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Resumo

Uma quebra de estrutura é uma mudanca inesperada ao longo do tempo nos parametros
estimados de modelos de regressao em séries temporais. Em Econometria, quebras es-
truturais num modelo de previsao podem invalidar testes de significincia convencionais,
levando a uma ma performance nas previsoes e a falta de confianga no modelo em geral.
Em primeiro lugar, o principal objetivo desta dissertacao é revisitar os desenvolvimentos
feitos nos ultimos anos no que diz respeito aos testes desenvolvidos para a existéncia de
quebras estruturais, e como os resultados dos testes de estacionariedade (raiz unitaria)
podem ser comprometidos na presenca de uma quebra estrutural. Os testes serdo listados
e descritos de acordo com as necessidades do modelo em termos de uso e aplicacao.

Em segundo lugar, foi desenvolvido um modelo ARMA com uma quebra estrutural
forcada para investigar como os testes de raiz unitaria se comportam na presenca de uma
quebra estrutural, de forma a antecipar como os testes deveriam se comportar com dados
reais.

Por fim, cada teste sera realizado para detectar quebras estruturais e avaliar a esta-
cionaridade usando dados reais de séries temporais.

Classificacao JEL:

Ch8, G15

Palavras-Chave: Quebra de estrutura, Séries temporais, Estacionariedade, Modelo

ARMA, Raiz unitaria, Econometria
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Abstract

A structural break is an unexpected change over time in the estimated parameters of
regression models in time series. In Econometrics, structural breaks in an estimated fore-
casting model can invalidate conventional significance testing, leading to lousy forecasting
performance and unreliability of the model in general. Firstly, the primary purpose of
this dissertation is to review developments made in the last years as they relate to testing
models on the existence of structural breaks, and how the results for unit root’s testing
can be compromised in the presence of a structural break. The tests will be listed and
described according to model needs in terms of use and application.

Secondly, an ARMA model was designed with a forced structural break, to address
how unit root’s tests perform in the presence of a structural break, as an anticipation on
how the tests should perform.

Lastly, each test will be performed to detect structural breaks and access stationarity
using real time-series data.

JEL Classification:

C58, G15

Key-words: Structural break, Time series, Stationarity, Regression model, ARMA

model, Unit root, Econometrics
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CHAPTER 1

Introduction

The study of time-series data is crucial in many fields, particularly Finance, where un-
derstanding trends and patterns in financial data can inform investment decisions and
Risk Management strategies. A critical aspect of time-series analysis is the concept of
stationarity, which refers to the property of a time series where its statistical properties,
as primarily mean and variance and autocorrelation, remain constant over time. However,
much real-world time series, particularly in Finance, exhibit changes in their underlying
statistical properties, known as structural breaks.

Structural breaks can occur for various reasons, such as changes in economic policy,
shifts in consumer behaviour, or the introduction of new technologies. These breaks can
significantly impact the stationarity of a time series and lead to misleading conclusions if
not adequately accounted for in the analysis.

Despite the importance of structural breaks in time-series analysis, much is still not
understood about their behaviour and impact on stationarity. This thesis aims to con-
tribute to the existing literature by studying the effect of structural breaks on time-series
stationarity and exploring their applications in Finance.

This thesis aims to answer the following questions: How do structural breaks affect
time-series stationarity, and what are the most appropriate methods to detect them? Can
the existence of structural breaks lead to misconceptions regarding stationarity of time
series?

The objectives are as follows:

e List the main tests available in literature regarding structural breaks and the
most commonly used to address stationarity of time series (through unit root
testing).

e Simulate an ARMA model with a fixed structural break, and through multi-
ple iterations assess whether the unit root tests can correctly identify the series
starionarity or if they produce conflicting conclusions.

e Collect and test real financial time-series data on series’ stationarity and existence
of structural breaks.

e Compare the performance of different methods for detecting structural breaks

and determine the most appropriate methods.

Specifically, this research methodology investigates the most commonly known meth-
ods for detecting structural breaks in financial time series as well as some more recently
developed tests and the impact of these breaks on stationarity detection through unit root

detection tests.



The study of structural breaks is a broad area with a wealth of literature. To identify
changes in the mean and variance of time-series data, a variety of techniques and tests
have been created throughout the years. The main goal in this thesis is to give a thorough
overview of the most popular and current methods for spotting structural breaks in both
mean and variance. The wide variety of approaches that are accessible might be intimi-
dating, thus the goal is to condense this knowledge for clarity and real-world use. To help
scholars and practitioners better grasp these crucial time-series analysis techniques, the
most important tests currently in use will be discussed and identified in the chapters that
follow.

The remainder of this paper is organized as follows: Chapter 2 begins the literature
review, providing a brief introduction to the topic and mentioning the unit root tests that
will be applied. In Chapter 3, the methodology applied to both the ARMA simulation
model and the analysis conducted on real financial data is explained. Chapter 4 continues
the literature review by describing each of the tests used for detecting structural breaks.
Chapter 5 presents the results and initiates the discussion on the ARMA simulation model,
while Chapter 6 concludes the discussion, focusing this time on the testing of real financial
data.

Additionally, in Annex A, the R code is extensively commented upon regarding the
implementation of tests and the ARMA simulation model. In Annex B, results related to
two other financial time series that could not be accommodated within the appropriate
length of the thesis can be found. These results are included because the tests were

conducted, and the writer deems them to be relevant.



CHAPTER 2

Literature review

Time-series modeling is an evolving field that has captured the interest of researchers in
the recent decades. Its main goal is to analyse past observations of a series and develop
a suitable model to understand its underlying structure. This model is then utilized to
forecast future values, allowing users to predict the future based on understanding of the
past. Its importance has been noted in fields such as Finance, Science, Engineering and
even Health (G. E. Box, Jenkins, Reinsel, & Ljung, 2015).

A time series is influenced by four main components that can be distinguished from
the observed data: trend, cyclical, seasonal, and random components.

The trend component refers to the general tendency of a time series to increase, de-
crease, or remain stable over a long period of time, representing the long-term movement.

The seasonal component refers to fluctuations that occur within a year, typically
associated with specific seasons. Factors such as climate, weather conditions, customs,
and traditions contribute to the seasonal variations, a component with high value for
businesses to make informed future plans.

The cyclical variation refers to medium-term changes in a time series that occur in
repetitive cycles. These cycles usually span two or more years and are influenced by re-
curring circumstances. Economic and financial time series often exhibit cyclical patterns.
A typical example is the business cycle, which consists of four phases.

Finally, the random component in a time series results from unpredictable influences
that do not follow a specific pattern. These variations can be caused by events like wars,
strikes, earthquakes, floods, or revolutions. There is still no defined statistical technique
for measuring random fluctuations in a time series (Adhikari & Agrawal, 2013).

Stationarity is the foundation of time-series analysis, and it basically states that the
probability principles governing a process’ behavior do not vary over time. This is done to
make sure that the time-series process is statistically in equilibrium, which would improve
the statistical environment for describing and drawing conclusions about the structure of
data that vary in some unpredictably ways (Shumway & Stoffer, 2011; Johnson, 2009). A
process is deemed strictly stationary if the entire probability structure is forced to depend
solely on time differences (G. Box, Jenkins, & Reinsel, 2008).

A less stringent criteria known as weak stationarity of order k states that moments
up to a certain order k, or even to different lags of k, rely exclusively on time delays and
that rigorous stationarity may be produced using second order stationarity alone and the
normality assumption (Tsay, 2010). A time series is considered stable for ease of use if

its mean, variance, as auto-covariance function remains constant across time (Pankratz,
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2008). The white noise process, which is defined as a series of independent (uncorrelated)
and identically distributed random variables with a zero mean and constant variance (Wei,
2006), is one of the most significant and fundamental examples of a stationary process,
often being used as a baseline or null model in time-series analysis.

Essentially, a time series is said to be stationary when its characteristics are not
dependant on time in which data was observed (Cerqueira, Torgo, & Mozeti¢, 2020),
hence having a constant mean, variance, and covariance.

As stated, linear correlations between dependent and explanatory variables hold signif-
icant importance. To explore these concepts, researchers gather observations across time
for one or more cross-sectional units, such as company performance, indices, or macroe-
conomic information regarding nations. By using this data, regression model coefficients
can be estimated. However, there is typically one critical assumption in this process - the
coefficients remain constant over time.

This assumption becomes problematic, especially over longer periods, due to signifi-
cant disruptive events like financial crises, as the Global Financial Crisis in 2008, or as
more recently the 2020 COVID-19 pandemic. Such events can cause parameter instability,
meaning the coefficients no longer hold steady. As a result, estimation and inference can
be negatively affected, leading to costly mistakes in decision-making.

Typically, statisticians refer to the periods when these parameters change as ”"change
points”, while economists term them as "structural breaks”. These changes in the co-
efficients can significantly impact the validity of the regression model, and thus require
careful consideration under all analysis (Ditzen, Karavias, & Westerlund, 2021).

Hence, structural breaks refer to significant changes in the underlying statistical prop-
erties of a financial time series. These changes can be caused by various internal and
external factors, such as economic policies, market regulations, technological innovations,
and natural disasters. The identification and analysis of structural breaks are important
for various applications in Finance, including Risk Management, Asset Allocation, and

Forecasting.

2.1. Unit root’s tests

Furthermore, other concepts that are relevant to introduce at this point are unit root and
unit root’s tests. The concepts of structural breaks and unit root are related in the field
of time-series analysis and Econometrics, particularly when dealing with non-stationary
time-series data.

A unit root is a statistical property of a time series that indicates non-stationarity.
As already stated, a non-stationary time series is one where the mean or variance is not
constant over time. It implies that the time series has a stochastic trend and is sensitive
to shocks, which can lead to persistent deviations from the mean. This concept is the
basis for several tests for time-series stationarity.

In most cases, limiting distributions defined as functions of Brownian movements are
used to simulate critical values for unit root testing. The simplest example is a random
4



walk, such as x; = z;_1 + ¢, where ¢, are random disturbances. In Finance, a typical
representation of random walks is when the logarithm of stock prices is modeled as a
random walk: log(S;) = log(S;—1) + €, which is equivalent to modeling log returns as a
stationary process: log(%) = &.

Assuming that the disturbances ¢, are a white noise, independent and identically
distributed with E(e;) = 0 and var(e;) = o2, it can be deduced that the process x;
has a constant mean (E(r;) = z) and a time-dependent variance (var(z;) = to?). The
time-dependent variance implies that the spread of the values in the process increases
with time. While the mean remains constant, the changing variance indicates a lack of
stationarity as the variability in the data grows over time (Herranz, 2017).

The interaction between structural changes and unit root has also received a lot of
attention in the literature, especially in light of the fact that both kinds of processes share
certain qualitative characteristics. For instance, when the genuine process is vulnerable
to structural changes but is otherwise (trend) stationary within regimes defined by the
break dates, the majority of tests that seek to discriminate between a unit root and a
(trend) stationary process will prefer the unit root model. Additionally, when the process
has a unit root component but constant model parameters, the majority of tests used to
determine if structural change is present will reject the null hypothesis of no structural
change (Perron, 2005).

The literature review shall continue in the Chapter 4, as it served as foundation for
the writing of all the tests used in this paper, to serve the purpose of listing the main

tests available in the literature in a more reader-friendly way.






CHAPTER 3

Methodology

The methodology used in this thesis is divided into three parts: (i) the gathering of
information spread in the literature regarding tests to detect structural breaks in mean and
variance, as well as the most common tests to assess whether the time-series parameters
can be said to be stationary, (ii) a model simulation that consists of an ARMA with a
break and the application of said tests to the simulated model, to anticipate the results,
(iii) and the analysis of real time-series data.

The traditional structural break detection methods, such as the Chow test, CUSUM,
MOSUM, Quandt-Andrews and the Bai-Perron test were applied to the simulated series
using the package "strucchange” in R to study changes in the mean of the parameters. For
the change in variance, Inclan and Tiao test was performed using the "ICSS” package.
In addition to these traditional methods, more recent structural break detection methods,
such as the CPT test, with the Binary Segmentation and PELT search algorithms, were
also applied to the data series using the package "changepoint” in R. These packages
may be obtained from the Comprehensive R Archive Network (CRAN) at http://cran.r-
project.org/. More details regarding these tests can be found in Chapter 4.

The second part of the methodology involved the simulation study that was conducted
using an ARMA model with 5000 datapoints, which was simulated to include a structural
break at point 2000. This simulated series was used as a benchmark to test various
methods for detecting the stationarity of the series in the presence of a known structural
break.

To evaluate the stationarity of the time-series, unit root tests such as the Augmented
Dickey-Fuller (ADF), Phillips-Perron (PP), Kwiatkowski-Phillips-Schmidt-Shin (KPSS),
Elliott-Rothenberg-Stock (ERS) and Zivot-Andrews (ZA) tests were performed. They
where performed by recurring to the "urca” package, available in R. The results of the
simulation study were compared and discussed. Conclusions were drawn regarding the
efficiency of different methods for detecting stationarity in the presence of structural
breaks.

For the purpose of conduction the ARMA model simulation, an R code was written to
define a function that generates a time series of synthetic financial returns with specified
characteristics. It can be found described in Annex A. The function takes the following

parameters:

e num observations: Number of observations in the generated time series.
e mean min and mean max: Minimum and maximum values for the mean of the

returns.



e sigma min and sigma max: Minimum and maximum values for the standard
deviation of the returns.
e break point: The observation number at which a structural break occurs, chang-

ing the mean and standard deviation of the returns.
In a step-by-step approach, the basis behind the function is as follows:
(1) ARMA model generation: It generates an ARMA(1,1) time-series model with

specific coefficients (ar_coefs and ma_coefs) and a fixed standard deviation of
0.1796 (arbitrary value).

(2) Randomly setting means and standard deviations: It randomly selects two means
(meani and mean2) and two standard deviations (sigmal and sigma2) within
specified ranges.

(3) Generating returns: Using the ARMA model, it generates synthetic returns.
Before the break point, the returns have mean meani and standard deviation
sigmal, and after the break point, the returns have mean mean2 and standard

deviation sigma?.

The function is called with specific parameter values to generate a time series with
5000 observations, where the means and standard deviations change at observation 2000.

To perform the unit root’s tests, the following logic was applied:

e Package installation and loading: The code starts by installing and loading the
urca package, which provides functions for unit root tests.

e The code runs a loop n times (specified as 1.000 times in this case) to generate
synthetic financial return data and conduct unit root tests on each generated
dataset.

e For each iteration of the loop, synthetic financial return data is generated using
the Test_generate function. This function creates time-series data with different
specified means, standard deviations, and a structural break at observation 2000.

e Five different unit root tests are performed on the generated data.

For the ADF test: ur.df function is used with drift term and lag selection based on
Bayesian Information Criterion (BIC). If the test statistic is less than the critical value
(tau3), the data is considered non-stationary (resultdf = 0); otherwise, it is stationary
(resultdf = 1).

For the PP test: ur.pp function is used with constant term and short lag specification.
If the test statistic is less than the critical value (c.val), the data is non-stationary
(resultpp = 0); otherwise, it is stationary (resultpp = 1).

For the KPSS test: ur.kpss function is used with the tau statistic and short lag
specification. If the test statistic is greater than the critical value (kpss@cvall[1,2]), the
data is non-stationary (resultkpss = 0); otherwise, it is stationary (resultkpss = 1).

For the ERS test: ur.ers function is used. If the test statistic is less than the critical
value (ers@cval([1,2]), the data is non-stationary (resulters = 0); otherwise, it is
stationary (resulters = 1).

8



For the ZA test: ur.za function is used. If the test statistic falls bellow the critical
value (za@cval[2]), the series is considered to be stationary (resultza = 1); otherwise
is non stationary (resultza = 0).

The results of these tests (0 for non-stationary, 1 for stationary) are stored in the
unit_roots data frame.

After conducting the unit root tests, the code calculates the proportions of stationary
outcomes for each test and prints the results. These proportions are calculated by sum-
ming the corresponding columns in the unit _roots data frame and dividing the sums by
the total number of iterations. The cat function concatenates these results into a single
output string, which is then printed to the console or output file.

For each iteration, the code determines whether the generated time series is stationary
or non-stationary according to each test. By calculating the proportions of stationary out-
comes and displaying them, it can be assessed whether the effectiveness of these tests in
correctly identifying stationary processes, a valuable process to understand if the perfor-
mance of different unit root tests under specific conditions is correct, helping to evaluate
the reliability of these tests and their ability to distinguish between stationary and non-
stationary time-series data.

In summary, the code generates synthetic financial return data, applies different unit
root tests, and records whether each dataset is stationary or non-stationary.

Finally, the third part consists of analysing real financial time-series data, including;:

e Daily stock prices of companies Allianz and RollsRoyce (the data being retrieved
from Yahoo Finance under tickers ALV.DE and RR.L, respectively), from 2003
until 2022.

e Daily index values for CAC 40 (the data being retrieved from Yahoo Finance
under ticker FHCI), from 2003 until 2022.

e Monthly values for the Employment Level, thousands of persons, seasonally ad-
justed (the data being retrieved from FRED, Federal Reserve Bank of St. Louis,
under ticker CE160V), from 2003 until 2022.

e Monthly values for the Federal Funds Effective Rate, percent, not seasonally
adjusted (the data being retrieved from FRED, Federal Reserve Bank of St.
Louis, under ticker FEDFUNDS), from 2001 until 2022.

The results of the real data analysis were discussed, and conclusions were drawn
regarding the efficiency of different methods for detecting structural breaks and their
impact on stationarity assessment.

Overall, the methodology used in this thesis is designed to comprehensively evaluate
different methods for detecting structural breaks and their impact on time-series sta-
tionarity, as well as understand the unit root’s test accuracy when in the presence of a

structural break.






CHAPTER 4

Tests for Structural Breaks

In this chapter, a detailed exploration of various statistical tests designed to identify
structural breaks within time-series data will be described. The chapter is structured
around tests that focus on detecting breaks in both the mean and unconditional variance
of the data. For mean shifts, essential tests such as the Chow Breakpoint Test, Chow
Forecast Test, CUSUM, MOSUM, Quandt Andrews, and Bai Perron tests will be covered.
Additionally, tests for unconditional variance shifts, including ICSS and tests provided by
the changepoint package utilizing Binary Segmentation and PELT algorithms will also
be addressed.

4.1. With known breaking points
Chow Breakpoint test

Chow’s tests are a widely used method for detecting structural breaks in time-series
data, shown as the first tests for structural breaks in economic literature. It involves
comparing the fit of a model with and without a structural break at a particular point in
time and evaluating the significance of the difference, hence assuming known structural
breaks (Chow, 1960). The tests are based on the assumption that the time series can be
divided into two distinct subsamples, each with its own set of estimated parameters.

Consider the traditional linear regression model:
Y, = 61+ BoXor + ... + B Xy — &4, equivalent to Y = X — ¢ (4.1)

with & parameters and divided into two distinct subsamples, T} and T,, with 774+ 15, =T
the total number of observations.

You may determine whether the regression coefficients are different for divided data
sets using the Chow test. In essence, it examines which of two distinct regression models
or one unique regression model best fits a split set of data. By doing this method, if the
estimated parameters of both models are equal, then the subsample 77 and 715 can be
expressed as single regression model, i.e., f; = By = [.

Chow presented two tests: Chow Breakpoint test and Chow Forecast test. Under
Chow Breakpoint test, the null hypothesis is that there is no structural break, meaning
that the data set can be described by a single regression line. This test’s methodology
begins with the proposed initial partition of the data into two subsamples, if there is only
one known breakpoint a priori. The number of partitions of the data, m, is dependent
on the known breakpoints. If there is the suspicion of more than one, m > 1, there will
be an equivalent number of subsamples of data. The estimation of the model, done for

11



each subsample of data, is followed by the assessment of whether the differences in each
estimated coefficients [ are statistically significant. By default, the test determines if
there has been a structural change in each of the equation’s parameters.

Chow Breakpoint test is based on the F-statistic that is derived from comparing the
limited residuals sum of squares obtained by fitting one equation to the whole sample with
the unconstrained residuals sum of squares ("RSS”) obtained by fitting the equation to
each subsample. The vector of residuals sum of squares is obtained by RSS,, = €} &,

where ¢, = Y,,, — X,.0m, for each subsample, m, obtaining the F' test computed as

[RSS — (RSS; + RSS:)]/k
(RSS; + RSS,) /(T — 2K)
for m = 2 as is the case of the single breakpoint test proposed by Chow.

F= ~ Flk; T — 2k] (4.2)

If the errors are independent, identically distributed normal random variables, then
the F-statistic has an accurate finite sample F-distribution. According to the test’s logic,
if the coefficients are identical, then the total of RSS; and RSS; should equal the sum of
the squared residuals from the full sample estimate RSS, and the F' test should result in a
value of zero. The fact that the assumption of equal coefficients will be rejected increases

with increasing F' value.

Chow Forecast test

The Chow Breakpoint test has a significant limitation in that each subsample needs
at least the same number of observations as calculated parameters. If, for instance, there
are fewer observations of a particular event in time and you wish to test for structural
change between the longer, “normal period” and the particular event, this might be an
issue. In these circumstances, the Chow Forecast test should be applied.

Two models are estimated using the Chow Forecast test, one utilizing the entire set
of data T" and the other using a lengthy subperiod T} and the shorter period T5. The
calculated relation’s stability during the sample period is questioned by differences in
the results for the two estimated models. Both least squares and two-stage least squares
regressions can be used.

The Chow Forecast test is used to determine whether or not the model can forecast the
dependent variable’s most recent values. In that case, it is claimed that the parameters
are stable concerning the break date.

The stability of the coefficients across the sample period is questioned by differences
between the findings for the two data sets. When doing the Chow Forecast test, one must

compute the following:

(RSS — RSSy)/Ts)
RSS /(Th — k)
As previously, in the case where the errors are independent and identically distributed,

F= ~ FTy; Ty — K] (4.3)

this statistic follows an exact finite sample F-distribution.

12



The relationship between the returns of the data sample and the subsample appears
stable if there is statistical evidence pointing towards no structural change in the co-
efficients before and after the breakpoint, as there is no statistical evidence from the
subsample to conclude in favour of a break in the coefficients of the sample.

The Chow tests do have the substantial drawback of requiring a prior determination
of the break date. A researcher only has two choices: either select a potential break point
at random date or select a break date based on a well-known observable data feature.
In the first instance, it is possible that the true break date was ignored, rendering the
Chow tests possibly ineffective. The Chow tests may be misleading since they may falsely
indicate the existence of a break when none actually exists, as the proposed break date
in the second scenario is endogenous. Additionally, it is relatively simple for different
researchers to get very different findings as the results may be considerably impacted by
these arbitrary choices, which is hardly an example of sound scientific practice (Hansen,
2001).

4.2. Without known breaking points

CUSUM test

The CUSUM (Cumulative Sum) test is a non-parametric method for detecting changes
in the mean of a time series. It involves computing the cumulative sum of the residuals
from a model fit to the data and comparing it to a predetermined threshold. If the
cumulative sum exceeds the threshold, it indicates that a structural break has occurred.

Furthermore, scenarios in which neither the amount nor the date of potential changes
in the regression parameters are known are taken into account. The CUSUM test is
based on the cumulative sum of recursive residuals, was proposed back in 1975 ((Brown,
Durbin, & Evans, 1975)). Standardized one-step-ahead prediction mistakes are referred
to as recursive residuals. Assume that there are T total observations in the data sample.
When the regression is calculated using only the first t — 1 data, the t** recursive residual
is the one-step-ahead prediction error for y;. The parameter estimates are obtained based
on t — 1 observations and utilize them to forecast the dependent variable’s subsequent
observation.

Being x; the regressor of the t observation and J;_; the least squares coefficient com-

puted with the first ¢t — 1 observations of the data sample, the residual is given by:

Ert = Yt — 5(t—1)513't (4-4)

where z; stands for the ¢ observation of the regressors’ vector and [;_1) stands for the
least squares coefficients computed using the first ¢t — 1 observations.

The next step is to obtain the scaled residual, w;, given by:
_ Ert

V1 (X X))

based on the assumption that the coefficients remain constant and that w; is independent
of wy for all t # s

Wy ~ N(o,0?) (4.5)

13



In this test, being based on a visual illustration of the model to identify structural
breaks, two barriers shall be determined. By representing W; = Zz»:k g t=k+1..T as
the cumulative sum of recursive residuals, the stability of the model can be represented as

it staying within the the —2 and +2 barriers, meaning that a structural break is identified

when such barrier is surpassed These barriers are given by j:26\/ 1+ 2 (X X)L
In the case where the data available is perfectly fitted by the model, the sum of the

forecasting errors should be very close to zero. The CUSUM test enables us to determine

whether the total cumulated sum of forecast errors is statistically different from zero.
The CUSUM test is given by:

_ 2tmky1 Wi r—k
C’USUM—HI{lgr)iT ST — % /<1+2T—kz) (4.6)

where & is an estimate for the standard deviation of the errors €.

The null hypothesis of the CUSUM test is of no structural change, translated into W;
having mean of zero and a variance equal to the sum of the number of residuals, as each
has a variance equal to one and they are considered to be independent.

The CUSUM test shows that if there is just one structural change point at ¢t = r, the
recursive residuals will only have a zero mean up to that point. Departing from its mean
after t = r, the process’s path should thus be near to 0 up until then, with the coefficients
being constant up until time ¢ = r and change after that. The scaled recursive residuals
wy will have a zero mean up until time ¢ = r, but will typically have non zero means
beyond that. Consequently, it is reasonable to assume that a plot of the CUSUM will
reveal some information regarding prospective structural alterations.

W, is plotted against t and represents the cumulative sum of recursive residuals.
E(W;) = 0 for constant parameters, however W; will tend to deviate from the mean
value line when the values are not constant. By making use of two lines that pass through
the points and are symmetrically above and below the line W, = 0 , it is possible to
determine the significance of the deviation from the zero line. Theses two lines can be
defined by [k:, +a/T — k| and [T, +3a+/T — k], a being the parameter that depends on
the test’s selected significance level, a. 90, 95, and 99 percent are represented by the
values of o of 0,850, 0,948, and 1,143, respectively. If W, deviates from the bounds, the
null hypothesis should be rejected (at significance level «). If the empirical process route
surpasses these boundaries, W; is unreasonably large.

A nonzero mean of the recursive residuals caused by changes in the model parameters
is what the CUSUM test is intended to find. If there are several parameter adjustments
that might offset their effects on the means of the recursive residuals, the test may not
be very powerful (Luetkepohl & Kréatzig, 2004).

As stated, this test has some limitations, as it is also sensitive to the choice of reference
value and threshold, and it may not be as effective at detecting breaks that occur gradually
over time (Kleiber, 2016).
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Despite these considerations, the CUSUM test is relatively easy to implement and
interpret and is also sensitive to small changes in the data, which makes it useful for de-
tecting subtle structural breaks, characteristics that allowed this test to have been adapted
for use in statistical analysis for detecting structural breaks in data since its early devel-

opment.

MOSUM test

Analyzing shifting sums of residuals is another way to spot a structural change. The
resultant process does not include the sum of all residuals up to a certain time ¢, but
rather the sum of a specified number of residuals in a data window, the size of which is
set by the bandwidth parameter h € (0,1) and spans the whole sample period (Zeileis,
Leisch, Hornik, & Kleiber, 2002).

The definition of the moving sums of recursive residuals is given by:

J+[Th]
M(j,h) = [o[Th]] 72 >~ wy, t=j+1,..., j+[Th] (4.7)
t=j+11
With the statistic being defined as:
Trec = 1§jI<nYE}3<[Th] |M(ja h)l (48)

For j =0,1,...,T — [Th], the jth moving sum of least-squares residual up until which it

1 [T'h]
Mls(j7 h) - 4 ( Z en) ’

[o[Th])2 S

is calculated is given by

Each moving sum in the MOSUM test has a set number of residuals, unlike cumulated
sums, which have a greater number of residuals. The selection of bandwidth h for the
MOSUM test is crucial. If A is big, there are not enough moving sums to identify potential
changes since each one contains too many residuals. As a result, moving sums with a big
h are less susceptible to parameter change. This being said, if h is small, the moving
sums’ sample variation is likely to be high and the limit distribution may not be a fair
approximation (Kim, 2011).

The normal distribution applies to M;; of MOSUM test’s statistic under constancy
of the parameters. It’s distribution, however, is normal only in the asymptotic situation,
and these moments still hold if o is replaced by its estimate s, which is found to be the
square root of the average of the squared recursive residuals.

The discrepancies of the MOSUM and its expectations will be non-systematic as long
as the assumption of constancy is not broken, but after a structural break, systematic
deviations will emerge. Therefore, the test for the presence of deviations may be used to
identify parameter inconsistency (Hackl, 2016).

The MOSUM test was developed after the CUSUM test as a way to address some of

the limitations of the CUSUM test and improve its performance. It has become a popular
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tool for detecting structural breaks in various types of data. However, the MOSUM test
also has some limitations.

For determining model stability, MOSUM tests allow for more reliable estimations
than CUSUM tests and provide more information about the model (Zeileis et al., 2002).

Quandt-Andrews Breakpoint test

The Quandt-Andrews test works by comparing the variance of the residuals before and
after the suspected break point in the data. To perform the test, the data is first divided
into two segments at the suspected break point. A linear regression model is then fitted
to each segment separately, and the residuals are calculated for each segment. Again,
this is a test for a single structural break. The Quandt-Andrews test is a parametric
test, meaning it assumes that the data follows a specific distribution (usually normal), as
opposed to the Chow test, a non-parametric test (Quandt, 1960).

The null hypothesis for the test is that there is no structural break, as the variance of
the residuals is the same in both segments.

The Chow Breakpoint test (Chow, 1960) was refined into Quandt-Andrews, who also
proposed the Quandt likelihood ratio (QLR) test. By leaving out the initial and last 15%
of the data, the QLR statistic performs better while analyzing the uncertain break date
and evaluating the Chow Breakpoint test at each observation.

To begin with, a single Chow Breakpoint test is performed at every observation be-
tween two selected dates, t; and t,. The k = t5 —t; + 1 results from the Chow Breakpoint
test are compiled into three different statistics: the Maximum Statistic (the max function
of the individual Chow’s F-statistic), the Exp Statistic, and the Ave Statistic (Andrews
& Ploberger, 1994; Andrews, 1993). The three are defined as follows:

Maximum Statistic, MazF = max {F(t)} (4.9)
t1<t<t2
1 & 1
Exp Statistic, FxpF = In lk’ > exp <2F(t)>1 (4.10)
t=t1
1 &
Ave Statistic, AveF = % > F(t) (4.11)

t=t;

The distribution of these test statistics is non-standard and have asymptotic null
distributions (Andrews, 1993). Approximate asymptotic p — values for the validation of
three can also be found in the literature (Hansen, 1997).

The test statistic for the Quandt-Andrews test is based on the F-test, which is used
to test whether the variances of two populations are equal. Specifically, the test statistic
for the Quandt-Andrews test is calculated as the ratio of the variance of the data points
before the break point to the variance of the data points after the break point. If this
ratio is significantly different from 1, in can be concluded that there is a structural break

at the specified location in the data.
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The distribution of the stated statistics becomes degenerated at the beginning and at
the end of the sample. Therefore, the suggestion is to exclude the sample first and last
observations from the testing procedure, by removing the first and last 15% of the sample
observations.

If the p — value is less than the chosen significance level (usually a = 0.05), or if the
test statistics are greater than the critical value for the chosen level of significance, or too
large, the null hypothesis can be rejected in favour of the alternative hypothesis, and it
is concluded that there is a structural break in the data.

The Quandt-Andrews Test can show some limitations in case of multiple structural
changes, in terms of practical implementation, as it is sensitive to the choice of the break

point, and the results can be affected by the location of the suspected break point.

Bai Perron tests

The Bai-Perron family of tests includes a number of different approaches for estimat-
ing multiple breaks. These methods include hybrid versions that include both sequential
analysis and global maximization. Discussing the Bai and Perron models involves explor-
ing aspects such as generalized serial correlation, different error and regressor distributions
across segments, lagged dependent variables, and trending regressors, as well as various
distributions for the errors and regressors across segments. Thereafter, a partial structural
change model was also developed, in which not all parameters are subject to changes.

The Quandt-Andrews framework serves as base to these tests (Bai & Perron, 1998,
2003) expanded by Bai and Perron by allowing for numerous unknown breakpoints. The
work presented in this literature is considered the foundation for the structural breaks
method, where this approach considers that not all the parameters in the model are
constant and can allow for breaks to occur at a limited number of m points (Bai &
Perron, 1998). The purpose of the study was to figure out what causes different types of
breaks and to estimate how many breaks happen. They looked at a model where all the
variables were fixed and instead of trying to find where the breaks were, they wanted to
find the best way to predict them. They also looked at the idea of no structural changes
happening versus changes happening.

The purpose is to estimate the unknown coefficients and the dates of the break points
(T1,T2,...,Tm) in a linear regression model, using T observations of (y;,z;, z;). The
break points are considered unknown and are estimated along with the coefficients. Bai
and Perron provided three tests in their study to handle estimating various structural
changes in this type of model: test of no structural change versus a fixed number of
breaks, test of no structural change versus an unknown number of breaks and sequential
tests.

Consider the typical multiple linear regression model with T" observations and m pos-

sible breaks (creating K = m + 1 regimes) into consideration. The regression model to
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estimate for the observations in regime j (where k = 0,1,2,...,,m) is as follows:
vy =x,0+ 20 +ep, t=Tp 1+ 1,.., T} (4.12)

being y, is the observed dependent variable at time ¢, x; and z; vectors of covariates, 5 and
0 the vectors of coefficients, d; vary across regimes opposed to the coefficients associated
to xy. [ is constant.

This model can be rewritten in matrix format, originating:
Y=XB+Z5+E (4.13)

being Y = (y1,...,yr), X = (21, ...,27), E = (g1, ...,e7)",0 = (01, ...,0ms+1), and Z a
matrix where the diagonal is composed of Z elements at (17, ..., Tp,).
Additionally, Bai and Perron have also considered the variance break model, where

the breaks may occur at variance level of the error:

Y = 7,8 + uy, var(ug) = op,t < T, var(uy) = 03, > Ty, (4.14)
To perform the test, the data is divided into two sub-samples, one before the suspected
break point and one after the suspected break point. The test statistic is then calculated
as the difference between the means of the two sub-samples, divided by an estimate of the
standard error of the difference. One advantage of the Bai-Perron test is that it is robust
to the presence of outliers in the data. It is also relatively easy to implement and can be
used with a wide range of data types.
The null hypothesis of the test is that there is no structural break in the data, which
means that the mean of the entire data set is constant over time. The procedure begins
by determining the point at which the structural break is believed to have occurred. This

is often done by visually inspecting the data and identifying any obvious breaks.

Test of no structural change versus a fixed number of breaks
For each partition, given each observation in time 7', the estimates for 5 and d,
through the least squares method, are the ones minimizing

m+1 T;

(Y - XB-Z0)(Y ~XB-Z6)=3 3 [p-uf—=4s  (415)

=1 t=T1_1+1

The estimates for the given m number partitions are represented by 3(T;) and &(T}).
These coefficients and partitions are selected as the optimal solution for minimizing the

sum of the squared residuals across all of the partitions
(T1, ..., Tyn) = argming,.. 1, S7(Th, ..., T) (4.16)

where (T4, ..., T,,) represents the sum of squared residuals given by the coefficients B (Tk)
and 6(T}).
In order to select which combination of m segments yields the minimum value, a

dynamic programming algorithm was proposed by Bai and Perron (Bai & Perron, 2003).
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The Wald test is used for testing the null hypothesis of no change in the parameters

Hy: 01 = ... = 6,41 against pre-defined m breaks is set as

T —(m+1)q— p> O'R'[(Z M,Z) 'R R} (4.17)

RSS,,

with & the optimal m-break estimates of § and RSS,, the sum of squared residuals of the

WT()\la sy Aqu) = (

m

alternative hypothesis.
Under the hypothesis of serial correlation and/or heteroskedasticity of the parameters
is the residuals, the statistic of Wald test is

1 /(T —(m+1)q— ' R'RS
,Am,q)< ( )q p)

W (A, -.. =7 — h (4.18)

RV R

V(g) the estimation for the covariance matrix of the estimated value delta, designed to
handle issues of serial correlation and heteroskedasticity. The specific form of V(S) is
dependent on the assumptions made about the distribution of the data and the errors

within different segments.

Test of no structural change versus an unknown number of breaks

In their work, tests are proposed for determining the absence of structural changes,
while also taking into account the possibility of an unknown number of breaks, given an
upper bound M for the number of breaks (Bai & Perron, 1998). These tests are referred
to as "double maximum tests”, and include one using equal weights (UDMax) and the
other utilizing weights that result in equal marginal p — values across all m (WDMax).
A more thorough explanation can be found in the original literature.

UDMax is defined as WT' (M, q) = maxy<m<p Wr ():1, s Ao q), the latter being the
estimates of breakpoints that are determined by utilizing a global optimization technique
to minimize the sum of squared residuals.

WDMax follows the maxFr(M,q), with the choice of M for the upper bound to be
usually set to 5, with critical values varying little as M increases past this value.

In the case of non-standard distribution of these test statistics, the work of Bai and
Perron in 2003 (Bai & Perron, 2003) has established methods for determining critical val-
ues and analyzing the impact of different trimming parameters, such as minimum sample

size and number of regressors, on the number of breaks estimated.

Sequential tests

Bai and Perron also present a method for testing the presence of a specific number
of breaks in a time series, which can also be used as the basis for a sequential testing
procedure (Bai & Perron, 1998). For a fixed number m of breaks, (Tl, ey Tm) the estimated
break points are obtained by minimizing the residual sum of squares globally. The test is

applied to each segment containing the observations Teo1+1to Ty for k=1, 2,...,m+1.
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If the overall minimal value of the residuals sum of squares (over all segments where
an additional break is included) is sufficiently smaller than the residuals sum of squares
from the m breaks model, the null hypothesis of m breaks is rejected in favor of a model
with (m + 1) breaks. If rejected, the sample is divided, and tests are performed in
each subsample, adding breakpoints whenever necessary. This process continues until no
structural break is detected in all subsamples or until the maximum allowed breakpoints
or subsample intervals are reached.

This test can be used in a sequential procedure by starting with m = 0, and repeatedly
applying the test until the null hypothesis of no structural break is not rejected in all
subsamples or until a maximum number of breakpoints or maximum subsample intervals
to test is reached.

Empirical applications using historical data demonstrate that statistically identified
changes in the mean or coefficients of linear regression align with significant historical,
political, or economic events, indicating the practical relevance of the method (Zeileis,
Kleiber, Kramer, & Hornik, 2003).

4.3. Structural breaks in unconditional variance

A quick glance at historical data of asset returns over a prolonged period may lead one
to question: whether volatility remains constant over time. It is commonly observed in
financial markets that volatility tends to fluctuate, with distinct periods of relative calm
followed by periods of heightened volatility, a phenomenon known as clustering.

The pioneer econometric literature originally assumed that the asset price process
Sti—o,. .. v followed a normal distribution, but later research has shown that this as-

sumption is not always accurate. Many studies have shown that the logreturns, R, =

log ( Sf;), exhibit leptokurticity, which is a characteristic of a non-normal distribution.
As a result, the assumption of normality has been relaxed and more sophisticated mod-
els such as the GARCH model have been proposed. However, these models still assume
that the unconditional variance is constant, which may not be accurate and can lead to
incorrect statistical inference and poor forecasting performance.

A variety of approaches have been proposed for detecting volatility breaks, resulting
in a range of concurrent detection algorithms. One early method, proposed by Inclan and
Tiao, was a CUSUM-type test for detecting changes in variance in 7.7.d. Gaussian data,
which was later iteratively extended to handle multiple breaks and allowed the definition
of the ICSS algorithm (Inclan & Tiao, 1994). However, this method has faced criticism due
to its assumptions not being met in real-world data, with issues such as non-Gaussian
distributions and serial dependence causing poor performance. THE NPCP algorithm

(Ross, 2012) was also presented as a non-parametric change-point algorithm, an approach
based on Mood’s rank test (that dates back to 1954 (Mood, 1954)).
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ICSS of Inclan and Tiao test
Back in 1994, Inclan and Tiao developed a theoretical result that sustains the algo-

rithm behind the test:

Cr k

k
Cv=> Rland D = —~ — —,
k Z i k Cr T

=1

with Ry—yp ~ iid N(0,0%) (4.19)

with R; = log (Sf:) the log returns.

When T' — oo the weak convergence \/gmaxlngﬂDM = supcp|BY| with B} a
Brownian bridge on [0, 1]. The outcome above facilitates identifying a singular volatility
structural break by examining the null hypothesis of homogeneity in variance, Hy : 0% =
const versus Hi: a shift in variance occurs at some point 1 < 7 < T. The formal
assessment method disproves the null hypothesis at a pre-determined significance level «
if \/g max<x<7|Di| > D}, D¥ which originates from the presence of a Brownian bridge
in the analysis. A significance level of o = 0.05 is typically utilized and a numerical
simulation by Inclan and Tiao has determined that the value of D at this level is 1.358
(Stawiarski, 2015).

If the inequality in the latter equation holds true, the point of deviation in variance
(and therefore volatility) is identified as the moment at which the maximum value occurs.
In the event that multiple breaks are present, the ICSS algorithm is applied iteratively by
dividing the data set into smaller subsets, testing each until all change points have been

detected.

Changepoint package Tests

To hold changepoint analysis objects, the "changepoint” R package adds a new object
type named ’cpt’. The class has been designed in such a way that the 'cpt’ object has
the essential features needed for a structural changes analysis and subsequent summaries.

Each of them is kept in a ’cpt’ class slot entry. The class slots are as follows:

data.set: a time-series object holding the data’s numeric values.
e cpttype: characters specifying the sort of changepoint requested, such as mean
and variance.
e method: characters indicating whether a single or multiple changepoint search
technique was used.
e test.stat: denotes the test statistic.
e pen.type: characters indicating the penalty type, such as AIC, BIC, or manual.
e pen.value: the value of the penalty utilized in the analysis.
e cpts: a numeric vector containing the estimated changepoint positions.
e ncpts.max: the maximum number of changepoints that are being searched for.
e param.est: a set of parameters, each of which is a vector of the estimated numeric
parameter values for each segment.
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This function includes a number of typical penalty functions used in changepoint anal-
ysis. There are four of them: the SIC (Schwarz Information Criterion), the BIC (Bayesian
Information Criterion), the AIC (Akaike Information Criterion), and the Hannan-Quinn.
The proper penalty is still a matter of concern, and it is often determined by a number
of criteria, including the amount of the modifications and the length of segments, both of
which are unknown before to analysis (Killick & Eckley, 2014).

For single structural change detection, a hypothesis test can be given to identify a
single changepoint. The null hypothesis, HO, corresponds to no changepoint (m = 0),
whereas the alternative hypothesis, H1, corresponds to one changepoint (m = 1). The
simplest version of c¢pt.mean or cpt.var functions can be used, without detailing on the
search methods or penalties associated.

For multiple structural changepoints search within the data, there will be used two
algorithms: Binary Segmentation (Sen & Srivastava, 1975) and PELT (Killick, Fearnhead,
& Eckley, 2012).

The Binary Segmentation search algorithm recursively examines for a single change
on distinct subsets of the data. If a change point is discovered, the signal is divided into
two segments, one before and one after the change. The technique is repeated for both
segments, and so forth. Thus, Binary Segmentation greedily searches by making local
judgments on which the algorithm’s next iteration is based. Under Binary Segmentation
search algorithm, an indicative number of maximum breaks must be provided, contrary
to the PELT search algorithm, built within the "changepoint” package.

The Pruned Exact Linear Time (PELT) algorithm is another method for detecting
changepoints in time-series data. It aims to find the optimal segmentation of the time
series into segments of different statistical properties, such as mean or variance. The key
advantage of PELT is that it can be considered highly appropriate for large datasets.

PELT utilizes a cost function, denoted as C'(¢, 7), which represents the cost of dividing
the time series up to time ¢ into 7 segments. The cost typically involves a measure of
goodness-of-fit within segments and a penalty for introducing new segments. Common
cost functions include sum of squares within segments and information criteria penalties.

PELT employs dynamic programming to efficiently compute the optimal segmentation.
It calculates the optimal cost for all possible changepoint locations up to time ¢, written
as C(t,7), by considering the optimal cost up to a previous changepoints s and adding
the cost of the segments from s + 1 to ¢.

C(t,7) = min (C(s,7—1)+ Cost(s+ 1,t)) (4.20)

PELT incorporates pruning steps to eliminate suboptimal solutions. During the dy-
namic programming step, if a potential changepoint does not improve the cost function
significantly, it is pruned, hence the name, reducing the computational complexity. After

computing the cost for all possible changepoint locations up to the end of the time series,
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the algorithm identifies the locations where introducing a changepoint results in a signif-

icant reduction in the overall cost (Gachomo, Gichuhi, & Wanjoya, 2015).

cpt.mean and cpt.var

The cpt.mean function is used to retrieve all change in mean methods inside the
changepoint package.

The cpt.var function is used to access all change in variance methods inside the change-
point package, needing the data to have a fixed value mean across time, and so this
periodic mean must be eliminated prior to analysis.

The considered arguments are as follows:

e data: The input time-series data.

e penalty: The penalty value used in the cost function. Higher penalty values
lead to fewer changepoints. Common choices include "Manual" for user-defined
penalties or specific numeric values like "SIC" for Schwarz Information Criterion
or "BIC" for Bayesian Information Criterion. For the purpose of this paper,
MBIC penalty will be used.

e method: The method used for segmenting the data. Options include "BinSeg"
for Binary Segmentation, "PELT" for Pruned Exact Linear Time.

e Q: The user-defined penalty value if penalty is set to "Manual".

e minseglen: The minimum segment length. Detected segments shorter than this

length are ignored.
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CHAPTER 5

Results and discussion - ARMA model simulation

In this chapter, an in-depth analysis of time-series data is conducted, employing a variety
of statistical methods and tests. The chapter contains the studies using the simulated
ARMA model with unit root tests such as ADF, PP, KPSS, ERS, and Zivot-Andrews.
Here, the focus lies on the simulation of the ARMA model, allowing for the exploration
of the behavior of different unit root tests under controlled conditions. Through rigorous
analysis using ADF, PP, KPSS, ERS, and Zivot-Andrews tests, the aim is to gain insights
into their effectiveness in detecting unit roots in data that contains structural breaks and

is stationary, trying to understand comparative strengths and limitations.

5.1. ARMA model simulation results

As explained previously in the Methodology chapter, this process involves generating
synthetic financial data with means and standard deviations that vary between each
iteration using an ARMA(1,1) model. The generated data is then subjected to five unit
root tests to assess the stationarity of the time series. The results (0 for not stationary,
1 for stationary) from these tests are aggregated over multiple iterations.

After that, the proportions of stationary outcomes for each test are calculated and
summarized, offering insights into the effectiveness of these tests in identifying stationary
processes under specific conditions.

As can be visually observed in the next graph, the series generated points towards
being stationary around two mean levels, with the variance also being potentially constant

at each level:

Returns

I I T T T T
0 1000 2000 3000 4000 5000

Observations

Ficure 1. ARMA (1,1) model generation
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The results for the unit root’s tests calculated are stored as follows:

Iterations | ADF | PP | KPSS | ERS | ZA
1 0 0 0 0 1
2 0 1 0 1 1
3 0 0 0 0 1
4 0 0 0 1 1
5) 0 0 0 1 1
6

TABLE 1. Results for the unit root’s tests, where 0 stands for not stationary

and 1 for stationary results

The proportion of stationary outcomes for each test are:

Test | ADF | PP | KPSS| ERS | ZA

Result 0 0.2311 0.024 | 0.541 | 1
TABLE 2. Results of the unit root tests

5.2. Discussion

26

The interpretation of such results is as follows:

(1) ADF Test (Result: 0% - non-stationary):

e The ADF test consistently indicates that the data is non-stationary. This
test is widely used and generally reliable, and its unanimous verdict is a
strong indication against the stationarity hypothesis.

(2) PP Test (Result: 23,1% - Partial evidence for stationarity):

e The PP test shows a mixed outcome, with approximately 23% of the tests
suggesting stationarity. While this might imply some possibility of station-
arity, the majority of tests still point towards non-stationarity.

(3) KPSS Test (Result: 2,4% - Almost unanimously non-stationary):

e The KPSS test provides robust evidence against stationarity, with only about
2,4% of the tests suggesting stationarity. This near-unanimous agreement
among KPSS tests reinforces the notion of non-stationarity in the dataset.

(4) ERS Test (Result: 54,1% - Mixed evidence for stationarity):

e The ERS test results are divided, with approximately 54,1% of the tests
indicating stationarity. This indicates a significant possibility of the data
being stationary, but it’s important to note that almost half of the tests still
suggest non-stationarity.

(5) ZA (Result: 100% - Complete evidence towards stationarity):

e The Zivot-Andrews test results are clear in terms of assessing that the data

is stationary. This result is very important as the series is, indeed, stationary

around the stuctural break at observation 2000.



The overall conclusion is conflictual. While the traditional ADF and KPSS tests
strongly indicate non-stationarity, the PP test provides conflicting signals, the ERS tests
are divided and the Zivot-Andrews points clearly to stationarity of the series. This mixed
evidence underscores the complexity of the data’s behavior. It suggests that there might
be specific segments or aspects within the data that exhibit stationary properties while
other parts do not. These results do not support the starting point conclusions, either
by observation of the graph or the choice of parameters for the ARMA model, as the
test was built to have two segments of stationary data at mean level with a structural
break at observation 2000, hence the conclusion to the overall stationarity of the series
was expected.

Collectively, and considering that different tests provide varying results, analyzing
different segments of the data separately is proven to be beneficial, which corroborates
the main point of this paper of testing time series for structural breaks as well as for
stationarity of its variables.

This approach is essential for a comprehensive understanding of the data’s behavior
and corroborates the main argument of this paper: the importance of testing time series for
structural breaks and account for ther to assess stationarity in their variables. Utilizing
tests specifically designed to account for structural breaks is essential in capturing the
nuances of complex data patterns. These results underscore the significance of employing
a variety of tests that consider different aspects of the data, ultimately enhancing the

accuracy and reliability of the analysis.
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CHAPTER 6

Results and discussion - Tests on real financial data

This chapter is organized as follows: (i) First, the results are presented regarding unit
root’s tests conducted on the daily stock prices and returns of the selected company, Al-
lianz, randomly chosen. These tests serve to determine the stationarity of the company’s
stock prices and returns over time. (ii) After, the focus shifts to examining structural
breaks within the data. Structural breaks tests aim to identify significant shifts or disrup-
tions in the return patterns that may have occurred during the observation period. By
diving into these tests, the intention is to gain deeper understandings of the stability and
underlying dynamics of the daily stock prices and returns of this company. (iii) Later, the
same tests, in a more condensed way, will be applied to daily CAC Index values from 2003
to 2022, and to monthly values for Employment Level, thousands of persons, seasonally
adjusted from FRED, from 2003 to 2022.

The results regarding daily stock prices of RollsRoyce and monthly rates of Federal

Funds Effective Rate can be found in Annex B.

6.1. Allianz

Firstly, the historical stock prices of Allianz are extracted, and a time-series object
is created, spanning from January 1st, 2003, to December 31st, 2022, with a frequency
of around 255 observations per year. Subsequently, the daily returns of Allianz stocks
are computed and transformed into another time series, the returns, with the log returns
function. Visualizations of both the stock prices and the corresponding returns are pre-
sented through plots, offering a graphical insight into the patterns and trends within the
data:
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(a) Allianz daily stock prices, 2003-2022 (b) Allianz daily stock returns, 2003-2022
Ficure 2. Allianz stock prices and returns
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6.1.1. Unit root’s tests
ADF test

Value of test-statistic: -0.4697 ; 0.9546
Critical values for test statistics:
72 -3.43 -2.86 -2.57

! 6.43 4.59 3.78
TABLE 3. ADF test statistics - Allianz stock prices

The test-statistic (—0.4697) is higher than the critical values at all common signifi-
cance levels. Therefore, the null hypothesis (presence of a unit root) cannot be rejected.
This implies that the time series data is non-stationary and has a unit root, indicating a

lack of a stable, long-term trend.

PP test

Value of test-statistic, type: Z-tau -0.5201
1% Level: -3.434737
Critical values for Z statistics: | 5% Level: -2.862664

10% Level: -2.567396
TABLE 4. PP test statistics - Allianz stock prices

The test-statistic (—0.5201) is higher than the critical values at all common signifi-
cance levels. Therefore, the null hypothesis (presence of a unit root) cannot be rejected.

This implies that the time series data is non-stationary and has a unit root.

KPSS test

Value of test-statistic: 8.5045

1% Level: 0.216
Critical values for significance level: | 5% Level: 0.146

10% Level: 0.119
TABLE 5. KPSS test statistics - Allianz stock prices

In this case, the test-statistic (8.5045) exceeds the critical values at all common signif-
icance levels (10%, 5%, 2.5%, and 1%). Therefore, the null hypothesis of the KPSS test
(that the series is stationary around a deterministic trend) is rejected. This suggests that
the data is not stationary and exhibits a unit root, indicating a need for differencing to

achieve stationarity.
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ERS test

Value of test-statistic: 0.532

1% Level: -2.57
Critical values for significance level: | 5% Level: -1.94

10% Level: -1.62
TABLE 6. ERS test statistics - Allianz stock prices

Tn this case, the test-statistic (0.532) does not exceed the critical values at any com-
mon significance level. Therefore, the null hypothesis of the ERS test (that the series has

a unit root) is not rejected, indicating that series may be non-stationary.

ZA test

Value of test-statistic: -5.0403

1% Level: -5.57
Critical values for significance level: | 5% Level: -5.08
10% Level: -4.82

Potential Break Point Position: 1462
TABLE 7. Zivot-Andrews test statistics - Allianz stock prices

The Zivot-Andrews test was conducted to assess the stationarity of the time series
data with a potential structural break, suggesting the position at observation 1462. The
test statistic (—5.0403) falls below the critical values at 10% significance level(—4.82).
Therefore, the null hypothesis of a unit root is rejected at this level, but not at the typical
of o = 0.05. Hence, there is only statistical significance to reject the null at 10% but not
at 5%.

Additionally, the test results suggest a potential structural break at position 1462,
correspondent to date 2008-09-02, which can also be observed in Figure 2. A structural
break implies that there might be a significant change in the underlying data-generating
process at that specific point in time, that could be justified by the Global Financial Crisis
that took place in 2008.

As expected, the overall results point to non stationarity of the data, with Zivot-
Andrews test considering the series stationary at 10% significance level, with a break at
2008-09-02.

6.1.2. Structural breaks tests
Chow’s Breakpoint test

The Chow’s test is employed to assess the presence of structural breaks in the stock price

data. By using the stock prices, the aim is to find structural breaks at mean level.
By observation, the test was conducted for the 5th of March, 2020, corresponding to
observation 4380 in the dataset. The choice of this data point was due to the coronavirus
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pandemic, as the declaration of the pandemic by the World Health Organization led to a
sharp increase in market volatility. Investors were concerned about the economic impact
of the virus and the potential disruptions to businesses and supply chains. The test could
also be performed at datapoint 1462 as Zivot-Andrews test suggested.

The purpose of the test is to examine whether there is a significant structural change
in the stock prices of Allianz during this period. The sctest() function is utilized with
the type parameter set to "Chow” and the point parameter set to 4380 to focus on this
specific observation as there could be a potential structural break.

The results are:

Test Statistic | 3988.4 | P-Value | < 2.2¢-16
TABLE 8. Chow’s Breakpoint test results - Allianz stock prices

Based on the results, the null hypothesis of no structural change is rejected. Therefore,
there is substantial statistical evidence to suggest the presence of a structural break in
the selected data point.

If the same test is applied to returns, on the same data point, the results are:

Test Statistic | 0.017146 | P-Value | 0.8958
TABLE 9. Chow’s Breakpoint test results - Allianz returns

As expected, since the mean is removed from the returns when applying the log func-
tion, the null hypothesis of no structural change is not rejected. Therefore, there is no
substantial statistical evidence to suggest the presence of a structural break in the selected
data point (a conclusion further reinforced by visual inspection). No further tests that

are dedicated to changes in mean will be applied to stock returns.

Chow’s Forecast test

Initially, two linear regression models are constructed: reg0O that represents the entire
dataset, and regl, that represents the subset of data up to a specific point (in this case,
the same observation was used - observation 4380). The test statistic (Ftest) is computed
by comparing the residual sums of squares of these models, adjusted for the sample sizes
and the number of coefficients in the models. The resulting Ftest value and its associated

p-value are:

Test Statistic | 16.92678 | P-Value | 0
TABLE 10. Chow’s Forecast test results - Allianz stock prices

The calculated test statistic and the p-value suggest strong evidence against the null
hypothesis, at any significance level. This implies that there is a significant difference in
the model fit before and after the specified point, indicating a structural change in the
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Allianz stock data at observation 4380.

CUSUM test
In this analysis, two tests will be considered: the Recursive Cumulative Sum (CUSUM
Rec) and the OLS Cumulative Sum (CUSUM OLS). The first is applied to the Allianz
stock data to identify subtle structural changes within the time series. The test is specif-
ically designed to pinpoint sequential shifts in the data. Regarding OLS Cusum test, it
checks for deviations in the OLS residuals from the expected pattern, aiming to detect
any significant structural changes in the time series.

The resulting plots, that aim to illustrate any deviations from the expected pattern

in the stock data, are the following:
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F1GURE 3. CUSUM tests results - Allianz stock prices

The test statistics corroborate the visual inspection:

Rec CUSUM | OLS CUSUM
Test Statistic | 22.004 30.849

P-Value 2.2e-16 2.2e-16
TABLE 11. CUSUM test results - Allianz stock prices

The test results indicate a significant deviation from the expected pattern in the Al-
lianz stock data. Both p-values are extremely small (2.2e-16), providing strong evidence
against the null hypothesis, suggesting that there is a substantial structural change in the
data.
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MOSUM test

Two MOSUM tests are performed on the Allianz stock data, used to identify structural
changes in the time series. The results are visually presented through two plots, that
aim to illustrate any deviations from the expected pattern in the Allianz stock data. The

visuals are:
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F1GURE 4. MOSUM tests results - Allianz stock prices

The test statistics corroborate the visual inspection:

Rec MOSUM | OLS MOSUM
Test Statistic | 26.802 17.567

P-Value 0.01 0.01
TABLE 12. MOSUM test results - Allianz stock prices

Both conducted tests reveal a significant deviation from the expected pattern, with
the associated p-values being 0.01, indicating evidence against the null hypothesis, under
the typical significance level at 5%. This suggests a structural change in the data.

The comparison between CUSUM and MOSUM tests centers on their sensitivity to
structural changes in data. CUSUM excels at detecting abrupt shifts, while MOSUM,
a modified version, is more versatile, capturing gradual changes and multiple shifts ef-
fectively. The tests differ in their underlying statistics, with CUSUM using cumulative
sums and MOSUM employing adaptable statistics like weighted differences. MOSUM’s
flexibility allows it to identify diverse deviations, making it sensitive to minor changes.
While CUSUM is simpler, MOSUM'’s complexity suits intricate patterns. The choice be-
tween them depends on the data’s nature. Typically, MOSUM is preferred for nuanced

analyses, ensuring a precise understanding of structural shifts.
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Quandt-Andrews Breakpoint test

The Quandt Andrews test involves dividing the dataset into segments and conducting
F-statistic tests to identify potential structural changes. Moreover, the analysis identifies
the specific point within the dataset where the highest probability of a structural change

occurs. The obtained results are:

Test Type | Test Statistic P-Value
supF test 22036 <22 x 10716
avel test 8869.4 <22x 10716
expF test 00 NA

TABLE 13. Quandt Andrews test results - Allianz stock prices

Based on the results, it can be concluded that it points towards non-stationarity of the
underlying data, with the highest probability of structural change detected at datapoint
3558, at 2016-12-05.

Bai Perron test

The Bai-Perron test operates by detecting points where significant shifts occur in the
data, indicating changes in the statistical properties like mean or variance. The test
refers to the breakpoints (and accompanying) breakdates for all segmentations up to the
maximum number of breaks, as well as the corresponding RSS and BIC.

The results are as follows:

Segments (m+1) | 0 1 2 3 4

1 - - - | 3958 | -

2 - - | 2749 | 3687 | -

3 - - 2647 | 3558 | 4323

4 765 | - | 2760 | 3559 | 4324

> 765 | 1530 | 2647 | 3558 | 4323

Segments (m) 0 1 2 3 4

RSS 14,588,183 | 2,740,861 | 1,374,191 | 1,179,651 | 1,066,062
BIC 95,080 46,570 43,066 42,305 41,805

TABLE 14. Optimal (m + 1)-segment partition and corresponding fit sta-

tistics - Allianz stock prices

(1) Breakpoints (m + 1) test indicates an optimal segment partition of 6, the results
being:
e For m = 5, breakpoints are at observations 751, 1530, 2647, 3558, and 4323,
corresponding to the dates of 2005-12-06, 2008-12-05, 2013-05-02, 2016-12-
05, and 2019-12-10, respectively.
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(2) Fit Statistics:

e The Residual Sum of Squares (RSS) decreases as the number of segments
(m) increases, indicating improved model fitting with more segments. Lower
RSS values suggest better representation of the data.

e The Bayesian Information Criterion (BIC) is used for model selection. Smaller
BIC values indicate better model fit. BIC values decrease as the number of
segments increases, reflecting the trade-off between model complexity and
fit to the data.

The analysis suggests that the stock data can be effectively segmented into an optimal
number of 6 partitions, each characterized by different statistical properties.

The confidence intervals correspondent to each segment are given by:

Breakpoints at Observation Number
2.5% breakpoints | Breakpoints | 97.5% breakpoints
1 762 765 766
2 1526 1530 1537
3 2646 2647 2648
4 3556 3558 3559
5 4317 4323 4327

TABLE 15. Breakpoints and confidence intervals

Bai-Perron test can also calculate F-statistics for various possible breakpoints, iden-
tifying the optimal breakpoints based on these statistics, and then ploting them, along

with vertical lines indicating the detected breakpoints, as the next graph shows:
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FI1GURE 5. Fstat for Allianz stock prices and optimal breakpoints
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ICSS of Inclan and Tiao test

This test is a robust statistical method utilized for detecting structural breakpoints
within time-series data in the variance of a time series, rather than the mean. These break-
points indicate instances where there are significant shifts or changes in the underlying
statistical properties of the data set.

The detected changepoints results are:

Index 665 979 1414 1843
Date 2005-07-19 | 2006-10-05 | 2008-06-26 | 2010-03-05

2486 2765 3116 3725 4558
2012-09-06 | 2013-10-16 | 2015-03-11 | 2017-08-01 | 2020-11-16

TABLE 16. Breakpoints and corresponding dates for the ICSS test - Allianz

stock prices

In graphical terms, these breaks can be observed at returns level:
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F1GURE 6. ICSS variance test results - Allianz log returns

The results point towards 9 structural breaks at variance level, what appears to be
supported by the visual inspection. Yet, the test provided by "ICSS” package has no
adjustable parameter that allows the user to better suit the test to the available data,
hence producing the amount of segmentations that should be considered in order to fit

the data to different models.
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Changepoint package test
For single structural changepoint detection, without specifying the exact nature of the

data or the statistical methods used, the results are as follows:
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F1GURE 7. CPT mean and variance test results - Allianz stock prices and
log returns

Suggesting a break at variance level at point 2323 that corresponds to date 2012-01-18
and 3558, that corresponds to 2016-12-05 for mean level.
Now, let us address the results under the Binary Segmentation algorithm search,

allowing for up to 10 structural breaks in data:
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FiGUuRE 8. CPT mean and variance under Binary Segmentation search

algorithm test results - Allianz stock prices and log returns

The results differ from the first ones as they are getting more and more adjusted to
the data. If the parameter Q=10 was set to NULL, the resulting partition would tend
to infinity (or an exagerated number of structural breaks), which removes the point of
38



finding models to fit the data. Yet, the knowledge of this Q parameter can be very biased,
being set to 10 as a standard based only on visual inspection.
Finally, the results under the PELT algorithm search, without a maximum number of

structural breaks indicated, are as follows:
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(a) PELT cpt.mean results - stock prices (b) PELT cpt.var results - log returns
FiGURE 9. PELT tests results - Allianz

One important note is at the PELT search algorithm, as in ¢pt.mean(”data”, penalty =
"MBIC” method = "PELT” minseglen = 500), the same applies to cpt.var, the last
variable allows to turn the test less sensitive to changes in mean, increasing the length
between data where structural breaks can be found, thus providing a smaller number of
breaks. This adjustment was conducted given that the first results where not adjusted to
the expectations.

The main differences between these results mainly derive from:

e PELT: more precise but intensive in terms of hardware computational needs. It
often provides exact solutions to the changepoint problem, ensuring that it finds
the optimal set of changepoints with respect to the chosen penalty function and
its performance is generally less affected by the sample size.

e Binary Segmentation: On the other hand, it is more computationally efficient
but might not find the exact optimal solution. It is based on a recursive binary
segmentation approach, which divides the data into segments recursively. While
this one is faster, it may not always find the optimal changepoints, as the user
must provide that maximum number of segmentations to the algorithm. It may
also become less accurate with very large datasets due to its recursive nature and

potential limitations in processing power

As a conclusion, it can be recomended to use PELT when precision is critical, the
dataset is extense and you have the computational resources to handle the processing
needs and use Binary Segmentation when there is need for a faster analysis, or want
a quicker overview of possible changepoints, being more suitable for initial exploratory

analysis.
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6.2. CAC Index

As previously stated, this section will contain the results’ discussion as the tests are
provided, but not under the same extent of explanation as the one provided in the previous
section, as the introductory notes are similar.

Firstly, the historical values of CAC Index are extracted, and a time-series object
is created, spanning from January 1st, 2003, to December 30th, 2022, with a frequency
of around 255 observations per year. Subsequently, the daily returns are computed and
transformed into another time series, with the log returns function. Visualizations of
both series are presented through plots, offering a graphical insight into the patterns and
trends within the data:
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(b) CAC Index log returns, 2003-2022
F1cURE 10. CAC Index daily values and log returns

6.2.1. Unit root’s tests

The results for unit root’s test for CAC index daily values are as follows:
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Test

Result

ADF Test

Value of test-statistic: -1.8163 2.0002
Critical values for test statistics: 72: -3.43 -2.86 -2.57
o' 6.43 4.59 3.78

PP Test

Value of test-statistic, type: Z-tau: -1.7438
Critical values for Z statistics: 1% Level: -3.43467
5% Level: -2.862634
10% Level: -2.56738

KPSS Test

Value of test-statistic: 4.6831

Critical values for significance level: 1% Level: 0.216
5% Level: 0.146
10% Level: 0.119

ERS Test

Value of test-statistic: -0.394

Critical values for significance level: 1% Level: -2.57
5% Level: -1.94
10% Level: -1.62

Zivot-Andrews Test

Value of test-statistic: -5.6266

Critical values for significance level: 1% Level: -5.57
5% Level: -5.08
10% Level: -4.82

Potential Break Point Position: 2239

TABLE 17. Unit root test statistics - CAC Index daily values

All the required tests point for non-stationarity of the time-series data, except for

the Zivot-Andrews that considers the time-series to be stationary even at 1% significance

level. Additionally, this last test suggests a structural break at observation 1281, that
corresponds to the date of 2007-12-12. This date can be related to the Global Crisis
that took place around 2008. Sadly, the Zivot-Andrews is not suggesting the breakpoint

to be around 2020, pointing towards the pandemic. Yet, it is a very acceptable result,

supported by visual inspection.

6.2.2. Structural breaks’ tests

Chow’s tests

Chow’s Breakpoint Test Statistic | 2442.7 | P-Value | < 2.2e-16

Chow’s Forecast Test Statistic 4.0791 | P-Value | < 4.1893e-188

TABLE 18. Chow’s Breakpoint test results - CAC Index daily values

Chow’s tests’ results both point towards a breakpoint occuring at datapoint 4380 (cho-

sen as explained earlier at Allianz’s analysis, as well as by observation), implying there is
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a significant difference in the model fit before and after the specified point.

CUSUM and MOSUM tests
As for the CUSUM test, the produced graphs are as follows:
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FicureE 11. CUSUM Recursive and OLS-bases test results - CAC Index

daily values

The test statistics corroborate the visual inspection:

Rec CUSUM | OLS CUSUM
Test Statistic | 14.311 22.769

P-Value 2.2e-16 2.2e-16
TABLE 19. CUSUM Test Results - CAC Index daily prices

The test results indicate a significant deviation from the expected pattern in the CAC
Index values. Both p-values are well below significance level, suggesting that there is a
substantial structural change in the data.

In terms of the MOSUM results, the produced graphs are as follows:
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FIGURE 12. MOSUM Recursive and OLS-bases test results - CAC Index
daily prices
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The test statistics corroborate the visual inspection:

Rec MOSUM | OLS MOSUM
Test Statistic | 18.912 14.72
P-Value 0.01 0.01

TABLE 20. MOSUM test results - CAC Index daily prices

Both conducted tests reveal a significant deviation from the expected pattern, with

the associated p-values indicating evidence against the null hypothesis, under the typical

significance level at 5%, suggesting a structural change in the data.

Quandt-Andrews Breakpoint test

The obtained result are:

Test Type | Test Statistic P-Value
supF test 4509 <22 x 10716
avel test 2036.7 <22x10716
expF test 00 NA

TABLE 21. Quandt Andrews test results - CAC Index daily prices

With the highest probability of structural change detected at datapoint 3636, at 2017-

02-28, and unexpected result that is not as easily corroborated as the others by visual

inspection.

Bai Perron test

The results are as follows:

Segments (m+1) | 0 1 2 3 4
1 - - - 13636 | -
2 - - 13096 | - |4330
3 769 | 1538 | - | 3583 | -
4 769 | 1538 | 2719 | 3672 | -
5 769 | 1538 | 2719 | 3577 | 4346
Segments (m) 0 1 2 3 4 5
RSS 5.328e+09 | 2.836e+09 | 2.614e+09 | 1.917e+09 | 1.446¢+409 | 1.296e+09
BIC 8.567e+04 | 8.245e+04 | 8.205e+-04 | 8.048e+04 | 7.905e+04 | 7.850e+-04

TABLE 22. Optimal (m + 1)-segment partition and corresponding fit sta-

tistics - CAC Index daily prices

(1) Breakpoints (m + 1) test indicates an optimal segment partition of 6, the results

being:
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e For m = 5, breakpoints are at observations 769, 1538, 2719, 3577, and 4346,
corresponding to the dates of 2005-12-08, 2008-12-15, 2013-07-31, 2016-12-
06, and 2019-12-10, respectively.
The analysis suggests that the stock data can be effectively segmented into an optimal
number of 6 partitions, each characterized by different statistical properties.

The confidence intervals correspondent to each segment are given by:

Breakpoints at Observation Number
2.5% breakpoints | Breakpoints | 97.5% breakpoints
1 766 769 771
2 1537 1538 1541
3 2717 2719 2721
4 3575 3577 3579
5 4330 4346 4347

TABLE 23. Breakpoints and confidence intervals

ICSS of Inclan and Tiao test

The detected changepoints results are:

Index 485 816 1473 2719 3637 4648

Date | 2004-11-10 | 2006-02-16 | 2008-09-15 | 2013-07-01 | 2017-03-01 | 2021-02-15
TABLE 24. Breakpoints and corresponding dates for the ICSS Test - CAC

Index daily values

In graphical terms, these breaks can be observed at returns level:
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F1cURE 13. ICSS variance test results - CAC Index daily log returns
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Changepoint package tests
For single structural changepoint detection, without specifying the exact nature of the

data or the statistical methods used, the results are as follows:
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FIGURE 14. cpt.var and cpt.mean results - CAC Index

Suggesting a break at variance level at point 1174 that corresponds to date 2007-
07-16 (closer to the one pointed by Zivot-Andrews test) and 3636, that corresponds to
2017-02-28 for mean level.

Now, let us address the results under the Binary Segmentation algorithm search, again,

allowing for up to 10 structural breaks in data:
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FIGURE 15. cpt.var and cpt.mean with Binary Segmentation results - CAC Index

Finally, the results under the PELT algorithm search, without a maximum number of
structural breaks indicated, are as follows:
45



0.10
1

0.05
|

data.set.ts(x)
0.05 0.00

data.set.ts(x)
3000 4000 5000 6000 7000

-0.10  -0.

T T
2005 2010 2015 2020 2005 2010 2015 2020

Time Time

(a) PELT cpt.mean results - daily values (b) PELT cpt.var results - daily log returns
FIGURE 16. PELT Tests’ results - CAC Index

The results are rather close, with PELT providing fewer optimal breaks of the data.
Again, both are pointing towards the same areas, the choice of each test being more

related to prior knowledge of data, sample size and execution capacity.

6.3. FRED Employment level
Firstly, the monthly historical values of FRED Employment monthly levels, thousands

of persons, seasonally adjusted, are extracted, and a time-series object is created, spanning
from January 1st, 2003, to December 1st, 2022, with a frequency of around 12 observations
per year. Subsequently, the returns are computed and transformed into another time
series, with the log returns function. Visualizations of both series are presented through

plots, offering a graphical insight into the patterns and trends within the data:
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Ficure 17. FRED Employment monthly levels and log returns

6.3.1. Unit root’s tests

The results for unit root’s test are as follows:
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Test Result

ADF Test Value of test-statistic: -1.7839 ; 1.9507

Critical values for test statistics: 72: -3.46 -2.88 -2.57

o' 6.52 4.63 3.81

PP Test Value of test-statistic, type: Z-tau: -1.5235

Critical values for Z statistics: 1% Level: -3.459112
5% Level: -2.873702
10% Level: -2.573195

KPSS Test Value of test-statistic: 0.3602

Critical values for significance level: 1% Level: 0.216
5% Level: 0.146
10% Level: 0.119

ERS Test Value of test-statistic: -0.0078

Critical values for significance level: 1% Level: -2.57
5% Level: -1.94
10% Level: -1.62

Zivot-Andrews Test | Value of test-statistic: -4.7377

Critical values for significance level: 1% Level: -5.57
5% Level: -5.08
10% Level: -4.82

Potential Break Point Position: 206
TABLE 25. Unit Root test statistics - FRED Employment monthly levels

All the required tests point for non-stationarity of the time-series data. Additionally,
the Zivot-Andrews test suggests a structural break at 206 datapoint, that corresponds to
the date of February 2020. This date is very much likely related to the pandemic that
begun in late 2019 /early 2020, proven to have had a strong impact at employment level.

Plus, it is also supported by visual inspection.

6.3.2. Structural breaks’ tests

Chow’s tests

Chow’s Breakpoint Test Statistic | 38.077 P-Value | < 2.903e-09

Chow’s Forecast Test Statistic 2.193924 | P-Value | < 0.0004256
TABLE 26. Chow’s Breakpoint test results - FRED Employment monthly levels

Particularly for this time series, the chosen point to apply Chow’s tests was at obser-
vation 206, that corresponds to February 2020, as Zivot-Andrews’ test suggested. The
results both point towards a breakpoint occuring at this datapoint, implying there is a

significant difference in the model fit before and after the specified point.
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CUSUM and MOSUM tests
As for the CUSUM test, the produced graphs are as follows:
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Ficure 18. CUSUM test results - FRED Emplyment monthly levels

The test results indicate a significant deviation from the expected pattern in the FRED
Employment monthly levels. Both p-values are well below significance level, suggesting
that there is a substantial structural change in the data.

In terms of the MOSUM results, the produced graphs are as follows:
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10 2 3 4

|
Empirical fluctuation process

o
<
o
T T T T T T T T

2005 2015 2005 2015

Time Time

F1cURE 19. MOSUM test results - FRED Employment monthly levels

Both conducted tests reveal a significant deviation from the expected pattern, with
the associated p-values indicating evidence against the null hypothesis, under the typical

significance level at 5%, suggesting a structural change in the data.

Quandt-Andrews Breakpoint test

The obtained result are:

Test Type | Test Statistic P-Value

supF test 512.72 <22 x 10716
aveF test 220.85 <2.2x1071¢
expF test 252.45 <2.2x10716

TABLE 27. Quandt Andrews test results - FRED Employment monthly levels
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With the highest probability of structural change detected at datapoint 144, at 2014-
12-01. Again, not an anticipated result, when facing all the other options and the visuals
of the data.

Bai Perron test

The results are as follows:

Segments (m+1) | 0| 1] 2 | 3 | 4

1 - - - | 144 -

2 - | - - [ 131|167

3 36 | - - 1134 -

4 36 | 72 | 117 | 155 | -

D 36 | 721108 | 144 | 180

Segments (m) 0 1 2 3 4 5

RSS 1.025e+10 | 3.250e4-09 | 2.842e+09 | 2.589e+-09 | 2.127e+09 | 2.038e+09
BIC 4.909e+03 | 4.644e+03 | 4.623e+-03 | 4.612e+03 | 4.575e+4-03 | 4.576e+03

TABLE 28. Optimal (m + 1)-segment partition and corresponding fit sta-
tistics - FRED Employment monthly levels

(1) Breakpoints (m + 1) test indicates an optimal segment partition of 5, the results
being:
e For m = 4, breakpoints are at observations 36, 72, 117, and 155, corre-
sponding to the dates of December 2005, December 2008, September 2012
and November 2015. respectively.

The analysis suggests that the stock data can be effectively segmented into an optimal
number of 5 partitions, each characterized by different statistical properties.

The confidence intervals correspondent to each segment are given by:

Breakpoints at Observation Number
2.5% breakpoints | Breakpoints | 97.5% breakpoints
1 35 36 38
2 71 72 73
3 115 117 118
4 150 155 156

ICSS of Inclan and Tiao test

The detected changepoints results are:

TABLE 29. Breakpoints and confidence intervals
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Index 206 208 214

Date | February 2020 | April 2020 | October 2020
TABLE 30. Breakpoints and Corresponding Dates for the ICSS Test -

FRED Employment monthly levels

In graphical terms, these breaks can be observed at returns level:

-0.10 -0.05 0.00

FRED Employment levels returns

-0.15

2005 2010 2015 2020

Year

FiGURE 20. ICSS variance test results - FRED Employment monthly log returns

These results are very aligned with the expectations, as at variance level there is a

clear disruption at the data around 2020.

Changepoint package tests

For single structural changepoint detection, the results are as follows:

1

. e

?

1

1

data.set.ts(x)
135000 145000 155000
1

data.set.ts(x)
-0.15 -0.10 -0.05 0.00

T T T T T T T
2005 2010 2015 2020 2005 2010 2015 2020

Time Time
(a) Cpt.var tests’ results - monthly log returns  (b) Cpt.mean tests’ results - monthly levels

FicUure 21. FRED Employment levels cpt.var and cpt.mean results

Suggesting a break at variance level at point 205 that corresponds to January 2020
(as anticipated) and 144, that corresponds to December 2014 for mean level. Now, as for
the Binary Segmentation algorithm search, allowing for up to 5 structural breaks in data:
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(a) Cpt.var tests’ with Binary Segmentation re- (b) Cpt.mean tests’ with Binary Segmentation

sults - monthly log returns results - monthly levels
Ficure 22. FRED Employment levels cpt.var and cpt.mean with Binary
Segmentation results

Here, at mean level, the Binary Segmentation produced 5 breakpoints (as it typically
does) but at variance level it recognized only two.

Finally, the results under the PELT algorithm search, without a maximum number of
structural breaks indicated, are really close to the ones obtained with Binary Segmentation
serch algorithm, and one observation that can lead to these results rather that the data’s
type is also the number of datapoints, as this time series accounts only for around 240
entrances. Again, both are pointing towards the same areas, the choice of each test being

more related to prior knowledge of data, sample size and execution capacity. The results
for PELT are as follows:

155000
|

data.set.ts(x)
145000
|

data.set.ts(x)
-0.15 -0.10 -0.05 0.00

135000
1

2005 2010 2015 2020 2005 2010 2015 2020

Time Time

(a) PELT cpt.mean results - monthly levels (b) PELT cpt.var results - monthly log returns
FiGURE 23. PELT tests’ results - FRED Employment levels
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CHAPTER 7

Conclusion

In conclusion, the analysis of the time series data, employing various unit root tests,
reveals a complex and nuanced picture of its stationarity. The divergent results applied
to the ARMA model obtained from traditional tests such as ADF, KPSS, PP, and ERS
highlight the intricacies involved in assessing the underlying patterns. However, the intro-
duction of the Zivot-Andrews (ZA) test, especially in the context of identifying structural
breaks, sheds significant light on the dataset’s behavior.

The findings underscore the critical importance of considering specific structural shifts
when examining time series data. The correct assessment of stationarity identification in
the presence of a structural break at point=2000 by the ZA test emphasizes that tra-
ditional stationarity tests may oversimplify the analysis. Accounting for these breaks is
essential, as they significantly influence the behavior of the series. This study demon-
strates that structural breaks can obscure or even reverse conclusions drawn from con-
ventional unit root tests. Therefore, incorporating tests designed to detect these breaks
is imperative for a comprehensive understanding of the data.

Moreover, the mixed evidence from different tests applied to real financial data high-
lights the complexity inherent in time series data. The variability in outcomes among
tests indicates that a one-size-fits-all approach is inadequate when assessing stationarity:.
Instead, a nuanced methodology that incorporates multiple tests, each addressing specific
aspects of the data, is necessary for accurate analyses.

Furthermore, this study reaffirms the necessity of exploring new models and tech-
niques continuously. The ever-evolving landscape of time series analysis demands adap-
tive approaches. Relying solely on established methods might lead to overlooking crucial
structural breaks or misinterpreting the data’s behavior. Embracing emerging models
and methodologies, tailored to capture the complexities of real-world data, is essential for
robust and insightful analyses.

In summary, the study’s results emphasize the significance of testing time series for
structural breaks and accounting for them when assessing stationarity in their variables.
The conflicting signals from various tests highlight the need for a holistic approach, incor-
porating diverse methodologies and remaining open to innovative techniques. By doing
so, researchers can enhance the accuracy and reliability of their analyses, leading to a

more profound understanding of the underlying patterns in time series data.
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Annex A

Computation methods

The following lines of code reflect what was used to perform the listed tests to real
data retrieved from the markets, in R language, with detailed explanations of each step.
The same code was used for each data type, with appropriate changes given the different
data sets.

# Load required libraries

library(readxl) # Load readzl library for reading Excel files
library(ggplot2) # Load ggplot2 library for creating plots
library(tseries) # Load tserties library for time-series analysis
library(strucchange) # Load strucchange library for structural change

testing

# Read data from an Ezcel file
Data <- read_excel("File path")

# Extract relevant columns
allianz <- Data$Allianz # Eztract Allianz stock prices

date <- Data$Date # Extract corresponding dates

# Convert stock prices to a time series with spectified start and end
dates and frequency adjusted to data

stock.allianz <- ts(allianz, start = c(2003, 1, 1), end = c(2023, 0, 1),
frequency = 255)

# Compute log returns of the Allianz stock prices and convert to a time
series

ret.allianz <- ts(diff(log(allianz)), start = c(2003, 1, 1), end = c
(2023, 0, 1), frequency = 255)

# Plot time-series data
plot(stock.allianz, xlab = "Year", ylab = "Allianz Stock Price") # Plot

Allianz stock prices




plot(ret.allianz, xlab = "Year", ylab = "Allianz Stock Return") # Plot

Allianz stock returns
#Un1t root’s tests

# Perform Augmented Dickey-Fuller unit root test
summary (ur.df (stock.allianz, lags=4, type="drift", selectlags="BIC"))

# Perform Phillips—Perron unit root test

summary (ur.pp(stock.allianz, type="Z-tau", model="constant", lags="short"

))

# Perform KPSS unit root test

summary (ur.kpss(stock.allianz, type="tau", lags="short"))

# Perform Elliott, Rothenberg, and Stock (ERS) unit root test
summary (ur.ers(stock.allianz, type = c("DF-GLS"), model = c("constant"),

lag.max = 4))

# Perform Zivot Andrews unit root test

summary (ur.za(stock.allianz, model = "both", lag=NULL))

# Perform structural break tests

# Chow’s test for stock prices and returns

sctest(stock.allianz ~ 1, type = "Chow", point = 4380, data = Data) #
Chow’s test for stock prices

sctest(ret.allianz ~ 1, type = "Chow", point = 4380, data = Data) # Chow’

s test for returns

# Chow’s predictive test for stock prices

reg0 <- lm(stock.allianz ~ 1) # Fit initial regression model

k <- length(coef(reg0)) # Count coefficients in the model

breakp <- 4380 # Specified breakpoint

Tobs <- length(stock.allianz) # Total obserwvations

T1 <- length(stock.allianz[1:breakp]) # Observations before the
breakpoint

T2 <- Tobs - Tl # Observations after the breakpoint
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regl <- 1m(stock.allianz[1:breakp] ~ 1) # Fit regression model before
the breakpoint

rssO <- sum(residuals(reg0)~2) # Restidual sum of squares for the initial
model

rssl <- sum(residuals(regl)"2) # Residual sum of squares for the model
before the breakpoint

(Ftest <- ((rssO - rssl) / T2) / (rssl / (T1 - k))) # Compute F-statistic
for Chow’s predictive test

(pvalue <- pf(Ftest, T2, T1 - k, lower.tail = FALSE, log.p = FALSE)) #
Compute p-value for the F-test

# CUSUM tests for stock prices

cusumrec <- efp(stock.allianz ~ 1, type = "Rec-CUSUM") # CUSUM test with
recursive restduals

plot(cusumrec, alpha = 0.05) # Plot CUSUM test results

sctest (cusumrec, type = "Rec-CUSUM", data = Data) # Perform CUSUM test

with recursive residuals

# CUSUM tests for OLS residuals

cusumols <- efp(stock.allianz ~ 1, type = "OLS-CUSUM") # CUSUM test with
OLS residuals

plot (cusumols, alpha = 0.05) # Plot CUSUM test results

sctest (cusumols, type = "OLS-CUSUM", data = Data) # Perform CUSUM test
with OLS restiduals

# MOSUM tests for Recursive and OLS residuals

par(mfrow = c(1, 2)) # Set up a 1z2 grid for plotting

mosumrec <- efp(stock.allianz ~ 1, type = "Rec-MOSUM") # MOSUM test with
recursive restduals

mosumols <- efp(stock.allianz ~ 1, type = "OLS-MOSUM") # MOSUM test with
OLS residuals

plot (mosumrec, alpha

0.05) # Plot MOSUM test results with recursive

restduals

plot(mosumols, alpha = 0.05) # Plot MOSUM test results with OLS

restduals

sctest (mosumrec, type = "Rec-MOSUM", data = Data) # Perform MOSUM test
with recursive residuals
sctest (mosumols, type = "OLS-MOSUM", data

with OLS residuals

Data) # Perform MOSUM test

61




# Quandt Andrews test
stocksqa <- cbind(Data[2:5101,], stock.allianz) # Combine relevant

columns

regfstat <- lm(stock.allianz ~ 1, data = Data) # Fit initial regression

model

qa <- Fstats(regfstat, from = 0.15, to 0.85, data = stocksqa) # Compute
F-statistics for Quandt Andrews test
plot(ga, pval = TRUE) # Plot Quandt Andrews test results

plot(qa) # Plot Quandt Andrews test results without p-values

sctest(qa, type = "supF", from = 0.15, to = 0.85, data = stocksqa) #
Perform Quandt Andrews test (supF)

sctest(qa, type = "aveF", from = 0.15, to = 0.85, data = stocksqa) #
Perform Quandt Andrews test (aveF)

sctest(qa, type = "expF", from = 0.15, to = 0.85, data = stocksqa) #

Perform Quandt Andrews test (expF)
ga$Fstats[which.max(qa$Fstats)] # Point with highest probability of
structural change
ga$breakpoint # Detected breakpoint index
date[qa$breakpoint] # Date corresponding to the detected breakpoint

# Bat-Perron test

bp.test <- breakpoints(stock.allianz ~ 1) # Bati-Perron structural break
test

summary (bp.test) # Summary of the Bai-Perron test

breakpoints(bp.test) # Breakpoint indices

result<-bp.test$breakpoints # To address the first line of results

View(result)

date[result] # To provide more complete dates for the breakpoints
identified

ci.allianz <- confint(bp.test) # Confidence interval for breakpoints

ci.allianz # Display confidence intervals

lines(ci.allianz) # Add confidence intervals to the plot

bp.test2 <- Fstats(stock.allianz ~ 1) # Compute F-statistics for all
possible breakpoints

plot(bp.test2) # Plot F-statistics for all possible breakpoints

breakpoints(bp.test2) # Detected breakpoints

lines(breakpoints(bp.test2)) # Add detected breakpoints to the plot

## INCLAN TIAO test
# Install and load ICSS package

62




install.packages("ICSS")
library(ICSS)

# Perform INCLAN-TIAO test

inc.tiao <- ICSS(ret.allianz, demean=FALSE) # INCLAN-TIAQO test
print(inc.tiao) # Vector list of breakpoints
plot(ret.allianz) # Plot the time-series data

summary (inc.tiao) # Summary of the INCLAN-TIAO test results

date[inc.tiao]l # Summaty of corresponding dates for the test results

## Package changepoint
install.packages('"changepoint")

library(changepoint)

## CPT - Change in variance, single-point identification
ansvar <- cpt.var(ret.allianz)
plot(ansvar) # Plot the change in vartiance

print(ansvar) # Identtify changepoint

## Change in mean
ansmean <- cpt.mean(stock.allianz)
plot(ansmean, cpt.col=’blue’) # Plot the change in mean with blue color

print(ansmean) # Identify changepoints in mean

## Binary Segmentation

bin.segmean <- cpt.mean(stock.allianz, penalty="MBIC", pen.value=0,
method="BinSeg", Q=10, test.stat="Normal", class=TRUE, param.estimates
=TRUE, minseglen=2)

summary (bin.segmean) # Summary of mean changepoints using Binary

Segmentation

bin.segvar <- cpt.var(ret.allianz, penalty="MBIC", pen.value=0, know.mean
=FALSE, mu=NA, method="BinSeg", Q=20, test.stat="Normal", class=TRUE,
param.estimates=TRUE, minseglen=2)

summary (bin.segvar) # Summary of wvariance changepoints using Binary

Segmentation
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bin.segmv <- cpt.meanvar(stock.allianz, penalty="MBIC", pen.value=0,
method="BinSeg", Q=2’, test.stat="Normal", ,class=TRUE, param.estimates
=TRUE, ;shape=1, minseglen=2)

summary (bin.segmv) # Summary, of mean and variance changepoints using,

Binary Segmentation

##, PELT,,(Pruned, Exact Linear Time)

peltmean, <-_ cpt.mean(stock.allianz, penalty="MBIC", method="PELT",
minseglen=500) #this last_variable allows_to_turn the test less,
sensitivetochanges in mean at,data level, and provide a smaller,
number 0f breaks

summary (peltmean) #_ Summary of mean ,changepoints using PELT

peltvar <- cpt.var(ret.allianz, penalty="MBIC", method="PELT", Q=5,
minseglen=500)

summary (peltvar) #, Summary of variance changepoints using PELT

peltmv <- cpt.meanvar(stock.allianz, jpenalty="MBIC", method="PELT",
minseglen=500)

summary(peltmv)u#uSummaryuofumeanuanduvarianceuchangepointsuusinguPELT

The following lines of code reflect the simulation applied to an ARMA model that was
created, in R language, with detailed explanations in each step, that was later used to

perform the listed test above regarding unit root.

# Define a function called Test_generate that generates synthetic
financial return data
Test_generate <- function(num_observations, mean_min, mean_max, sigma_min
, Sigma_max, break_point) {
# Define ARMA coefficients
ar_coefs <- ¢(0.2, -0.2)

ma_coefs <- c¢(0.3)

# Generate an ARMA(1,1) model with specified coefficients and standard
deviation
arma_model <- list(arima.sim(n = num_observations, list(ar = ar_coefs,
ma = ma_coefs), sd = sqrt(0.1796)))

# Randomly set means and standard deviations within spectified ranges
meanl <- runif(1, mean_min, mean_max)
mean2 <- runif (1, meanl, mean_max)
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sigmal <- runif(1l, sigma_min, sigma_max)

sigma2 <- runif(l, sigma_min, sigma_max)

# Generate synthetic returns with a structural break at break_point
returns <- arima.sim(num_observations, model = arma_model, rand.gen =
function(n) {
rnorm(n, mean = ifelse(l:n < break_point, meanl, mean2), sd = ifelse
(1:n < break_point, sigmal, sigma2))
D

# Return the generated synthetic financial returns

return(returns)

# Generate synthetic financial returns with specified parameters
returns_arma <- Test_generate(5000, 0, 10, 0.01, 0.5, 2000)

# Plot the generated synthetic financial returns

plot(returns_arma, type = "1", xlab = "Observations", ylab = "Returns")

# Install and load the urca package for unit root tests
install.packages("urca")

library(urca)

# Set the number of tterations
n <- 1000

# Initialize a data frame to store unit root test results
unit_roots <- data.frame(matrix(ncol = 5, nrow = n))
colnames(unit_roots) <- c("ADF", "PP", "kpss", "ERS", "ZA")

# Loop for m iterations to perform unit root tests on generated data
for (i in 1:n) {
# Generate synthetic financial returns for each iteration
returns_arma <- Test_generate(5000, 0, 10, 0.01, 0.5, 2000)

df <- ur.df(returns_arma, lags = 4, type = "drift", selectlags = "BIC")

pp <-ur.pp(returns_arma, type="Z-tau", model="constant", lags="short")

kpss<-ur.kpss(returns_arma, type="tau", lags="short")
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ers<-ur.ers(returns_arma, type = c("DF-GLS"), model = c("constant"),
lag.max = 4)

za<-ur.za(returns_arma, model = "both", lag=NULL)

# Perform ADF test

df <- ur.df(returns_arma, lags = 4, type = "drift", selectlags = "BIC")
tau3d <- attr(df, ’cval’) [4]

teststat <- attr(df, ’teststat’) [1]

resultdf <- ifelse(teststat < tau3, 0, 1)

# Perform PP test
pp <- ur.pp(returns_arma, type = "Z-tau", model = "constant", lags =

short")

c.val <- attr(pp, ’cval’)[2]
Zstat <- attr(pp, ’teststat’)
resultpp <- ifelse(Zstat < c.val, 0, 1)

# Perform KPSS test

kpss <- ur.kpss(returns_arma, type

"tau", lags = "short")
kpss_crit_val <- kpss@cvall1l, 2]
resultkpss <- ifelse(kpss@teststat > kpss_crit_val, 0, 1)

# Perform ERS test

ers <- ur.ers(returns_arma, type = c("DF-GLS"), model = c("constant"),
lag.max = 4)

ers_crit_val <- ers@cvalll, 2]

resulters <- ifelse(ers@teststat < ers_crit_val, 0, 1)

# Perform ZA test

za.stat <- zaO@teststat

za.cv <- za@cval[2]

if (za.stat<za.cv) {resultza<-1 # reject the null -> the value
attributed is "1" of stationary

} else{ resultza<-0}

resultza

# Store the results in the unit_roots data frame
unit_roots[i, 1] <- resultdf
unit_roots[i, 2] <- resultpp

unit_roots[i, 3] <- resultkpss
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unit_roots[i, 4] <- resulters

unit_roots[i, 5] <- resultza

3

# Print the proportions of stationary outcomes for each test

cat ("Result ADF:", sum(unit_roots[1])/n,"Result PP:", sum(unit_roots[2])/

n,"Result KPSS:", sum(unit_roots[3])/n,"Result ERS:", sum(unit_roots
[4])/n,"Result ZA:", sum(unit_roots([5])/n)
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Annex B

Results - other conducted studies - RollsRoyce

Visualizations of both series are presented through plots, offering a graphical insight

into the patterns and trends within the data:
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(a) RollsRoyce daily stock prices, 2003-2022 (b) RollsRoyce daily stock returns, 2003-

2022

FI1cURE 24. RollsRoyce stock prices and returns

Unit root’s tests

Test Result
ADF Test Value of test-statistic: -1.7689

Critical values for test statistics: 72: -3.43 -2.86 -2.57
PP Test Value of test-statistic, type: Z-tau: -1.6962

Critical values for Z statistics:10% Level: -2.567396
KPSS Test Value of test-statistic: 7.4876

Critical values for significance level: 10% Level: 0.119
ERS Test Value of test-statistic: -0.6771

Critical values for significance level: 10% Level: -1.62
Zivot-Andrews Test | Value of test-statistic: -3.7425

Critical values for significance level: 1% Level: 10% Level: -4.82

Potential Break Point Position: 2239

TABLE 31.

Unit Root test statistics - RollsRoyce stock prices
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All the required tests point for non-stationarity of the time-series data. The Zivot-
Andrews test suggests a structural break at 2239 datapoint, that corresponds to the date
of 2011-10-04.

Structural breaks’ tests

Chow’s tests

Chow’s Breakpoint Test Statistic | 477.97 | P-Value | < 2.2e-16

Chow’s Forecast Test Statistic 0.6383 | P-Value | < 1
TABLE 32. Chow’s Breakpoint test results - RollsRoyce stock prices

Chow’s tests produce contradictory conclusions towards a breakpoint occurring at
point 4380 (chosen as explained earlier at Allianz’s analysis, as well as by observation),
with Chow’s Forecast test pointing towards the non rejection of the null hypothesis, imply-

ing there is not a significant difference in the model fit before and after the specified point.

CUSUM and MOSUM Tests
As for the CUSUM test, the produces graphs are as follows:

Recursive CUSUM test OLS-based CUSUM test

10 20 30 40 50 60

Empirical fluctuation process
Empirical fluctuation process

0

T T 1 R T T

2005 2010 2015 2020 2005 2010 2015 2020

Time Time

Ficure 25. CUSUM Recursive and OLS-bases test results - RollsRoyce

stock prices

The test statistics corroborate the visual inspection:

Rec CUSUM | OLS CUSUM
Test Statistic | 23.106 24.088

P-Value 2.2e-16 2.2e-16
TABLE 33. CUSUM test results - RollsRoyce stock prices

The test results indicate a significant deviation from the expected pattern in the
RollsRoyce stock data. Both p-values are well below significance level, suggesting that
there is a substantial structural change in the data.

In terms of the MOSUM results, the produced graphs are as follows:
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F1GURE 26. MOSUM Recursive and OLS-bases test results - RollsRoyce

stock prices

The test statistics corroborate the visual inspection:

Rec MOSUM | OLS MOSUM
Test Statistic | 24.017 14.929

P-Value 0.01 0.01
TABLE 34. MOSUM test results - RollsRoyce stock prices

Both conducted tests reveal a significant deviation from the expected pattern, with
the associated p-values indicating evidence against the null hypothesis, under the typical

significance level at 5%, suggesting a structural change in the data.

Quandt-Andrews Breakpoint test

The obtained result are:

Test Type | Test Statistic P-Value
supF' test 4739.3 <22x 10716
aveF test 2011.1 <22x 10716
expk test 00 NA

TABLE 35. Quandt Andrews test results - RollsRoyce stock prices

With the highest probability of structural change detected at datapoint 1839, at 2010-

03-04, and unexpected result that is not a corroborated as the others by visual inspection.

Bai Perron test
The results are as follows:
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Segments (m+1) | 0 1 2 3 4

1 - | 1839 | - - -

2 - - 2245 | - | 4317

3 761 - |2279| - | 4317

4 761 | 1714 | 2475 | - | 4317

> 761 | 1662 | 2423 | 3184 | 4317

Segments (m) 0 1 2 3 4 5

RSS 41,302,978 | 21,359,921 | 9,064,415 | 6,422,831 | 5,730,713 | 4,926,964
BIC 60,149 56,818 52,482 50,750 50,188 49,437

TABLE 36. Optimal (m + 1)-segment partition and corresponding fit statistics

(1) Breakpoints (m + 1) test indicates an optimal segment partition of 6, the results

being:

e For m = 5, breakpoints are at observations 761, 1662, 2423, 3184, and 4317,
corresponding to the dates of 2005-11-30, 2009-06-24, 2012-06-29, 2015-07-
03, and 2019-12-23, respectively.

The analysis suggests that the stock data can be effectively segmented into an optimal

number of 6 partitions, each characterized by different statistical properties.

The confidence intervals correspondent to each segment are given by:

Breakpoints at Observation Number

2.5% breakpoints | Breakpoints | 97.5% breakpoints
1 759 761 763
2 1658 1662 1663
3 2422 2423 2424
4 3175 3184 3192
) 4316 4317 4318

TABLE 37. Breakpoints and confidence intervals

ICSS of Inclan and Tiao test

The detected changepoints results are:

Index 444 781 1315 1824
Date 2004-09-13 | 2005-12-28 | 2008-02-07 | 2010-02-11

2280 2586 3180 3634 4359
2011-11-30 | 2013-02-19 | 2015-06-29 | 2017-04-11 | 2020-02-24

TABLE 38. Breakpoints and corresponding dates for the ICSS Test - Roll-

sRoyce stock prices
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In graphical terms, these breaks can be observed at returns level:

RollsRoyce Stock Price

Year

F1Gure 27. ICSS variance test results - RollsRoyce log returns

Changepoint package tests
For single structural changepoint detection, without specifying the exact nature of the
data or the statistical methods used, the results are as follows:
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(a) Cpt.var tests’ results - log returns (b) Cpt.mean tests’ results - stock prices

Ficure 28. RollsRoyce cpt.var and cpt.mean results

Suggesting a break at variance level at point 4326 that corresponds to date 2020-02-28
and 1839, that corresponds to 2010-03-04 for mean level.
Now, let us address the results under the Binary Segmentation algorithm search, again,

allowing for up to 10 structural breaks in data:
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FI1GURE 29. RollsRoyce cpt.var and cpt.mean with Binary Segmentation results

Again, Binary Segmentation allows for a more suited analysis to the given data other
then just cpt.mean and cpt.var functions without further specifications. Yet, the user is
free to consider up to as many breaks as he wishes, and with this power comes bigger
responsibility.

Finally, the results under the PELT algorithm search, without a maximum number of

structural breaks indicated, are as follows:
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(a) PELT cpt.mean results - stock prices (b) PELT cpt.var results - log returns
FiGURE 30. PELT Tests’ results - RollsRoyce

The results are rather close, with PELT providing fewer optimal breaks of the data.
By visual inspection, Binary Segmentation seems to have provided more suited results.
Yet, there was need to indicate the maximum number of segments to be considered.
Results - other conducted studies - Federal Funds Effective Rate

Visualizations of both series are presented through plots, offering a graphical insight
into the patterns and trends within the data:
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F1GURE 31. Federal Funds Effective monthly rate and log returns

Unit root’s tests

The results for unit root’s

test are as follows:

Test

Result

ADF Test

Value of test-statistic: -1.6763 1.443
Critical values for test statistics: 72: -3.44 -2.87 -2.57
o' 6.47 4.61 3.79

PP Test

Value of test-statistic, type: Z-tau: -2.5269
Critical values for Z statistics: 1% Level: -3.456733
5% Level: -2.872632
10% Level: -2.572632

KPSS Test

Value of test-statistic: 0.3093

Critical values for significance level: 1% Level: 0.216
5% Level: 0.146
10% Level: 0.119

ERS Test

Value of test-statistic: -1.1484

Critical values for significance level: 1% Level: -2.57
5% Level: -1.94
10% Level: -1.62

Zivot-Andrews Test

Value of test-statistic: -5.8907

Critical values for significance level: 1% Level: -5.57
5% Level: -5.08
10% Level: -4.82

Potential Break Point Position: 82

TABLE 39. Unit Root Test Statistics - FFER monthly rate

All the required tests point for non-stationarity of the time-series data, except the

Zivot-Andrews that considers the time-series to be stationary even at 1% significance level.
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Additionally, the test suggests a structural break at obervation 82, that corresponds to
the month of October, 2007, supported by visual inspection. In reaction to deteriorating
economic conditions, the Federal Open Market Committee reduced its federal funds rate
objective from 4.5 percent at the end of 2007 to 2 percent at the start of September 2008.
As the financial crisis and economic downturn worsened in the fall of 2008, the FOMC
expedited interest rate reduction, bringing the rate down to its effective floor - a target
range of 0 to 25 basis points - by the end of the year. This information is supported by
the result Zivot-Andrews’ test provided.
Structural breaks’ tests
Chow’s tests

Similarly to the previous tests conducted in other time series, the chosen point to
apply Chow’s tests was at observation 229, that corresponds to January 2020, in an
attempt to address if the pandemic can also be considered to have an effect similar to a
structural break in the data. The choice will not rely on Zivot-Andrews’ test suggestion
in an attempt to search for other structural breaks (pointed by visual inspection both at

rate and log returns level).

Chow’s Breakpoint Test Statistic | 8.7879 P-Value | 0.003312

Chow’s Forecast Test Statistic 0.691818 | P-Value | 0.9040226
TABLE 40. Chow’s Breakpoint test results - FFER monthly rate

The results for Chow’s Breakpoint test points towards a breakpoint occuring at this
datapoint, yet the Chow’s Forecast Test does not imply there is a significant difference
in the model fit before and after the specified point, as the p-value is bigger than any
significance level to reject the null hypothesis.

If the second test is conducted at observation 82, the result is also for the non-rejection
of the null hypothesis, with a p-value of 0.691362.

CUSUM and MOSUM tests
As for the CUSUM test, the produced graphs are as follows:
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Ficure 32. CUSUM Recﬁersive and OLS-bases test results - FFER
monthly rate
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The test statistics corroborate the visual inspection:

Rec CUSUM | OLS CUSUM
Test Statistic | 3.2192 5.4145

P-Value 2.2e-16 2.2e-16
TABLE 41. CUSUM Test Results - FFER monthly rate

The test results indicate a significant deviation from the expected pattern in the
Federal Funds Effective Rate, monthly rates. Both p-values are well below significance
level, suggesting that there is a substantial structural change in the data.

In terms of the MOSUM results, the produced graphs are as follows:
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F1GURE 33. MOSUM test results - FFER monthly rate

The test statistics corroborate the visual inspection:

Rec MOSUM | OLS MOSUM
Test Statistic | 3.9471 4.2423

P-Value 0.01 0.01
TABLE 42. MOSUM test Results - FFER monthly ratee

Both conducted tests reveal a significant deviation from the expected pattern, with
the associated p-values indicating evidence against the null hypothesis, under the typical

significance level at 5%, suggesting a structural change in the data.

Quandt-Andrews Breakpoint test
The obtained result are:
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Test Type | Test Statistic P-Value

supF test 250.26 <22 x 10716
avel test 60.669 <22 x 10716
expkF test 120.98 <22 x 10716

TABLE 43. Quandt Andrews test results - FFER monthly rate

With the highest probability of structural change detected at observation 93, at Sep-
tember 2008. Regarding the explanation provided around the execution of the Zivot-
Andrews test, Quandt Andrews provides a suggestion to a structural break aligned with

the expectations.

Bai Perron test

The results are as follows:

Segments (m+1)| 0| 1| 2 | 3 | 4
1 - 193] - - -
2 49 | 88 | - - -
3 51190 | - 194 | -
4 51190 | - | 186|225
d 50 [ 89 | 128 | 186 | 225
Segments (m) 0 1 2 3 4 5
RSS 693.1 | 354.5 | 244.0 | 206.1 | 200.1 | 199.2
BIC 1015.2 | 849.3 | 761.9 | 728.5 | 731.7 | 741.7

TABLE 44. Optimal (m + 1)-segment partition and corresponding fit sta-
tistics - FFER monthly rate

(1) Breakpoints (m + 1) test indicates an optimal segment partition of 4, the results
being;:
e For m = 3, breakpoints are at observations 51, 90 and 194, corresponding
to the dates of March 2005, June 2008 and February 2017, respectively.

The analysis suggests that the data can be effectively segmented into an optimal
number of 4 partitions, each characterized by different statistical properties, with both
RSS and BIC descending values up to that partition.

The confidence intervals correspondent to each segment are given by:
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Breakpoints at Observation Number
2.5% breakpoints | Breakpoints | 97.5% breakpoints
1 48 51 55
2 89 90 91
3 181 194 195

TABLE 45. Breakpoints and confidence intervals

ICSS of Inclan and Tiao test
The detected changepoints results are:

Index 11 95 88 196 259

Date | November 2001 | July 2005 | April 2008 | April 2017 | July 2022
TABLE 46. Breakpoints and corresponding dates for the ICSS test FFER

monthly rate

In graphical terms, these breaks can be observed at returns level:

Federal Funds Effective Rate logreturns
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F1GURE 34. ICSS variance test results - FFER log returns

These results are very aligned with the expectations, as they point the disruptions in

terms of practitioned rates around the time period being considered.

Changepoint package tests
For single structural changepoint detection, without specifying the exact nature of the
data or the statistical methods used, the results are as follows:
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F1GURE 35. Federal Funds Effective Rate cpt.var and cpt.mean results

Suggesting a break at variance level at point 229 that corresponds to January 2020
(as anticipated) and 93, that corresponds to September 2008 for mean level, also aligned
with the previously explained reasons.

Now, let us address the results under the Binary Segmentation algorithm search, again,
allowing for up to 5 structural breaks in data:
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F1GURE 36. Federal Funds Effective Rate cpt.var and cpt.mean with Bi-
nary Segmentation results
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Here, at mean level, the Binary Segmentation produced 5 breakpoints (as it typically
does) and 5 breakpoints at variance level. Finally, the results under the PELT algorithm

search, without a maximum number of structural breaks indicated, are as follows:
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FI1GURE 37. PELT Tests’ results - Federal Funds Effective Rate

The results are really close, and one observation that can lead to these results rather
that the type of data is also the number of observations, as this time series accounts only
for around 260 entrances. Again, both are pointing towards the same areas, the choice
of each test being more related to prior knowledge of data, sample size and execution
capacity.
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