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Abstract

Moment conditions model averaging (MA) estimators in the GMM framework are consid-
ered. Under finite sample considerations, MA estimators with optimal weights are proposed, in
the sense that weights minimize the corresponding higher-order asymptotic mean squared error
(AMSE). It is shown that the higher-order AMSE objective function has a closed-form expres-
sion, which makes this procedure applicable in practice. In addition, and as an alternative,
different averaging schemes based on moment selection criteria are considered, in which weights
for averaging across GMM estimates can be obtained by direct smoothing or by numerical min-
imization of a specific criterion. Asymptotic properties assuming correctly specified models are
derived and the performance of the proposed averaging approaches is contrasted with existing
model selection alternatives i) analytically, for a simple IV example, and iz) by means of Monte
Carlo experiments in a nonlinear setting, showing that MA compares favourably in many rele-
vant setups. The usefulness of MA methods is illustrated by revisiting Acemoglu et al.’s (2001)

study on the effect of institutions on economic performance.
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1 Introduction

In many applications of instrumental variables and GMM estimation, there is often a large set of
candidate variables that can be used as instruments. However, the properties of moment conditions
and instrumental variables estimators are very sensitive to the choice and characteristics of the
instrument set. Indeed, instruments might be poorly correlated with the endogenous variables,
which invalidates conventional inference procedures. On the other hand, using many (potentially
weak) instruments, while desirable (see Hansen, Hausman and Newey, 2008), may lead to biases and
substantial deviations from the usual Gaussian asymptotic approximation (see Chao and Swanson,
2005, and Newey and Windmeijer, 2009).

Thus, much of the literature has focused on procedures for the selection of the appropriate
moments/instruments. Model selection entails choosing one of the estimated competing models
under consideration, possibly by deleting some of the moment conditions.! Andrews (1999) devel-
oped GMM analogues of model selection criteria in order to consistently select the largest set of
valid moment conditions, while Hall, Inoue, Jana and Shin (2007) suggest selecting moment con-
ditions according to the relevant moment selection criterion (RMSC), based on the entropy of the
limiting distribution of the GMM estimator. On the other hand, Donald and Newey (2001) and
Donald, Imbens and Newey (2009) propose a selection procedure such that the AMSE is minimized
over all existing instruments deemed to be valid, while Hall and Peixe (2003) propose a canonical
correlations information criteria (CCIC) for instrument selection.?

In this paper, we consider the alternative approach of model averaging (MA), in which parameter
estimates are constructed based on a weighted average of estimates obtained using different sets of
moment conditions or model specifications. Indeed, by making use of the information conveyed by
otherwise discarded alternative specifications, model averaging as an estimation strategy may yield
some gains in terms of bias and efficiency when compared to procedures that make use of a single set
of moment conditions. The main focus of our paper is on deriving the stochastic expansion of the
MA estimator and, building upon that, we study MA estimators with optimal weights, in the sense
that weights minimize the MA estimator’s higher-order AMSE. While we follow closely Donald et
al. (2009), our approach contrast with theirs in that these authors employ higher-order expansions
of the AMSE as a criterion for choosing instrumental variables, whereas we use the AMSE to
obtain optimal weights for model averaging. For the sake of completeness, we also consider simpler
alternative MA schemes for GMM in which empirical weights are obtained based on GMM moment
selection criteria. This can be achieved by direct smoothing of information criteria arising from the
estimation stage, or by numerical minimization of a specific criterion, as in Hansen (2007).

Our approach displays important differences when compared with the current model averaging

!Testing competing, non-nested formulations, in which the outcome may not be the selection of one particular
model, can be carried out in a moment conditions framework, see Smith and Ramalho (2002).

2Shrinkage methods for GMM are an alternative to model selection and estimation, see Caner (2009), Cheng and
Liao (2015) and Caner, Han and Lee (2018).



GMM literature. First, and unlike existing MA-GMM approaches based on first-order asymptotics,
our main concern are finite sample considerations, i.e. gauging to what extent MA estimation can
improve upon the often problematic finite sample performance of the standard GMM estimator,
which leads us to focus on a higher-order AMSE criterion for MA estimation. Second, we study
the more empirically relevant case in which the vector of parameters of interest is the same across
different specifications (i.e., across different sets of moment conditions), thus rendering the local
misspecification apparatus of Hjort and Claeskens (2003) inapplicable. Third, we suggest averaging
outputs of GMM (i.e. estimates of the parameters of interest) rather than inputs, (i.e. moment aver-
aging), as this allows the researcher to have an interpretable and quasi-Bayesian sense of parameter
uncertainty, as well as a more informed view on the relative merits of different specifications.

We study optimally-weighted MA-GMM estimators both under exact and overidentification,
and show analytically that AMSE improvements can be obtained by averaging estimators, relative
to not doing so, in a standard linear setup. We then develop the asymptotic properties of the MA
estimator under correct model specification, with fixed or random weights. Under fixed weights,
we show that the estimator is consistent and normally distributed, whereas with random weights
Gaussianity depends on the averaging scheme. Monte Carlo experiments in a nonlinear setting show
that, in several setups, model averaging estimation procedures outperform the selection method of
Donald et al. (2009) in terms of bias and dispersion. Finally, we apply our estimation methods
to measure the effect of institutions on economic performance, based on Acemoglu, Johnson and
Robinson (2001). While their estimates vary considerably across different specifications, our MA
estimates are much less disperse, thus illustrating the usefulness of a model averaging approach.

Our work is a natural extension of the model averaging literature, in which averaging usually
involve weights obtained from functions of model selection criteria, such as the BIC, AIC, etc (see
Claeskens and Hjort, 2008 for a review). Hansen (2007) proposed a Mallows criterion for the selection
of weights for averaging across least squares estimates obtained from a set of approximating models,
in which regressors (or groups of regressors) are added sequentially. Kuersteiner and Okui (2010)
suggest using Hansen’s (2007) method as a first step to construct optimal instruments IV estimation
with 2SLS, LIML and Fuller estimators. The weights are chosen to minimize the AMSE, as in Donald
and Newey (2001). Lee and Zhou (2015) suggest estimating the weights from the minimization of
the AMSE of the averaged estimator under the scenario of many (weak) instruments and each model
having the same number of instruments. Martins and Gabriel (2014) link the choice of empirical
weights to IV selection criteria by direct ‘smoothing’.

In a GMM framework, Xiao (2010) and Chen, Jacho-Chévez and Linton (2016) average over
estimators based on exactly identified models and the proposed weights are optimal in the sense that
the MA estimator attains the (first-order) semiparametric efficiency bound. The former considers
GMM estimators and the later a more general class of estimators, but imposing a cardinality of the
linear combinations that increases with the sample size. In contrast with the previous references,

Sueishi (2013) and DiTraglia (2016) assume model (local) misspecification: Sueishi (2013) in terms



of the model’s coefficients and for the class of GEL estimators, DiTraglia (2016) at the restrictions
level. In both cases, the weights minimize the AMSE of the MA estimator. DiTraglia (2016)
develops a new selection criteria (the Focused Moment Selection Criterion) and his MA estimator
combines estimators based on valid and potentially invalid instruments/conditions to minimize
MSE, thus leading to a more favourable bias-variance trade-off. Finally, Cheng, Liao and Shi (2019)
combine a conservative GMM estimator based on valid moment conditions and an aggressive GMM
estimator based on both valid and possibly misspecified moment conditions. That is, regardless of
the dimension of the model, valid moment conditions must exist and only two point estimators are
averaged. Moreover, in the case of global misspecification full weight is given to the conservative
GMM estimator, thus meaning that averaging is no longer applied.

Next, section 2 introduces assumptions and definitions. In section 3, we introduce our moment
conditions ‘optimal’ model averaging approach and show analytically their smaller higher-order
AMSE when compared to standard GMM estimators. In section 4 we discuss alternative approaches
to obtain empirical weights. In section 5, we derive statistical properties of the GMM model
averaging estimators. Section 6 presents a summary of a Monte Carlo simulation study providing
evidence in support of our MA procedures in the context of nonlinear models, against the benchmark
of model selection of Donald et al. (2009). In section 7 we briefly revisit Acemoglu et al.’s (2001)
study on the effect of institutions on economic performance and Section 8 concludes. All proofs are

included in a supplementary appendix.

2 Definitions

Given a vector of random variables {y; }, the estimation of a unique p-dimensional parameter vector
8o = (00,1, -..,60,p) € © C RP is based on (up to) m > p moment conditions of the form E[g(y, 0y)] =
E[g:(60)] = 0, for all ¢, with corresponding empirical moments gz () = (1/T) S, g(y:,0). As in
Andrews (1999), one can define a moment selection vector ¢ € ™ that represents a list of “selected”

moment conditions, i.e. a subset of g, denoted as gr.(f). Defining

C={ceR™{0}:¢c;=0o0r1,V1 <j<m, where ¢ = (c1,...,cnn)", |c| > p}, (1)

m
J
¢ € C, with |c| denoting the number of selected moments. For a particular ¢, the (efficient) GMM

c is a vector of zeros (excluded conditions) and ones (included conditions) and |c| = Y " ¢; < m for

estimator is defined as

bre (W) = arg mingr. (6) Wrcgre (6). (2)

where Wy, is a weighting matrix such that plim Wr. = S; !, where

S. = lim Var

T—o0

T
Tl/zzgc@t,eo)] @
t=1



is the |c| X |c| long-run variance matrix of the process gr. (9).
We adopt the standard GMM framework in which all moment conditions under consideration
are valid. This is expressed in the following general result, first proved by Hansen (1982) and that

can be found in any advanced econometrics textbook such as Hayashi (2000).

Assumption 1 (Regularity conditions for a given ¢ € C). Fiz the set of moment condi-
tions to any particular ¢ € C. A.1: {y:} is an infinite sequence of stationary and ergodic vari-
ables; A.2: The true 0y belongs to the parameter space © which is an open subset of RP; A.3:
9c(+,0) and 0g./06(-,0) are Borel measurable for each 6 € © and 0g./00(y,-) is continuous on
O for each y € R A.4: 0gc(y1,0)/00 is first moment continuous at 6y, and the |c| x p Ja-

cobian matriz G, = FE % o exists, is finite, and has full-column rank. A.5: The
=bvo

following CLT for stationary and ergodic variables holds: %Zthl 9e(yt, 0o) LA N (0,S.) where

Se = Tlim Var [T*1/2 ST gc(yt,ﬁo)} is a |c| X |e| positive definite matriz; and A.6: Applied
—00

to any consistent estimator Or., the following LLN for stationary and ergodic variables holds:

1 T agc(ytygT) P
T 21— a2 — Ge.

Lemma 1 (Asymptotic normality of the efficient estimator ch)
Assume that Assumption 1 holds and, for any ¢ € C, Wy, is such that plim Wy, = S 1. Then,
for any c € C,
VT (Or = 00) > Ze = N (0,V2), (4)

where

, -1
Ve= (GCSC_IGC> ) (5)
where G. and S. are defined in Assumption 1.

Importantly, and contrary to the usual literature, we include the higher order terms to define

a criteria for selecting the weights. Newey and Smith (2004) provide the stochastic expansion for

GMM/GEL (see Theorem 3.3) under i.i.d. data, correctly specified models and for fixed m. This is
given by

VT (5Tc - 90) = e + Que/VT + Qae/T + O, (T—3/2> : (6)

where

-1

Do = — (GLST1G.) T GLST W TGre (60) + 0, (1) (7)

is the leading term. They also define the higher-order MSE, but without presenting an expression
for the higher-order variance: “In general, although they may be derived relatively straightforwardly
from the Appendix, the expressions for = for GMM and GEL are extremely complicated, and so are
not given here, although some comparisons can be made.” (page 234). Results for time series data
can be obtained from Anatolyev (2005) and Bao and Ullah (2007), among others, see Anatolyev

and Gospodinov (2011) for a good overview.



Note that we drop the subscript ¢ for quantities such as gr(0), V, G, S, Wr in the case of the
estimator using the full set of available moment conditions (denoted as §T), obtained for ¢ = ¢y, a
vector of ones, such that |¢| = m. Similarly, for any ¢ € C, the J test statistic for overidentifying

restrictions is constructed as

e = Tinf Gre (0) Wregre (6).
Jr infgr (0) Wregre (9) (8)

As mentioned above, our setup assumes that only valid moment conditions are being used. If the
researcher is unsure whether or not the moment conditions are correct, some selection procedures
could be used to select the (sub)set of correct moment conditions.® Selection criteria for GMM are

reviewed in section 4, when we consider alternative selection criteria-based MA estimators.

3 Optimally-Weighted Moment Conditions Model Averaging Es-

timators

In this section, we present a methodology whereby we average across candidate specifications to
obtain an averaged estimator. Note that this differs from previous literature (namely Kuersteiner
and Okui, 2010, Kapetanios and Marcellino, 2010 and Okui, 2011) in that we are not averaging
across instruments to obtain an optimal set of instruments. Instead, we propose averaging different
estimates of 0y obtained from distinct sets of moment conditions. The weights associated with each
estimate are chosen according to an optimality criteria. In a particular model, we are able to show
analytically that our proposed ‘optimal’ MA-GMM estimator has a smaller higher-order AMSE

when compared to standard GMM estimators.

3.1 The Procedure

Let M be the collection of candidate moment conditions models. Here, M is a countable/finite
or an uncountable set, such that model M; belongs to the family of models M : M; € M. In our
model averaging procedure, we specify a subset of M from which we define the MA estimator. For
now, take any model, M;, which is characterized by a particular set of moment conditions.
Consider m and ¢ as defined above and the relevant objects indexed by c. Now, let w =
(w1, -y w|C‘)/ be a weight vector in the unit-simplex in RI°!, with |C| = 2" — Z?;é (Tj”) =, (T)’

with the binomial coefficients (m representing the number of different elements* in C :

) _ m!
J/ T i m=5)b

Hy ={we 0,1 :> we =1} (9)

ceC

3Potentially, our averaging approach could then take place over estimates obtained from valid specifications utilizing
different combinations of the selected moment conditions, although this raises the issue of pre-testing, which we will
not address here.
p—1 (nL

i—o j) from the total of combinations 2™, those for which m < p.

4We need to exclude



Thus, a model averaging estimator of the unknown p x 1 vector 6 is

Or (W) = webre. (10)
ceC
Clearly, standard GMM estimation is a special case for which no model averaging occurs: we+ = 1
for some ¢* and wy = 0 for ¢ # ¢* and §T (w) = ch*.

Given our initial assumptions in section 2, we assume our procedure is averaging over valid
specifications. However, the properties of the MA estimator will depend on whether the weights
are fixed or random objects. For a given w, the limit statistical properties of 5’[ (w) depend on a
linear combination of the random processes ch,C € C. Thus, under correct model specification,

plim §Tc =0 for all ¢ € C and 6A?Tc is v/T-gaussian with asymptotic variance
/ -1 / / -1
v, = (GCWCGC> (GCWCSCWCGC) (GCWCGC> . (11)
The asymptotic variance of the efficient GMM estimator is given by
/ 1 -1
v, = (GCSC‘ Gc> . (12)

However, we need to take into account the fact that, in our MA estimator, the moment functions
gre (6p) are different across model specifications indexed by ¢, which could complicate the derivation
of their limiting behavior. We circumvent this problem by defining a selection matrix that contains
certain rows with zeros, operating on the full moment functions, as in Domowitz and White (1982).
Consider the GMM estimator obtained using the whole set of moment conditions, ¢ = t,,, where
|c| = m. Now, define the matrix A, of dimension |c| by m, such that each row j =1, ..., |c| contains
zeros, except a single 71”7 at position ¢ that corresponds to the moment condition as defined in
model ¢ = ,,.%> Then,

gre (6o) = Acgr (0o) (13)

that is, we write the moment functions as a linear function of the ‘full’ specification, which will

allow us to obtain the limiting distribution of our MA estimator, as shown in the following theorem:

Theorem 1 (Distribution of the MA estimator for a given w): assume that the model is correctly

specified and Assumption 1 holds. As T — oo, for any w € H,,,

é\T (w) = ché\Tc £> 90, (14)
ceC

5Taking, for example, m = 3 (three moment conditions) and the particular specification ¢ using conditions one
and three, A; is 2 by 3 with rows (1,0,0) and (0,0,1).



where §Tc,c € C, is the GMM estimator. Moreover,
VT (01 (w) = 60) 5 N (0, V), (15)

where

Vo= (Z We (GéWcGC)il GéWcAc) 5 (Z wCA/cWCGC (GICWCGC)1> (16)

ceC ceC
and S denotes the long-run variance matriz employing all moment conditions (i.e., ¢ = iy, ).

In the case of efficient GMM estimation, then V. = (12), so

V, = (Z%VG’ ) (ch e V) (17)

ceC ceC

Moreover, Zr(w) = VT <9AT (w) — 90> convergences weakly to a zero-mean Gaussian process Z(w) :

Zp(w) = Z(w) on Hy,. (18)

Remark 1. For a given w, and noting that A, is known for all ¢ € C, a consistent estimator of
V., can be obtained using consistent estimators for G. and W,, for all ¢ € C, and for S as well, and
inference can be carried out in the usual way.

Remark 2. The results in Theorem 1, namely the closed form expression of the asymptotic
covariance of the MA estimator is very general in the context of GMM-type of estimation procedures.
First, it covers the cases of linear IV and maximum likelihood estimators. Second, since model
selection is indeed a special case of MA whenever wz = 1 and wy = 0, for all ¢ # ¢, for some model
c = ¢, we have Or (w) = @\Tg and, more importantly, V,, = V&.

Theorem 1 is useful to understand the fact that if we only consider the first-order terms it is not
difficult to derive the limiting distribution of the MA estimator, for a given w. This implies that
estimating the weight that minimizes the MSE is meaningless in our approach, since this would
result in the most efficient estimator receiving full weight. Thus, we propose to include the higher
order terms, which should deliver a better approximation of the properties of the MA estimator.

In general, the optimal vector w will be unknown. As in much of the literature on model
averaging, a data-dependent procedure will have to be used to determine the weights in order
to implement estimation according to (10). Next, we define our weight estimator based on an

optimality criterion.

3.2 Higher-Order Properties of the M A Estimator and the Optimality Criterion

The optimality criterion for estimating the model’s weights follows from the higher-order AMSE of
the MA estimator. On one hand, the first-order asymptotics delivers a solution that departs from

typical MA schemes: it picks wz = 1, where ¢ = ¢,,, to attain the Chamberlain bound with the



full model (cf. Theorem 1 above). On the other hand, the higher-order AMSE captures additional
statistical properties of the estimator, especially for small sample sizes. As discussed in Hansen,
Heaton and Yaron (1996), for example, and in the two special issues of the Journal of Business and
Economic Statistics (1996 and 2002) dedicated to GMM, the standard 2-step GMM estimator may
deviate substantially from its first-order asymptotic distribution.

Rilstone et al. (1996) define the same higher-order expansion as in Newey and Smith (2004),
é\Tc = 00 + a_1/2,c + a1, + a_3/2,c + Op (T72) ) (19)

for some a_y /5, = O, (T_I/Q) ya—1,c= Oy (T‘l) and a_z/9 . = Op (T‘3/2) . For model ¢, the AMSE

matrix to order O (T_Q) 18

AMSE (é\Tc> =F (071/2@@'_1/2,6) +FE (a—l,cal_l/g,c + a71/2,calf1,c)

+E (a*LCa/—l,c +a 300 19, + a—1/2,c@/_3/2,c) : (20)

Hence, for the MA estimator and any w € H,,,

§T (w) =6 + Z Wel_1/2,c+ Z Wel-1 ¢+ Z wea_3/2.c 1+ Op (T_Q) (21)
ceC ceC ceC

with, to the order O (T_2),

AMSE (§T (w))

=F (Z Wel_1/2.¢ Z wca'1/2’0> + FE (Z Wel—1 ¢ Z wcaL1/27c + Z Wel_1/2.c Z wCa,—l,c)

ceC ceC ceC ceC ceC ceC
/ / /
I PORT RRENES RVIS SERIARD SERRINS DEL Y
ceC ceC ceC ceC ceC ceC

1 1 1
= Z Z Wey Wey |:TV1761’02 + ﬁ (‘/2»01702 + VQ/,Cg,cl) + ﬁ (V3701,C2 + ‘/21761702 + ‘/4,,82,61):| ) (22)
c1€C c2eC

where

Vieeo =T.E (a—1/2,61al—1/2,cg> Vaerer = T°.E (aflyclal—l/Q,CQ> (23)
Vé’,CQ,Cl = T2E (a—1/2,c1a/—1,02) ;‘/3,01702 = T2E (a—LCla/—l,Q) (24)
V4,cl,cz = T2'E (a—3/2,01a/_1/27c2) and VZ,CQ,cl = T2'E (a—1/2,cla/_3/2762> . (25)

All terms have closed form expressions (see, for example, Rilstone et al. 1996). Clearly, the AMSE
of the MA estimator will only be equal to the standard (not averaged) case if we put full weight in

one model ¢, say, w.+ =1 and w. = 0, ¢ # c*.



Thus, we define the following optimality criterion for choosing w :

0 = Wrm,p = arg Ig}{n AMSE (é\T (w)) . (26)

One can consider the bias-corrected estimator instead
05 (w) = Or (w) — Br (w), (27)
where the bias to order O (Tﬁl) is given by

Br(w) = ch [E(a_1j2,e) + E(a-1.)] = chBTc (28)
ceC ceC
(see Rilstone et al. 1996). Here, §§$ (w) is unbiased to order O (') . In this context, to order
O (T2,
W= arg wrg}’l{I}nAMSE (é\ch (w)) = arg wrél}}}n {AMSE <5T (w)) — Br (w) Br (w)/} . (29)

In practice, the AMSFE (/H\T (w)) includes unknown quantities, namely the model’s population
parameters and moments, so that the feasible version of & results fweplacing these objects
by their estimators and sample moment analogues and obtain AMSE (§T (w)), from which we
calculate @. Notice as well that this is an optimization problem restricted to the unit simplex.
The criteria we propose follows from a constrained quadratic optimization problem with a positive
definite quadratic term and a linear constraint. Thus, unless some moment conditions are degenerate
or perfectly correlated, this problem has a closed form solution. In the cases where this solution has
too complicated an expression, we recommend obtaining it through numerical optimization or linear
programming.® The proposed MA estimator might not be manageable in practice, particularly for
a general nonlinear model with a large p (more below in Section 3.3).

Remark 3. We argue that simply minimizing the higher-order bias is not adequate. In this case,
Bias (§T (w)) =Y cccweBias (GATC), meaning that the full weight is on the model with smallest
bias (or its norm for p > 1) and thus leading to model selection rather than averaging. In contrast,
AMSE (é\T (w)) = > ccc WAMSE <§Tc> does not hold, which means that the model with the
smallest AMSE will not necessarily get full weight (see the selection criteria of Donald and Newey,
2001, and Donald et al., 2009), so that gains can be obtained by using our proposed MA estimator.

Remark 4. The AMSE in (26) is defined for p = 1. In the general case (22), and following
the existing MA literature, define the (scalar) target parameter of interest dg = d (6y) = 0’6y, with
9 known, such that AMSE (5’§T (w)) = §YAMSE (§T (w)) 0 is a scalar; this then ensures the

SFor example, the procedure QPROG for the software GAUSS helps solving this classic programming problem. If
m is moderately large, a typical solution is to put zero weight on some of the individual models (see Martins and
Gabriel, 2014).

10



feasibility of the optimization problem (see DiTraglia, 2016, for example).

3.3 Optimal MA-GMM Under Exact Identification

While the AMSE of the MA estimator has a closed form expression (following Rilstone et al. 1996),
it includes several complicated terms. Also, when m is “large”, the number of models to average
becomes intractable: for example, for m = 4 and p = 2 we have |C| = 11 in the overidentified
case. Thus, for simplicity, we first focus on optimal averaging over exactly identified models. The
corresponding AMSE is now relatively easy to obtain and the number of models is manageable.
Consider the model’s space Cj, C C whose elements satisfy |c| = p so that the subset C), contains
|Cp| = (ZL) distinct exactly identified models. If m = 4 and p = 2, we average over 6 models, i.e.
combining moment conditions 172,173,174,273,274, and 374. In practice, it is as if one gives
zero weight to all models ¢ such that |c¢| > p. Following Lemma 3.1 in Rilstone et al. (1996), the

third-order expansion of the exactly identified GMM estimator for model ¢ € C), satisfies

8gtc
a—l/2,c = _E ( 89/

) (1/T) " gie(b0) = G ' Gre (30)
=00 t=1

~ 1
A_1,c = _Ggl (GTC - Gc) a_1/2,c — §G;1HQC (a71/2,c @ a71/2,c) (31)

1 /(A 1 14
a_zsp.=—G, ! (GTC — Gc) a_1,c— iGc 'Hor, (a_1/2,®a_1/2,.)

1
—iGc_lec [(a-1/2e®a—1c) + (a-1,c®a1)5.)]
1
_ch_lHik (a_1j2e®a_1joc®a 1), (32)

where G, = E (Vgi.(0y)) is the usual p x p Jacobian, Hy. = E (Vzgtc(«%)) is a p x p? matrix,
73 T gt
Hore = (1/T) 314 <59§2/ 000

is linear in the parameters (linear IV, say) then Ha. = 0, which simplifies further a_; . and a_3/9 .

- ch>, and Hs. = F (v3gtc(90)) is a p x p® matrix. If the model

From these objects, we obtain the matrices V.., .,, for any pair of exactly identified models
(c1,c2) that are in the formula of the AMSE (§T (w)), which we need to minimize in order to
choose the optimal empirical MA weights.”

Bias is given by

1

Bre = TGC_I {E [(Vg1e(6o) — Ge) G2 ge(60)] — %Hzc [E (G gte(60) @ G, gie(60)) ] } - (33)

According to Newey and Smith (2004), the bias for exactly identified models is decomposed in
two terms: the asymptotic bias of the GMM estimator with optimal weighting matrix and a term

associated with the choice of the preliminary estimator.

"Exact expressions for these V. ., ., matrices are given in the supplementary appendix.
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The linear IV case In the standard linear model, the IV estimator is defined as

~ —1
Orc = (ZZ:1 xt%{c) (2?21 mtyt) and

gy
Gte (0) = 2 (yr — 10) = 2101 (0) ; Gie (0) = —w421; Ge = —E (3421,) ; g4

" 9000 = H2c = H3c =0.

(34)

Assuming, for the sake of simplicity, homoskedastic errors, then F (u? (0o) |th) =02,

Vier e = o’E (a:tzéq)_l E (ztc1 2202) E (zt@a:;)_l , (35)
Voereo = —F (xtzgq)_l {E [uf (6o) (:L‘tzgq - F (;vtz,iq)) E (xtzgq)_l thIZQCQE (zth:L‘;)_l} } (36)

‘@’761702

-1
5 u? (00) (ze2)e, — E (w121,,)) E (e2he,)  2ter-
-1 _ -1
=L (xtzzq) ZzlthE (Ztcyrf‘,) ! (thx;f -F (ZtCQx;)) E (Ztc2$;f) (37)
+E [u? (00) 2tc, 24e, |

and
‘/Y47C1,62
B 2.(9 B ’ E r 1 -
.y (l‘tzgq) 1 E Uy ( f)) (fL'tZtcl / (.TtZtcl))/ (iftthq) , E (Ztchif) (38)
(xtztcl - F (:ctztcl)) FE (xtztcl) 2ty Ztey
and
1 _ _
Bre=—7FE (wi2c) " E [ut (00) (1210 — E (ze200)) E (20200) " ztc] . (39)

3.4 Gains in Using MA-GMM - An Illustrative Example

It is infeasible to show analytically, for the general case presented in subsection 3.2, that our proposed
optimal MA-GMM estimator has an AMSE smaller than the corresponding standard (not averaged)
GMM estimator. For general nonlinear models, we make comparisons using Monte Carlo simulations
in section 6. Nevertheless, we are able to prove analytically the gains of using the optimal MA-GMM
estimator of section 3.3 in the simplest of setups, with two candidate models.

The linear IV regression model is specified by a structural equation of interest

y =0+ Xv+u, (40)

where y is a T' x 1 vector, x is a T' x n matrix of endogenous regressors, X is a T' x K matrix of
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exogenous regressors, and by a reduced form equation for the endogenous x
r=z2I1+ XP+V, (41)

where z is a T' X m matrix of instruments, with x, X and z full ranked and m > n. For the sake of
simplicity, let n = 1, K = 0 and assume i.i.d. data. The error structure w; = (u;, V})/ satisfies the

moment conditions E (w;|z;) = 0 and

2
o
E (wiw}|z) = 7. (42)

2
¥ Oy

Also, assume that o3 = E <ut (9)3 |ztc) =0and oy = F (ut (9)4 ]ztc> =1forallc=1,..m8
Define the (scalar) parameter of interest 6 and endogeneity arises if F (z;u;) = ¢ # 0.

For the averaging scheme, let m = |C,| = 2 so that we account for two candidate models:
¢ =1and ¢ = 2 with T' x 1 instruments z; and z9, respectively, with z; # zo. Assuming further
homocorrelated errors, E [u; (6p)x¢|z:] = E [ut (00) zt) = ¢, and higher cross-moments for error
and endogenous variables, F [u? (0o) xt|zt} =3 and F [u? (0o) x%|zt] = 4. Also, let 2. have zero
expectation and variance E (zfc) =o02and E (zf’c) = QC, E (zfc) = Ke. Moreover, let E (zi1212) = QS,
E(zﬂzﬂ) = ¢4, F (zﬂztg) = qﬁfll), (zﬂth) ¢4 , (zﬂztg) <Z> , and E(zﬂth) ¢3 .
Finally, define the covariance of endogenous and instruments as F (z¢2i.) = pe.

The competing estimators (averaged or not) differ on the instruments each use. Thus, and to

simplify calculations, we compute the AMSE’s scaling them by 72 and fixing the model coefficients

that do not involve the z’s: 02 =1, ¢ = 0.5, v3 = 0 and ¢4 = 1.2 Furthermore, assume z;; and 2
¥ ¥

each normally distributed with correlation coefficient U‘Z;, so that the cokurtosis statistics equal
2 .2 E 3
LZ?Z;Q) 1 +2p? and (Ztlzf2) _ (Ztl?z) = 3p. The coskewness is (bél) = gb:(f) =0 due to p3 = 0.

0105 U o2 01045

Also, assuming o} = 03 = 1, we have ¢4 = 1 + 2¢? and ¢511) = qﬁf) = 3¢. In this setup,

1
Vigpg="Vai12= ¢ Va2 = —5— (1+ 20> + 2p1p20) , (43)
P1P2 P1P2
Vite = 2 (34 47) and By (w) = - 1<w11+(1—w1)1> (44)
I 7 ! 2T i 1

and given the restriction wy; + we =1,

2 2
AMSE <5T (w>> 2 1+¢[(T+ i)zllpl +2¢ + 6] 3 1+ ¢ [(T+ t’;‘))%p2 + 26 + 6] (45)
21 [Plpz [6p1p2 (T +6) ‘;2;52 + 1] +3¢ (i + p3) (46)
1F2

8Hence, F (ut (0)3) =F (ut (9)3 ztc) =0and F (ut (9)4) =1, so that £ (ut (9)4 ztc) = F (%tc)-
That is, the level of endogeneity is E [u; (60) z¢] = ¢ = 0.5, z; has zero mean, E [uf (60) x| = E (z:) = 3 = 0,
and unit variance, E [uf (o) 27| = E (27) = ¢4 = 1.
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As expected, the AMSFE <§T (w)) depends on the sample size, T, the covariances of the endogenous
variable and each instrument, p., and the covariance of the two instruments, ¢. For ease of exposition,

we derive next the conditions under which both models get optimal equal weights.

Proposition 1 (Optimal equal weights and the corresponding AMSE): consider the standard
linear IV regression model under the assumptions defined above and the optimal MA-GMM estimator
with equal weights w{ = w§ = % for p% = p%. Let o = p% (T 4+ 6) and T fized. For p1 = p2, consider
¢ € (¢,1), where T = —1—16 (Y +6)+ % () + 6)2 — 32. For p; = —py, take ¢ € (¢7,1), where
¢ = —% (v +10) + %\/9 (¢ 4+ 10)* — 24. Here, —1 < ¢" < ¢~ < 0. The corresponding optimal
AMSE of the MA estimator is

. 2+ ¢ (T +6) (07 + p1p2) + 49> + 69 (1 + 22
AMSE (b (o)) = ' 5 (+5) . (47)

Proposition 1 provides a closed form expression for the AMSE of an optimal MA-GMM estima-
tor. Next, we show that, under a specific set of the model’s assumptions, this AMSE is the smallest

compared to the standard GMM estimators (exactly identified or overidentified).

Proposition 2 (Optimal MA-GMM estimator with the smallest AMSE): consider the standard
linear IV regression model under the assumptions defined in Proposition 1 and the optimal MA-
GMM estimator with equal weights w{ = w§ = % for p? = p3. Denote the GMM estimator with a

single instrument as é\Tl and the GMM estimator with both instruments as gToverid. For any T,
AMSE (§T (wO)) < AMSE (éToveMd) < AMSE (%) : (48)

where AMSE <§T (wo)) < AMSE <§Tovmd) holds in the following cases:
o for p1 =po, all ¢ € (Q+,$+], where ¢, = 31h + 21 — \/9(@114— 7)2 — 29 — 5;

o for pr = —po, all ¢ € (?_,57], where ¢_ = 1) — 9 — \/(1#79)2721#75, such that ¢ =
p? (T +6) € [0,10 — 2/6] U [10 + 2v/6, +00). Here, if 0 <1 <10 —2V6 then 0 < ¢_ < ¢, < 1,
whereas if 1 > 10 + 2v/6 then0<$+ <¢_ <1.

Proposition 2 illustrates a simple case where it can be shown analytically the AMSE gains from
using the optimal MA-GMM estimator. It imposes equal weights and thus one must not rule out
the possibility of further gains with non-equal optimal weights. With equal weights and opposite
signs for the correlations of each instrument and the endogenous variable, p; = —p2, the optimal
MA-GMM estimator is always superior for any non-negative correlation of instruments, ¢ € (¢, 1]

when 1 > 10 4 21/6. This means that, for example, with p?=0.27, T = 50 and ¢ = 0.25, we have
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AMSE(Oroveria) AMSE(0r1) . . e
AMSE(or @) 6.165 and ANSE(r @) 22.089. It is also straightforward to show that if ¢ = 0,
AMSE (Oroveria) T 0 AMSE (9r+ )
—p2<2+3>+>2.25and :p%(T—I—5)—|—10>10

AMSE (b7 (o)) 4 AMSE (B (@)

That is, our optimal MA-GMM estimator is able to, at least, halve the AMSE of the standard
overidentified GMM estimator.

3.5 Optimal MA-GMM Under Overidentification

In this section, we present the optimal MA-GMM estimator with any number of moment conditions
in each model, namely overidentification, for given moment conditions g;(6y). We show that, for
this particular class of models, the general optimal MA-GMM estimator in section 3.2 may have
tractable closed-form expressions, as the MA-GMM estimator under exact identification defined in
section 3.3.

Rilstone et al. (1996) show that one can write an overidentified model in terms of an ex-
actly identified system at the expense of adding an extra (nuisance) parameter. They consider
models of the form g¢;(0y) = zyus (0o), with u (6p) potentially nonlinear, and homoskedastic errors
E (u} (00) z¢2}) = 0®E (22,), so that the weighting matrix is F (z:2)"" . For overidentified GMM

(m > p), the model can be written as an exactly identified system

B (bom)) = £ | 2™ ) (19)

Tozeut (0o)

where

70 = E (Vuy (60) 2) E (ztzg)fl and e (0o, 70) = Vu (00) — 102t (50)

Here, Vu; (6p) and e (0g,79) are p X 1, z; is m X 1 and the (extended) parameter vector is now
(6o, 70) of size p+ pm (19 is p x m), which equals the number of equations: z; ® &; (6p, 79) is mp x 1
and 1pzpug (0p) is p x 1.

Therefore, we can apply the results for exactly identified models denoting ¢:(6o) by g/ (6o, 70) =
[zt @ et (00, 70)  Tozeue (o)), where 6y is the parameter of interest and 7y is a nuisance parameter.
If 79 is known, then g; is itself only a function of 6y. However, in general, 79 is unknown and a
consistent estimator 7 is needed for the GMM estimation of €y. In conclusion, averaging GMM
point estimates from overidentified models is a somewhat unwieldy task and is seemingly limited to

models of the form g;(6p) = zyus (0p).
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4 Non-optimal alternative MA-GMM estimators

In practice, and in particular for large nonlinear moment conditions models, the general optimal MA-
GMM estimator may be difficult to obtain - there are no analytical results under exact identification,
rather we evaluate its merits through Monte Carlo simulations. As an alternative, and following
the standard literature in model averaging procedures, we suggest linking the problem of selecting
empirical weights @ with moment selection criteria obtained in the estimation stage. This can be

achieved either by direct ‘smoothing’ or by minimization of a given moment selection criterion.

4.1 Moment Selection Criteria for GMM

Given that the rejection of the J-statistic is an indicator that some moment conditions are invalid,
Andrews (1999) suggests that this can be used to consistently select the correct moment conditions.

Thus, a GMM moment selection criteria for a given model is defined as
MSCr (c) = Jr (c) = kr (|| = p), (51)

where |c| — p is the number of overidentifying restrictions and k7 = o (T) is a sequence that defines
the selection criterion (kp = 2 for the AIC; kp = log T for the BIC; and kp = Qloglog T for some
@ > 2 for the HQ-type criterion). Note the “bonus term” rr (|¢| — p) rewarding selection vectors
that utilize more moment conditions.'’

While the criteria above stress the satisfaction of orthogonality conditions, other procedures
have been proposed in which the focus is on the relevance of moment conditions. Under somewhat
more restrictive assumptions, Hall et al. (2007) suggest selecting a model according to the relevant
moment selection criterion

RMSCr (¢) = In ( V.

)+w(!c\ -p), (52)

where the efficient GMM variance-covariance matrix 170 is evaluated at @\TC. On the other hand,
Hall and Peixe (2003), in a generalized IV framework, consider the problem of instrument selection

based on a combination of the efficiency and non-redundancy conditions

P
CCICr (c) = TZ In [1—rip ()] + ko (lc] —p), (53)
i=1
where ;7 (c) is the i’ sample canonical correlation between dy (A7) and z (¢), with dy(8) = &%9)

and Op is a v/T— consistent preliminary estimator. Note that here g(y;,0) = u(0)z(c), u (0) is
scalar and, if the model is linear, d;(0) = —x;.

Alternatively, given a set of moment conditions known to be valid, one can select moment

0Under relatively standard assumptions, Andrews (1999) shows that the moment selection criteria estimator Gmse =
arg miélM SCr (c) is a consistent estimator of the single “correct” selection vector co.
ce
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conditions that minimize a criterion based on an estimate of the AMSE, as suggested by Donald
and Newey (2001) for linear IV estimation with homosdekasticity and Donald et al. (2009) for the

general case. Following the latter, the criterion for GMM is of the form
AMSE7(c) = 112)T + &, (54)

where ﬂg /T is an estimate of a squared bias term, while d, is an asymptotic variance term that
tends to be smaller the more instruments are used (the full notation for (54) is cumbersome, see

Donald et al., 2009 for further details and Donald and Newey, 2001 for the linear IV case).

4.2 Smooth Moment Selection Criteria Weights

As suggested by Buckland, Burnham and Augustin (1997), a simple averaging scheme can be ob-
tained by using weights proportional to the exponential form of a given GMM selection criterion
Crit (see definitions in section 2). Thus, a smooth AIC, BIC, AMSE, etc. scheme (denoted as

Ws.crit) is based on weights for candidate model M,

exp(—3Critar)

Wy (Crit) =
uleri) > arer exp(—3Critarem)

(55)

where the sum term encompasses all, not necessarily nested, M’ € M models of interest.!’ Other
simplified weighting schemes have been explored in the literature and can potentially be employed,

see Claeskens and Hjort (2008) and Martins and Gabriel (2014).

4.3 Selecting Weights by Minimizing GMM Moment Selection Criteria

In the spirit of Hansen (2007), we also propose obtaining the weight vector w by numerical mini-
mization of GMM moment selection criteria, which gives rise to two distinct situations. In a first
case, we can evaluate a given moment selection criteria at the MA estimator @\T (w): using Andrews’s

(1999) MSC, the empirical selected weight vector is defined as

Wysc = arg m}{n MSCrz (w) = arg m}lqn (Jre (W) — kr (2] — p)), (56)

/

where Jyz (w) = T'grz <§T (w)) Wregre (67T (w)), for a given set of moment conditions ¢ and given
Wre.

A second case comprises selection criteria which cannot be evaluated at Or (w), so therefore
weights are selected as

Wsc = arg min SCr (w), (57)

OJEHm

1 For numerical stability, it is sometimes recommended that the maximum Crity value is subtracted to each Critas.
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where
IC|

SCr (w) = w'diag (SCy, ..., SCicp) w =Y wiSCe, (58)
c=1

where diag () refers to a |C| x |C| diagonal matrix. In particular,

WRMSC = al‘gwIél}_Irrln [w/diag ("71 yeny ‘/}IC’\ ) w} (59)
WAMSE = arg mIi{n [w’diag (AMSETJ, e AMSETJC‘) w] (60)
wedm

or, in an GIV context,

Wocrc = arg min
weH

m

[w/dmg <Z In[1— TiT’l] ooy Zln [1 - T?,T,CJ) w] . (61)
i=1

=1

Remark 5. As in Hansen (2007), the solution @ is found by numerical algorithms. It solves a
constrained optimization problem with non-negativity and summation constraints (w. € [0, 1], for
all cand ) .- we = 1, respectively).

Remark 6. Note that, although averaging occurs over specifications using different combina-
tions of moment conditions, the minimization of GMM selection criteria in (56) depends on the
J-statistic. This, in turn, requires the weight matrix to be chosen and therefore a set of moment
conditions ¢ to be fixed. Moreover, and unlike the least squares MA estimator of Hansen (2007)
and the two-step MA instruments estimators of Kuersteiner and Okui (2010), which have distinct

number of parameters to estimate for each individual model, in our case p. = p for all ¢. Hence,

min M SCrs (w) = min Jrg (w) (62)
weHm weHm,

for any penalty term k7. Thus, an MA estimator that minimizes a GMM selection criterion will
be solely based on the Jp (w)-statistic. For the sake of efficiency, one can pick ¢ = ¢, a vector of
ones, which implies using the whole set of moment conditions (in this case, [¢| = m and, in terms

of notation, “c” is dropped):
Jr (W) = TGr (§T (w)) Wi (§T (w)) . (63)

For the linear IV/2SLS case, for a set of variables x; and instruments z;, such that y, = (z}, 27)’,

then

T ' T
1 , ~ 1 , ~
Jre(w) =T (T t; 251 (yt = wceTc>> Wre (T t; 251 (yt = wceTc>> . (64)

ceC ceC

Remark 7. The trace minimization criterion for s can be seen as a general approach to

obtain weights. Liang, Zou, Wan and Zhang (2011) follow this approach, for example, although
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their method is based on an approximation of a MA estimator’s MSE. In this vein, another potential
weight selection criteria would be to find the argument & that minimizes the trace of the MA

variance-covariance matrix, V,,, although this may be hard to accomplish in practice.

5 Properties of the MA-GMM Estimator

The limiting properties of the higher-order MA-GMM estimator are far from straightforward to de-
rive. As mentioned earlier, the individual higher-order AMSEs “are extremely complicated” (Newey
and Smith, 2004) for general GMM estimators and the same applies to exactly identified estima-
tors (Rilstone et al. 1996). Thus, the averaging of these individual higher-order AMSEs makes it
virtually impossible to study analytically the limiting laws of the optimal random weights and, con-
sequently, the corresponding MA-GMM estimator. Following the existent MA-GMM literature, we
conjecture that our higher-order estimator, v/T' ((/9\T (‘A‘J%,m,p) — 90>, will also no longer be asymp-
totically normal due to a random optimal weight @%m’p that is likely to converge in distribution to
some function of the non-zero normal process that is part of the limit law of @\TC (see, for example,
Sueishi, 2013, and DiTraglia, 2016). In particular, and similarly to what we are able to show in

—

Theorem 2 below, we conjecture that our optimal weight &9 = arg m}{n AMSFE <§T (w)) is not a
weHm

consistent estimator for w® = arg wlg}}:n AMSE <§T (w)) even in the limit, due the random nature
of @. Nevertheless, we can derive the limiting properties of our proposed non-optimal MA-GMM
estimators. We can work on its first-order asymptotic distribution and regarding its higher-order
distribution we can only know the AMSE which was previously defined in the paper.
Correspondingly, the MA estimator with smooth weights based on criterion Crit as in (55) is
denoted as é\T(@rﬁ'C”t), 5T(ZJ%4SC) with weights based on (56) and gT@fﬁc), where SC denotes
RMSC, CCIC or AMSE criteria. For simplicity, and following much of the model averaging litera-
ture, we will focus on results for selection criteria with the AIC penalty (see Claeskens and Hjort,
2008). Given that the randomness properties of the weights follow from the limiting behavior of the

selection criteria, in order to study the properties of the MA-GMM estimator for each criterion, we

need the following additional assumption:

Assumption 2 (Regularity conditions for GMM selection criteria)

Depending on the chosen MA approach, assume either the conditions for (A2-MSC) the MSC
as in Andrews (1999); or (A2-RMSC) the RMSC as in Hall et al. (2007); or (A2-CCIC) the
CCIC as in Hall and Peize (2003); or (A2-AMSE) the AMSE as in Donald et al. (2009).'?

The asymptotic distribution of the MA estimator depends on the limiting law of the weights. On
one hand, the limit result for a smoothed scheme follows directly from convergence of the selection
criterion. On the other hand, an ‘arg min’-based approach provides a limit quantity that follows

from weak convergence of the objective function for selecting the weights. Also, it should be noticed

128ee Supplementary Appendix for details.
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that the random MSC weights converge in distribution to a specific variable due to the random
nature of the J-statistic, whereas for the RMSC, CCIC and AMSE cases we have convergence in

probability. Thus, we are able to derive the following theorem:

Theorem 2 (Distribution of the MA estimator for random @ ): assume that the model is correctly
specified, the Assumptions 1 and 2 hold and consider the AIC penalty for the smoothed RMSC and
CCIC MA procedures.

a) The distributions for MSC-based estimators. As T — oo,

JT (gT (GMSC) — 90) LA > @z (65)

ceC
and
VT (Or @515C) = 09) 5 3 w5 (c,p) Z (66)
ceC
such that
1
oArse 4 5= (@1, ...,&‘C‘)/ = arg mliqn {b'Z(w) + §Z(w)’AZ(w)} and (67)
weEHm
~s. exp(—gJr(c)+ (I =p) a4 o
LEMSC — 2 SMSC (e pY,e=1,..,|C|, (68)

Yeecexp(—zJr (¢) + (I¢] = p))

where Z(w) was defined in Theorem 1, b is a zero-mean normal random vector, A = plimy_, . T~ V2 J%(6)
with V2J5(0) = 02J5(0)/(0000") denoting the matriz of second partial derivatives of J&(0) =
Tgre (0)/ Wregre (60), Jr (¢) was defined in Section 2,

exp(—gX (e -p) + Ic])

S-MSC
w (c,p) = ; (69)
Y vec (=3 X(le—p) + 1¢])
and the normal random variable Z. was defined in Lemma 1.
b) The distributions for RMSC, CCIC, and AMSE-based estimators. As T — oo,
VT (Or (@r) = 00) 5 N (0, Vier) (70)

where Vo= is the matrix V,, of Theorem 1 evaluated at w = w®*, corresponding to either one of the
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quantities

wo,RMSC 174

ICl

>w}, (71)
D p

WoCCIC arg min {w'diag <Zln [1 — 7’?,1} ,...,Zln [1 — Tigd) w} ) (72)
i=1

= argwrélliqn {w’diag <\V1\ ey

UJGH’m

=1
wOAMSE — arg min {w'diag (AMSE;, ..., AMSEc)) w} (73)
WEHm
1
VC T2 —
wg,S-RMSC _ Vel e_le (p —[cl) : (74)
e Vel 2 exp (p—|])
WOS-CCIC _ eXp(—% i1 In [1 - 722 (C)] — (el = p)) (75)
’ Yoecexp(—3 iy In [1=rf ()] = (I¢] = p))’
—1AMSE
WoS-AMSE _ exp(—3 (c) (76)

S vecexp(—3AMSE ()

where V. was defined in Section 2, r; . is the ith corresponding population canonical correlation and
AMSE (c) is the AMSE derived by Donald et al. (2009) (see also Donald and Newey, 2001 for

linear IV estimators).

Remark 8. In the case of MSC-based MA estimators, the asymptotic distribution of the MA
estimator will often be a scale mixture of normal densities (as suggested by simulations not reported
here, but available upon request), but is not necessarily always normal. Bootstrap methods can be
employed to obtain an approximate distribution of the MA estimator in this case. The nonstandard
asymptotic distributions of the random weights and MA estimators are not new in the literature -
see, for example, DiTraglia (2016) and Zhang and Liu (2019) in the context of two other different
types of MA estimators.

6 Monte Carlo Study

In this section, we report results from a Monte Carlo study assessing the finite sample properties of
the proposed MA estimators, using the selection method of Donald et al. (2009) as our benchmark
and contrasting their performance along distinct dimensions, namely sample size (7") and number
of moment restrictions (M). To do so, we use the fairly general nonlinear design used of Schennach

(2007) as the DGP, given by

9y, 0) = [r(0) re(@)yez 70(0) (yes — 1) . 70(0) (yenr — V)] (77)

where

r(0) = exp (=0.72 — (ye1 + w2) 0 + 3ys2) — 1. (78)
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Here, we have M > 2 moment restrictions and a single parameter 6y that takes the value of 3, i.e.,

E g(yt,60)] = 0 if and only if 6y = 3 with

(11, 922)" ~ N (0, (0.16) L) (79)
yij ~ X3, for j =3,..., K. (80)

The third moments of all elements of ¢;(6y) are non-zero.

The overall purpose is to examine how well each MA procedure estimates 6y along distinct
dimensions, namely sample size (7') and number of moment restrictions (M), hence we cover the
cases of small and large models and samples, i.e. M = 2,4,10,20, and T = 50, 100, 200.'3 The
number of replications is 10,000. Following Donald et al. (2009), we compute their estimator using
the reference model selection criterion (DIN) and, for the sake of completeness, we compute the
estimators based on the MSC and RM SC' selection criteria with BIC penalty. Furthermore, we
also estimate 6y by GMM and Empirical Likelihood (EL) using the full set of restrictions (GMM-all
and EL-all).

We consider optimal-weights MA-GMM estimators averaging over exactly identified models,
smooth-weights MA estimators using MSC-BIC, denoted as S-MSC, and RMSC-BIC, denoted as
S-RMSC, and MA estimators that make use of &5, denoted MA-MSC. The MA-MSC estimator

N\ 1
is computed using Wrs = (ZTZ ) and with ¢ = ¢; (all restrictions). Non-optimal methods using

other criteria produced similar results. In terms of the optimal MA estimators we consider the
full expression of its higher-order AMSE (MA-GMM-ho), assuming that V4 = 0 (MA-GMM-ho4)
and imposing V3 = V4 = 0 (MA-GMM-ho3,4). For the non-optimal MA estimators, we compare
three different averaging schemes: i) taking all combinations of models (*-all); i) models adding
one moment restriction at a time (*-add), i.e., models g1, g1 g2, 91792793, -, g1 . gMr; 1i1)
models that are only exactly identified (*-ex). For the optimal MA estimators, as well as the *-add

*_all scheme we have

and *-ex schemes, we average over M models; on the other hand, for the
IC|=3 (M =2),|C|=15 (M =4), |C| =1023 (M = 10) and |C| = 1048575 (M = 20). The MA
procedure S-MSC-ex can be interpreted as an equal weighted scheme because W = 1/M.

For each estimator, we compute the median bias (MB), the median absolute deviation (MAD),
and interdecile ranges (DR) (q90-q10) to measure dispersion. We also examine statistical inference
by computing the coverage rate for 90% confidence intervals using a consistent estimator for Vo« and
under normality. Notice that according to Theorem 2, normality rarely applies to MA estimators,
namely MA-GMM and MA-MSC. This way, we will also be able to draw some conclusions about the

inference properties of the MA estimators by (wrongly) assuming normality of the distribution.!*

BFor conciseness, here we focus on M = 2 and M = 4; results for M = 10 and M = 20 are qualitatively similar
and are reported in the Supplementary Appendix.

4The literature on post-model selection inference (e.g. Pdtscher, 1991) argues that the conditional and uncondi-
tional distribution of post-model selection estimators cannot be uniformly consistently estimated and that the coverage
probability of the confidence interval is lower than the nominal level.
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< Table 1 >

The results for bias, absolute deviation and interdecile ranges are in Table 1. A few general
conclusions should be highlighted. First, there is always at least one MA approach, regardless of
the specific averaging scheme, that performs better than the selection procedure of Donald et al.
(2009) - this is particularly evident for small M. Second, non-optimal MA procedures tend to
dominate over optimal ones. Third, averaging models by adding one moment restriction at a time
seems to be the best MA approach. Fourth, the EL-all outperforms the GMM-all only for small

M if all moment conditions are used.
< Table 2 >

The results for coverage rates are presented in Table 2. In general, MA estimators are reasonably
accurate, even (wrongly) assuming normality, especially for large 7' and moderate M, followed by
the RMSC (for small M) selection procedure, which displays relatively good coverage rates. For
small M the MA methods based on exactly identified models are the most accurate ones, especially
the S-MSC-ex and MA-MSC-ez, while the SSRMSC-add is clearly the best for large M. On the
other hand, higher-order ‘optimal’ MA estimators behave well for large T

< Table 3 >

As a final exercise, we analyze the distributions of the estimated weights @, displayed in Table
3 for M = 2. The most notable result is that there is a non-negligible probability of optimal
and MA-MSC estimators giving full weight to a single competing model, namely for large T. In
contrast, and as expected, smoothing schemes tend not to drop any model from estimation. For
M = 2, the models are equally weighted for the higher-order case and S-RMSC-ez (besides S-MSC-
ex, obviously). For the remaining *-ex scheme, MA-MSC-ex, and the two MSC-add procedures
(MA-MSC-add and S-MSC-add), significantly more weight is given to the second restriction, while
the opposite is true for S-RMSC-add. Taking all possible combinations produces a variety of results:
S-MSC-all gives almost all weight to the model using both restrictions, SSRMSC-all equally weights
the two exactly identified models and neglects the full model, while MA-MSC-all gives most of the
weight to the model with the second restriction only. Moreover, averaging estimators tend to favour
models with a minimum number of conditions. The exception is the S-MSC, typically giving most

of the weight to the model using the full set of restrictions.

7 Empirical Application

To further illustrate the usefulness of our MA methods in small sample cases, we revisit Acemoglu et
al.’s (2001) study on the effect of institutions on post-colonial development. These authors uncover

a strong negative reduced-form relationship between GDP per capita today and settler mortality
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rates, purportedly reflecting the effect of settler mortality working through the institutions brought
by Europeans. For each model, their IV estimates are relatively precisely estimated and large,
results changing little when additional controls are included,'® although there is variation across
specifications.

We use the same dataset as in Acemoglu et al. (2001), and, for the sake of simplicity, we focus
on a common sample of 59 countries for which data on mortality, protection against expropriation

and GDP is available, estimating their baseline model
logy; = a+ BR; + u, (81)

where log y; is the logarithm of 1995 per capita GDP (on a PPP basis) for country ¢ and R is the
“Risk of Expropriation” index from Political Risk Services, averaged over the period 1985-1995,
measured on a scale from 0 to 10, with a higher value indicating lower risk.

The instruments for R; include mort;, the logarithm of an estimate of the mortality rate experi-
enced by European settlers during the period in which the country was colonized, but also measures
of European migration to the colonies and early institutions (see their Table A1l for details). We
focus on six different cases of exactly identified models considered by Acemoglu et al. (2001) which
we then average: i) mort;, ii) European settlements in 1900 (“es1900”), #i¢) constraint on the exec-
utive in 1900 (“c19007), iv) democracy in 1900 (“d1900”), v) constraint on the executive in the first
year of independence (“cindep”), and vi) democracy in the first year of independence (“dindep”),

either one of these as the only instrument for institutions.
< Table 4 >

Our results for the base sample are in the first panel of Table 4. The six IV point estimates of
Acemoglu et al. (2001) for (B*, first row) range from 0.55 to 0.94, which, although qualitatively
similar, indicates a considerable quantitative difference; our IV estimates for the common sample
(second row) are equally wide. In turn, the MA estimates (first column, each model’s estimated
weight in italics) of the effect of protection against expropriation on GDP per capita are obviously
smaller than the baseline estimate 3* = 0.86 (B* = 0.94 if n=64). These range from 0.68 to 0.85,
depending on the weight given to the baseline estimate 3* - the largest is for MA-Smootheccore,
with a weight of 0.91 to the model “es1900”, which has the same point estimate as the baseline.
The higher-order MA estimates are relatively close to B* (0.75 and 0.72) giving zero weight to the
estimates from models “d1900” and “cindep”. Noticeably, the weights given to the B* depend on
the averaging scheme, but it never receives the highest weight out of the six estimates (it is quite
close for the optimal criterion). In all MA cases, “es1900” has the highest estimated weight.

Acemoglu et al. (2001) further consider two country groups, one without the ‘Neo-Europes’

(United States, Canada, Australia and New Zealand), for which they found larger estimated effects

15Such as the identity of the main colonizer, legal origin, climate, religion, geography, natural resources, soil quality,
and measures of ethno-linguistic fragmentation, among others, which may be correlated with mortality and growth.
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compared to their baseline estimate, and one where all the African countries are dropped from the
base sample, with smaller estimated effects. Computing the MA estimates in this case (middle
panel of Table 4), these are larger than the one found by Acemoglu et al. (2001), ranging from 1.26
to 1.74, compared to 1.26. The weights given to the baseline estimate are the largest for all MA
schemes, except for the higher-order ones (in this MA procedure, we obtain almost equal weights
for all models). With respect to the MA estimates for the base sample without Africa (bottom
panel of Table 4), they are essentially the same as the baseline estimated effect of 0.52, partly
because this model’s estimate receives the largest weight in all MA schemes, with the exception of
the MA-Numericalpyssc.

Overall, the above suggests that in empirical situations where the range of estimates across
specifications can be quite wide, a model averaging approach can offer us not only a more balanced
perspective, but also give an indication, through the estimated model weights, of how competing

models are favoured by the data.

8 Conclusion

This paper develops new GMM-based model averaging estimators. We propose optimally-weighted
estimators in the sense that weights minimize the higher-order AMSE of the MA estimator. We use
a variety of moment selection criteria to select weights for averaging across GMM estimates. This
can be achieved by direct smoothing of information criteria arising from the estimation stage, or by
numerical minimization of a specific criterion. We study the asymptotic properties of the resulting
estimators for correctly specified models and we illustrate our methods by revisiting Acemoglu et
al.’s (2001) study on the effect of institutions on economic performance. As shown, it is quite useful
to understand which specifications are favoured by the MA criteria.

Monte Carlo experiments using a standard nonlinear model show that our MA estimation proce-
dures outperform the optimal instrument selection method of Donald et al. (2009) in many relevant
setups, including models with weaker instruments. An interesting outcome of these simulations is
that averaging (by smoothing or by numerical minimization) based on the moment selection criteria
used as benchmark often leads to better results than selection based on that MSC itself.

There are several aspects that merit further attention. First, post-averaging inference for this
type of estimators remains an unresolved issue - simulation-based as in Zhang and Liu (2019) can
be perhaps be extended to our framework. Moreover, we note that in this paper we focused on
the case of estimating a parameter vector of fixed dimension, averaging over different estimates
obtained with different instrument or moment condition sets, which is perhaps the more empirically
relevant case. However, it would be interesting to consider a local misspecification setup similar to
Hjort and Claeskens (2003) or to study the behavior of the estimator under misspecification of the
moment conditions (see Cheng and Liao, 2015, Caner et al., 2018). Also, we take m as fixed, but

conjecture that the results hold true for m growing with, albeit at a smaller rate than the sample
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size, similarly to Donald and Newey (2001, pp. 1161-1162).

Furthermore, model averaging within the GEL class of estimators would be an important ex-
tension, given their good properties in finite samples. Deriving the statistical properties of the MA
version of GEL estimators is however far from straightforward, particularly due to the dependence
between the point estimator and the Lagrange multiplier, and therefore beyond the scope of this pa-
per. In fact, the GEL class of estimators share the main problems of overidentified GMM, although
we can assume general functions for the moment conditions and the nuisance coeflicient plays the
particular role of the Lagrange multiplier. These important topics on model averaging for moment

conditions models are left for future research.
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Table 1: Median Bias (MD), Median Absolute Deviation (MAD) and Decile Range (DR), M = 2,4

M =2 T =50 T =100 T =200
MB MAD DR MB MAD DR MB MAD DR
GMM-all -0.0334 0.2843 1.2055 | -0.0046 0.1916 0.7500 | 0.0068 0.1339 0.5121
EL-all 0.0462 0.2548 1.0077 | 0.0293 0.1816 0.7065 | 0.0197 0.1317 0.5015
DIN -0.0370 0.3003 1.1700 | 0.0086 0.2113 0.8217 | 0.0219 0.1508 0.5897
MSC -0.0334 0.2843 1.2055 | -0.0046 0.1916 0.7500 | 0.0068 0.1339 0.5121
RMSC -0.1291  0.3345 1.2245 | -0.1171 0.2483 0.8669 | -0.0805 0.1789 0.6251
MA-GMM-ho -0.0768 0.2949 1.1124 | -0.0440 0.2177 0.8192 | -0.0177 0.1554 0.5912

MA-GMM-ho4 -0.0527  0.2791 1.0681 | -0.0400 0.2020 0.7738 | -0.0201 0.1458 0.5527
MA-GMM-ho3,4 | 0.0230 0.2540 1.0018 | 0.0045 0.1822 0.7091 | 0.0011 0.1319 0.5030

S-MSC-all -0.0073  0.2712 1.0763 | 0.0106 0.1864 0.7255 | 0.0099 0.1317 0.5049
S-MSC-add -0.0006 0.2837 1.1512 | 0.0185 0.1961 0.7740 | 0.0179 0.1364 0.5282
S-MSC-ex 0.0547  0.2492 0.9969 | 0.0375 0.1826 0.7169 | 0.0254 0.1330 0.5075
S-RMSC-all -0.0058 0.2538 0.9897 | -0.0106 0.1813 0.7037 | -0.0080 0.1318 0.4982
S-RMSC-add 0.0976  0.3256 1.2899 | 0.0533 0.2407 0.9243 | 0.0318 0.1718 0.6631
S-RMSC-ez -0.0034 0.2552 0.9921 | -0.0104 0.1810 0.7031 | -0.0082 0.1318 0.4982
MA-MSC-all -0.0146 0.2791 1.0882 | -0.0207 0.2173 0.8055 | -0.0137 0.1602 0.5937
MA-MSC-add 0.0069 0.2610 1.0280 | 0.0043 0.1860 0.7225 | 0.0076 0.1335 0.5097
MA-MSC-ez -0.0137  0.2788 1.0801 | -0.0207 0.2171 0.8031 | -0.0137 0.1601 0.5932
M=41
GMM-all -0.1154  0.2956 1.1566 | -0.0360 0.1913 0.7455 | 0.0010 0.1332 0.5070
EL-all 0.0944 0.2721 1.0912 | 0.0498 0.1884 0.7347 | 0.0357 0.1350 0.5038
DIN -0.1101  0.3141 1.2199 | -0.0204 0.2125 0.8374 | 0.0171 0.1538 0.5953
MSC -0.1670 0.3361 1.6045 | -0.0642 0.2228 0.9352 | -0.0159 0.1468 0.5831
RMSC -0.1843 0.3470 1.2133 | -0.1324 0.2524 0.8593 | -0.0886 0.1789 0.6131
MA-GMM-ho -0.2458 0.3515 1.1581 | -0.1413 0.2497 0.8924 | -0.0690 0.1680 0.6368

MA-GMM-ho4 -0.1985 0.3164 1.0736 | -0.1121 0.2206 0.8125 | -0.0517 0.1502 0.5649
MA-GMM-ho3,4 | -0.2357 0.3613 1.3343 | -0.1919 0.2718 1.0639 | -0.1364 0.1900 0.8159

S-MSC-all -0.2203  0.3406 1.4326 | -0.0993 0.2186 0.9303 | -0.0351 0.1477 0.5849
S-MSC-add -0.0741 0.2815 1.1428 | -0.0201 0.1916 0.7497 | 0.0047 0.1327 0.5065
S-MSC-ex -0.4867 0.5147 1.2792 | -0.5128 0.5204 1.1134 | -0.5290 0.5313 0.9997
S-RMSC-all -0.2124 0.3045 1.0049 | -0.1452 0.2182 0.7171 | -0.0868 0.1492 0.5183
S-RMSC-add 0.0925 0.3132 1.2155 | 0.0494 0.2391 0.8962 | 0.0257 0.1692 0.6394
S-RMSC-ez -0.2095 0.3035 1.0080 | -0.1456 0.2183 0.7170 | -0.0871 0.1492 0.5186
MA-MSC-all -0.0695 0.3204 1.2537 | -0.0406 0.2391 0.9431 | -0.0112 0.1745 0.6871
MA-MSC-add -0.0530 0.2669 1.0295 | -0.0236  0.1870 0.7302 | -0.0006 0.1339 0.5068
MA-MSC-ex -0.0709 0.3171 1.2344 | -0.0441 0.2378 0.9319 | -0.0168 0.1739 0.6854

Notes: “all” employs the full set of restrictions; “ho” denotes full ‘optimal’” higher-order weights, “ho4” assumes
Vi =0, “ho3,4” imposes V3 = V4 = 0; “add” means adding one moment restriction at a time; “ex” denotes
averaging only exactly identified models.
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Table 2: Coverage Rate, M = 2,4

T =50 T =100 T =200
M=2 M=4|\M=2 M=4|M=2 M=4
GMM-all 0.7355 0.7008 | 0.7980 0.7748 | 0.8415 0.8310
EL-all 0.7629  0.6417 | 0.8097 0.7443 | 0.8437 0.8111
DIN 0.7650 0.7220 | 0.8064 0.7830 | 0.8330 0.8206
MSC 0.7355 0.6551 | 0.7980 0.7180 | 0.8415 0.7861
RMSC 0.8030 0.7613 | 0.8234 0.8132 | 0.8398 0.8384

MA-GMM-ho 0.8186 0.7675 | 0.7552 0.8227 | 0.7761 0.8665
MA-GMM-ho4 0.8117 0.7670 | 0.7838 0.8203 | 0.8094 0.8657
MA-GMM-ho3,4 | 0.7914  0.7763 | 0.8282 0.8242 | 0.8533 0.8770

S-MSC-all 0.1699 0.0507 | 0.1397 0.0420 | 0.1056 0.0278
S-MSC-add 0.7348 0.7025 | 0.7866 0.7718 | 0.8282 0.8337
S-MSC-ex 0.7903 0.8382 | 0.8243 0.8721 | 0.8461 0.9096
S-RMSC-all 0.8387 0.6932 | 0.8646 0.7435 | 0.8920 0.7891
S-RMSC-add 0.7668 0.7547 | 0.8171 0.8085 | 0.8472 0.8565
S-RMSC-ez 0.8038 0.7697 | 0.8394 0.8300 | 0.8699 0.8822
MA-MSC-all 0.7688  0.4597 | 0.7984 0.4829 | 0.8253 0.5190
MA-MSC-add 0.7607 0.7262 | 0.8071 0.7898 | 0.8440 0.8406
MA-MSC-ez 0.8044 0.8571 | 0.8360 0.8993 | 0.8591 0.9347

See notes to Table 1.

Table 3: Weights (w) Distribution, M= 2

M=2 T =50 T =100 T = 200
w mean w sd % w=1 | wmean w sd % w=1| wmean w sd %w=1
0.5184 0.3778 0.2035 0.5980 0.3728 0.2768 0.6670 0.3480 0.3181
0.4816 0.3778 0.1919 0.4020 0.3728 0.1494 0.3330 0.3480 0.1020
0.5104 0.3078 0.0777 0.5788 0.3048 0.1171 0.6317 0.2831 0.1413
0.4896 0.3078 0.0953 0.4212 0.3048 0.0716 0.3683 0.2831 0.0439
0.4659 0.1351 0.0002 0.4829 0.1212 0.0001 0.5054 0.1070 0.0000
0.5341 0.1351 0.0020 0.5171 0.1212 0.0008 0.4946 0.1070 0.0003
0.0896 0.1160 0.0000 0.0688 0.1161 0.0000 0.0459 0.1008 0.0000
S-MSC-all 0.0896 0.1160 0.0000 0.0688 0.1161 0.0000 0.0459 0.1008 0.0000
0.8208 0.2320 0.0000 0.8625 0.2321 0.0000 0.9081 0.2016 0.0000
S-MSC-add 0.1241 0.2049 0.0027 0.0994 0.2079 0.0020 0.0670 0.1803 0.0006

0.8759 0.2049 0.0000 0.9006 0.2079 0.0000 0.9330 0.1803 0.0000
S-MSC-ex - - - - - - - - -
0.4852 0.1463 0.0000 0.5183 0.1345 0.0000 0.5409 0.1216 0.0000
S-RMSC-all 0.4914 0.1531 0.0000 0.4702 0.1387 0.0000 0.4535 0.1236 0.0000
0.0234 0.0157 0.0000 0.0115 0.0066 0.0000 0.0057 0.0029 0.0000
0.9529 0.0354 0.0000 0.9786 0.0086 0.0000 0.9898 0.0033 0.0000
0.0471 0.0354 0.0000 0.0214 0.0086 0.0000 0.0102 0.0033 0.0000
0.4979 0.1547 0.0000 0.5249 0.1390 0.0000 0.5442 0.1238 0.0000
0.5021 0.1547 0.0000 0.4751 0.1390 0.0000 0.4558 0.1238 0.0000
0.1269 0.1917 0.0035 0.0970 0.1535 0.0022 0.0860 0.1339 0.0034
MA-MSC-all 0.6738 0.2973 0.3332 0.7143 0.2700 0.3453 0.7266 0.2514 0.3261
0.1993 0.1912 0.0185 0.1887 0.1731 0.0104 0.1874 0.1588 0.0052
0.0665 0.2051 0.0036 0.0310 0.1424 0.0023 0.0220 0.1147 0.0034
0.9335 0.2051 0.8871 0.9690 0.1424 0.9464 0.9780 0.1147 0.9603
0.1985 0.2137 0.0037 0.1868 0.2028 0.0024 0.1879 0.1988 0.0039
0.8015 0.2137 0.3650 0.8132 0.2028 0.3650 0.8121 0.1988 0.3380

MA-GMM-ho
MA-GMM-ho4

MA-GMM-h03, 4

S-RMSC-add

S-RMSC-ex

MA-MSC-add

MA-MSC-ex

See notes to Table 1; ‘% w = 1’ denotes the percentage of replications for which a particular model is given full
weight; recall that S-MSC-ex corresponds to equal weights & = 1/M.
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Table 4: MA-IV Regressions of log GDP per capita

Instruments (z) mort es1900 ¢1900 d1900 cindep dindep
Base Sample
v B* Acemoglu et al.’s (2001) 0.94 0.87 0.71 0.72 0.60 0.55
(n=64) (n=63) (n=60)  (n=59) (n=60) (n=60)
IV (n = 59) 0.86 0.86 0.70 0.72 0.34 0.42
MA-HigherOrderOptimal 0.75  0.30 0.33 0.18 0.00 0.00 0.18
MA-HigherOrderOptimal-bc 0.72 0.30 0.33 0.17  0.00 0.00 0.19
MA-Smoothpy 0.80 0.19 0.43 0.14 0.22 0.00 0.02
MA-Smoothpryrsc 0.68 0.17 0.19 0.18 0.19 0.11 0.16
MA-Smoothccorc 0.85 0.06 0.91 0.01 0.02 0.00 0.00
MA-Numerical yrsc 0.71 0.22 0.22 0.18 0.18 0.09 0.11
Base Sample without Neo-Europes
v B\* Acemoglu et al.’s (2001) 1.28 - - - - -
(n=60)
IV (n = 55) .19 1.98  0.99% 1.51% -1.03# 0.08%
IV (n = 59) 1.26 2.18 - - - -
MA-HigherOrderOptimal 174 0.47 0.53 - - - -
MA-HigherOrderOptimal-bc 1.53  0.46 0.54 - - - -
MA-Smoothpy 1.26  1.00 0.00 - - - -
MA-Smoothgyrsc 1.47  0.77 0.23 - - - -
MA-Smoothoere 1.31 0.9/ 0.06 - - - -
MA-Numericaly;s¢ 1.26 1.00 0.00 - - - -

Base Sample without Africa

v B* Acemoglu et al.’s (2001) (0.%87) - - - - -

IV (n = 33) 0.52 0.73 0.68 0.66 0.32 0.31
MA-HigherOrderOptimal 0.54 0.42 0.20 0.14 0.00 0.00 0.23
MA-HigherOrderOptimal-bc 0.53  0.42 0.20 0.14 0.00 0.00 0.23
MA-Smoothpy 0.54 0.27 0.19 0.13 0.12 0.11 0.17
MA-Smoothrarsc 0.53  0.23 0.16 0.15 0.15 0.15 0.17
MA-Smoothcerc 0.52  0.98 0.01 0.00 0.00 0.00 0.00
MA-Numerical yrsc 0.61 0.16 0.25 0.23 0.22 0.08 0.07

Notes: “mort” is the log European settler mortality, “es1900” is European settlements in 1900, “c1900” is
constraint on executive in 1900, “d1900” is democracy in 1900, “cindep” is constraint on executive in first
year of independence, and “dindep” is democracy in first year of independence; 3* denotes the baseline es-
timate; Weight estimates in italics; “bc” is the bias-corrected optimal MA estimator; “#” means that /3 is
not statistical significant for that model (using that z).
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