapted from [53]).

Temperature

Insects are ectothermic, meaning that they cannot regulate their internal temperature
and have to rely on environmental heat sources. Temperature affects the population growth
and metabolic rates of insects [5]. Thus, the duration of an insect’s life cycle is highly
influenced by the number of days where the temperature is suitable for its development.
Two temperature thresholds can be define: an upper threshold, in which insect development
slows down or stops and a lower one where there is no insect growth. These thresholds
vary according to the specific insect species.

Degree day is a concept concerning the accumulation of heat by insects [54]. One degree
day is a period of 24 h in which the temperature was one degree above a given baseline.
Different models for determining the number of degree days associated to common pest
species were proposed in [55]. For instance, tomato crops are susceptible to the greenhouse
white fly (Trialeurodes vaporariorum), whose number of degree days from egg to adult is
380 DGG [56]. Depending on the temperature of the environment, this development time
can be longer or shorter.

Biofix date is the date to start accumulating degree days associated with a given insect
species [57]. This date can be determined by noticing specific insect species on traps or
by detecting eggs on plant leaves. From this date, degree days can be used to estimate
the period at which insects are reaching a given development stage suitable for pesticide
application. Temperature and weather forecasts are nowadays sufficiently accurate to
enable the estimation for the time required for an insect to reach a given development
status [58].

In the context of ML-based applications, related work focused on studying the impact
of weather in pest insect development found a higher correlation between the number of
pest catches and temperature, when compared with other factors [28,32].

Some diseases affect the transpiration rate of the plant and, consequently, its tempera-
ture [27]. Therefore, plant leaf temperature can be used for disease detection. ML models
can achieve higher accuracy for disease identification when combining thermal images
with visible light images. The benefits are more useful for early detection when the plant
has not yet developed symptoms recognizable by the naked eye.

Humidity

Diseases affecting plants are often caused by fungus or bacterial pathogens. High
relative humidity environments favor the development of these microorganisms. Thus,
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humidity has to be managed by good watering practices, while avoiding excessive leaf
moisture and soil moisture [59].

Different studies using regression models and weather data demonstrate the influence
of humidity on disease and pest development [14,29]. Thus, the collection of humidity
records in greenhouses using sensors can be helpful for disease forecasting.

Leaf Reflectance

Plants absorb solar radiation between 400 to 700 nm (photosynthetically active radia-
tion) which corresponds approximately to the visible light region. For wavelengths greater
than 700 nm (red) in the Near Infra-Red (NIR) region there is a sharp order-of-magnitude
increase in leaf reflectance due to chlorophyll characteristics, a phenomenon known as red
edge [60].

Diseased plants with damaged leaves have different leaf spectral reflectance com-
pared to a healthy plant because of the different chlorophyll concentration and leaf tissue
damage. Diseased plants end up absorbing less of the visible light and more of the NIR
light. From this knowledge, disease detection can be done using leaf reflectance infor-
mation [40,52,53]. In a study concerning late blight infection, a disease that tomatoes are
also susceptible to, it was found that spectral differences in the visible region between
healthy and diseased plants are small and more significant differences are noticeable in the
NIR [40].

Various vegetation indices can be retrieved from remote sensing [33]. A common index
is the Normalized Difference Vegetation Index (NDVI) (Figure 2) for assessing the degree
of vegetation of an area by using leaf reflectance information. NDVI can be computed
using satellite data or from modified cameras [40,53]. It was found that the combination of
NDVI and temperature gives higher accuracy in predicting pests appearances than weather
variables alone [32]. NDVI can also be used as input data for ML models to accurately
evaluate disease severity.

Pest development varies depending on the development stage of the plants. NDVI
can be used to monitor plant growth and establish relationships between the crop stage
development and pest occurrence.

2.1.2. Agriculture Data-Sets

Many data-sets used in the context of agriculture include images of plant diseases or
pests with the goal of classifying them. PlantVillage, PlantDoc, IP102, Flavia and, MalayaKew
Leaf are some data-sets that are freely available. Here is a brief summary of each of these:

• PlantVillage [61]: popular data-set used for plant disease classification. Specifically for
tomato, it contains 18,160 images representing leaves affected by bacterial spot, early
blight, late blight, leaf mold, septoria leaf spot, spider mites, two-spotted spider mite,
target spot and tomato yellow leaf curl virus. It also includes images of healthy leaves.
Figure 3 depicts two sample images taken from this data-set.

• IP102 [62]: data-set for pest classification with more than 75,000 images belonging
to 102 categories. Part of the image set (19,000 images) also includes bounding box
annotations. This is a very difficult data-set because of the variety of insects, their cor-
responding development stages (egg, larva, pupa, and adult) and image backgrounds.
The data-set is also very imbalanced. Figure 4 presents two examples of images from
this data-set.

• PlantDoc [63]: contains pictures representing tomato diseases which were acquired
in the fields. Among the considered diseases are: tomato bacterial spot, tomato early
blight, tomato late blight, tomato mold, tomato mosaic virus, tomato septoria leaf spot,
tomato yellow virus and healthy tomatoes.

• Flavia [64]: contains photos of isolated plant leaves over a white background and in
the absence of stems. This data-set covers 33 plant species.

• MalayaKew Leaf [65]: was gathered in England’s Royal Botanic Gardens at Kew. It con-
tains images of leaves from 44 different species. There are situations where leaves from
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different species are very similar, presenting a greater challenge for the development
of plant identification models.

Tomato Powdery Mildew Disease (TPMD) is a different type of data-set because it
is related to meteorological data. It offers statistics on powdery mildew disease suscepti-
bility depending on a variety of weather-related variables such as humidity, wind speed,
temperature, global radiation, and leaf wetness [66].

(a) Tomato leaf affected by mosaic virus disease (b) Tomato leaf affected by late blight disease

Figure 3. Examples of tomato leaves affected by diseases taken from the PlantVillage data-set [61].

(a) Rice leaf roller (Marasmia exigua) (b) Winter grain mite (Penthaleus major)

Figure 4. Examples of insect images taken from the IP102 data-set [62].

2.1.3. Field-Collected vs. Laboratory-Collected Data

ML models performance is influenced by the quality and type of input (image or
other). Images acquired in a controlled laboratory environment and images acquired in the
field can result in completely different processes and/or results. The difficulty for disease
and pest classification is much higher for images acquired in the field than for images taken
in a controlled environment.

Under a controlled laboratory environment, images typically contain a single leaf
over a neutral artificial background [67]. The PantVillage data-set is an example of such
situation [61]. It is possible to achieve great performance on these data-sets [13]. However,
the creation of these types of data-sets is a time consuming and costly process.

When compared with images acquired in the laboratory, field images have much
higher complexity, due to the presence of multiple leaves in the same image, presence of
other plant parts, different shading, and lighting conditions, different ground textures,
different backgrounds, etc. [63]. According to the studies in [63,68], training ML models
using laboratory images provides poor outcomes when tested in the field, making them
useless for the task. Training on field photographs and testing on laboratory photographs,
on the other hand, produce reasonable outcomes [68]. The addition of field images in the
training data has been shown to boost the results significantly, however testing on images
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from alternative data sources is advised [68]. PlantDoc demonstrates that cropping the
leaves improves the accuracy of CNN architectures when dealing with in-field photos [63].

Table 1 shows the performance achieved on a few studies that analysed the impact of
image acquisition conditions on the performance of disease classification models. In each
table cell, “L” corresponds to lab images, “F” to field images and “L + F” for both types of
images. In addition, the data-sets associated to the weights of the pre-trained models that
were used for Transfer Learning (further explored in Section 2.3.4) are also shown.

Table 1. Performance comparison of field vs. laboratory data.

Study Pretrained Weights Training Testing Performance

[68] -

L F 33.0% acc.

F L 65.0% acc.

L + F L + F 99.0% acc.

[63]

ImageNet L F 15.0% acc.

ImageNet + PlantVillage F F 30.0% acc.

ImageNet + PlantVillage F (cropped images) F (cropped images) 70.0% acc.

[13] ImageNet L L 99.0%+ acc.

2.2. Data Pre-Processing

Pre-processing data before feeding it to the model is common in most ML-based
applications. Images are typically pre-processed using computer vision techniques to
remove noise, to enhance the image contrast, to extract the regions of interest, to extract
image features, etc. In general, image pre-processing steps usually lead to better model
outcomes. The most common data pre-processing techniques are covered in the following
sub-sections.

2.2.1. Noise Reduction

Different types of filters, such as Gaussian and median filters, are used to reduce
noise to obtain smoother images. These filters have an effect of blurring and removing
non relevant details of an image, at the expense of potentially losing relevant textures or
edges [69].

Erosion and dilatation are two morphological image operations that can be applied
to binary or grey-scaled images. Erosion removes islands and tiny items, leaving only
larger objects. In other words, it shrinks the foreground objects. On the other hand, dilation
increases the visibility of items and fills in tiny gaps, adding pixels to the boundaries of
objects in an image [70]. These operations reduce details and enhance regions of interest.
These methods are helpful, for instance, for pest detection against a neutral background,
such as images of traps with captured insects [28,71].

Images are usually stored in the RGB format, which is an additive color model of red,
green, and blue components. Due to the high correlation between these color components,
it is usually not suitable to perform color segmentation in the RGB color space. Therefore
it is important to bear in mind that there are others color spaces such as HSV or L*a*b*.
In HSV the color components are: hue (pure color), saturation (shade or amount of grey),
and value (brightness). In the L*a*b* color space, L* is the luminance (brightness), a* is the
value along the red-green axis, and b* is the value along the blue-yellow axis. In these color
spaces, the brightness of a color is decoupled from its chromaticity, allowing the images
to be processed with different lighting conditions [69]. This is significant in the context
of agricultural images acquired in the fields, since they can have been shot under various
lighting circumstances or at different times of the day.

Histogram equalization is a technique for adjusting contrast. In low contrast images,
the range of intensity values is smaller than in high contrast images. Equalization of the
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histogram spreads out the intensity levels throughout values in a wider range. Contrast
enhancement is not directly applied in the RGB color space, because it applies to brightness
values. Thus, images have to be converted either to grey-scale or to a color space that
contains a brightness component, such as the HSV or L*a*b* color spaces [69].

2.2.2. Image Segmentation

Image segmentation is the process of grouping pixels into regions of interest. In the
context of crop disease identification, these regions of interest can be, for instance, diseased
areas on the plant leaves, for assessing the severity of the infection by the amount of the
infected area, or for background removal, since the removal of the background allows
highlighting of the regions of interest for further analysis. An example of background
removal is shown in Figure 5.

(a) Strawberry leaf scorch (original) (b) Strawberry leaf scorch (segmented)

Figure 5. Example of background removal from the PlantVillage data-set [51].

Blob detection is a computer vision technique for getting regions of pixels that share
common properties. The properties of these regions, such as color and brightness, differ
greatly compared to their surroundings. This technique can be used, for instance, to detect
and count insects in images [28,71].

The k-means clustering algorithm is a popular unsupervised ML algorithm that can
be used for image segmentation. Pixels are grouped into clusters which have pixels with
similar color and brightness values. This technique is helpful, for instance, to detect
damaged regions on leaves [31,72]. Fuzzy c-means is a soft clustering technique where
a pixel can be assigned to more than one group. This method was used by Sekulska-
Nalewajko and Goclawski [73] and Zhou et al. [74] for plant disease classification.

Region growing is a region-based image segmentation technique used by Pang et al.
in [75] to accurately define the image regions corresponding to the plant leaf parts affected
by disease.

Intensity thresholding is a straightforward and simplified approach for image segmen-
tation. According to the pixel value, that pixel is classified into a group (e.g., healthy or
diseased). When using this technique, images are frequently converted to grey-scale first
and then thresholded using a grey intensity value [76]. Figure 6 shows an example of an
image converted to grey-scale.
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(a) Black rot apple (original) (b) Black rot apple (grey)

Figure 6. Example of an image converted to grey-scale from the PlantVillage data-set [51].

2.2.3. Feature Extraction

Feature extraction is a common step in the pre-processing of images for shallow
ML models. Common image feature extraction algorithms include the Histogram of
oriented Gradient (HoG), Speeded Up Robust Features (SURF) and Scale Invariant Feature
Transform (SIFT) [62,77]. Different feature extractors obtain different features that can be
more or less suitable for the specific problem at hand. HoG focuses on the structure and
shape of the image objects, by detecting edges on images oriented according to different
directions. The distribution of gradients according to these directions are used as features.
SIFT finds scale and rotation invariant local features through the whole image, obtaining a
set of image locations referred to as the image’s key-points. SURF is conceptually similar to
SIFT, with the advantage of being much faster, which can be relevant for the implementation
of real-time applications.

The distribution of image colors is represented by a color histogram. Since most
diseases have symptoms that impact the color of the leaves, the histogram can also be used
for distinguishing between healthy and unhealthy plants [77].

Some computer vision algorithms for feature extraction demand that pictures are
converted to grey-scale, such as Haralick texture [78] or edge detection algorithms [79], etc.
Haralick texture features are computed from a Grey Level Co-occurrence Matrix (GLCM),
a matrix that counts the co-occurrence of neighboring grey-levels in the image. The GLCM
acts as a counter for every combination of grey-level pairs in the image. Diseased and
healthy leaves have different textures since a diseased leaf has a more irregular surface and
a healthy leaf has a smoother one. These features allow differentiation of a healthy leaf
from a diseased one.

Local Binary Pattern (LBP) [80] is another technique used for image texture features
extraction robust to variations on lighting conditions. The LBP technique was used by
Tan et al. in [81] for the extraction of information about diseases on tomato leaves.

Multi-spectral image data-sets can be exploited to create new data and improve the
performance of models. For instance, in [40], originally, there were NIR pictures of the
fields and from this data the authors created new images from spectral differences (between
green and blue bands, and between NIR and green bands), band ratios and dimension
reduction using principal component analysis. The authors also assess which type of data
achieves best performance on the models.

2.2.4. Cropping and Resizing Images

Cropping and resizing images is used for decreasing the input image dimensions,
to allow greater processing speed or to fit hardware requirements. It can also be used for
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creating more data to train the models, for example, from a low number of high resolution
pictures, a much higher number of low resolution images can be retrieved [40].

2.2.5. Pre-Processing in Tabular Data

Tabular data consisting of weather records was commonly found in the literature
analysed in the scope of this paper. When gathering data records with varying dates
and locations, these records can be integrated in two ways: cross-year, where models are
validated over the years at the same location, and cross-location, where models are validated
across the various locations for the same year. The average coefficient of determination (r2)
was found to be higher for cross-year models for all ML algorithms tested [29].

Common procedures in pre-processing are scaling/standardization of data and miss-
ing values processing [14]. Most algorithms require that there are no missing values in data
and others, such as neural networks, can benefit from the normalization of feature values
to improve training and reduce the effects of vanishing gradients [29].

Down sampling is a useful way to process data when there is a high number of records.
In [52], measurements of leaf reflectance were done, from 760 to 2500 nm with a 1 nm
interval. The 1740 wavelengths measurements were compressed into 174, and afterwards
10 wavelengths were selected using the stepwise method. From the regression analysis, re-
sults showed a coefficient of determination r2 = 0.94 for these wavelengths and leaf severity.
Experiments showed that fewer than those 10 wavelengths would worsen performance.

2.2.6. Pre-Processing in Deep Learning

Deep learning pre-processing does not focus on feature extraction since one of the
most essential and beneficial properties of deep learning is its ability to generate features
autonomously. For this reason, pre-processing is focused mainly on creating more im-
ages through data augmentation and resizing the input images to fit the models input
parameters.

Some studies have compared the manual selection of features with deep learning.
When it comes to categorizing insects in the field, manually selected features were not
able to capture all of the relevant information about insect infestations or to handle the
noise of real-world photos. Manually selected features were also not able to capture subtle
differences between different insect species that share similar appearance [62]. For insect
detection, deep learning techniques achieved higher accuracy and took less time to process
since they efficiently select regions of interest [15]. In the work done by Brahimi et al. in [67],
tomato disease classification using deep learning achieves higher accuracy, with values
above 98%, but the accuracy of models using feature extractors is not very far behind,
reaching values above 94%.

When comparing the use of original color pictures with images converted to grey-
scale or background segmentation, deep learning models performed better in the original
color pictures [13]. These findings are also confirmed in [82], where the performance of
color vs. grey-scale pictures is compared. This supports the idea of deep learning not
requiring extensive pre-processing of images. Nevertheless cropping images achieve better
performance on field images classification, by increasing the region of interest and reducing
the varying background [63].

Data augmentation is a process to artificially expand and increase the diversity of
the training data-set. This process benefits the performance of the models, by introducing
variability in the data and allowing a better generalization of the domain [83]. Some
common transformations are rotation, cropping, scaling, and flipping.

Data cleaning is the process of assessing the quality of the data and to either modify
or delete it. It is usually applied in studies that retrieve their data-set images from search
engines in an automatic way, removing pictures that do not correspond to the intended
labels or that do not comply with minimum resolution requirements [30,62].

Image resizing is usually performed to fit the input parameters of the models. Studies
have compared the performance of the models with different input image sizes, and con-
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cluded that with larger images the models achieve higher accuracy but require more time
for each training epoch [68] and more powerful hardware [71].

Table 2 shows the pre-processing techniques applied to deep learning classification
models analysed in the scope of this review. The ‘type’ column shows the data pre-
processing technique used and the ‘info’ column contains additional details about it.

Table 2. Pre-processing when deep learning techniques were used.

Study Type Info

[13]

Greyscale -

Background Segmentation Masks

Resize 256 × 256

[30]

Data Augmentation Affine, perspective, rotation

Data Cleaning -

Resize 256 × 256

[71] Resize 52 × 52, 112 × 112, 224 × 224

[62]
Data Cleaning -

Resize 224 × 224

[15]
Data Augmentation Crop, rotation, Gaussian noise, scale, flip

Resize 600 × 1024, 300 × 300

[67] Resize 256 × 256

[68] Resize 256 × 256

[82]
Greyscale -

Resize 60 × 60

From the table, it is noticeable that all analysed papers employing deep learning-based
techniques used image resizing. It is also worth mentioning that the application of data
augmentation was found in 25% of the depicted works, and the same goes for image color
conversion to grey-scale and data cleaning.

2.3. Machine Learning Models

ML models enable researchers to get insight into data and existing correlations between
various factors that influence occurrence of diseases and pests in crops. After data is
processed and features are extracted, models can be used for classification, regression,
among other goals. In classification, a new data sample is assigned a label according to the
relations retrieved during the training process. In regression, a continuous output value is
estimated from the input variables.

The following sub-sections contain a description about the ML models used, published
work that have used them and the achieved performances. In addition, as a consequence of
the conducted research, it was decided to include a sub-section about the use and potential
of Transfer Learning (TF) in the research under consideration.

2.3.1. Support Vector Machine

SVM [84] is a model that creates a hyper-plane that separates two classes (can also be
adapted and applied for multi-class problems). By maximizing the distance, or margin,
between the nearest data points (support vectors) of each class to the hyper-plane, SVM
chooses the optimum hyper-plane to segregate the data. SVM can also perform well in
non-linear data by using the so called kernel trick technique. The SVM kernel is a function
that transforms a low dimensional input space into a higher dimensional space that is
linearly separable. For this reason, SVM can be very effective in high dimensional spaces.
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SVM can also be used for regression problems [29,40,85]. Furthermore SVM can also be
used in a hybrid way as Bhatia et al. did in [86], by using SVM together with logistic
regression algorithm to predict powdery mildew disease in tomato plant.

A syntheses of agricultural studies using SVM as the ML model can be observed in
Table 3. The type of SVM used, as well as its kernel and result can be observed. Linear,
polynomial, and RBF kernels seem to be most commonly used on SVM-based classification
and regression algorithms applied to agriculture contexts.

Table 3. SVM performance.

Study
Classification/ Kernels

Regression Type Results

[52] Classification
Polynomial 90.0% acc.

Radial Basis Function 97.4% acc.

[29] Regression Not specified SVM outperformed

[40] Regression Linear r2 = 0.45

[27] Classification Linear 90.0%+ acc.

[31] Classification

Radial Basis Function 90.5% acc.

Quadratic 92.0% acc.

Linear

91.0% acc.Multi-Layer Perceptron

Polynomial

[67] Classification Not specified 94.6% acc., 93.1% f1

SVM can achieve better performance than other ML techniques such as ANNs and
conventional regression approaches in forecasting plant diseases [29].

2.3.2. Random Forest

Random Forest (RF) is a widely known ensemble built from decision trees trained
on different subsets of the training data. Also, when deciding which variable to split
on a node, RF considers a random set of variables and not the whole set of features.
During classification, each tree votes and the class most agreed upon is returned. As each
tree is trained on a subset of data and of features, the computation is fast. A high number
of trees and the diversity of each of them makes them robust to noise and outliers. Some
studies that have employed Random Forest (RF) are shown in Table 4.

Table 4. Performance of Random Forests.

Study Classification/Regression Number of Trees Performance

[40] Regression 100 r2 = 0.75
[32] Regression 200 r2 = 0.75
[77] Classification - 70.0% acc.
[67] Classification - 95.5% acc., 94.2% f1

RFs can achieve greater accuracy with less number of samples when compared to
other ML techniques [77].

2.3.3. Artificial Neural Networks

Artificial Neural Networks (ANN) are models inspired by biological brains. ANN
consists of neurons distributed in input, hidden, and output layers and can have multiple
hidden layers and multiple units in each layer. With more hidden layers, an ANN is able to
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learn complex relations from the hierarchical combination of multiple features, and thus
create high-order features, Figure 7 shows an illustration of an ANN. Deep learning is
associated with ANNs that contain a large amount of layers.

OutPut + Δoutput

w + Δw

Output

Hidden

Input

Figure 7. ANN example.

Learning occurs by a process called optimization, which is an iterative method for
minimizing an error function, typically based the Gradient Descent algorithm. Instead of
calculating the gradient from the entire data-set, the optimization process typically uses
chunks of data records called batches. After the network processes the input, the output is
compared to the expected output and the error is computed. The error is then propagated
back through the network, one layer at a time, and the weights are updated according to
the amount they contributed to the error. This updating process is called back-propagation.
After all records in the data-set are processed once, a training epoch is completed. Training
the network can require several epochs until desired results are achieved.

CNNs are a type of a deep learning network that commonly are applied on image
classification tasks. In this type of network, the use of the so-called convolutional layers
enables an hierarchical extraction of features, where simpler features such as edges are
extracted in the first layers and more specific and complex features are extracted in deeper
layers. The dimensionality of the input is decreased by the use of pooling layers. Fully
connected neural networks are usually placed on top after the convolutional and pooling
layers and act as classifiers using these high-level features.

Recurrent Neural Networks (RNN) are also a type of deep learning network, usually
applied to time series data. RNNs extract features automatically from data and can capture
temporal relationships. Because of the architecture of these networks, the gradients calcu-
lated to update the weights can become unstable, becoming too high (Exploding Gradient)
or too low (Vanishing Gradient).

The recurrent layers can be structured in a wide variety of ways to produce distinct
RNNs [87]. The LSTM cell was proposed by Hochreiter and Schmidhuber in [88]. Here,
the remembering capacity for the standard recurrent cell was improved in order to deal
with undesirable dependencies on the long-term.

Recently, Xiao et al. suggested in [14] that LSTM networks have specific advantages in
processing time-dependent problems. LSTM networks can be used, for example, to retrieve
relationships between meteorological data and pest occurrence in order to forecast future
pest attacks.
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In the context of agriculture, obtaining a large amount of annotated data for the
training of ML-based algorithms can be a rather difficult task. Few-shot learning ap-
proaches have been trying to mitigate this problem by managing to learn with fewer data.
The methods typically associated with this technique can be organized according to four
groups [89]: data augmentation, metric learning, external memory, and parameter opti-
mization. Yang et al. present a survey on the developments, application, and challenges of
this approach.

When using ANN models, authors might use one of two methods. They either create
their own model designs or adopt well-known architectures that have been shown to
perform well in previous studies, particularly CNN architectures for image classification.

User-Defined Network Architectures

This sub-section presents studies where the authors defined their own neural net-
work architectures.

In [40], Duarte-Carvajalino et al. built and compared the outcome of two different neu-
ral networks models. The first model was a Multi-Layer Perceptron (MLP) with 2 hidden
layers, each having half the number of nodes of the previous layer. The authors used
a learning rate of 0.01, the Adamax optimizer, batch normalization and dropout with
probability of 0.2 in all layers, and ReLU as activation function. The other model was a
CNN trained using the same hyperparameters used on the MLP. The CNN consists of two
convolutional layers using 20 filter kernels of size 3 × 3, followed by a max pooling layer
of size 2 × 2. The succeeding network layers are another two convolutional layers using
40 filter kernels of size 5 × 5 followed by a max pooling layer. After flattening, a dense
layer is added before the output is computed. It was concluded that the CNN achieved
better results than the MLP.

In [14], an LSTM network was used for processing time series data, i.e., winter and
autumn data. The LSTM network consisted of two fully connected layers with five hidden
units each. The results showed that the LSTM network achieved the best performance with
92% accuracy when compared to RF, SVM, and K-Nearest Neighbors (KNN). The Apriori
algorithm [90] was applied for interpretability.

Disease prediction for different regions was also studied with the use of an ANN in [29].
In this case, the back-propagation neural network [91] and the generalized regression neural
network [92] models were used.

A model suggested by Patil and Kumar in [93] attempted to identify the link between
weather variables and the emergence of 4 types of rice diseases. In this work, the authors
used an ANN to perform the detection, identification and prediction of the appearance of
diseases in rice crops. The meteorological data-set referred to data between 1989 and 2019.
The ANN consisted of 8 neurons in the input layer, 15 in the 2 hidden layers, and 5 in the
output layer.

In [94], Sharma et al. performed a prediction of the potato late blight disease based on
meteorological data only, using an ANN. In this case, data from 2011 and 2015 was used.
Several tests with different network activation functions and data-set splits were done. It
was concluded that the larger the data-set, the better was the performed prediction.

In addition, other algorithms relying on meteorological data and ANNs for performing
predictions have been proposed. In [95], Dahikar and Rode present an ANN for predicting
which crop will grow best in a certain area. The predictions were based on weather and
soil data. Refs. [96,97] proposed ANN-based models for predicting crop yield.

Convolutional Neural Network Architectures

Image classification has achieved great results, with various model architectures being
developed over the last 10 years. Most of these deep learning models were proposed in the
context of the “Large Scale Visual Recognition Challenge” (ILSVRC). These models include
well-known architectures such as AlexNet, GoogleNet, VGG, and ResNet, which have been
widely used for image classification in different application domains.
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Table 5 summarizes a set of studies that used pre-existing CNN architectures, depicting
the architecture used in their work and the corresponding results.

Table 5. Performance of CNN architectures.

Study Architecture Results

[13]
GoogleNet 99.3%

AlexNet 99.3%

[30] CaffeNet 96.3%

[71] VGG16 98.0% validation, 81.0% in new apple orchard

[62]

GoogleNet 43.5% acc., 32.7% f1

FPN 54.9% mAP 0.5

ResNet 49.4% acc., 40.1% f1

VGGNet 48.2% acc., 38.7% f1

AlexNet 41.8% acc., 34.1% f1

[67]
GoogleNet 98.7% acc., 97.1% f1

AlexNet 99.2% acc., 98.5% f1

[68]
AlexNet 99.4% acc.

VGG16 99.5% acc.

[63]

VGG16 60.4% acc., 60.0% f1

InceptionResNet V2 70.5% acc., 70.0% f1

Inception V3 62.1% acc., 61.0% f1

[82] LeNet 98.6% acc., 98.6% f1

As can be observed from Table 5, several CNN architectures developed over the last
decade have been successfully used, showing great potential for agriculture applications.
From these, the use of older CNN architectures such as AlexNet (2012), VGG16 (2014), and
GoogleNet (2014) were found on 44%, 33%, and 33% of the analysed papers, respectively.
Although the use of the most recent CNN architectures is not expressed in the papers
analysed in this review, we believe that, in the near future, the application of newer
architectures to agriculture will be a reality.

2.3.4. Transfer Learning

TF makes use of already existing knowledge for some related task or domain in order
and apply it to the problem under study. Models previously trained for image classification
on large data-sets are usually used and adapted to the data-set under study. A common
approach is to substitute the last network layers (i.e., the dense layers) of a pre-trained
network, adapting it for a different classification task. The model is then trained but only the
newly inserted layers are trainable—all network layers remain frozen during the training
process. In extension of this approach, fine-tuning, is also commonly used. Besides training
the newly inserted layers, fine-tuning allows the training of additional layers of the base
model, typically the deeper convolutional layers of the network.

TF is usually done when the studied data-set is small, with insufficient samples for
training a CNN model from scratch.

Table 6 synthesizes several deep learning-based studies where TF was applied. It
presents details addressing: the data-set used for the base model training, the used TF
method and the performance difference between using TF and training from scratch.



Agriculture 2022, 12, 1350 17 of 23

Table 6. TF analysis.

Study Model Dataset for Pretrain Method
Performance Difference
Compared to Training

from Scratch

[13] AlexNet, GoogleNet ImageNet All layers trainable ~−2% acc.

[30] CaffeNet ImageNet
Low learning rate for
original layers (0.1),

high for top layer (10)
~−0.50% acc.

[62] AlexNet, GoogleNet,
VGGNet, ResNet ImageNet Fine tune ~−14.0% acc. in best model

(ResNet)

[15]

Faster RCNN
(ResNet101, Inception

V2, Inception
ResNet V2)

COCO Fine tune No comparison

[67] AlexNet, GoogleNet ImageNet Fine tune ~−2%

[63] VGG16, Inception V3,
Inception ResNet v2

ImageNet and/or
PlantVillage Fine tune ~−31.0% using ImageNet

and PlantVillage

As can be observed from the table, the use of TF leads to lower performance when
compared with training the full model from scratch. Nevertheless, there are many cases
where such a difference is small, which means that TF can indeed be a useful possibility
when the data-set is not sufficiently large.

3. Discussion

The studies collected in this review show that plant disease classification is a domain
with promising results, with some studies achieving very high results [13,67]. Diverse data-
sets have been employed, each with their own characteristics and associated difficulties:
intraclass variability, background diversity, and different lighting and shading conditions
during image acquisition. Due to these reasons, performance comparisons between the
analyzed studies is not a straightforward task.

3.1. Data Acquisition

The data acquisition phase will have great influence on the quality of the ML model
results, since the quantity and quality of data will influence the behaviour of ML models
both in terms of good results and robustness.

Disease classification has shown promising results when the images of leaves are
taken in laboratory conditions, with a single leaf against a neutral color background [13].
Laboratory image data is usually acquired using controlled lighting conditions using
neutral color image backgrounds. On the other hand, images acquired in the cultivation
fields are much harder to classify due to the presence of multiple leaves and plants, varying
shading and lighting conditions, different ground textures and background objects [63].
Training ML models using laboratory images does not transfer well to testing in field
conditions, achieving poor results. As for the opposite, reasonable results have been
achieved [63,68]. The inclusion of images acquired in the field to the training processes can
greatly improve performance of the models [68]. Nevertheless, the choice of data should
always reflect the target objective of the application. For instance, if the model is intended
to work in the laboratory environment, it isn’t necessary to train it using data acquired on
uncontrolled environments, since robustness to different acquisition conditions will not be
necessary for the case. On the other hand, if the model is to be used in the field, images
from the real context must be used. If the latter is not ensured using a large amount of
images, the model will probably not perform well on the real conditions that exist in the
crop fields.
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Many studies applied ML-based algorithms to weather data records, since the weather
conditions have an important role in the development of diseases and pests. Sensors
for measuring weather data such as temperature, humidity, and rainfall fill data records
that can be used to find correlation between the data and the development of pests or
plant diseases in order to predict theses kind of developments [14,28,29]. Data records of
meteorological measurements and pest occurrence can also be analyzed by deep learning
with good results, as can be seen in [14]. Pest occurrence can be periodically manually
analyzed by counting insect appearances [32] or by automated processes using computer
vision techniques that detect insects on leaves or in traps [15,28,71].

Plants reflect NIR radiation differently depending on the disease damage [52]. If re-
mote sensing data [32] or cameras equipped with filters [40] (allowing the capture of images
at different bands of the light spectrum) are available, they can be used to compute NDVI.
In [32], Skawsang et al. finds the relevance of NDVI and temperature for predicting pest
occurrence. In [32], it is suggested that NDVI contains information about the relation
between the crop growth stage and pest development. Duarte-Carvajalino et al. suggests
in [40] that the NIR band is more suited for late blight detection than color imagery.

Thermal imagery combined with colored images provides higher accuracy when com-
pared with using color features only, when detecting diseases that affect the temperature of
the plant [27]. This is especially useful for detecting specific diseases in their early stages,
where the plant has not yet developed visible symptoms. Knowledge about the variables
that will influence the state of the plantation being worked on is very important when it
comes to deciding which types of data should be acquired.

3.2. Data Pre-Processing

Data pre-processing techniques vary according to the used ML-based approach. In the
case of image data, feature extraction can be done manually by applying computer vision
algorithms, or automatically using deep learning.

Manual feature extraction processes typically demands pre-processing steps such as
noise reduction or contrast enhancement. The researchers have to decide and select which
feature extractors are more suitable for the problem at hand. When using deep learning,
pre-processing is typically focused on data augmentation, enriching the training data-set in
order to achieve a better model generalization. Deep learning shows better results when
directly analyzing the originally acquired images when compared with the use of images
converted to grey-scale [82] or subject to background removal [13]. This is a useful finding
because background removal can be a complex and arduous task for images taken in field
conditions, with complex and varying background [68]. When comparing the performance
of ML models based on manual feature selection with models based on deep learning,
the latter has shown better performance in studies that compared both approaches using
the same input data [15,67,83].

Highlighting the region of interest of the leaves and reducing the background noise
can increase the model’s performance. This is valid for plant disease identification [63] as
well as for insect classification [71].

3.3. Machine Learning Models

The studies presented along this paper have mostly used SVM, RF, or deep learning-
based ML models. All of these have show promising results, highlighting the potential of
using ML techniques for disease and pest classification, detection, and prediction. SVMs
are robust and useful in high dimensional spaces due to their use of kernel trick. RF can
avoid overfitting due to the high number of trees trained in different subsets of data. Deep
learning usually achieves the best classification results due to its ability to create and extract
hierarchical features from the inputs. Deep learning beats other ML models, particularly in
image classification domains, especially when using pre-existing CNN architectures such
as Inception and ResNet [62,63].
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Despite deep learning models achieving higher accuracy values, SVM and RT can
also achieve high values with accuracy above 94%, especially in disease classification on
laboratory images [67]. SVM also achieves high accuracy, with values above 90%, in the
detection of tomato diseases [30].

RNNs are capable of establishing relationships between weather data and pest occur-
rence, surpassing other models such as RF and SVM [14].

In scenarios where data is difficult to obtain, models trained with a lower amount
of data can benefit from the use of TF, rather than having the models trained from
scratch [13,52,72,76,77]. Most studies have their models pre-trained on large data-sets
for image classification such as ImageNet or COCO. The inclusion of the PlantVillage data-
set with ImageNet for pre-training helps to improve the accuracy of models for disease
classification on images acquired in the field [62]. TF is typically applied by training some
of the top layers of the pre-trained model jointly with the new classifier.

An alternative would be to address lack-of-data problems using few-shot learning
approaches, as suggested in [89].

4. Conclusions

This survey presented an insight into existing research addressing the application of
ML-based techniques for forecasting, detection, and classification of diseases and pests.

Data-sets containing weather, diseases, and pests data should keep records for long
periods of time. Time-series ML models, such as RNN, can be employed to accurately
forecast the occurrence of diseases and pests based on meteorological measurements
series. NDVI measurements can also be helpful, since they provide additional information
regarding the crop’s development.

Detection and classification of pests and diseases can be performed using computer vi-
sion and deep-learning algorithms based on CNN models, which show better performance
when compared with older image classification approaches based on “manual” features
extraction. However, deep learning models require large amounts of data, which can be
difficult to obtain. To tackle this issue, the use of transfer learning or few-shot learning
methods can prove useful. Nonetheless, although the performance of deep learning-based
methods is high for images acquired under controlled conditions, additional research is
required regarding the analysis of images taken in the field, under real life conditions.

Since the literature does not yet include substantial work on pest and disease fore-
casting using combinations of different data modalities, this article also aimed to provide
a general overview on the use of ML techniques over different types of data, in order to
facilitate further developments that may help fulfill this gap.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
CNN Convolutional Neural Network
GLCM Grey Level Co-occurrence Matrix
HoG Histogram of oriented Gradient
ILSVRC Large Scale Visual Recognition Challenge
JU ECSEL Joint Undertaking
KNN K-Nearest Neighbor
LPB Local Binary Pattern
LSTM Long Short Term Memory
ML Machine Learning
MLP Multi-Layer Perceptron
NDVI Normalized Difference Vegetation Index
NIR Near Infra-Red
PETA Progressive Environmental and Agricultural Technologies
RF Random Forest
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SIFT Scale Invariant Feature Transform
SURF Speeded Up Robust Features
SVM Support Vector Machine
TF Transfer Learning
TPMD Tomato Powdery Mildew Disease
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Abstract: As climate change, biodiversity loss, and biological invaders are all on the rise, the signifi-
cance of conservation and pest management initiatives cannot be stressed. Insect traps are frequently
used in projects to discover and monitor insect populations, assign management and conservation
strategies, and assess the effectiveness of treatment. This paper assesses the application of YOLOv5
for detecting insects in yellow sticky traps using images collected from insect traps in Portuguese
tomato plantations, acquired under open field conditions. Furthermore, a sliding window approach
was used to minimize insect detection duplicates in a non-complex way. This article also contributes
to event forecasting in agriculture fields, such as diseases and pests outbreak, by obtaining insect-
related metrics that can be further analyzed and combined with other data extracted from the crop
fields, contributing to smart farming and precision agriculture. The proposed method achieved good
results when compared to related works, reaching 94.4% for mAP_0.5, with a precision and recall of
88% and 91%, respectively, using YOLOv5x.

Keywords: pests; insects; detection; identification; precision agriculture; machine learning; smart farming

1. Introduction

The world population has increased and is expected to continue to grow [1]. In recent
decades, this growth has driven the demand for agricultural goods, resulting in an increase
in crop areas [2]. However, traditional agricultural production is not economically or
environmentally sustainable; hence, it is critical to make optimal use of resources to enable
high-yield crops [2].

Furthermore, crop productivity is constantly threatened by insect pests. It is predicted
that worldwide food supplements are declining by 40% on average every year owing to
plant diseases and insect outbreaks [3]. Each year invasive insects cost the global economy
around USD 70 billion [4].

Temperature influences the rate of population expansion in several insect species. In
addition, the rise in global temperature caused by climate change influences insect damage
and development. The metabolic rates of insects increase when the temperature rises,
causing them to consume more food and inflict more harm. Crop losses due to insect pests
are expected to increase by 10% to 25% for every degree of average global warming of the
Earth’s surface [5].

Tomato is a fruit–vegetable that has great potential to be cultivated since it is a source
of vitamins and minerals. In terms of improving yields and fruit quality, tomatoes rank
among the horticultural commodities with high economic value that still require careful
handling [6]. It is critical to preserve these kinds of plantations against diseases and pests,
in order to improve the quality and quantity of the crop [7]. According to data from the
Food and Agriculture Organization of the United Nations, tomato production in Western
Europe has increased considerably from at least 2000 to 2019 [8].

Numerous fungal, bacterial, and viral diseases have severely afflicted this plant,
with symptoms appearing in various areas of the plant, such as the leaf, stem, fruit, etc.
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Wilt, rot, stains on fruits, browning of foliage, and stunted development are some of the
symptoms [9].

The advancements in information technology have allowed for the development of
more precise farm management systems that overcome these invaders. Insect traps (ITs)
are essential for keeping track of insect activity and are frequently used in pest detection
and control programs, such as in [10], where trapping techniques for emerald ash borer
and its introduced parasitoids were addressed. In [11], the authors address trapping, detec-
tion, control, and regulation of tephritid fruit flies, lures, area-wide programs, and trade
implications associated with them. In [12], the authors address the use of pheromone traps
to monitor the distribution and population trends of the gypsy moth; for further references,
please also see [13–15]. ITs are also used to assess biodiversity, plan conservation [16–18],
and evaluate pest activity and research initiatives, such as in [19], where over a two-year
period, the association between female mating success and background male moth densities
along the gypsy moth western front in northern Wisconsin, USA, was measured. In [20],
the authors describe the usage of automated pheromone-baited traps, utilizing recording
sensors and data loggers to collect male unique date–time stamps when they entered the
trap; for further references, please also see [21–23].

As a result of the use of IT, a lot of research has been conducted to determine the
effectiveness of traps, such as reference [24], where attraction and trapping capabilities of
bucket- and delta-style traps with different pheromone emission rates for gypsy moths were
compared. In [25], the performances of pheromone-baited traps to monitor the seasonal
abundance of tortrix moths in chestnut groves were analyzed. In [26], the authors evaluated
gravid traps for the collection of culex quinquefasciatus; for further references, please also
see [27–30]. The research was also carried out to estimate the range of attraction, such as
in reference [31], where the authors presented a novel method for estimating a pheromone
trap attraction range to the pine sawyer beetle monochamus galloprovincialis. In [32], the
range of attraction of pheromone traps to agriotes lineatus and agriotes obscurus was assessed.
In [33], the authors assessed the attraction range of sex pheromone traps to agriotes male
click beetles in South-Eastern Europe. In [34], the authors addressed the space of pheromone
plume and its relationship with the effective attraction radius in applied models; for further
references, please also see [35–38]. Work is also being conducted around the probabilities
associated with insects, such as in [39,40]. Regarding the work in [39], the probability of
detecting Caribbean fruit flies was addressed. Concerning the work in [40], the regional
gypsy population trends (in an expanding population using a pheromone trap catch and
spatial analysis) were predicted. This work on the probabilities associated with insects was
conducted to better understand trap catches and to relate them to the absolute population
density [41–47]. Regarding reference [41], the gypsy moth was used as the simulation model
to interpret the capture of moths in pheromone-baited traps used for the surveillance of
invasive species. Regarding the work in [44], the European pine sawfly was monitored with
pheromone traps in maturing Scots pine stands. As for the work in [45], the autumn gum
moth was monitored regarding relationships between pheromone and light trap catches and
oviposition in eucalypt plantations.

For several insect trap systems, a relationship was found between trap catches and
subsequent egg mass [44,45,48,49] and larval density [50–52]. However, translating trap
catches into absolute population density and, in particular, interpreting zero catches,
remains challenging at the quantitative level [12,24,41,53].

By gathering data on the target pest’s existence, abundance, and dispersion, insect
pest monitoring is often carried out in agriculture and forestry to evaluate the pest status
in specific sites (such as a greenhouse, field, orchard/vineyard, or forest). The ultimate
objective of insect pest monitoring within integrated pest management programs in agri-
culture is to give growers a useful decision-making tool. For instance, the intervention
thresholds are crucial for optimizing the control method and grower inputs for a given
insect pest infestation in a particular field at the ideal time. Insect population outbreaks can
be predicted using monitoring data to develop prediction phenological models, providing
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extra knowledge to enhance control methods and maximize the use of insecticides [54].
Similarly, forestry relies heavily on the detection and monitoring of both native insect pests
and invasive species to set up effective management programs. This is because forest insect
species can have a serious negative influence on the biodiversity, ecology, and economy of
the afflicted area [55].

The impetus for this work stemmed from the necessity to monitor insects that invade
crops. The monitoring of insect populations potentiates an increased crop yield as the use
of pesticides can be more efficient. Therefore, this work can contribute to precision agri-
culture [56]. On the other hand, the proposed technique for the detection and subsequent
counting of insects, which corresponds to the number of bounding boxes retrieved, con-
tributes to smart farming. To this end, use was made of YOLOv5 and a tiled image-splitting
technique in order to optimize the model’s performance.

Images from insect traps acquired in the open fields are subject to a wide variety of
illumination conditions due to weather conditions, day-cycle light, landscape elements that
cast shadows (e.g., trees, buildings, mountains), etc. The camera trap setup is also subject
to oscillations due to the wind, which may result in lesser image quality due to motion
blur. Trap imagery acquired in the open fields may also contain objects other than insects,
such as leaves that stick to the traps. Machine learning models that use images acquired
under these conditions tend to achieve worse results since they need to deal with such
variability. On the other hand, images acquired in the laboratory are usually captured under
fully controlled conditions (constant illumination, no wind, etc.), while images captured
in greenhouses may also be subject to some uncontrolled environmental conditions (e.g.,
illumination variability), but not as adverse as on images captured in the fields.

This paper considers the much less controlled scenario of images acquired on the
tomato crop fields, aiming to evaluate the applicability of YOLOv5 for the detection of
insects in yellow sticky traps.

2. State-of-the-Art

Insect populations that exceed the economic threshold can cause significant harm
to plants and, hence, diminish yields. The quantity of pests at an observed location
is frequently determined by visually inspecting sticky surfaces in IT and counting the
captured insects and this is a time-consuming job [57]. To overcome this problem, there has
been much development of Internet of Things (IoT) systems with the support of machine
learning for monitoring IT. This paper was developed in this direction, using images of
IT captured by an IoT system to detect the number of insects present in the traps in the
agricultural field through machine learning. This section will discuss some of the work that
has been done in this area.

Deep learning was used to detect, identify, and count specific pest species in ITs in [58].
To reduce the impact of illumination variations on detection performance, a color correction
variation [59] of the “gray-world” technique [60] was adopted. The authors suggested a slid-
ing window-based detection pipeline that applies a convolutional neural network (CNN)
to image patches at various locations to calculate the probability that they contain certain
pests. Their work was inspired by algorithms proposed for pedestrian detection, analyzed
in [61]. The final detections were produced via non-maximum suppression (NMS) [62]
and thresholding of image patches based on their positions and related confidences. To
evaluate the precision of the bounding boxes, the intersection-over-minimum (IoM) was
computed. It was concluded that many of the errors occurred because the same moth could
have various wing positions, occlusion levels, lighting circumstances, and decay patterns
throughout time, indicating that the algorithm would improve in well-managed sites.

In [63], the authors’ main objective was to create a model that detects whiteflies and
thrips from sticky trap images in greenhouse settings. They developed a model based
on faster region-based convolutional neural network (R-CNN), the “TPest-RCNN”, and
trained it using transfer learning with a public data set in the first phase. They utilized their
data set with the weights from the first phase to the second phase. The model was proven
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to be accurate in detecting microscopic pests in images with varied pest concentrations
and light reflections. It was also concluded that for recognizing insect species from images
captured in sticky yellow traps, the best results were achieved by the proposed model,
beating the faster R-CNN architecture and techniques employing manual feature extraction
(color, shape, texture).

The research in [64] focuses on a four-layer deep neural network based on light traps
with a search and rescue optimization strategy for identifying leaf folders and yellow
stemborers. The search and rescue optimization approach was employed in the deep neural
network to find the ideal weights to enhance the convergence rate, reduce the complexity
of learning, and increase detection accuracy. The proposed method achieved 98.29% pest
detection accuracy.

The proposed work in [65] studies the monitoring of spotted wing drosophila IT using
image-based object detection with deep learning. The authors trained the ResNet-18 deep
CNNs to detect and count the insect in question. From an image captured from a static
position, an area under the precision–recall curve (AUC) of 0.506 was obtained for the
female and 0.603 for the male. From the observed results, it was concluded that it is possible
to use deep learning and object detection to monitor the insects.

In [66], the authors performed automatic insect detection where they first used a
spectral residual model; different color features were then extracted. In the end, whiteflies
and thrips were identified using a support vector machine classifier. The classification
accuracies for the whiteflies and thrips were 93.9% and 89.8%, respectively. As for the
detection of the trap, a precision of 93.3% was obtained.

To identify whiteflies and thrips, researchers in [67] presented an image-processing
approach that included object segmentation and morphological processing of color features
combined with classical neural networks. The images were acquired under controlled
conditions, in a laboratory environment, from sticky traps moved from greenhouses. The
proposed algorithms achieved 96% and 92% precision, respectively.

In [68], a pheromone-trapping device was developed. In this work, the original image
was cropped into several sub-images with 30% overlap. These sub-images were then
used to train the tested models, which were the images reconstructed with the detections
performed. The results showed a mean average precision (mAP) of 94.7%.

Using IoT and deep learning frameworks, the work in [69] provided a real-time remote
IT monitoring system and insect identification algorithm. The authors used the faster R-
CNN ResNet 50 and an average accuracy (using different databases) of 94% was obtained.

The study in [70] used machine vision and deep learning to detect and count Aphis glycines
automatically. To detect the insect, the authors used a sliding windows approach with a size
of 400 × 400 pixels to slide over the acquired images with a stride of 400 pixels. Each image
framed by the sliding windows in each step was fed into the faster R-CNN developed by the
authors. The results demonstrate the high potential of the method proposed.

In [71], the authors proposed using low-cost cameras to capture and upload images
of insect traps to the cloud. The authors used R-CNN and YOLO models to detect the
insects, whitefly in this case, in yellow sticky traps. They used a public data set [72] for
training the models. However, the images used for training were acquired under controlled
illumination conditions. The authors do not explicitly state whether the images were split
or used as a whole. The model with the best mAP was YOLOv5x, with a mAP of 89.70%.

The technique proposed in [73] combines high-tech deep learning with low-tech sticky
insect traps. The authors propose a high-throughput cost-effective approach for monitoring
flying insects as an enabling step towards “big data” entomology. In this work, the traps
were captured a few days after being composed of a high number of insects, and images
of them were only obtained after that capture, under laboratory and field conditions. The
images were split into segments of 500 × 500 pixels. The authors concluded that the model
was more likely to miss important images than it was to incorporate irrelevant ones.

Regarding the work in [74], the authors used yellow insect traps for the detection
of Trioza erytreae and Scaphoideus Titanus Ball using image-processing techniques and the
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FASTER R-CNN and YOLOv4 models. In order to promote the robustness of the models,
images of the traps were taken by a 12-megapixel camera under different light conditions,
backgrounds, and distortions. The authors did not perform splits on the images in order
to train the models with tiles of the images instead of the images as wholes. The authors
concluded that the models performed poorly with and without image processing.

Considering the methodologies stated, open-source solutions may be employed to
aid in the detection process’s implementation. In [75], this approach is followed, using
the Computer Vision Annotation Tool (CVAT) (https://github.com/openvinotoolkit/cvat,
accessed on 9 December 2021), which contains a feature for automatic annotation/labeling.
This software can also be powered by Nuclio (https://nuclio.io/, accessed on 9 December
2021), a serverless technology that allows deploying trained models to CVAT. This tool was
analyzed and it was concluded that it could be interesting to use it given the infrastructure
of the project, as CVAT allows to create and carry out annotation tasks and, with Nuclio,
deploy trained models [76].

From the state-of-the-art, it is not always clear that the approach used to split the
image into tiles will feed the trained model. This is important, because in the case of
splitting the image, in order to optimize the model performance, duplicated detections can
arise. This problem is addressed in this paper and an approach to solve it is demonstrated.
Furthermore, the main contribution of this paper was to test the application of YOLOv5 in
detecting insects in traps (tomato plantations in this case). From the reviewed works, using
YOLOv5, images acquired under controlled conditions (laboratory or greenhouses) were
usually used. Thus, this paper contributes to the future developments of insect detection in
images that are split using YOLOv5 and an approach that optimizes the performance of
the trained model and the non-appearance of duplicate detections. Furthermore, this paper
contributes to the monitoring and detection of insects in crop traps and, consequently, to
the prediction of events in the agricultural field, by providing a new metric to be analyzed
and correlated with other data from the crop.

3. Materials and Methods

In this article, a method was developed to detect insects in IT, yellow sticky cards,
placed in agricultural fields. The work carried out in this article arose in the context of AI
for new devices and technologies at the edge (ANDANTE) [77] project and, consequently,
the data used in this work were provided by project partners. To carry out this work, first,
the image was prepared to feed the artificial intelligence (AI) model, then the model was
trained, and the results were evaluated and analyzed. This section presents the data set
used and the pipeline of the method developed.

Given that there was no manual annotation on the images provided, the first stage of
development was to manually annotate some yellow sticky cards and insects in the images.
The open-source software CVAT, its application programming interface (API), and Nuclio
(open source and managed serverless) were used in the developments described, making
model training, manual and automatic detection, data management, and selection easier.

CVAT and its API allowed the creation of a website where all images were available and
could be annotated manually and automatically. It was through CVAT that the bounding
boxes of the yellow sticky cards and insects were manually created in the first phase.
Through its API, it was possible to select images and access those same bounding boxes in
the desired formats. With this access, everything was ready to start the development and
training of the models with manual annotations. After the training, Nuclio was used to
put the developed models into practice in CVAT, i.e., it became possible on the website to
select a set of images in CVAT and apply the developed models to them with the immediate
output of the results, in this case, the automatic bounding boxes of the yellow sticky cards
and insects. This is because Nuclio allowed incorporating the developed models with the
extra processing done, such as the splitting of the images into tiles and their consequent
reconstruction, already with the respective automatic bounding boxes resulting from the
annotations made by the model, thus providing CVAT with the coordinates of the bounding
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boxes to be placed on the image concerned. From CVAT API, it is thus possible to obtain
the bounding boxes presented in each image and, consequently, the number of insects on
the image in question.

3.1. Data Set

The data set used was related to Portuguese tomato plantations in the Ribatejo region,
namely Valada, Castanheira, and Lezria, where ANDANTE Portuguese partners collected
the data. Information about the tomato crop fields can be found in Table 1.

Table 1. Information on the tomato crop fields where data were acquired.

Location Area (ha) Planting Date Central GPS Point

Castanheira 23 19 April 2021 38.982300, −8.954110

Lezíria 27 27 April 2021 and 10 May 2021 39.006537, −8.881018

Valada 20 07 May 2021 39.067730, −8.772214

The tomato cultivation fields where data were collected were fully mechanized, from
planting to harvesting. The crop consists of natural tomato varieties, obtained from cross-
pollination, without any kind of genetic modification. Sowing was in a greenhouse, starting
at the end of January. Seedling production lasted about one-and-a-half to two months. The
crop was staggered with a cycle of about 120 days, depending on the tomato varieties,
and the start of planting took place between the end of March and the beginning of June.
Planting was in 1.52 m wide ridges. Planting density was about 33,000 plants per hectare
with drip irrigation.

The data set used contains 5646 images of IT captured by cameras placed in front of the
traps. These were webcams with 12 megapixels. The traps were composed of chromotropic
cards, yellow cards in this case, with glue, yellow in order to attract insects, such as bemisia
tabaci. In addition, pheromones were placed in delta-type traps in order to attract the male
insects so that they did not create offspring, such as helicoverpa armigera. The chromotropic
leaves and pheromones were used in the biotechnical fight. In the whole data set, only
4637 images were considered legitimate since several did not correspond to IT or were not
adequate to improve the model’s performance. These images were considered invalid. This
filtering is shown in Table 2.

Table 2. Data on the insect trap images where data were acquired.

Trap 001 Trap 002 Trap 003 Trap 004 Trap 005 Trap 006

Field Valada Castanheira Valada Lezíria Lezíria Castanheira

Period of
operation

27 May 2021 to
3 September

2021

26 May 2021 to
8 September

2021

27 May 2021 to
8 September

2021

27 May 2021 to
23 September

2021

27 May 2021 to
24 September

2021

26 May 2021 to
6 September

2021

Total images 848 948 901 945 1071 933

Valid Images 733 756 784 763 845 756

The images were captured every day, between the dates shown in Table 2. Furthermore,
the acquisition was mostly done between 11 a.m. and 8 p.m. at different times of the
day (11 a.m., 11.30 a.m., 12 midday, 4 p.m., 4.30 p.m., 5 p.m., 7 p.m., 7.30 p.m., and
8 p.m.), usually nine images were captured per day. The ANDANTE partners defined this
configuration based on their understanding of the insect’s behavior.

Figure 1 presents an example image for each of the six traps utilized.
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Examples of the data set. (a) Insect Trap 001. (b) Insect Trap 002. (c) Insect Trap 003.
(d) Insect Trap 004. (e) Insect Trap 005. (f) Insect Trap 006.

3.2. Method Pipeline

An analysis of the images from the data set was carried out; a method was chosen in
which the trap was first detected and then the insects presented in that trap through the
bounding box resulting from the detection of the trap, the yellow sticky card.

Since ITs differ physically and are sensitive to varied lighting circumstances during
image acquisition, we exclusively employed AI models for object detection, abandoning
the usage of manual image-processing processes for insect detection. In addition, because
the colors of the insects were generally the same as the colors of the lines on the yellow
sticky cards, only AI models were used. Taking this into account, and the literature
review [63,78–83], it was observed that AI models were increasingly being used, performing
better and replacing more traditional methods that involved manual image processing;
the manual image processing was discarded despite being considered at an early stage.
Regarding the work in [79], it was verified that a YOLO model could perform better than
the model used in the research for segmenting blueberries from an input image. In [63],
the authors concluded that the faster R-CNN proposed had better results than techniques
employing manual feature extraction for detecting whiteflies and thrips from sticky trap
images in greenhouse conditions.

The insect detection process went as follows: the yellow sticky card in the original
image was detected; the resultant bounding box was divided into tiles; the insects on each
tile was detected; the original image was rebuilt with all bounding boxes. For the sake
of improving the performance and results, cropping techniques were adopted [84]; the
bounding box corresponding to the yellow sticky card, i.e. the result of the yellow sticky
card detection model was split into tiles, and these tiles were used to train the insect models
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tested. From the performed detection, the number of insects presenting in each image can
be directly inferred. Figure 2 depicts this pipeline split into two phases, A and B.

Input

Yellow
sticky
cards
model

detection

Yellow sitcky card annotation

Yellow sticky card model detection result

Image split
into tiles

Each tile

Reconstruction of the image with 

the detections performed

Insects
model

detection

Output

Phase A

Phase B

Figure 2. Pipeline for insect detection.

The YOLOv5 object detection model was used to perform the insect detection task. This
choice is justified since YOLO is a widely used model that has been proposed for numerous
object detection-based tasks and, its most recent version, the one used in this work, is
showing an increasing usage trend [81]. Considering this trend and other works already
mentioned in Section 2, it was decided to use YOLOv5 due to its potential performance
in object detection tasks. Transfer learning was applied to train the model for insects and
yellow sticky card detection.

The YOLOv5 model has different versions (YOLOv5s with a small size, YOLOv5m
with a medium size, YOLOv5l with a large size, and YOLOv5x with an extra large size)
and the basic structures of all these versions are the same. Their differences rely on the size
of the model, with a multiplier that influences the width and the length (deepness) of the
network. Generally, the larger the model, the better the performance at the expense of more
processing time and required memory [85].

The parameters presented in Table 3 were used in all developments involving the use
of YOLOv5.

Table 3. YOLOv5 insect trap image parameters.

Epochs Batch Size Optimizer Patience

300 16 Stochastic Gradient Descent (SGD) 100
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The results of YOLOv5 were obtained and analyzed through MLflow [86] integration.
This integration made it possible to visualize the mAP_0.5, mAP_0.5–0.95, precision, recall,
and loss during each training epoch. At the end of the training process, it was also possible
to observe the F1 curve, as well as precision/recall curves. Of all the metrics obtained,
due to the nature of the problem, the evaluation of the results was based on the mAP_0.5,
mAP_0.5–0.95, precision, recall, F1 score, and F1 score curve.

The mAP, corresponds to the mean over classes, of the interpolated average of precision
(AP), of each class (out of N classes), given by the area under the precision/recall curve [87],
and is calculated as follows:

mAP =
1
N

N

∑
i=1

APi (1)

The precision measures the model’s accuracy in classifying a sample as positive. It is
calculated as the ratio between the number of positive samples correctly classified to the
total number of samples classified as positive:

Precision =
TruePositives

TruePositives + FalsePositives
(2)

The recall of the model assesses its ability to recognize positive samples. The more pos-
itive samples identified, the larger the recall. The recall is computed as the ratio of positive
samples that are properly categorized as positive to the total number of positive samples:

Recall =
TruePositives

TruePositives + FalseNegatives
(3)

The F1 score combines the precision and recall of a classifier into a single metric by
taking their harmonic mean. The F1 score formula is shown here:

F1-Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

4. Results
4.1. Yellow Sticky Card Model Detection

Phase A of the detection pipeline (see Figure 2), concerning yellow sticky card de-
tection, was developed to use detection data to later detect the insects contained in the
sticky cards.

From the valid images, explained in Section 3.1, 1272 insect trap images were manually
annotated, which were the images of the data set used in this phase; 80% of the data set
was used for training, 10% for validation, and the remaining 10% for testing. The images
were resized to 640 by 640 pixels in the training process.

The lightweight YOLO model, YOLOv5s, was enough to achieve near-perfect results,
as shown in Table 4, with the mAPs, precision, and recall reaching the maximum possible
values or very close to them. With the developed trap detection model achieving good
results, all of the images that had not been manually annotated were passed through the
developed model and the correct detection was verified by the model.

Table 4. YOLOv5s yellow sticky card model results.

Phase mAP_0.5 mAP_0.5–0.95 Precision Recall

Training 0.995 0.995 1 1

Testing 0.995 0.995 1 1
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4.2. Insect Model Detection

The insect detection model was developed considering only the bounding box corre-
sponding to the detection of the yellow sticky card. The YOLO model was again used, but
in this case, more powerful versions of YOLOv5 were tested.

Initially, the tiles were obtained with increments of the base tile sizes; in cases where
these increments were not divisive of the widths and/or lengths of the images, the tiles in
the margins (right and/or bottom) were smaller than the remaining tiles (Figure 3c); this
approach was termed the pure split (PS). In the second phase, in order to keep all tiles with
the same dimensions, black/yellow/white borders were added to the tiles with smaller
dimensions (Figure 3d); this approach was termed pure split with border (PSB). However,
these approaches were discarded since it was possible for an insect to be split between tiles
in these approaches. This could lead to two detections representing the same object—one
corresponding to the part of the object that was in a certain tile and the other to the part of
the object that was in a tile in the vicinity of the previous one. This situation is illustrated in
Figure 4.

This situation would complicate the process of reconstructing the bounding boxes in
the original image as the creation of the new bounding boxes (based on the original ones)
would become complex and there would be a wide variety of possibilities when verifying
which bounding boxes belong to the same object.

Due to this potential problem, the development focused on two new alternative
approaches, namely:

• Overlapping with the different size(s) (ODS): Tiles with different dimensions depend
on the positions of the tiles relative to the image and overlapping occurs (Figure 3a);

• Overlapping with the same size(s) (OSS): The tiles are the same dimensions (320 × 320 px).
Zones may have more overlapping areas than others (Figure 3b).

(a) (b) (c)

(d) (e)

Figure 3. Yellow sticky card splitting approaches. (a) ODS approach. (b) OSS approach. (c) PS
approach. (d) PSB approach. (e) Original image.
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Tile 10Tile 00

Tile 11Tile 01

Figure 4. Illustration of splits without overlapping the split insects.

For all the tests performed, the number of images used was the same—248 insect
trap images. However, due to the different approaches to performing the splitting, the
tile numbers used to train the models were different for each approach. For ODS and
OSS 11,375 and 5092 tiles were used when training and testing the models, respectively.
In all approaches, 80% of the data set was used for train, 10% for validation, and the
remaining 10% for the test.

The overlapping of tiles was done with caution making sure that the overlapping
zone occupied an area of 160 × 160 px (Figure 5). By analyzing the images and the
insects presenting in them, and questioning experts in the area, it was discovered that the
maximum area that a bounding box could occupy is below these values. In this way, the
problem that arose was solved. If an insect is split between tiles it will be partially detected
in some tiles but will always be fully detected on a neighboring tile; this type of situation
is illustrated in Figure 5. Thus, when reconstructing the image, it became only necessary
to understand which detections overlapped, by checking and comparing each bounding
box position, which ones had the largest area and confidence, and removing the duplicated
ones. This way, only the bounding boxes detecting the whole object would remain.

From the tests carried out, a few incorrect detections or missing detections were
observed, but they were in the minority when compared to the accurate ones. These flaws
can be suppressed when the values obtained in each image are associated with groups,
for example, between 0 and 20—few insects, between 20 and 100—some insects, etc. This
association is important when analyzing the data and verifying the respective correlations
with additional crop data (e.g., for performing event forecasting). These types of failures are
reflected in the mAP_0.5–0.95 metric, which is significantly lower than the mAP_0.5 metric in
all tests performed (these results are depicted in Tables 5 and 6). This can be expected since
the mAP_0.5–0.95 is computed over different intersection over union (IoU) [88] thresholds,
from 0.5 to 0.95 with a step of 0.05, while mAP_0.5 uses a fixed threshold at 0.5.

From the tables, it can be observed that the results achieved across all the tested models
do not vary significantly. This means that, in cases where computational resources are
limited, the lighter models can be used and still achieve good performance. By analyzing
the precision, recall, and F1 score of all models, this situation becomes quite clear.
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Tile 10Tile 00

Tile 11Tile 01

Figure 5. Illustration of overlapping tiles that split insects.

Tables 5 and 6 also reflect that ODS and OSS approaches achieve similar results with
the YOLOv5x model, reaching the best results in both cases. However, due to the uniformity
that OSS provides to the dimensions of the tiles without the need for resizing, the OSS
approach was considered for the development of the remaining work.

Table 5. YOLOv5 insect model results for ODS.

Model Phase mAP_0.5 mAP_0.5–0.95 Precision Recall F1 Score

YOLOv5s
Training 0.973 0.678 0.982 0.935 0.958

Testing 0.945 0.539 0.937 0.89 0.913

YOLOv5m
Training 0.975 0.7 0.976 0.94 0.958

Testing 0.933 0.554 0.908 0.88 0.894

YOLOv5l
Training 0.979 0.724 0.986 0.947 0.966

Testing 0.952 0.567 0.938 0.906 0.922

YOLOv5x
Training 0.98 0.733 0.982 0.951 0.966

Testing 0.952 0.573 0.935 0.9 0.917

Table 6. YOLOv5 Insect Model results for OSS.

Model Phase mAP_0.5 mAP_0.5–0.95 Precision Recall F1 Score

YOLOv5s
Training 0.964 0.632 0.963 0.940 0.951

Testing 0.923 0.497 0.912 0.853 0.882

YOLOv5m
Training 0.975 0.691 0.982 0.946 0.964

Testing 0.946 0.542 0.946 0.874 0.909

YOLOv5l
Training 0.973 0.694 0.981 0.939 0.960

Testing 0.937 0.543 0.951 0.862 0.904

YOLOv5x
Training 0.976 0.713 0.983 0.95 0.966

Testing 0.944 0.559 0.942 0.88 0.910
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An analysis of the applicability of this development and communication with the
end users of ANDANTE led to the conclusion that it was preferable to have a balance
between false positives and false negatives. If too many false detections (false positives)
occur, it would mean a possible acquisition by end users of products, in vain, or a constant
check in the field of values reflected by the detection. On the other hand, if too many false
negatives occur, it would mean the possible appearance of pests without the perception
of the end user. Furthermore, this balance will always be the best situation to ensure that
the correlations performed with other data (acquired to make predictions regarding crop
events) are not biased. Therefore, the F1 score was analyzed since it is adequate when both
types of errors (false positives and false negatives) are not desired. Figure 6 depicts the
graph of the F1 score curve.

Figure 6. F1 score curve for the YOLOv5x model using the OSS approach.

By analyzing the plot of Figure 6, it is possible to have a significantly high confidence
value that optimizes the F1 score at the same time; this value is between 0.7 and 0.8.
Furthermore, mAP_0.5 is a metric that is mostly used in object detection [89], and good
results are obtained from it. Therefore, the analyses of the F1 score curve and mAP_0.5
reflect the good performance of the model.

Although a comparison with other works cannot be directly performed, due to the use
of different data sets and differences in the tasks performed by the object detection models,
the results reported in the related work presented in Section 2 are summarized in Table 7.
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Table 7. Comparison with other insect detection works.

Reference Image Acquisition Performance Metric Year

Proposed Field, no controlled conditions 94.4% | 94.2% mAP_0.5 | Precision 2022

[63] Greenhouse 95.2% Accuracy 2021

[66] Greenhouse 93.9% (whitefly) 89.8% (thrips) Precision 2022

[67] Laboratory 96% (whitefly) and 92% (thrips) Precision 2016

[68] Field, controlled conditions 94.7% (black pine bast scale) mAP_0.5 2022

Using a faster R-CNN object detection model, the work in [63] achieved a mean F1
score of 94.4% and an accuracy of 95.2% in the detection of whiteflies and thrips as well as
insect trap images acquired in greenhouses. In the approach followed in [66], automatic
insect detection was conducted using a spectral residual model followed by the extraction
of color features that were sent to a SVM classifier. The goal was to identify whiteflies and
thrips; accuracies of 93.9% and 89.8% were achieved, respectively. As for the detection
of the trap, a precision of 93.3% was obtained, which is less than the one achieved by
the model proposed in this paper (100%). By comparing the results in both works, the
approach using a deep learning-based object detection model in [63] seems to lead to better
results than the approach in [66], which relies on image-processing techniques and classical
machine learning models. As for [67], the images used for training and testing the system
were acquired under controlled laboratory conditions, from sticky traps that were collected
from greenhouses. They achieved precision rates of 96% and 92% for the detection of
whiteflies and thrips. These results seem aligned with the ones achieved in [63]; however,
since the images were acquired in a less adverse environment, the results may be biased
when compared with those resulting from images acquired directly in the greenhouse.
In [68], different object detection models were tested for detecting black pine bast scale
pests Among the tested models, YOLOv5 achieved the best results, reaching an F1 score of
0.90 and mAP of 94.7%. The setup used for the image acquisition process (besides being
used for a different task) was much more sophisticated than our own.

From Table 7, it can be seen that the approach presented in this paper is aligned
with other works. It shows the potential of using the proposed image splitting approach
together with YOLOv5 for detecting insects in sticky traps whose images are acquired in
more adverse image acquisition conditions.

5. Conclusions

This paper presents the use and performance of YOLOv5 object detection models for
insect detection in yellow sticky traps, using images acquired on tomato crop fields. The
insect detection process uses a sliding window approach that minimizes the appearance
of duplicate detections in yellow sticky card IT images. The presented YOLOv5 model
demonstrated robustness and resilience for performing well under various illumination
and adverse element exposure conditions. This work contributes to raising the bar for insect
detection and monitoring. Furthermore, by creating another metric related to crop fields,
this paper contributes to the development associated with forecasts of events regarding the
agriculture field, such as the forecasting of disease and pest appearances.

There were limitations due to the absence of manual annotations of insects, which
made it impossible to develop models for the detection and classification of insects trained
with all available images.

The detection associated with the yellow sticky card and the subsequent training of AI
models was performed in the first phase. In this phase, optimal results were obtained using
YOLOv5s, and it was possible to perform the detection of yellow stick cards in all data sets.

The second phase was dependent on the first, as it was supposed to use the bounding
box associated with the detection performed of the yellow sticky card in order to improve
the accuracy of the detections of the insects in the traps. At this stage, a problem that this
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paper contributed to solving was faced: how does one perform the splits on the yellow
sticky card bounding box image in a way that maximizes the quality of the model while not
causing insects to be lost during the process of splitting and reconstructing the bounding
boxes on the original image? The approach that ended up generally having the best results
was OSS, where the tiles were the same sizes and overlapped, with 94.2% of precision in
the test set with the YOLOv5x model. It can be concluded that the presented approach and
the YOLOv5 models have potential in the detection of insects in insect traps scattered in an
agricultural field.

It is possible to develop an insect detection model with the need for human supervision
at times since the number and location of bounding boxes may be inaccurate. However,
these errors are never in substantial quantities and can end up mostly suppressed when
associating the number of detections performed in an image to a group. This association
has advantages at the time of the data treatment and analysis.

6. Future Work

The annotation of all currently available images will be a part of future work, in
order to build larger training and test sets. This annotation can either be manual or semi-
automatic, assisted by the models presented in this paper. Larger data sets are expected to
lead to more robust and accurate machine learning models.

Another topic for future work is the identification of specific insect species among
those detected in the yellow sticky cards. For such a task, a larger number of images need
to be acquired since greater diversities of data are required for covering the various species
of insects to be identified.

It may also be valuable to evaluate the applications of other popular object detection
networks, (e.g., faster R-CNN or single shot detector (SSD)) using the image splitting
method proposed in this paper.

Future work will also involve testing the counting of insects themselves (in addition
to their detection). Since the count is directly associated with the number of detections, and
the detection model achieves high accuracy, we expect that the accuracies of insect counting
will achieve results similar to the detection process. Nevertheless, this experiment will be
put to the test and allow researchers to conclude its effectiveness in terms of considering
the sliding window approach presented in this paper.
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Abbreviations
The following abbreviations are used in this manuscript:

AI artificial intelligence
ANDANTE AI for new devices and technologies at the edge
API application programming interface
AUC area under the precision–recall curve
CVAT computer vision annotation tool
CNN convolutional neural network
FCT Fundação para a Ciência e a Tecnologia
ISTAR Information Sciences, Technologies, and Architecture Research Center
IoT Internet of Things
IT insect traps
mAP mean average precision
NMS non-maximum suppression
ODS overlapping with different size
OSS overlapping with same size
PS pure split
PSB pure split with borders
R-CNN region-based convolutional neural network
SGD stochastic gradient descent
SSD single shot detector
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sensors and machine learning. Sensors 2021, 21, 4846. [CrossRef]
58. Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28.

[CrossRef]
59. Nikitenko, D.; Wirth, M.; Trudel, K. Applicability Of White-Balancing Algorithms to Restoring Faded Colour Slides: An Empirical

Evaluation. J. Multimed. 2008, 3, 9–18. [CrossRef]
60. Buchsbaum, G. A spatial processor model for object colour perception. J. Frankl. Inst. 1980, 310, 1–26. [CrossRef]
61. Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal.

Mach. Intell. 2011, 34, 743–761. [CrossRef]
62. Hosang, J.; Benenson, R.; Schiele, B. Learning non-maximum suppression. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4507–4515.
63. Li, W.; Wang, D.; Li, M.; Gao, Y.; Wu, J.; Yang, X. Field detection of tiny pests from sticky trap images using deep learning in

agricultural greenhouse. Comput. Electron. Agric. 2021, 183, 106048. [CrossRef]
64. Muppala, C.; Guruviah, V. Detection of leaf folder and yellow stemborer moths in the paddy field using deep neural network

with search and rescue optimization. Inf. Process. Agric. 2021, 8, 350–358. [CrossRef]
65. Roosjen, P.P.; Kellenberger, B.; Kooistra, L.; Green, D.R.; Fahrentrapp, J. Deep learning for automated detection of Drosophila

suzukii: potential for UAV-based monitoring. Pest Manag. Sci. 2020, 76, 2994–3002. [CrossRef] [PubMed]
66. Li, W.; Yang, Z.; Lv, J.; Zheng, T.; Li, M.; Sun, C. Detection of Small-Sized Insects in Sticky Trapping Images Using Spectral

Residual Model and Machine Learning. Front. Plant Sci. 2022, 13, 915543. [CrossRef]
67. Espinoza, K.; Valera, D.L.; Torres, J.A.; López, A.; Molina-Aiz, F.D. Combination of image processing and artificial neural

networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse
agriculture. Comput. Electron. Agric. 2016, 127, 495–505. [CrossRef]

68. Yun, W.; Kumar, J.P.; Lee, S.; Kim, D.S.; Cho, B.K. Deep learning-based system development for black pine bast scale detection.
Sci. Rep. 2022, 12, 606. [CrossRef]

69. Ramalingam, B.; Mohan, R.E.; Pookkuttath, S.; Gómez, B.F.; Sairam Borusu, C.S.C.; Wee Teng, T.; Tamilselvam, Y.K. Remote
insects trap monitoring system using deep learning framework and IoT. Sensors 2020, 20, 5280. [CrossRef]

70. Hsieh, K.Y.; Kuo, Y.F.; Kuo, C.K. Detecting and Counting Soybean Aphids Using Convolutional Neural Network. In Proceedings
of the 2018 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, Detroit, MI, USA,
29 July–1 August 2018; p. 1.

71. Cardoso, B.; Silva, C.; Costa, J.; Ribeiro, B. Internet of Things Meets Computer Vision to Make an Intelligent Pest Monitoring
Network. Appl. Sci. 2022, 12, 9397. [CrossRef]

72. Nieuwenhuizen, A.; Hemming, J.; Suh, H. Detection and classification of insects on stick-traps in a tomato crop using Faster
R-CNN. In Proceedings of the The Netherlands Conference on Computer Vision, Eindhoven, The Netherlands, 26–27 September
2018.

73. Gerovichev, A.; Sadeh, A.; Winter, V.; Bar-Massada, A.; Keasar, T.; Keasar, C. High throughput data acquisition and deep learning
for insect ecoinformatics. Front. Ecol. Evol. 2021, 9, 600931. [CrossRef]



Agriculture 2022, 12, 1967 19 of 19

74. da Silva Pinto Bessa, B.L. Automatic Processing of Images of Chromotropic Traps for Iden tification and Quantification of Trioza
erytreae and Scaphoideus titanus. 2021. Available online: https://repositorio-aberto.up.pt/handle/10216/139335 (accessed on 9
December 2021).

75. Günther, C.; Jansson, N.; Liwicki, M.; Simistira-Liwicki, F. Towards a machine learning framework for drill core analysis. In
Proceedings of the 2021 IEEE Swedish Artificial Intelligence Society Workshop (SAIS), Umea, Sweden, 14–15 June 2021; pp. 1–6.

76. Guillermo, M.; Billones, R.K.; Bandala, A.; Vicerra, R.R.; Sybingco, E.; Dadios, E.P.; Fillone, A. Implementation of Automated
Annotation through Mask RCNN Object Detection model in CVAT using AWS EC2 Instance. In Proceedings of the 2020 IEEE
Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 708–713.

77. Andante Use Case 2.2: Tomato Pests and Diseases Forecast. Available online: https://www.andante-ai.eu/project/use-case-2-2-
tomato-pests-and-diseases-forecast/ (accessed on 9 December 2021).

78. Hu, C.; Liu, X.; Pan, Z.; Li, P. Automatic detection of single ripe tomato on plant combining faster R-CNN and intuitionistic fuzzy
set. IEEE Access 2019, 7, 154683–154696. [CrossRef]

79. Ni, X.; Li, C.; Jiang, H.; Takeda, F. Three-dimensional photogrammetry with deep learning instance segmentation to extract berry
fruit harvestability traits. ISPRS J. Photogramm. Remote. Sens. 2021, 171, 297–309. [CrossRef]

80. Lin, S.; Jiang, Y.; Chen, X.; Biswas, A.; Li, S.; Yuan, Z.; Wang, H.; Qi, L. Automatic Detection of Plant Rows for a Transplanter in
Paddy Field Using Faster R-CNN. IEEE Access 2020, 8, 147231–147240. [CrossRef]

81. Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo algorithm developments. Procedia Comput. Sci. 2022, 199, 1066–1073.
[CrossRef]

82. Liu, G.; Nouaze, J.C.; Touko Mbouembe, P.L.; Kim, J.H. YOLO-tomato: A robust algorithm for tomato detection based on
YOLOv3. Sensors 2020, 20, 2145. [CrossRef] [PubMed]

83. Mu, Y.; Chen, T.S.; Ninomiya, S.; Guo, W. Intact detection of highly occluded immature tomatoes on plants using deep learning
techniques. Sensors 2020, 20, 2984. [CrossRef] [PubMed]

84. Domingues, T.; Brandão, T.; Ferreira, J.C. Machine Learning for Detection and Prediction of Crop Diseases and Pests: A
Comprehensive Survey. Agriculture 2022, 12, 1350. [CrossRef]

85. Dlužnevskij, D.; Stefanovic, P.; Ramanauskaite, S. Investigation of YOLOv5 Efficiency in iPhone Supported Systems. Balt. J. Mod.
Comput. 2021, 9, 333–344. [CrossRef]

86. MLflow. A Plataform for the Machine Learning Lifestyle. Available online: https://mlflow.org/ (accessed on 9 December 2021).
87. Henderson, P.; Ferrari, V. End-to-end training of object class detectors for mean average precision. In Proceedings of the

Asian Conference on Computer Vision, Perth, WA, Australia, 2–6 December 2016; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 198–213.

88. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss
for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long
Beach, CA, USA, 15–20 June 2019; pp. 658–666.

89. Everingham, M.; Van Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The pascal visual object classes (voc) challenge. Int. J.
Comput. Vis. 2010, 88, 303–338. [CrossRef]


	Acknowledgements
	Resumo
	Abstract
	List of Figures
	List of Tables
	Glossary
	Chapter 1. Introduction
	1.1. Motivation
	1.2. Overview
	1.3. Objectives
	1.4. Methodology
	1.5. Outline of the dissertation

	Chapter 2. State of the art
	2.1. Research methodology based on PRISMA
	2.2. Related work

	Chapter 3. Data organisation and collection towards image analysis modules
	3.1. Web information system
	3.2. Data-sets

	Chapter 4. Image analysis modules
	4.1. Object detection in insect trap images
	4.2. Vegetation indices acquisition of UAV images
	4.3. Disease classification on tomato leaves images

	Chapter 5. Conclusion
	5.1. Limitations
	5.2. Future work

	References
	Appendix A. Web application interfaces
	Appendix B. Results of disease classification on tomato leaves images
	Appendix C. Articles

