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Abstract

Moment conditions model averaging (MA) estimators in the GMM framework are consid-

ered. Under finite sample considerations, MA estimators with optimal weights are proposed, in

the sense that weights minimize the corresponding higher-order asymptotic mean squared error

(AMSE). It is shown that the higher-order AMSE objective function has a closed-form expres-

sion, which makes this procedure applicable in practice. In addition, and as an alternative,

different averaging schemes based on moment selection criteria are considered, in which weights

for averaging across GMM estimates can be obtained by direct smoothing or by numerical min-

imization of a specific criterion. Asymptotic properties assuming correctly specified models are

derived and the performance of the proposed averaging approaches is contrasted with existing

model selection alternatives i) analytically, for a simple IV example, and ii) by means of Monte

Carlo experiments in a nonlinear setting, showing that MA compares favourably in many rele-

vant setups. The usefulness of MA methods is illustrated by revisiting Acemoglu et al.’s (2001)

study on the effect of institutions on economic performance.

Keywords: Generalized Method of Moments; Model Selection; Model Averaging, Higher-Order

Asymptotics; AMSE
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1 Introduction

In many applications of instrumental variables and GMM estimation, there is often a large set of

candidate variables that can be used as instruments. However, the properties of moment conditions

and instrumental variables estimators are very sensitive to the choice and characteristics of the

instrument set. Indeed, instruments might be poorly correlated with the endogenous variables,

which invalidates conventional inference procedures. On the other hand, using many (potentially

weak) instruments, while desirable (see Hansen, Hausman and Newey, 2008), may lead to biases and

substantial deviations from the usual Gaussian asymptotic approximation (see Chao and Swanson,

2005, and Newey and Windmeijer, 2009).

Thus, much of the literature has focused on procedures for the selection of the appropriate

moments/instruments. Model selection entails choosing one of the estimated competing models

under consideration, possibly by deleting some of the moment conditions.1 Andrews (1999) devel-

oped GMM analogues of model selection criteria in order to consistently select the largest set of

valid moment conditions, while Hall, Inoue, Jana and Shin (2007) suggest selecting moment con-

ditions according to the relevant moment selection criterion (RMSC), based on the entropy of the

limiting distribution of the GMM estimator. On the other hand, Donald and Newey (2001) and

Donald, Imbens and Newey (2009) propose a selection procedure such that the AMSE is minimized

over all existing instruments deemed to be valid, while Hall and Peixe (2003) propose a canonical

correlations information criteria (CCIC) for instrument selection.2

In this paper, we consider the alternative approach of model averaging (MA), in which parameter

estimates are constructed based on a weighted average of estimates obtained using different sets of

moment conditions or model specifications. Indeed, by making use of the information conveyed by

otherwise discarded alternative specifications, model averaging as an estimation strategy may yield

some gains in terms of bias and efficiency when compared to procedures that make use of a single set

of moment conditions. The main focus of our paper is on deriving the stochastic expansion of the

MA estimator and, building upon that, we study MA estimators with optimal weights, in the sense

that weights minimize the MA estimator’s higher-order AMSE. While we follow closely Donald et

al. (2009), our approach contrast with theirs in that these authors employ higher-order expansions

of the AMSE as a criterion for choosing instrumental variables, whereas we use the AMSE to

obtain optimal weights for model averaging. For the sake of completeness, we also consider simpler

alternative MA schemes for GMM in which empirical weights are obtained based on GMM moment

selection criteria. This can be achieved by direct smoothing of information criteria arising from the

estimation stage, or by numerical minimization of a specific criterion, as in Hansen (2007).

Our approach displays important differences when compared with the current model averaging

1Testing competing, non-nested formulations, in which the outcome may not be the selection of one particular
model, can be carried out in a moment conditions framework, see Smith and Ramalho (2002).

2Shrinkage methods for GMM are an alternative to model selection and estimation, see Caner (2009), Cheng and
Liao (2015) and Caner, Han and Lee (2018).

2



GMM literature. First, and unlike existing MA-GMM approaches based on first-order asymptotics,

our main concern are finite sample considerations, i.e. gauging to what extent MA estimation can

improve upon the often problematic finite sample performance of the standard GMM estimator,

which leads us to focus on a higher-order AMSE criterion for MA estimation. Second, we study

the more empirically relevant case in which the vector of parameters of interest is the same across

different specifications (i.e., across different sets of moment conditions), thus rendering the local

misspecification apparatus of Hjort and Claeskens (2003) inapplicable. Third, we suggest averaging

outputs of GMM (i.e. estimates of the parameters of interest) rather than inputs, (i.e. moment aver-

aging), as this allows the researcher to have an interpretable and quasi-Bayesian sense of parameter

uncertainty, as well as a more informed view on the relative merits of different specifications.

We study optimally-weighted MA-GMM estimators both under exact and overidentification,

and show analytically that AMSE improvements can be obtained by averaging estimators, relative

to not doing so, in a standard linear setup. We then develop the asymptotic properties of the MA

estimator under correct model specification, with fixed or random weights. Under fixed weights,

we show that the estimator is consistent and normally distributed, whereas with random weights

Gaussianity depends on the averaging scheme. Monte Carlo experiments in a nonlinear setting show

that, in several setups, model averaging estimation procedures outperform the selection method of

Donald et al. (2009) in terms of bias and dispersion. Finally, we apply our estimation methods

to measure the effect of institutions on economic performance, based on Acemoglu, Johnson and

Robinson (2001). While their estimates vary considerably across different specifications, our MA

estimates are much less disperse, thus illustrating the usefulness of a model averaging approach.

Our work is a natural extension of the model averaging literature, in which averaging usually

involve weights obtained from functions of model selection criteria, such as the BIC, AIC, etc (see

Claeskens and Hjort, 2008 for a review). Hansen (2007) proposed a Mallows criterion for the selection

of weights for averaging across least squares estimates obtained from a set of approximating models,

in which regressors (or groups of regressors) are added sequentially. Kuersteiner and Okui (2010)

suggest using Hansen’s (2007) method as a first step to construct optimal instruments IV estimation

with 2SLS, LIML and Fuller estimators. The weights are chosen to minimize the AMSE, as in Donald

and Newey (2001). Lee and Zhou (2015) suggest estimating the weights from the minimization of

the AMSE of the averaged estimator under the scenario of many (weak) instruments and each model

having the same number of instruments. Martins and Gabriel (2014) link the choice of empirical

weights to IV selection criteria by direct ‘smoothing’.

In a GMM framework, Xiao (2010) and Chen, Jacho-Chávez and Linton (2016) average over

estimators based on exactly identified models and the proposed weights are optimal in the sense that

the MA estimator attains the (first-order) semiparametric efficiency bound. The former considers

GMM estimators and the later a more general class of estimators, but imposing a cardinality of the

linear combinations that increases with the sample size. In contrast with the previous references,

Sueishi (2013) and DiTraglia (2016) assume model (local) misspecification: Sueishi (2013) in terms
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of the model’s coefficients and for the class of GEL estimators, DiTraglia (2016) at the restrictions

level. In both cases, the weights minimize the AMSE of the MA estimator. DiTraglia (2016)

develops a new selection criteria (the Focused Moment Selection Criterion) and his MA estimator

combines estimators based on valid and potentially invalid instruments/conditions to minimize

MSE, thus leading to a more favourable bias-variance trade-off. Finally, Cheng, Liao and Shi (2019)

combine a conservative GMM estimator based on valid moment conditions and an aggressive GMM

estimator based on both valid and possibly misspecified moment conditions. That is, regardless of

the dimension of the model, valid moment conditions must exist and only two point estimators are

averaged. Moreover, in the case of global misspecification full weight is given to the conservative

GMM estimator, thus meaning that averaging is no longer applied.

Next, section 2 introduces assumptions and definitions. In section 3, we introduce our moment

conditions ‘optimal’ model averaging approach and show analytically their smaller higher-order

AMSE when compared to standard GMM estimators. In section 4 we discuss alternative approaches

to obtain empirical weights. In section 5, we derive statistical properties of the GMM model

averaging estimators. Section 6 presents a summary of a Monte Carlo simulation study providing

evidence in support of our MA procedures in the context of nonlinear models, against the benchmark

of model selection of Donald et al. (2009). In section 7 we briefly revisit Acemoglu et al.’s (2001)

study on the effect of institutions on economic performance and Section 8 concludes. All proofs are

included in a supplementary appendix.

2 Definitions

Given a vector of random variables {yt}, the estimation of a unique p-dimensional parameter vector

θ0 = (θ0,1, ..., θ0,p) ∈ Θ ⊂ <p is based on (up to) m ≥ p moment conditions of the form E[g(yt, θ0)] ≡

E[gt(θ0)] = 0, for all t, with corresponding empirical moments ĝT (θ) = (1/T )
∑T

t=1 g(yt, θ). As in

Andrews (1999), one can define a moment selection vector c ∈ <m that represents a list of “selected”

moment conditions, i.e. a subset of g, denoted as ĝTc(θ). Defining

C =
{
c ∈ <m\ {0} : cj = 0 or 1,∀1 ≤ j ≤ m, where c = (c1, ..., cm)′ , |c| ≥ p

}
, (1)

c is a vector of zeros (excluded conditions) and ones (included conditions) and |c| =
∑m

j cj ≤ m for

c ∈ C, with |c| denoting the number of selected moments. For a particular c, the (efficient) GMM

estimator is defined as

θ̂Tc (W ) = arg min
θ∈Θ

ĝTc (θ)
′
WTcĝTc (θ) , (2)

where WTc is a weighting matrix such that plimWTc = S−1
c , where

Sc = lim
T→∞

V ar

[
T−1/2

T∑
t=1

gc(yt, θ0)

]
(3)
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is the |c| × |c| long-run variance matrix of the process ĝTc (θ).

We adopt the standard GMM framework in which all moment conditions under consideration

are valid. This is expressed in the following general result, first proved by Hansen (1982) and that

can be found in any advanced econometrics textbook such as Hayashi (2000).

Assumption 1 (Regularity conditions for a given c ∈ C). Fix the set of moment condi-

tions to any particular c ∈ C. A.1: {yt} is an infinite sequence of stationary and ergodic vari-

ables; A.2: The true θ0 belongs to the parameter space Θ which is an open subset of <p; A.3:

gc(·, θ) and ∂gc/∂θ(·, θ) are Borel measurable for each θ ∈ Θ and ∂gc/∂θ(y, ·) is continuous on

Θ for each y ∈ <l; A.4: ∂gc(y1, θ)/∂θ is first moment continuous at θ0, and the |c| × p Ja-

cobian matrix Gc = E

(
∂gc(yt,θ)
∂θ′

∣∣∣
θ=θ0

)
exists, is finite, and has full-column rank. A.5: The

following CLT for stationary and ergodic variables holds: 1√
T

∑T
t=1 gc(yt, θ0)

d→ N (0, Sc) where

Sc = lim
T→∞

V ar
[
T−1/2

∑T
t=1 gc(yt, θ0)

]
is a |c| × |c| positive definite matrix; and A.6: Applied

to any consistent estimator θ̃Tc, the following LLN for stationary and ergodic variables holds:

1
T

∑T
t=1

∂gc(yt,θ̃Tc)
∂θ′

p→ Gc.

Lemma 1 (Asymptotic normality of the efficient estimator θ̂Tc)

Assume that Assumption 1 holds and, for any c ∈ C, WTc is such that plimWTc = S−1
c . Then,

for any c ∈ C,
√
T
(
θ̂Tc − θ0

)
d→ Zc = N (0, Vc) , (4)

where

Vc =
(
G
′
cS
−1
c Gc

)−1
, (5)

where Gc and Sc are defined in Assumption 1.

Importantly, and contrary to the usual literature, we include the higher order terms to define

a criteria for selecting the weights. Newey and Smith (2004) provide the stochastic expansion for

GMM/GEL (see Theorem 3.3) under i.i.d. data, correctly specified models and for fixed m. This is

given by
√
T
(
θ̂Tc − θ0

)
= ψ̃c +Q1c/

√
T +Q2c/T +Op

(
T−3/2

)
, (6)

where

ψ̃c = −
(
G′cS

−1
c Gc

)−1
G′cS

−1
c

√
T ĝTc (θ0) + op (1) (7)

is the leading term. They also define the higher-order MSE, but without presenting an expression

for the higher-order variance: “In general, although they may be derived relatively straightforwardly

from the Appendix, the expressions for Ξ for GMM and GEL are extremely complicated, and so are

not given here, although some comparisons can be made.” (page 234). Results for time series data

can be obtained from Anatolyev (2005) and Bao and Ullah (2007), among others, see Anatolyev

and Gospodinov (2011) for a good overview.
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Note that we drop the subscript c for quantities such as ĝT (θ), V , G, S, WT in the case of the

estimator using the full set of available moment conditions (denoted as θ̂T ), obtained for c = ιm, a

vector of ones, such that |c| = m. Similarly, for any c ∈ C, the J test statistic for overidentifying

restrictions is constructed as

JTc = T inf
θ∈Θ

ĝTc (θ)
′
WTcĝTc (θ) . (8)

As mentioned above, our setup assumes that only valid moment conditions are being used. If the

researcher is unsure whether or not the moment conditions are correct, some selection procedures

could be used to select the (sub)set of correct moment conditions.3 Selection criteria for GMM are

reviewed in section 4, when we consider alternative selection criteria-based MA estimators.

3 Optimally-Weighted Moment Conditions Model Averaging Es-

timators

In this section, we present a methodology whereby we average across candidate specifications to

obtain an averaged estimator. Note that this differs from previous literature (namely Kuersteiner

and Okui, 2010, Kapetanios and Marcellino, 2010 and Okui, 2011) in that we are not averaging

across instruments to obtain an optimal set of instruments. Instead, we propose averaging different

estimates of θ0 obtained from distinct sets of moment conditions. The weights associated with each

estimate are chosen according to an optimality criteria. In a particular model, we are able to show

analytically that our proposed ‘optimal’ MA-GMM estimator has a smaller higher-order AMSE

when compared to standard GMM estimators.

3.1 The Procedure

Let M be the collection of candidate moment conditions models. Here, M is a countable/finite

or an uncountable set, such that model Mi belongs to the family of models M : Mi ∈ M. In our

model averaging procedure, we specify a subset of M from which we define the MA estimator. For

now, take any model, Mi, which is characterized by a particular set of moment conditions.

Consider m and c as defined above and the relevant objects indexed by c. Now, let ω =(
ω1, ..., ω|C|

)′
be a weight vector in the unit-simplex in <|C|, with |C| = 2m−

∑p−1
j=0

(
m
j

)
=
∑m

j=p

(
m
j

)
,

with the binomial coefficients
(
m
j

)
= m!

j!(m−j)! , representing the number of different elements4 in C :

Hm = {ω ∈ [0, 1]|C| :
∑
c∈C

ωc = 1}. (9)

3Potentially, our averaging approach could then take place over estimates obtained from valid specifications utilizing
different combinations of the selected moment conditions, although this raises the issue of pre-testing, which we will
not address here.

4We need to exclude
∑p−1

j=0

(
m
j

)
from the total of combinations 2m, those for which m < p.
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Thus, a model averaging estimator of the unknown p× 1 vector θ0 is

θ̂T (ω) =
∑
c∈C

ωcθ̂Tc. (10)

Clearly, standard GMM estimation is a special case for which no model averaging occurs: ωc∗ = 1

for some c∗ and ωc′ = 0 for c′ 6= c∗ and θ̂T (ω) = θ̂Tc∗ .

Given our initial assumptions in section 2, we assume our procedure is averaging over valid

specifications. However, the properties of the MA estimator will depend on whether the weights

are fixed or random objects. For a given ω, the limit statistical properties of θ̂T (ω) depend on a

linear combination of the random processes θ̂Tc, c ∈ C. Thus, under correct model specification,

plim θ̂Tc = θ0 for all c ∈ C and θ̂Tc is
√
T -gaussian with asymptotic variance

Vc =
(
G
′
cWcGc

)−1 (
G
′
cWcScWcGc

)(
G
′
cWcGc

)−1
. (11)

The asymptotic variance of the efficient GMM estimator is given by

Vc =
(
G
′
cS
−1
c Gc

)−1
. (12)

However, we need to take into account the fact that, in our MA estimator, the moment functions

ĝTc (θ0) are different across model specifications indexed by c, which could complicate the derivation

of their limiting behavior. We circumvent this problem by defining a selection matrix that contains

certain rows with zeros, operating on the full moment functions, as in Domowitz and White (1982).

Consider the GMM estimator obtained using the whole set of moment conditions, c = ιm, where

|c| = m. Now, define the matrix Λc of dimension |c| by m, such that each row j = 1, ..., |c| contains

zeros, except a single ”1” at position i that corresponds to the moment condition as defined in

model c = ιm.
5 Then,

ĝTc (θ0) = ΛcĝT (θ0) , (13)

that is, we write the moment functions as a linear function of the ‘full’ specification, which will

allow us to obtain the limiting distribution of our MA estimator, as shown in the following theorem:

Theorem 1 (Distribution of the MA estimator for a given ω): assume that the model is correctly

specified and Assumption 1 holds. As T →∞, for any ω ∈ Hm,

θ̂T (ω) =
∑
c∈C

ωcθ̂Tc
p→ θ0, (14)

5Taking, for example, m = 3 (three moment conditions) and the particular specification c using conditions one
and three, Λc is 2 by 3 with rows (1, 0, 0) and (0, 0, 1) .
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where θ̂Tc, c ∈ C, is the GMM estimator. Moreover,

√
T
(
θ̂T (ω)− θ0

)
d→ N (0, Vω) , (15)

where

Vω =

(∑
c∈C

ωc
(
G′cWcGc

)−1
G′cWcΛc

)
S

(∑
c∈C

ωcΛ
′
cWcGc

(
G′cWcGc

)−1

)
(16)

and S denotes the long-run variance matrix employing all moment conditions (i.e., c = ιm).

In the case of efficient GMM estimation, then Vc = (12), so

Vω =

(∑
c∈C

ωcVcG
′
cS
−1
c Λc

)
S

(∑
c∈C

ωcΛ
′
cS
−1
c GcVc

)
. (17)

Moreover, ZT (ω) =
√
T
(
θ̂T (ω)− θ0

)
convergences weakly to a zero-mean Gaussian process Z(ω) :

ZT (ω)⇒ Z(ω) on Hm. (18)

Remark 1. For a given ω, and noting that Λc is known for all c ∈ C, a consistent estimator of

Vω can be obtained using consistent estimators for Gc and Wc, for all c ∈ C, and for S as well, and

inference can be carried out in the usual way.

Remark 2. The results in Theorem 1, namely the closed form expression of the asymptotic

covariance of the MA estimator is very general in the context of GMM-type of estimation procedures.

First, it covers the cases of linear IV and maximum likelihood estimators. Second, since model

selection is indeed a special case of MA whenever ωc̃ = 1 and ωc′ = 0, for all c′ 6= c̃, for some model

c = c̃, we have θ̂T (ω) = θ̂T c̃ and, more importantly, Vω = Vc̃.

Theorem 1 is useful to understand the fact that if we only consider the first-order terms it is not

difficult to derive the limiting distribution of the MA estimator, for a given ω. This implies that

estimating the weight that minimizes the MSE is meaningless in our approach, since this would

result in the most efficient estimator receiving full weight. Thus, we propose to include the higher

order terms, which should deliver a better approximation of the properties of the MA estimator.

In general, the optimal vector ω will be unknown. As in much of the literature on model

averaging, a data-dependent procedure will have to be used to determine the weights in order

to implement estimation according to (10). Next, we define our weight estimator based on an

optimality criterion.

3.2 Higher-Order Properties of the MA Estimator and the Optimality Criterion

The optimality criterion for estimating the model’s weights follows from the higher-order AMSE of

the MA estimator. On one hand, the first-order asymptotics delivers a solution that departs from

typical MA schemes: it picks ωc̃ = 1, where c̃ = ιm, to attain the Chamberlain bound with the

8



full model (cf. Theorem 1 above). On the other hand, the higher-order AMSE captures additional

statistical properties of the estimator, especially for small sample sizes. As discussed in Hansen,

Heaton and Yaron (1996), for example, and in the two special issues of the Journal of Business and

Economic Statistics (1996 and 2002) dedicated to GMM, the standard 2-step GMM estimator may

deviate substantially from its first-order asymptotic distribution.

Rilstone et al. (1996) define the same higher-order expansion as in Newey and Smith (2004),

θ̂Tc = θ0 + a−1/2,c + a−1,c + a−3/2,c +Op
(
T−2

)
, (19)

for some a−1/2,c = Op
(
T−1/2

)
, a−1,c = Op

(
T−1

)
and a−3/2,c = Op

(
T−3/2

)
. For model c, the AMSE

matrix to order O
(
T−2

)
is

AMSE
(
θ̂Tc

)
= E

(
a−1/2,ca

′
−1/2,c

)
+ E

(
a−1,ca

′
−1/2,c + a−1/2,ca

′
−1,c

)
+E

(
a−1,ca

′
−1,c + a−3/2,ca

′
−1/2,c + a−1/2,ca

′
−3/2,c

)
. (20)

Hence, for the MA estimator and any ω ∈ Hm,

θ̂T (ω) = θ0 +
∑
c∈C

ωca−1/2,c +
∑
c∈C

ωca−1,c +
∑
c∈C

ωca−3/2,c +Op
(
T−2

)
(21)

with, to the order O
(
T−2

)
,

AMSE
(
θ̂T (ω)

)
= E

(∑
c∈C

ωca−1/2,c

∑
c∈C

ωca
′
−1/2,c

)
+ E

(∑
c∈C

ωca−1,c

∑
c∈C

ωca
′
−1/2,c +

∑
c∈C

ωca−1/2,c

∑
c∈C

ωca
′
−1,c

)

+E

(∑
c∈C

ωca−1,c

∑
c∈C

ωca
′
−1,c +

∑
c∈C

ωca−3/2,c

∑
c∈C

ωca
′
−1/2,c +

∑
c∈C

ωca−1/2,c

∑
c∈C

ωca
′
−3/2,c

)

=
∑
c1∈C

∑
c2∈C

ωc1ωc2

[
1

T
V1,c1,c2 +

1

T 2

(
V2,c1,c2 + V ′2,c2,c1

)
+

1

T 2

(
V3,c1,c2 + V4,c1,c2 + V ′4,c2,c1

)]
, (22)

where

V1,c1,c2 = T.E
(
a−1/2,c1a

′
−1/2,c2

)
;V2,c1,c2 = T 2.E

(
a−1,c1a

′
−1/2,c2

)
(23)

V ′2,c2,c1 = T 2.E
(
a−1/2,c1a

′
−1,c2

)
;V3,c1,c2 = T 2.E

(
a−1,c1a

′
−1,c2

)
(24)

V4,c1,c2 = T 2.E
(
a−3/2,c1a

′
−1/2,c2

)
and V ′4,c2,c1 = T 2.E

(
a−1/2,c1a

′
−3/2,c2

)
. (25)

All terms have closed form expressions (see, for example, Rilstone et al. 1996). Clearly, the AMSE

of the MA estimator will only be equal to the standard (not averaged) case if we put full weight in

one model c∗, say, ωc∗ = 1 and ωc = 0, c 6= c∗.
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Thus, we define the following optimality criterion for choosing ω :

ω̂ ≡ ω̂T,m,p = arg min
ω∈Hm

AMSE
(
θ̂T (ω)

)
. (26)

One can consider the bias-corrected estimator instead

θ̂bcT (ω) = θ̂T (ω)−BT (ω) , (27)

where the bias to order O
(
T−1

)
is given by

BT (ω) =
∑
c∈C

ωc
[
E
(
a−1/2,c

)
+ E (a−1,c)

]
=
∑
c∈C

ωcBTc (28)

(see Rilstone et al. 1996). Here, θ̂bcT (ω) is unbiased to order O
(
T−1

)
. In this context, to order

O
(
T−2

)
,

ω̂ = arg min
ω∈Hm

AMSE
(
θ̂bcT (ω)

)
= arg min

ω∈Hm

{
AMSE

(
θ̂T (ω)

)
−BT (ω)BT (ω)′

}
. (29)

In practice, the AMSE
(
θ̂T (ω)

)
includes unknown quantities, namely the model’s population

parameters and moments, so that the feasible version of ω̂ results from replacing these objects

by their estimators and sample moment analogues and obtain
̂

AMSE
(
θ̂T (ω)

)
, from which we

calculate ω̂. Notice as well that this is an optimization problem restricted to the unit simplex.

The criteria we propose follows from a constrained quadratic optimization problem with a positive

definite quadratic term and a linear constraint. Thus, unless some moment conditions are degenerate

or perfectly correlated, this problem has a closed form solution. In the cases where this solution has

too complicated an expression, we recommend obtaining it through numerical optimization or linear

programming.6 The proposed MA estimator might not be manageable in practice, particularly for

a general nonlinear model with a large p (more below in Section 3.3).

Remark 3. We argue that simply minimizing the higher-order bias is not adequate. In this case,

Bias
(
θ̂T (ω)

)
=
∑

c∈C ωcBias
(
θ̂Tc

)
, meaning that the full weight is on the model with smallest

bias (or its norm for p > 1) and thus leading to model selection rather than averaging. In contrast,

AMSE
(
θ̂T (ω)

)
=
∑

c∈C ωcAMSE
(
θ̂Tc

)
does not hold, which means that the model with the

smallest AMSE will not necessarily get full weight (see the selection criteria of Donald and Newey,

2001, and Donald et al., 2009), so that gains can be obtained by using our proposed MA estimator.

Remark 4. The AMSE in (26) is defined for p = 1. In the general case (22), and following

the existing MA literature, define the (scalar) target parameter of interest δ0 = δ (θ0) = δ′θ0, with

δ known, such that AMSE
(
δ′θ̂T (ω)

)
= δ′AMSE

(
θ̂T (ω)

)
δ is a scalar; this then ensures the

6For example, the procedure QPROG for the software GAUSS helps solving this classic programming problem. If
m is moderately large, a typical solution is to put zero weight on some of the individual models (see Martins and
Gabriel, 2014).

10



feasibility of the optimization problem (see DiTraglia, 2016, for example).

3.3 Optimal MA-GMM Under Exact Identification

While the AMSE of the MA estimator has a closed form expression (following Rilstone et al. 1996),

it includes several complicated terms. Also, when m is “large”, the number of models to average

becomes intractable: for example, for m = 4 and p = 2 we have |C| = 11 in the overidentified

case. Thus, for simplicity, we first focus on optimal averaging over exactly identified models. The

corresponding AMSE is now relatively easy to obtain and the number of models is manageable.

Consider the model’s space Cp ⊂ C whose elements satisfy |c| = p so that the subset Cp contains

|Cp| =
(
m
p

)
distinct exactly identified models. If m = 4 and p = 2, we average over 6 models, i.e.

combining moment conditions 1_2, 1_3, 1_4, 2_3, 2_4, and 3_4. In practice, it is as if one gives

zero weight to all models c such that |c| > p. Following Lemma 3.1 in Rilstone et al. (1996), the

third-order expansion of the exactly identified GMM estimator for model c ∈ Cp satisfies

a−1/2,c = −E

(
∂gtc
∂θ′

∣∣∣∣
θ=θ0

)−1

(1/T )

T∑
t=1

gtc(θ0) ≡ −G−1
c ĝTc (30)

a−1,c = −G−1
c

(
ĜTc −Gc

)
a−1/2,c −

1

2
G−1
c H2c

(
a−1/2,c ⊗ a−1/2,c

)
(31)

a−3/2,c = −G−1
c

(
ĜTc −Gc

)
a−1,c −

1

2
G−1
c Ĥ2Tc

(
a−1/2,c ⊗ a−1/2,c

)
−1

2
G−1
c H2c

[(
a−1/2,c ⊗ a−1,c

)
+
(
a−1,c ⊗ a−1/2,c

)]
−1

6
G−1
c H3c

(
a−1/2,c ⊗ a−1/2,c ⊗ a−1/2,c

)
, (32)

where Gc ≡ E (∇gtc(θ0)) is the usual p × p Jacobian, H2c ≡ E
(
∇2gtc(θ0)

)
is a p × p2 matrix,

Ĥ2Tc = (1/T )
∑T

t=1

(
∂2gtc
∂θ∂θ′

∣∣∣
θ=θ0
−H2c

)
, and H3c ≡ E

(
∇3gtc(θ0)

)
is a p× p3 matrix. If the model

is linear in the parameters (linear IV, say) then H2c = 0, which simplifies further a−1,c and a−3/2,c.

From these objects, we obtain the matrices V·,c1,c2 , for any pair of exactly identified models

(c1, c2) that are in the formula of the AMSE
(
θ̂T (ω)

)
, which we need to minimize in order to

choose the optimal empirical MA weights.7

Bias is given by

BTc =
1

T
G−1
c

{
E
[
(∇gtc(θ0)−Gc)G−1

c gtc(θ0)
]
− 1

2
H2c

[
E
(
G−1
c gtc(θ0)⊗G−1

c gtc(θ0)
)]}

. (33)

According to Newey and Smith (2004), the bias for exactly identified models is decomposed in

two terms: the asymptotic bias of the GMM estimator with optimal weighting matrix and a term

associated with the choice of the preliminary estimator.

7Exact expressions for these V·,c1,c2 matrices are given in the supplementary appendix.
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The linear IV case In the standard linear model, the IV estimator is defined as

θ̂Tc =
(∑T

t=1 xtz
′
tc

)−1 (∑T
t=1 xtyt

)
and

gtc (θ) = ztc
(
yt − x′tθ

)
= ztcut (θ) ;Gtc (θ) = −xtz′tc;Gc = −E

(
xtz
′
tc

)
;
∂2gtjc
∂θ∂θ′

= H2c = H3c = 0.

(34)

Assuming, for the sake of simplicity, homoskedastic errors, then E
(
u2
t (θ0) |ztc

)
= σ2,

V1,c1,c2 = σ2E
(
xtz
′
tc1

)−1
E
(
ztc1z

′
tc2

)
E
(
ztc2x

′
t

)−1
, (35)

V2,c1,c2 = −E
(
xtz
′
tc1

)−1
{
E
[
u2
t (θ0)

(
xtz
′
tc1 − E

(
xtz
′
tc1

))
E
(
xtz
′
tc1

)−1
ztc1z

′
tc2E

(
ztc2x

′
t

)−1
]}

(36)

V3,c1,c2

= E
(
xtz
′
tc1

)−1


E

 u2
t (θ0)

(
xtz
′
tc1 − E

(
xtz
′
tc1

))
E
(
xtz
′
tc1

)−1
ztc1 .

z′tc2E (ztc2x
′
t)
−1 (ztc2x

′
t − E (ztc2x

′
t))


+E

[
u2
t (θ0) ztc1z

′
tc2

]
E

(
ztc2x

′
t

)−1
(37)

and

V4,c1,c2

= E
(
xtz
′
tc1

)−1

E
 u2

t (θ0)
(
xtz
′
tc1 − E

(
xtz
′
tc1

))
E
(
xtz
′
tc1

)−1
.(

xtz
′
tc1 − E

(
xtz
′
tc1

))
E
(
xtz
′
tc1

)−1
ztc1z

′
tc2

E
(
ztc2x

′
t

)−1
(38)

and

BTc = − 1

T
E (xtztc)

−1E
[
ut (θ0) (xtztc − E (xtztc))E (xtztc)

−1 ztc

]
. (39)

3.4 Gains in Using MA-GMM - An Illustrative Example

It is infeasible to show analytically, for the general case presented in subsection 3.2, that our proposed

optimal MA-GMM estimator has an AMSE smaller than the corresponding standard (not averaged)

GMM estimator. For general nonlinear models, we make comparisons using Monte Carlo simulations

in section 6. Nevertheless, we are able to prove analytically the gains of using the optimal MA-GMM

estimator of section 3.3 in the simplest of setups, with two candidate models.

The linear IV regression model is specified by a structural equation of interest

y = xθ +Xγ + u, (40)

where y is a T × 1 vector, x is a T × n matrix of endogenous regressors, X is a T ×K matrix of

12



exogenous regressors, and by a reduced form equation for the endogenous x

x = zΠ +XΦ + V, (41)

where z is a T ×m matrix of instruments, with x,X and z full ranked and m ≥ n. For the sake of

simplicity, let n = 1, K = 0 and assume i.i.d. data. The error structure wi = (ui, Vi)
′ satisfies the

moment conditions E (wi|zi) = 0 and

E
(
wiw

′
i|zi
)

=

 σ2 ϕ

ϕ σ2
v

 . (42)

Also, assume that σ3 = E
(
ut (θ)3 |ztc

)
= 0 and σ4 = E

(
ut (θ)4 |ztc

)
= 1 for all c = 1, ...,m.8

Define the (scalar) parameter of interest θ and endogeneity arises if E (xiui) = ϕ 6= 0.

For the averaging scheme, let m = |Cp| = 2 so that we account for two candidate models:

c = 1 and c = 2 with T × 1 instruments z1 and z2, respectively, with z1 6= z2. Assuming further

homocorrelated errors, E [ut (θ0)xt|zt] = E [ut (θ0)xt] = ϕ, and higher cross-moments for error

and endogenous variables, E
[
u2
t (θ0)xt|zt

]
= ϕ3 and E

[
u2
t (θ0)x2

t |zt
]

= ϕ4. Also, let ztc have zero

expectation and variance E
(
z2
tc

)
= σ2

c and E
(
z3
tc

)
= %c, E

(
z4
tc

)
= κc. Moreover, let E (zt1zt2) = φ,

E
(
z2
t1z

2
t2

)
= φ4, E

(
z3
t1zt2

)
= φ

(1)
4 , E

(
zt1z

3
t2

)
= φ

(2)
4 , E

(
z2
t1zt2

)
= φ

(1)
3 , and E

(
zt1z

2
t2

)
= φ

(2)
3 .

Finally, define the covariance of endogenous and instruments as E (xtztc) = ρc.

The competing estimators (averaged or not) differ on the instruments each use. Thus, and to

simplify calculations, we compute the AMSE’s scaling them by T 2 and fixing the model coefficients

that do not involve the z’s: σ2 = 1, ϕ = 0.5, ϕ3 = 0 and ϕ4 = 1.9 Furthermore, assume zt1 and zt2

each normally distributed with correlation coefficient φ
σ1σ2

, so that the cokurtosis statistics equal
E(z2t1z2t2)
σ2
1σ

2
2

= 1 + 2ρ2 and
E(z3t1zt2)
σ3
1σ2

=
E(zt1z3t2)
σ1σ3

2
= 3ρ. The coskewness is φ

(1)
3 = φ

(2)
3 = 0 due to ϕ3 = 0.

Also, assuming σ2
1 = σ2

2 = 1, we have φ4 = 1 + 2φ2 and φ
(1)
4 = φ

(2)
4 = 3φ. In this setup,

V1,1,2 = V2,1,2 =
φ

ρ1ρ2
, V3,1,2 =

1

ρ2
1ρ

2
2

(
1 + 2φ2 + 2ρ1ρ2φ

)
, (43)

V4,1,2 =
φ

ρ3
1ρ2

(
3 + ρ2

1

)
and BT (ω) = − 1

2T

(
ω1

1

ρ2
1

+ (1− ω1)
1

ρ2
2

)
(44)

and given the restriction ω1 + ω2 = 1,

AMSE
(
θ̂T (ω)

)
= ω2

1

[
1 + φ

[
(T + 6) ρ2

1 + 2φ+ 6
]

ρ4
1

]
+ ω2

2

[
1 + φ

[
(T + 6) ρ2

2 + 2φ+ 6
]

ρ4
2

]
(45)

+2ω1ω2

[
ρ1ρ2

[
φρ1ρ2 (T + 6) + 2φ2 + 1

]
+ 3φ

(
ρ2

1 + ρ2
2

)
ρ3

1ρ
3
2

]
. (46)

8Hence, E
(
ut (θ)3

)
= E

(
ut (θ)3 ztc

)
= 0 and E

(
ut (θ)4

)
= 1, so that E

(
ut (θ)4 ztc

)
= E (ztc).

9That is, the level of endogeneity is E [ut (θ0)xt] = ϕ = 0.5, xt has zero mean, E
[
u2
t (θ0)xt

]
= E (xt) = ϕ3 = 0,

and unit variance, E
[
u2
t (θ0)x2t

]
= E

(
x2t
)

= ϕ4 = 1.
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As expected, the AMSE
(
θ̂T (ω)

)
depends on the sample size, T , the covariances of the endogenous

variable and each instrument, ρc, and the covariance of the two instruments, φ. For ease of exposition,

we derive next the conditions under which both models get optimal equal weights.

Proposition 1 (Optimal equal weights and the corresponding AMSE): consider the standard

linear IV regression model under the assumptions defined above and the optimal MA-GMM estimator

with equal weights ωo1 = ωo2 = 1
2 for ρ2

1 = ρ2
2. Let ψ = ρ2

1 (T + 6) and T fixed. For ρ1 = ρ2, consider

φ ∈
(
φ+, 1

)
, where φ+ = − 1

16 (ψ + 6) + 1
16

√
(ψ + 6)2 − 32. For ρ1 = −ρ2, take φ ∈

(
φ−, 1

)
, where

φ− = −1
4 (ψ + 10) + 1

12

√
9 (ψ + 10)2 − 24. Here, −1 < φ+ < φ− < 0. The corresponding optimal

AMSE of the MA estimator is

AMSE
(
θ̂T (ωo)

)
=

2 + φ (T + 6)
(
ρ2

1 + ρ1ρ2

)
+ 4φ2 + 6φ

(
1 + ρ2

ρ1

)
2ρ4

1

. (47)

Proposition 1 provides a closed form expression for the AMSE of an optimal MA-GMM estima-

tor. Next, we show that, under a specific set of the model’s assumptions, this AMSE is the smallest

compared to the standard GMM estimators (exactly identified or overidentified).

Proposition 2 (Optimal MA-GMM estimator with the smallest AMSE): consider the standard

linear IV regression model under the assumptions defined in Proposition 1 and the optimal MA-

GMM estimator with equal weights ωo1 = ωo2 = 1
2 for ρ2

1 = ρ2
2. Denote the GMM estimator with a

single instrument as θ̂T1 and the GMM estimator with both instruments as θ̂Toverid. For any T ,

AMSE
(
θ̂T (ωo)

)
< AMSE

(
θ̂Toverid

)
< AMSE

(
θ̂T1

)
, (48)

where AMSE
(
θ̂T (ωo)

)
< AMSE

(
θ̂Toverid

)
holds in the following cases:

• for ρ1 = ρ2, all φ ∈ (φ+, φ+], where φ+ = 3ψ + 21−
√

9 (ψ + 7)2 − 2ψ − 5;

• for ρ1 = −ρ2, all φ ∈ (φ−, φ−], where φ− = ψ − 9 −
√

(ψ − 9)2 − 2ψ − 5, such that ψ =

ρ2
1 (T + 6) ∈

[
0, 10− 2

√
6
]
∪ [10 + 2

√
6,+∞). Here, if 0 ≤ ψ ≤ 10 − 2

√
6 then 0 < φ− < φ+ < 1,

whereas if ψ ≥ 10 + 2
√

6 then 0 < φ+ < φ− ≤ 1.

Proposition 2 illustrates a simple case where it can be shown analytically the AMSE gains from

using the optimal MA-GMM estimator. It imposes equal weights and thus one must not rule out

the possibility of further gains with non-equal optimal weights. With equal weights and opposite

signs for the correlations of each instrument and the endogenous variable, ρ1 = −ρ2, the optimal

MA-GMM estimator is always superior for any non-negative correlation of instruments, φ ∈ (φ−, 1]

when ψ ≥ 10 + 2
√

6. This means that, for example, with ρ2
1 = 0.27, T = 50 and φ = 0.25, we have
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AMSE(θ̂Toverid)
AMSE(θ̂T (ωo))

= 6.165 and
AMSE(θ̂T1)

AMSE(θ̂T (ωo))
= 22.089. It is also straightforward to show that if φ = 0,

AMSE
(
θ̂Toverid

)
AMSE

(
θ̂T (ωo)

) = ρ2
1

(
T

2
+ 3

)
+

9

4
> 2.25 and

AMSE
(
θ̂T1

)
AMSE

(
θ̂T (ωo)

) = ρ2
1 (T + 5) + 10 > 10

That is, our optimal MA-GMM estimator is able to, at least, halve the AMSE of the standard

overidentified GMM estimator.

3.5 Optimal MA-GMM Under Overidentification

In this section, we present the optimal MA-GMM estimator with any number of moment conditions

in each model, namely overidentification, for given moment conditions gt(θ0). We show that, for

this particular class of models, the general optimal MA-GMM estimator in section 3.2 may have

tractable closed-form expressions, as the MA-GMM estimator under exact identification defined in

section 3.3.

Rilstone et al. (1996) show that one can write an overidentified model in terms of an ex-

actly identified system at the expense of adding an extra (nuisance) parameter. They consider

models of the form gt(θ0) = ztut (θ0), with ut (θ0) potentially nonlinear, and homoskedastic errors

E
(
u2
t (θ0) ztz

′
t

)
= σ2E (ztz

′
t), so that the weighting matrix is E (ztz

′
t)
−1 . For overidentified GMM

(m ≥ p), the model can be written as an exactly identified system

E (ht (θ0, τ0)) = E

 zt ⊗ εt (θ0, τ0)

τ0ztut (θ0)

 = 0, (49)

where

τ0 = E
(
∇ut (θ0) z′t

)
E
(
ztz
′
t

)−1
and εt (θ0, τ0) = ∇ut (θ0)− τ0zt. (50)

Here, ∇ut (θ0) and εt (θ0, τ0) are p × 1, zt is m × 1 and the (extended) parameter vector is now

(θ0, τ0) of size p+ pm (τ0 is p×m), which equals the number of equations: zt⊗ εt (θ0, τ0) is mp× 1

and τ0ztut (θ0) is p× 1.

Therefore, we can apply the results for exactly identified models denoting gt(θ0) by g∗t (θ0, τ0) =

[zt ⊗ εt (θ0, τ0) τ0ztut (θ0)]′, where θ0 is the parameter of interest and τ0 is a nuisance parameter.

If τ0 is known, then g∗t is itself only a function of θ0. However, in general, τ0 is unknown and a

consistent estimator τ̂ is needed for the GMM estimation of θ0. In conclusion, averaging GMM

point estimates from overidentified models is a somewhat unwieldy task and is seemingly limited to

models of the form gt(θ0) = ztut (θ0).
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4 Non-optimal alternative MA-GMM estimators

In practice, and in particular for large nonlinear moment conditions models, the general optimal MA-

GMM estimator may be difficult to obtain - there are no analytical results under exact identification,

rather we evaluate its merits through Monte Carlo simulations. As an alternative, and following

the standard literature in model averaging procedures, we suggest linking the problem of selecting

empirical weights ω̂ with moment selection criteria obtained in the estimation stage. This can be

achieved either by direct ‘smoothing’ or by minimization of a given moment selection criterion.

4.1 Moment Selection Criteria for GMM

Given that the rejection of the J-statistic is an indicator that some moment conditions are invalid,

Andrews (1999) suggests that this can be used to consistently select the correct moment conditions.

Thus, a GMM moment selection criteria for a given model is defined as

MSCT (c) = JT (c)− κT (|c| − p) , (51)

where |c| − p is the number of overidentifying restrictions and κT = o (T ) is a sequence that defines

the selection criterion (κT = 2 for the AIC; κT = log T for the BIC; and κT = Q log log T for some

Q > 2 for the HQ-type criterion). Note the “bonus term” κT (|c| − p) rewarding selection vectors

that utilize more moment conditions.10

While the criteria above stress the satisfaction of orthogonality conditions, other procedures

have been proposed in which the focus is on the relevance of moment conditions. Under somewhat

more restrictive assumptions, Hall et al. (2007) suggest selecting a model according to the relevant

moment selection criterion

RMSCT (c) = ln
(∣∣∣V̂c∣∣∣)+ κT (|c| − p) , (52)

where the efficient GMM variance-covariance matrix V̂c is evaluated at θ̂Tc. On the other hand,

Hall and Peixe (2003), in a generalized IV framework, consider the problem of instrument selection

based on a combination of the efficiency and non-redundancy conditions

CCICT (c) = T

p∑
i=1

ln
[
1− r2

i,T (c)
]

+ κT (|c| − p) , (53)

where ri,T (c) is the ith sample canonical correlation between dt(θ̃T ) and zt (c), with dt(θ) = ∂ut(θ)
∂θ

and θ̃T is a
√
T− consistent preliminary estimator. Note that here g(yt, θ) ≡ ut(θ)zt(c), ut(θ) is

scalar and, if the model is linear, dt(θ) = −xt.

Alternatively, given a set of moment conditions known to be valid, one can select moment

10Under relatively standard assumptions, Andrews (1999) shows that the moment selection criteria estimator ĉmsc =
arg min

c∈C
MSCT (c) is a consistent estimator of the single “correct” selection vector c0.
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conditions that minimize a criterion based on an estimate of the AMSE, as suggested by Donald

and Newey (2001) for linear IV estimation with homosdekasticity and Donald et al. (2009) for the

general case. Following the latter, the criterion for GMM is of the form

AMSET (c) = Π̂2
c/T + Φ̂c, (54)

where Π̂2
c/T is an estimate of a squared bias term, while Φ̂c is an asymptotic variance term that

tends to be smaller the more instruments are used (the full notation for (54) is cumbersome, see

Donald et al., 2009 for further details and Donald and Newey, 2001 for the linear IV case).

4.2 Smooth Moment Selection Criteria Weights

As suggested by Buckland, Burnham and Augustin (1997), a simple averaging scheme can be ob-

tained by using weights proportional to the exponential form of a given GMM selection criterion

Crit (see definitions in section 2). Thus, a smooth AIC, BIC, AMSE, etc. scheme (denoted as

ω̂S-Crit) is based on weights for candidate model M ,

ω̂M (Crit) =
exp(−1

2CritM )∑
M ′∈M exp(−1

2CritM ′∈M)
(55)

where the sum term encompasses all, not necessarily nested, M ′ ∈ M models of interest.11 Other

simplified weighting schemes have been explored in the literature and can potentially be employed,

see Claeskens and Hjort (2008) and Martins and Gabriel (2014).

4.3 Selecting Weights by Minimizing GMM Moment Selection Criteria

In the spirit of Hansen (2007), we also propose obtaining the weight vector ω by numerical mini-

mization of GMM moment selection criteria, which gives rise to two distinct situations. In a first

case, we can evaluate a given moment selection criteria at the MA estimator θ̂T (ω): using Andrews’s

(1999) MSC, the empirical selected weight vector is defined as

ω̂MSC = arg min
ω∈Hm

MSCTc (ω) = arg min
ω∈Hm

(JTc (ω)− κT (|c| − p)) , (56)

where JTc (ω) = T ĝTc

(
θ̂T (ω)

)′
WTcĝTc

(
θ̂T (ω)

)
, for a given set of moment conditions c and given

WTc.

A second case comprises selection criteria which cannot be evaluated at θ̂T (ω), so therefore

weights are selected as

ω̂SC = arg min
ω∈Hm

SCT (ω) , (57)

11For numerical stability, it is sometimes recommended that the maximum CritT value is subtracted to each CritM .
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where

SCT (ω) = ω′diag
(
SC1, ..., SC|C|

)
ω =

|C|∑
c=1

ω2
cSCc, (58)

where diag (·) refers to a |C| × |C| diagonal matrix. In particular,

ω̂RMSC = arg min
ω∈Hm

[
ω′diag

(∣∣∣V̂1

∣∣∣ , ..., ∣∣∣V̂|C|∣∣∣)ω] (59)

ω̂AMSE = arg min
ω∈Hm

[
ω′diag

(
AMSET,1, ..., AMSET,|C|

)
ω
]

(60)

or, in an GIV context,

ω̂CCIC = arg min
ω∈Hm

[
ω′diag

(
p∑
i=1

ln
[
1− r2

i,T,1

]
, ...,

p∑
i=1

ln
[
1− r2

i,T,|C|

])
ω

]
. (61)

Remark 5. As in Hansen (2007), the solution ω̂ is found by numerical algorithms. It solves a

constrained optimization problem with non-negativity and summation constraints (ωc ∈ [0, 1], for

all c and
∑

c∈C ωc = 1, respectively).

Remark 6. Note that, although averaging occurs over specifications using different combina-

tions of moment conditions, the minimization of GMM selection criteria in (56) depends on the

J-statistic. This, in turn, requires the weight matrix to be chosen and therefore a set of moment

conditions c to be fixed. Moreover, and unlike the least squares MA estimator of Hansen (2007)

and the two-step MA instruments estimators of Kuersteiner and Okui (2010), which have distinct

number of parameters to estimate for each individual model, in our case pc = p for all c. Hence,

min
ω∈Hm

MSCTc (ω) = min
ω∈Hm

JTc (ω) (62)

for any penalty term κT . Thus, an MA estimator that minimizes a GMM selection criterion will

be solely based on the JT (ω)-statistic. For the sake of efficiency, one can pick c = ιm, a vector of

ones, which implies using the whole set of moment conditions (in this case, |c| = m and, in terms

of notation, “c” is dropped):

JT (ω) = T ĝT

(
θ̂T (ω)

)′
WT ĝT

(
θ̂T (ω)

)
. (63)

For the linear IV/2SLS case, for a set of variables xt and instruments zt, such that yt = (x′t, z
′
t)
′,

then

JTc (ω) = T

(
1

T

T∑
t=1

zc,t

(
yt − x′t

∑
c∈C

ωcθ̂Tc

))′
WTc

(
1

T

T∑
t=1

zc,t

(
yt − x′t

∑
c∈C

ωcθ̂Tc

))
. (64)

Remark 7. The trace minimization criterion for ω̂SC can be seen as a general approach to

obtain weights. Liang, Zou, Wan and Zhang (2011) follow this approach, for example, although
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their method is based on an approximation of a MA estimator’s MSE. In this vein, another potential

weight selection criteria would be to find the argument ω̂ that minimizes the trace of the MA

variance-covariance matrix, Vω, although this may be hard to accomplish in practice.

5 Properties of the MA-GMM Estimator

The limiting properties of the higher-order MA-GMM estimator are far from straightforward to de-

rive. As mentioned earlier, the individual higher-order AMSEs “are extremely complicated” (Newey

and Smith, 2004) for general GMM estimators and the same applies to exactly identified estima-

tors (Rilstone et al. 1996). Thus, the averaging of these individual higher-order AMSEs makes it

virtually impossible to study analytically the limiting laws of the optimal random weights and, con-

sequently, the corresponding MA-GMM estimator. Following the existent MA-GMM literature, we

conjecture that our higher-order estimator,
√
T
(
θ̂T

(
ω̂oT,m,p

)
− θ0

)
, will also no longer be asymp-

totically normal due to a random optimal weight ω̂oT,m,p that is likely to converge in distribution to

some function of the non-zero normal process that is part of the limit law of θ̂Tc (see, for example,

Sueishi, 2013, and DiTraglia, 2016). In particular, and similarly to what we are able to show in

Theorem 2 below, we conjecture that our optimal weight ω̂oT = arg min
ω∈Hm

̂
AMSE

(
θ̂T (ω)

)
is not a

consistent estimator for ωo = arg min
ω∈Hm

AMSE
(
θ̂T (ω)

)
even in the limit, due the random nature

of ω̂. Nevertheless, we can derive the limiting properties of our proposed non-optimal MA-GMM

estimators. We can work on its first-order asymptotic distribution and regarding its higher-order

distribution we can only know the AMSE which was previously defined in the paper.

Correspondingly, the MA estimator with smooth weights based on criterion Crit as in (55) is

denoted as θ̂T (ω̂S-Crit
T ), θ̂T (ω̂MSC

T ) with weights based on (56) and θ̂T (ω̂SCT ), where SC denotes

RMSC, CCIC or AMSE criteria. For simplicity, and following much of the model averaging litera-

ture, we will focus on results for selection criteria with the AIC penalty (see Claeskens and Hjort,

2008). Given that the randomness properties of the weights follow from the limiting behavior of the

selection criteria, in order to study the properties of the MA-GMM estimator for each criterion, we

need the following additional assumption:

Assumption 2 (Regularity conditions for GMM selection criteria)

Depending on the chosen MA approach, assume either the conditions for (A2-MSC) the MSC

as in Andrews (1999); or (A2-RMSC) the RMSC as in Hall et al. (2007); or (A2-CCIC) the

CCIC as in Hall and Peixe (2003); or (A2-AMSE) the AMSE as in Donald et al. (2009).12

The asymptotic distribution of the MA estimator depends on the limiting law of the weights. On

one hand, the limit result for a smoothed scheme follows directly from convergence of the selection

criterion. On the other hand, an ‘arg min’-based approach provides a limit quantity that follows

from weak convergence of the objective function for selecting the weights. Also, it should be noticed

12See Supplementary Appendix for details.
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that the random MSC weights converge in distribution to a specific variable due to the random

nature of the J-statistic, whereas for the RMSC, CCIC and AMSE cases we have convergence in

probability. Thus, we are able to derive the following theorem:

Theorem 2 (Distribution of the MA estimator for random ω̂): assume that the model is correctly

specified, the Assumptions 1 and 2 hold and consider the AIC penalty for the smoothed RMSC and

CCIC MA procedures.

a) The distributions for MSC-based estimators. As T →∞,

√
T
(
θ̂T
(
ω̂MSC
T

)
− θ0

)
d→
∑
c∈C

ω̃cZc (65)

and
√
T
(
θ̂T
(
ω̂S-MSC
T

)
− θ0

)
d→
∑
c∈C

ωS-MSC (c, p)Zc (66)

such that

ω̂MSC
T

d→ ω̃ =
(
ω̃1, ..., ω̃|C|

)′
= arg min

ω∈Hm

{b′Z(ω) +
1

2
Z(ω)′AZ(ω)} and (67)

ω̂S-MSC
Tc =

exp(−1
2JT (c) + (|c| − p))∑

c′∈C exp(−1
2JT (c′) + (|c′| − p))

d→ ωS-MSC (c, p) , c = 1, ..., |C|, (68)

where Z(ω) was defined in Theorem 1, b is a zero-mean normal random vector, A = plimT→∞ T
−1∇2J∗T (θ0)

with ∇2J∗T (θ) = ∂2J∗T (θ)/(∂θ∂θ′) denoting the matrix of second partial derivatives of J∗T (θ) =

T ĝTc (θ)
′
WTcĝTc (θ) , JT (c) was defined in Section 2,

ωS-MSC (c, p) =
exp(−1

2χ(|c|−p) + |c|)∑
c′∈C exp(−1

2χ(|c′|−p) + |c′|)
, (69)

and the normal random variable Zc was defined in Lemma 1.

b) The distributions for RMSC, CCIC, and AMSE-based estimators. As T →∞,

√
T
(
θ̂T (ω̂T )− θ0

)
d→ N (0, Vωo∗) , (70)

where Vωo∗ is the matrix Vω of Theorem 1 evaluated at ω = ωo∗, corresponding to either one of the
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quantities

ωo,RMSC = arg min
ω∈Hm

{
ω′diag

(
|V1| , ...,

∣∣∣V|C|∣∣∣)ω} , (71)

ωo,CCIC = arg min
ω∈Hm

{
ω′diag

(
p∑
i=1

ln
[
1− r2

i,1

]
, ...,

p∑
i=1

ln
[
1− r2

i,|C|

])
ω

}
, (72)

ωo,AMSE = arg min
ω∈Hm

{
ω′diag

(
AMSE1, ..., AMSE|C|

)
ω
}

(73)

ωo,S-RMSC
c =

|Vc|−
1
2 exp (p− |c|)∑

c′∈C |Vc′ |
− 1

2 exp (p− |c′|)
, (74)

ωo,S-CCIC
c =

exp(−1
2

∑p
i=1 ln

[
1− r2

i (c)
]
− (|c| − p))∑

c′∈C exp(−1
2

∑p
i=1 ln

[
1− r2

i (c′)
]
− (|c′| − p))

, (75)

ωo,S-AMSE
c =

exp(−1
2AMSE (c))∑

c′∈C exp(−1
2AMSE (c′))

, (76)

where Vc was defined in Section 2, ri,c is the ith corresponding population canonical correlation and

AMSE (c) is the AMSE derived by Donald et al. (2009) (see also Donald and Newey, 2001 for

linear IV estimators).

Remark 8. In the case of MSC-based MA estimators, the asymptotic distribution of the MA

estimator will often be a scale mixture of normal densities (as suggested by simulations not reported

here, but available upon request), but is not necessarily always normal. Bootstrap methods can be

employed to obtain an approximate distribution of the MA estimator in this case. The nonstandard

asymptotic distributions of the random weights and MA estimators are not new in the literature -

see, for example, DiTraglia (2016) and Zhang and Liu (2019) in the context of two other different

types of MA estimators.

6 Monte Carlo Study

In this section, we report results from a Monte Carlo study assessing the finite sample properties of

the proposed MA estimators, using the selection method of Donald et al. (2009) as our benchmark

and contrasting their performance along distinct dimensions, namely sample size (T ) and number

of moment restrictions (M). To do so, we use the fairly general nonlinear design used of Schennach

(2007) as the DGP, given by

g(yt, θ) = [rt(θ) rt(θ)yt2 rt(θ) (yt3 − 1) ... rt(θ) (ytM − 1)]′ (77)

where

rt(θ) = exp (−0.72− (yt1 + yt2) θ + 3yt2)− 1. (78)

21



Here, we have M ≥ 2 moment restrictions and a single parameter θ0 that takes the value of 3, i.e.,

E [g(yt, θ0)] = 0 if and only if θ0 = 3 with

(yt1, yt2)′ ∼ N (0, (0.16) I2) (79)

ytj ∼ χ2
1, for j = 3, ...,K. (80)

The third moments of all elements of gt(θ0) are non-zero.

The overall purpose is to examine how well each MA procedure estimates θ0 along distinct

dimensions, namely sample size (T ) and number of moment restrictions (M), hence we cover the

cases of small and large models and samples, i.e. M = 2, 4, 10, 20, and T = 50, 100, 200.13 The

number of replications is 10, 000. Following Donald et al. (2009), we compute their estimator using

the reference model selection criterion (DIN) and, for the sake of completeness, we compute the

estimators based on the MSC and RMSC selection criteria with BIC penalty. Furthermore, we

also estimate θ0 by GMM and Empirical Likelihood (EL) using the full set of restrictions (GMM-all

and EL-all).

We consider optimal-weights MA-GMM estimators averaging over exactly identified models,

smooth-weights MA estimators using MSC-BIC, denoted as S-MSC, and RMSC-BIC, denoted as

S-RMSC, and MA estimators that make use of ω̂MSC , denoted MA-MSC. The MA-MSC estimator

is computed using WTc =
(
Z′Z
T

)−1
and with c = ιj (all restrictions). Non-optimal methods using

other criteria produced similar results. In terms of the optimal MA estimators we consider the

full expression of its higher-order AMSE (MA-GMM-ho), assuming that V4 = 0 (MA-GMM-ho4 )

and imposing V3 = V4 = 0 (MA-GMM-ho3,4 ). For the non-optimal MA estimators, we compare

three different averaging schemes: i) taking all combinations of models (*-all); ii) models adding

one moment restriction at a time (*-add), i.e., models g1, g1
_g2, g1

_g2
_g3, ..., g1

_..._gM ; iii)

models that are only exactly identified (*-ex ). For the optimal MA estimators, as well as the *-add

and *-ex schemes, we average over M models; on the other hand, for the *-all scheme we have

|C| = 3 (M = 2), |C| = 15 (M = 4), |C| = 1023 (M = 10) and |C| = 1048575 (M = 20). The MA

procedure S-MSC-ex can be interpreted as an equal weighted scheme because ω̂ = 1/M.

For each estimator, we compute the median bias (MB), the median absolute deviation (MAD),

and interdecile ranges (DR) (q90-q10) to measure dispersion. We also examine statistical inference

by computing the coverage rate for 90% confidence intervals using a consistent estimator for Vωo∗ and

under normality. Notice that according to Theorem 2, normality rarely applies to MA estimators,

namely MA-GMM and MA-MSC. This way, we will also be able to draw some conclusions about the

inference properties of the MA estimators by (wrongly) assuming normality of the distribution.14

13For conciseness, here we focus on M = 2 and M = 4; results for M = 10 and M = 20 are qualitatively similar
and are reported in the Supplementary Appendix.

14The literature on post-model selection inference (e.g. Pötscher, 1991) argues that the conditional and uncondi-
tional distribution of post-model selection estimators cannot be uniformly consistently estimated and that the coverage
probability of the confidence interval is lower than the nominal level.
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< Table 1 >

The results for bias, absolute deviation and interdecile ranges are in Table 1. A few general

conclusions should be highlighted. First, there is always at least one MA approach, regardless of

the specific averaging scheme, that performs better than the selection procedure of Donald et al.

(2009) - this is particularly evident for small M . Second, non-optimal MA procedures tend to

dominate over optimal ones. Third, averaging models by adding one moment restriction at a time

seems to be the best MA approach. Fourth, the EL-all outperforms the GMM-all only for small

M if all moment conditions are used.

< Table 2 >

The results for coverage rates are presented in Table 2. In general, MA estimators are reasonably

accurate, even (wrongly) assuming normality, especially for large T and moderate M , followed by

the RMSC (for small M) selection procedure, which displays relatively good coverage rates. For

small M the MA methods based on exactly identified models are the most accurate ones, especially

the S-MSC-ex and MA-MSC-ex, while the S-RMSC-add is clearly the best for large M . On the

other hand, higher-order ‘optimal’ MA estimators behave well for large T.

< Table 3 >

As a final exercise, we analyze the distributions of the estimated weights ω̂, displayed in Table

3 for M = 2. The most notable result is that there is a non-negligible probability of optimal

and MA-MSC estimators giving full weight to a single competing model, namely for large T. In

contrast, and as expected, smoothing schemes tend not to drop any model from estimation. For

M = 2, the models are equally weighted for the higher-order case and S-RMSC-ex (besides S-MSC-

ex, obviously). For the remaining *-ex scheme, MA-MSC-ex, and the two MSC-add procedures

(MA-MSC-add and S-MSC-add), significantly more weight is given to the second restriction, while

the opposite is true for S-RMSC-add. Taking all possible combinations produces a variety of results:

S-MSC-all gives almost all weight to the model using both restrictions, S-RMSC-all equally weights

the two exactly identified models and neglects the full model, while MA-MSC-all gives most of the

weight to the model with the second restriction only. Moreover, averaging estimators tend to favour

models with a minimum number of conditions. The exception is the S-MSC, typically giving most

of the weight to the model using the full set of restrictions.

7 Empirical Application

To further illustrate the usefulness of our MA methods in small sample cases, we revisit Acemoglu et

al.’s (2001) study on the effect of institutions on post-colonial development. These authors uncover

a strong negative reduced-form relationship between GDP per capita today and settler mortality
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rates, purportedly reflecting the effect of settler mortality working through the institutions brought

by Europeans. For each model, their IV estimates are relatively precisely estimated and large,

results changing little when additional controls are included,15 although there is variation across

specifications.

We use the same dataset as in Acemoglu et al. (2001), and, for the sake of simplicity, we focus

on a common sample of 59 countries for which data on mortality, protection against expropriation

and GDP is available, estimating their baseline model

log yi = α+ βRi + ui, (81)

where log yi is the logarithm of 1995 per capita GDP (on a PPP basis) for country i and R is the

“Risk of Expropriation” index from Political Risk Services, averaged over the period 1985-1995,

measured on a scale from 0 to 10, with a higher value indicating lower risk.

The instruments for Ri include morti, the logarithm of an estimate of the mortality rate experi-

enced by European settlers during the period in which the country was colonized, but also measures

of European migration to the colonies and early institutions (see their Table A1 for details). We

focus on six different cases of exactly identified models considered by Acemoglu et al. (2001) which

we then average: i) morti, ii) European settlements in 1900 (“es1900”), iii) constraint on the exec-

utive in 1900 (“c1900”), iv) democracy in 1900 (“d1900”), v) constraint on the executive in the first

year of independence (“cindep”), and vi) democracy in the first year of independence (“dindep”),

either one of these as the only instrument for institutions.

< Table 4 >

Our results for the base sample are in the first panel of Table 4. The six IV point estimates of

Acemoglu et al. (2001) for β (β̂∗, first row) range from 0.55 to 0.94, which, although qualitatively

similar, indicates a considerable quantitative difference; our IV estimates for the common sample

(second row) are equally wide. In turn, the MA estimates (first column, each model’s estimated

weight in italics) of the effect of protection against expropriation on GDP per capita are obviously

smaller than the baseline estimate β̂∗ = 0.86 (β̂∗ = 0.94 if n=64). These range from 0.68 to 0.85,

depending on the weight given to the baseline estimate β̂∗ - the largest is for MA-SmoothCCIC ,

with a weight of 0.91 to the model “es1900”, which has the same point estimate as the baseline.

The higher-order MA estimates are relatively close to β̂∗ (0.75 and 0.72) giving zero weight to the

estimates from models “d1900” and “cindep”. Noticeably, the weights given to the β̂∗ depend on

the averaging scheme, but it never receives the highest weight out of the six estimates (it is quite

close for the optimal criterion). In all MA cases, “es1900” has the highest estimated weight.

Acemoglu et al. (2001) further consider two country groups, one without the ‘Neo-Europes’

(United States, Canada, Australia and New Zealand), for which they found larger estimated effects

15Such as the identity of the main colonizer, legal origin, climate, religion, geography, natural resources, soil quality,
and measures of ethno-linguistic fragmentation, among others, which may be correlated with mortality and growth.
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compared to their baseline estimate, and one where all the African countries are dropped from the

base sample, with smaller estimated effects. Computing the MA estimates in this case (middle

panel of Table 4), these are larger than the one found by Acemoglu et al. (2001), ranging from 1.26

to 1.74, compared to 1.26. The weights given to the baseline estimate are the largest for all MA

schemes, except for the higher-order ones (in this MA procedure, we obtain almost equal weights

for all models). With respect to the MA estimates for the base sample without Africa (bottom

panel of Table 4), they are essentially the same as the baseline estimated effect of 0.52, partly

because this model’s estimate receives the largest weight in all MA schemes, with the exception of

the MA-NumericalMSC .

Overall, the above suggests that in empirical situations where the range of estimates across

specifications can be quite wide, a model averaging approach can offer us not only a more balanced

perspective, but also give an indication, through the estimated model weights, of how competing

models are favoured by the data.

8 Conclusion

This paper develops new GMM-based model averaging estimators. We propose optimally-weighted

estimators in the sense that weights minimize the higher-order AMSE of the MA estimator. We use

a variety of moment selection criteria to select weights for averaging across GMM estimates. This

can be achieved by direct smoothing of information criteria arising from the estimation stage, or by

numerical minimization of a specific criterion. We study the asymptotic properties of the resulting

estimators for correctly specified models and we illustrate our methods by revisiting Acemoglu et

al.’s (2001) study on the effect of institutions on economic performance. As shown, it is quite useful

to understand which specifications are favoured by the MA criteria.

Monte Carlo experiments using a standard nonlinear model show that our MA estimation proce-

dures outperform the optimal instrument selection method of Donald et al. (2009) in many relevant

setups, including models with weaker instruments. An interesting outcome of these simulations is

that averaging (by smoothing or by numerical minimization) based on the moment selection criteria

used as benchmark often leads to better results than selection based on that MSC itself.

There are several aspects that merit further attention. First, post-averaging inference for this

type of estimators remains an unresolved issue - simulation-based as in Zhang and Liu (2019) can

be perhaps be extended to our framework. Moreover, we note that in this paper we focused on

the case of estimating a parameter vector of fixed dimension, averaging over different estimates

obtained with different instrument or moment condition sets, which is perhaps the more empirically

relevant case. However, it would be interesting to consider a local misspecification setup similar to

Hjort and Claeskens (2003) or to study the behavior of the estimator under misspecification of the

moment conditions (see Cheng and Liao, 2015, Caner et al., 2018). Also, we take m as fixed, but

conjecture that the results hold true for m growing with, albeit at a smaller rate than the sample
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size, similarly to Donald and Newey (2001, pp. 1161-1162).

Furthermore, model averaging within the GEL class of estimators would be an important ex-

tension, given their good properties in finite samples. Deriving the statistical properties of the MA

version of GEL estimators is however far from straightforward, particularly due to the dependence

between the point estimator and the Lagrange multiplier, and therefore beyond the scope of this pa-

per. In fact, the GEL class of estimators share the main problems of overidentified GMM, although

we can assume general functions for the moment conditions and the nuisance coefficient plays the

particular role of the Lagrange multiplier. These important topics on model averaging for moment

conditions models are left for future research.
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Table 1: Median Bias (MD), Median Absolute Deviation (MAD) and Decile Range (DR), M = 2, 4

M = 2 T = 50 T = 100 T = 200
MB MAD DR MB MAD DR MB MAD DR

GMM-all -0.0334 0.2843 1.2055 -0.0046 0.1916 0.7500 0.0068 0.1339 0.5121
EL-all 0.0462 0.2548 1.0077 0.0293 0.1816 0.7065 0.0197 0.1317 0.5015

DIN -0.0370 0.3003 1.1700 0.0086 0.2113 0.8217 0.0219 0.1508 0.5897
MSC -0.0334 0.2843 1.2055 -0.0046 0.1916 0.7500 0.0068 0.1339 0.5121
RMSC -0.1291 0.3345 1.2245 -0.1171 0.2483 0.8669 -0.0805 0.1789 0.6251

MA-GMM-ho -0.0768 0.2949 1.1124 -0.0440 0.2177 0.8192 -0.0177 0.1554 0.5912
MA-GMM-ho4 -0.0527 0.2791 1.0681 -0.0400 0.2020 0.7738 -0.0201 0.1458 0.5527
MA-GMM-ho3,4 0.0230 0.2540 1.0018 0.0045 0.1822 0.7091 0.0011 0.1319 0.5030
S-MSC-all -0.0073 0.2712 1.0763 0.0106 0.1864 0.7255 0.0099 0.1317 0.5049
S-MSC-add -0.0006 0.2837 1.1512 0.0185 0.1961 0.7740 0.0179 0.1364 0.5282
S-MSC-ex 0.0547 0.2492 0.9969 0.0375 0.1826 0.7169 0.0254 0.1330 0.5075
S-RMSC-all -0.0058 0.2538 0.9897 -0.0106 0.1813 0.7037 -0.0080 0.1318 0.4982
S-RMSC-add 0.0976 0.3256 1.2899 0.0533 0.2407 0.9243 0.0318 0.1718 0.6631
S-RMSC-ex -0.0034 0.2552 0.9921 -0.0104 0.1810 0.7031 -0.0082 0.1318 0.4982
MA-MSC-all -0.0146 0.2791 1.0882 -0.0207 0.2173 0.8055 -0.0137 0.1602 0.5937
MA-MSC-add 0.0069 0.2610 1.0280 0.0043 0.1860 0.7225 0.0076 0.1335 0.5097
MA-MSC-ex -0.0137 0.2788 1.0801 -0.0207 0.2171 0.8031 -0.0137 0.1601 0.5932

M = 4

GMM-all -0.1154 0.2956 1.1566 -0.0360 0.1913 0.7455 0.0010 0.1332 0.5070
EL-all 0.0944 0.2721 1.0912 0.0498 0.1884 0.7347 0.0357 0.1350 0.5038

DIN -0.1101 0.3141 1.2199 -0.0204 0.2125 0.8374 0.0171 0.1538 0.5953
MSC -0.1670 0.3361 1.6045 -0.0642 0.2228 0.9352 -0.0159 0.1468 0.5831
RMSC -0.1843 0.3470 1.2133 -0.1324 0.2524 0.8593 -0.0886 0.1789 0.6131

MA-GMM-ho -0.2458 0.3515 1.1581 -0.1413 0.2497 0.8924 -0.0690 0.1680 0.6368
MA-GMM-ho4 -0.1985 0.3164 1.0736 -0.1121 0.2206 0.8125 -0.0517 0.1502 0.5649
MA-GMM-ho3,4 -0.2357 0.3613 1.3343 -0.1919 0.2718 1.0639 -0.1364 0.1900 0.8159
S-MSC-all -0.2203 0.3406 1.4326 -0.0993 0.2186 0.9303 -0.0351 0.1477 0.5849
S-MSC-add -0.0741 0.2815 1.1428 -0.0201 0.1916 0.7497 0.0047 0.1327 0.5065
S-MSC-ex -0.4867 0.5147 1.2792 -0.5128 0.5204 1.1134 -0.5290 0.5313 0.9997
S-RMSC-all -0.2124 0.3045 1.0049 -0.1452 0.2182 0.7171 -0.0868 0.1492 0.5183
S-RMSC-add 0.0925 0.3132 1.2155 0.0494 0.2391 0.8962 0.0257 0.1692 0.6394
S-RMSC-ex -0.2095 0.3035 1.0080 -0.1456 0.2183 0.7170 -0.0871 0.1492 0.5186
MA-MSC-all -0.0695 0.3204 1.2537 -0.0406 0.2391 0.9431 -0.0112 0.1745 0.6871
MA-MSC-add -0.0530 0.2669 1.0295 -0.0236 0.1870 0.7302 -0.0006 0.1339 0.5068
MA-MSC-ex -0.0709 0.3171 1.2344 -0.0441 0.2378 0.9319 -0.0168 0.1739 0.6854

Notes: “all” employs the full set of restrictions; “ho” denotes full ‘optimal’ higher-order weights, “ho4 ” assumes
V4 = 0, “ho3,4 ” imposes V3 = V4 = 0; “add” means adding one moment restriction at a time; “ex” denotes
averaging only exactly identified models.
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Table 2: Coverage Rate, M = 2, 4

T = 50 T = 100 T = 200
M = 2 M = 4 M = 2 M = 4 M = 2 M = 4

GMM-all 0.7355 0.7008 0.7980 0.7748 0.8415 0.8310
EL-all 0.7629 0.6417 0.8097 0.7443 0.8437 0.8111

DIN 0.7650 0.7220 0.8064 0.7830 0.8330 0.8206
MSC 0.7355 0.6551 0.7980 0.7180 0.8415 0.7861
RMSC 0.8030 0.7613 0.8234 0.8132 0.8398 0.8384

MA-GMM-ho 0.8186 0.7675 0.7552 0.8227 0.7761 0.8665
MA-GMM-ho4 0.8117 0.7670 0.7838 0.8203 0.8094 0.8657
MA-GMM-ho3,4 0.7914 0.7763 0.8282 0.8242 0.8533 0.8770
S-MSC-all 0.1699 0.0507 0.1397 0.0420 0.1056 0.0278
S-MSC-add 0.7348 0.7025 0.7866 0.7718 0.8282 0.8337
S-MSC-ex 0.7903 0.8382 0.8243 0.8721 0.8461 0.9096
S-RMSC-all 0.8387 0.6932 0.8646 0.7435 0.8920 0.7891
S-RMSC-add 0.7668 0.7547 0.8171 0.8085 0.8472 0.8565
S-RMSC-ex 0.8038 0.7697 0.8394 0.8300 0.8699 0.8822
MA-MSC-all 0.7688 0.4597 0.7984 0.4829 0.8253 0.5190
MA-MSC-add 0.7607 0.7262 0.8071 0.7898 0.8440 0.8406
MA-MSC-ex 0.8044 0.8571 0.8360 0.8993 0.8591 0.9347

See notes to Table 1.

Table 3: Weights (ω) Distribution, M= 2

M = 2 T = 50 T = 100 T = 200
ω mean ω sd % ω = 1 ω mean ω sd % ω = 1 ω mean ω sd % ω = 1

MA-GMM-ho
0.5184

0.4816

0.3778

0.3778

0.2035

0.1919

0.5980

0.4020

0.3728

0.3728

0.2768

0.1494

0.6670

0.3330

0.3480

0.3480

0.3181

0.1020

MA-GMM-ho4
0.5104

0.4896

0.3078

0.3078

0.0777

0.0953

0.5788

0.4212

0.3048

0.3048

0.1171

0.0716

0.6317

0.3683

0.2831

0.2831

0.1413

0.0439

MA-GMM-ho3,4
0.4659

0.5341

0.1351

0.1351

0.0002

0.0020

0.4829

0.5171

0.1212

0.1212

0.0001

0.0008

0.5054

0.4946

0.1070

0.1070

0.0000

0.0003

S-MSC-all
0.0896

0.0896

0.8208

0.1160

0.1160

0.2320

0.0000

0.0000

0.0000

0.0688

0.0688

0.8625

0.1161

0.1161

0.2321

0.0000

0.0000

0.0000

0.0459

0.0459

0.9081

0.1008

0.1008

0.2016

0.0000

0.0000

0.0000

S-MSC-add
0.1241

0.8759

0.2049

0.2049

0.0027

0.0000

0.0994

0.9006

0.2079

0.2079

0.0020

0.0000

0.0670

0.9330

0.1803

0.1803

0.0006

0.0000

S-MSC-ex - - - - - - - - -

S-RMSC-all
0.4852

0.4914

0.0234

0.1463

0.1531

0.0157

0.0000

0.0000

0.0000

0.5183

0.4702

0.0115

0.1345

0.1387

0.0066

0.0000

0.0000

0.0000

0.5409

0.4535

0.0057

0.1216

0.1236

0.0029

0.0000

0.0000

0.0000

S-RMSC-add
0.9529

0.0471

0.0354

0.0354

0.0000

0.0000

0.9786

0.0214

0.0086

0.0086

0.0000

0.0000

0.9898

0.0102

0.0033

0.0033

0.0000

0.0000

S-RMSC-ex
0.4979

0.5021

0.1547

0.1547

0.0000

0.0000

0.5249

0.4751

0.1390

0.1390

0.0000

0.0000

0.5442

0.4558

0.1238

0.1238

0.0000

0.0000

MA-MSC-all
0.1269

0.6738

0.1993

0.1917

0.2973

0.1912

0.0035

0.3332

0.0185

0.0970

0.7143

0.1887

0.1535

0.2700

0.1731

0.0022

0.3453

0.0104

0.0860

0.7266

0.1874

0.1339

0.2514

0.1588

0.0034

0.3261

0.0052

MA-MSC-add
0.0665

0.9335

0.2051

0.2051

0.0036

0.8871

0.0310

0.9690

0.1424

0.1424

0.0023

0.9464

0.0220

0.9780

0.1147

0.1147

0.0034

0.9603

MA-MSC-ex
0.1985

0.8015

0.2137

0.2137

0.0037

0.3650

0.1868

0.8132

0.2028

0.2028

0.0024

0.3650

0.1879

0.8121

0.1988

0.1988

0.0039

0.3380

See notes to Table 1; ‘% ω = 1’ denotes the percentage of replications for which a particular model is given full
weight; recall that S-MSC-ex corresponds to equal weights ω̂ = 1/M.

31



Table 4: MA-IV Regressions of log GDP per capita

Instruments (z) mort es1900 c1900 d1900 cindep dindep
Base Sample

IV β̂∗ Acemoglu et al.’s (2001) 0.94
(n=64)

0.87
(n=63)

0.71
(n=60)

0.72
(n=59)

0.60
(n=60)

0.55
(n=60)

IV (n = 59) 0.86 0.86 0.70 0.72 0.34 0.42

MA-HigherOrderOptimal 0.75 0.30 0.33 0.18 0.00 0.00 0.18
MA-HigherOrderOptimal-bc 0.72 0.30 0.33 0.17 0.00 0.00 0.19
MA-SmoothDN 0.80 0.19 0.43 0.14 0.22 0.00 0.02
MA-SmoothRMSC 0.68 0.17 0.19 0.18 0.19 0.11 0.16
MA-SmoothCCIC 0.85 0.06 0.91 0.01 0.02 0.00 0.00
MA-NumericalMSC 0.71 0.22 0.22 0.18 0.18 0.09 0.11

Base Sample without Neo-Europes

IV β̂∗ Acemoglu et al.’s (2001) 1.28
(n=60)

- - - - -

IV (n = 55) 1.19 1.98 0.99# 1.51# -1.03# 0.08#

IV (n = 59) 1.26 2.18 - - - -

MA-HigherOrderOptimal 1.74 0.47 0.53 - - - -
MA-HigherOrderOptimal-bc 1.53 0.46 0.54 - - - -
MA-SmoothDN 1.26 1.00 0.00 - - - -
MA-SmoothRMSC 1.47 0.77 0.23 - - - -
MA-SmoothCCIC 1.31 0.94 0.06 - - - -
MA-NumericalMSC 1.26 1.00 0.00 - - - -

Base Sample without Africa

IV β̂∗ Acemoglu et al.’s (2001) 0.58
(n=37)

- - - - -

IV (n = 33) 0.52 0.73 0.68 0.66 0.32 0.31

MA-HigherOrderOptimal 0.54 0.42 0.20 0.14 0.00 0.00 0.23
MA-HigherOrderOptimal-bc 0.53 0.42 0.20 0.14 0.00 0.00 0.23
MA-SmoothDN 0.54 0.27 0.19 0.13 0.12 0.11 0.17
MA-SmoothRMSC 0.53 0.23 0.16 0.15 0.15 0.15 0.17
MA-SmoothCCIC 0.52 0.98 0.01 0.00 0.00 0.00 0.00
MA-NumericalMSC 0.61 0.16 0.25 0.23 0.22 0.08 0.07

Notes: “mort” is the log European settler mortality, “es1900 ” is European settlements in 1900, “c1900 ” is
constraint on executive in 1900, “d1900 ” is democracy in 1900, “cindep” is constraint on executive in first
year of independence, and “dindep” is democracy in first year of independence; β̂∗ denotes the baseline es-
timate; Weight estimates in italics; “bc” is the bias-corrected optimal MA estimator; “#” means that β is
not statistical significant for that model (using that z).
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