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Abstract

Given a liability structure, the bank portfolio optimization deter-

mines an asset allocation that maximizes profit, subject to restrictions

on Basel III ratios and credit, liquidity, and market risks. Bank allo-

cation models have not been tested using historical data. Using an

optimization model based on turnover constraints, we develop such
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tests, which document the superior performance of optimization strate-

gies compared to heuristic rules, resulting in an average annual out-

of-sample outperformance of 15.1% in terms of Return on Equity using

our data set. This outperformance is remarkable and contrasts with the

reported underperformance of several portfolio optimization methods in

the case of investment management.

1 Introduction

The optimization of bank balance sheets consists of the choice of the alloca-

tions in the different asset classes. It involves several variables, namely the

prospective returns on asset classes, the regulatory framework, the accounting

rules, and internal risk estimates.

To the best of our knowledge, there have been no historical tests of bank

portfolio optimization methodologies, unlike, for instance, on investment port-

folio optimization [25, 27, 33, 36], where numerous papers have addressed the

historical performance of different optimization methodologies. As many arti-

cles have shown in the case of investment portfolios (see for instance [9, 11]),

optimization methods guarantee best returns ex-ante (or in-sample), but of-

ten do not outperform heuristic strategies ex-post (out-of-sample). Due to

the underperformance of many investment portfolio optimization approaches,

Bridgewater Associates has advocated using All Weather Portfolios [7], related

to Risk Parity Portfolios [2, 9, 34, 35], which are successful heuristics.

Bank portfolio management, although more involved than investment port-

folio management due to the several risks to be considered, has a significant

advantage in that the returns of the different asset classes are more predictable.

The mark-to-market accounting associated with investment management port-

folios makes predicting returns very difficult since market prices account for

most of the returns, and these are very difficult to predict. In contrast, the

prediction of returns for asset classes in bank portfolio optimization is eas-

ier: the returns for loans and securities at amortized cost, which often are

the bulk of banks’ assets, are essentially the interest rate (which is known for
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fixed-rate assets), and the expected loss, which is much easier to forecast than

variations in market prices. This observation propelled us to investigate the

out-of-sample performance of bank optimization methods.

Bank portfolio optimization falls into the realm of asset-liability manage-

ment. Bank balance sheet optimization models have been available since the

eighties. We cite a few references. Kusy and Ziemba [29] have created a

framework for calculating optimal balance sheets using the stochastic nature

of cash outflows. Kosmidou and Zopounidis [28] have devised a simulation-

optimization framework considering the balance sheet’s interest rate risk. The

regulatory and accounting frameworks have evolved considerably since then:

for instance, Basel III has been implemented, and regulators actively monitor

capital and liquidity ratios; credit risk measurement has also grown signifi-

cantly since then.

A few papers have recently addressed bank asset structure optimization.

Halaj [23, 24] has devised methodologies for calculating the optimal asset struc-

ture of a bank in the presence of solvency and liquidity restrictions. Schmaltz

et al. [37] have also researched optimal balance sheets in the presence of regu-

latory constraints. Uryasev, Theiler, and Serraino [41] conducted optimization

using different aggregation measures, while Sirignano, Tsoukalas, and Giesecke

[38] ran large-scale asset allocation. Yan, Zhang, and Wang [42] devised a ro-

bust model for asset allocation, while Brito and Júdice [8] tackled the allocation

problem under IFRS 9. Júdice and Zhu [26] used linear programming duality

to solve the asset-liability management problem.

To the best of our knowledge, none of the models for bank portfolio opti-

mization have been tested out-of-sample. Out-of-sample tests are critical to

evaluate the model robustness and its practical use. As we mentioned, the

bulk of investment portfolio optimization models are discarded in practice due

to their poor performance out-of-sample. As our research will show, this is not

the case for a properly calibrated bank portfolio optimization model, which

we will present.

With this literature review in mind, our research provides the following

contributions:

3



1. First, we devise an optimal bank asset allocation model, given a lia-

bility structure, using global turnover constraints, which are easy to

calibrate, and have been used in the context of portfolio optimization

[10]. Turnover constraints restrict variations on the asset proportions

and thus prevent large fluctuations in allocations each year. This sort

of constraints stem from the fact that banks cannot change their asset

composition very quickly, since loans are hard to liquidate in a short-

time period. Consequently, a major change in the balance sheet is only

achieved if market conditions show a steady trend over time. We focus

solely on the asset structure, given that it is easier to change the asset

structure than the liability structure. For example, as documented in

[22], growing the deposit base is often difficult as retail deposits tend to

be sticky. Also, equity capital may be difficult to obtain particularly at

times of increased financial stress.

2. We use extensive historical data to devise a testing framework of opti-

mization and heuristic strategies, addressing both the performance and

the stability of the allocations.

3. We document the excessive sensitivity of optimization methodologies

without global turnover constraints. The allocations without turnover

constraints can vary in our setting up to about 50% in a year, which is

infeasible in practice. For example, a bank cannot change the allocation

of its consumer credit portfolio from 10% to 60% in a year, unless it

makes an acquisition of a large consumer credit business unit, which may

not be readily available. We demonstrate that turnover methodologies

yield smoother allocation trajectories, which enable them to be used in

practice.

4. Finally, we document the superiority of optimization strategies when

compared to classical heuristic strategies, resulting in an average out-

of-sample outperformance of 1.51% in return on assets and of 15.1% in

return on equity.
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These contributions show that bank asset optimization methodologies are

suitable to be used in practice, since they can combine the superior prof-

itability presented by the optimization models with allocations that can be

implemented by bank management.

This paper is organized as follows. Section 2 describes the model and

the return and risk parameters used as inputs. Section 3 conducts an exten-

sive analysis of out-of-sample results on the performance and stability of the

optimization method with turnover constraints against a series of heuristic

benchmarks that we adapt to the banking context. Section 4 concludes the

manuscript.

2 Model description

In this section, we develop the model for the optimal asset structure. We

assume that the liability structure is fixed, for the reasons explained in the

introduction. Section 2.1 describes each equation of the model and Section 2.2

gives the rationale for the estimations of the internal parameters.

Throughout the paper, we assume the following time notation. At the

beginning of year t, the bank decides its optimal allocation (xt) based on the

information it has up to the end of the previous year t−1 (ex-ante evaluation),

namely interest rates and default rates (rt−1 and PDt−1). By the end of year t,

the bank will know if the model performed well during that year based on the

changes in asset prices and default rates observed at the end of year t (ex-post

evaluation). In this section, we address the optimal asset allocation model.

The performance of the model is evaluated in Section 3. We omit the indices t

in this section for clarity of exposition, as it is only concerned with the model.

We intend to apply the algorithm regularly over the period under study

following a rolling window methodology. Consequently, the algorithm starts

with the portfolio x0, which is the one currently used in the first year of the

study. Next, it finds the optimal asset structure x∗ for the next year, which

satisfies the Basel III and turnover constraints, given a prediction of the rates,

defaults and risk of each asset obtained from the previous ten year’s data.
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Asset Description
A1 Cash

A2, A3 Mortgage and Personal Loans, respectively
A4, A5 Treasury bonds AFS and HTM, respectively
A6, A7 Corporate bonds AFS and HTM, respectively

Table 1: Different segments where the bank can make its investments.

Then, x0 is updated with x∗ and the model is applied to obtain the optimal

solution for the following year and so on.

2.1 The proposed model

Let us consider a bank that has to make the decision on how to allocate

its assets. We assume that the bank’s funding comes from deposits, money

market funding, issued bonds, and shareholders’ capital. The proportions that

come from each of these funds are denoted by li, i ∈ {1, 2, 3, 4}, respectively,

which are constants and inputs to the problem, for the reasons explained in

the introduction. For example, l2 = 0.2 means that 20% of the bank’s funding

comes from money market funds. This set of liabilities is representative of

bank’s funding, as documented for example in [6] and [22].

Let A = {A1, A2, A3, A4, A5, A6, A7} be the set of assets described in Table

1. This set describes a great part of the activity of many banks, and for all these

aggregates we have historical data as we will see in the following sections. We

note that equities are excluded, since typically equity investments are a tiny

fraction of banks’ portfolios. For example, the European Banking Authority

[13] reports that equity investments represent 1.3% of European banks’ total

assets as of the end of 2022.

HTM designates Held-To-Maturity assets, while AFS designates Available-

For-Sale assets. Let AL = {A2, A3, A5, A7} be the subset of assets associated

with long holding periods, that is, loans and HTM assets. The distinction

between AFS and HTM bonds is important. When a bank classifies a bond

as available for sale (AFS), it signals the possibility of selling the bond in the
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market. If a bank classifies a bond as held-to-maturity (HTM), it is signaling

that it will not sell the bond in the market. Using the accounting rules,

AFS bond devaluations impact comprehensive income and the bank’s return

as a consequence. However, the accounting rules for HTM specify that bond

devaluations have no impact on comprehensive income and the return on the

bank.

Additionally, define Ω = {x ∈ R7 :
∑

i∈A xi = 1, xi ≥ 0} as the set of

admissible portfolios. In our model, we assume that the bank has to decide

on a particular allocation x ∈ Ω at the beginning of a certain year, taking

into account a previous decision x0 ∈ Ω made in the beginning of the previous

year.

Our model distinguishes between legacy (x̂i) and new (x̃i) contracts for

each asset. As a consequence, we also distinguish between the interest rate

on legacy contracts, r̂i, and the interest rate on new ones, ri. The amount

of legacy contracts is obtained through repayments, so that x̂i = (1 − αi)x
0
i ,

where αi is the repayment portion on asset i. Finally, legacy and new contracts

fulfill the portfolio, so xi = x̂i + x̃i, ∀i ∈ A.

Since capital and liabilities are given as inputs to the problem, the calcula-

tions that depend on them are considered constants, as we will explain in detail

below. We note that these constants depend upon the liability structure, and

heavily influence the problem. Thus, the liability structure is an important

input to the problem. Given the set of inputs, we propose the following model:
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max
x∈Ω

r(x) (1)

subject to

∑
i∈A λixi

Λ
≥ K1, (2)

N∑
i∈A νixi

≥ K2, (3)

C − IRR−
√

V (x)∑
i∈ARWixi

≥ K3, (4)∑
i∈A Sixi

M
≥ K4, (5)

x̂i = (1− αi)x
0
i , ∀i ∈ A (6)

xi = x̂i + x̃i, ∀i ∈ A (7)

xi − x0
i ≤ yi, x0

i − xi ≤ zi, ∀i ∈ A (8)∑
i∈A

(yi + zi) ≤ h (9)

yi ≤ αix
0
i , ∀i ∈ AL (10)

zi ≤ αix
0
i , ∀i ∈ AL (11)

yi, zi ≥ 0, ∀i ∈ A (12)

We now explain each equation, one by one.

First we look at the return. The objective function of our model (1) cor-

responds to the prospective return of the bank sheet, and it is necessary to

differentiate prospective returns from legacy and new contracts:

r(x) =
∑
i∈AL

(
x̂ir̂i + x̃iri − xiLGDiPDi

)
+
∑
i/∈AL

xiri, (13)

where ri is the interest rate on new contracts and r̂i is the interest rate on

legacy contracts. PDi denotes the estimated probability of default, whereas

LGDi stands for the loss given default. ri, r̂i, PDi and LGDi are all inputs

to the model.

The equation (2) is a restriction on the Liquidity Coverage ratio, a key
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metric that was developed in the aftermath of the Subprime Crisis by the

Basel Committee in Banking Supervision to ensure that banks had enough

liquid assets to withstand liquidity outflows from creditors (such as deposit

runs) [4]. This restriction posits that banks should have enough high quality

liquid assets that can be sold in case there are massive withdrawals from

costumers. The ratio compares the realizable value of assets
∑

i∈A λixi with

the potential withdrawals from liabilities
∑4

j=1 λ̄jlj, where λi, λ̄j ∈ [0, 1] are

constants. The higher the liquidity of asset class i, the higher is the weight

λi. For liabilities, the higher values of λ̄j correspond to the liabilities that

experience higher withdrawals in episodes of stress, such as money market

funds. The ratio and the limit prescribed by the regulators is thus∑
i∈A λixi∑4
j=1 λ̄jlj

≥ K1. (14)

By taking Λ =
∑4

j=1 λ̄jlj, which is constant, we get restriction (2).

On the left hand of the constraint (3) we have the regulatory ratio NSFR

(Net Stable Funding Ratio) that evaluates if the bank has enough stable lia-

bilities to fund illiquid assets. This ratio is given by∑4
j=1 ν̄jlj∑
i∈A νixi

, (15)

and compares the available stable funding
∑4

j=1 ν̄jlj with the required stable

funding
∑

i∈A νixi. On the one hand, the required stable funding is the amount

of stable funds the bank should hold to finance illiquid assets. The weights for

the required stable funding νi ∈ [0, 1] reflect the illiquidity of assets, so that if

i is more illiquid, it receives a greater weight. On the other hand, the available

stable funding reflects the amount of stable financing that the regulator thinks

the bank has. It is given by a weighted sum of the liabilities, where the weights

ν̄j ∈ [0, 1] reflect the stability of the funding. As a result, ν̄j will be higher

for liabilities that are less likely to experience massive withdrawals, such as

long-term bonds or retail deposits. By taking N =
∑4

j=1 ν̄jlj and enforcing a
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minimum limit K2 on the NSFR, we get restriction (3).

On equation (4), the bank evaluates if its common equity tier 1 ratio is

above a certain threshold K3 even after a shock in interest rates and devalua-

tions or defaults on assets. Let us recall that the common equity tier 1 ratio is

given by the ratio of capital to risk-weighted assets. The latter are calculated

using the formula ∑
i∈A

RWixi, (16)

where RWi is a risk weight that specified by regulators that describes the

riskiness of asset i. In the numerator of the formula, we include the capital

that the bank has and include two shocks, which we describe below:

• A first shock is a net interest margin shock, which comes from the repric-

ing of liabilities. If interest rates go up, the bank will lose
∑4

j=1 δjlj,

where δj measures the decrease in net interest margin in liability j due

to an increase in interest rates. Note that we assume that all the assets

reprice at one year or more, so they will not influence the net interest

margin if interest rates go up. Thus the net interest margin shock is

a constant IRR =
∑4

j=1 δjlj that depends upon the structure of the

liabilities (l1, l2, l3, l4), which is an input to the problem.

• A second shock V (x) =
∑

i∈A(σixi)
2 is determined by devaluations on

market assets and defaults on long-term assets, where σi is the risk as-

sociated with defaults or devaluations on asset class i. We assume that

σ1 = σ5 = 0 since their credit risk is very low and the risk of market

devaluations is negligible (HTM assets are not impacted by market deval-

uations). V (x) is thus a risk function for the asset structure that depends

on the individual risks for each asset class. The risk factor σi for loans

and corporate bond HTM (i ∈ {2, 3, 7}) will be given by the credit V aR

which is given by the difference between the unexpected loss at 99.9% and

the expected loss [21], that is σi = ULi(0.999)−ELi where ULi(0.999) =

N

(√
1

1− ρi
×N−1

(
PDi

)
+

√
ρi

1− ρi
×N−1(0.999)

)
×LGDi and ELi =
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PDi×LGDi, i ∈ {2, 3, 7}. Finally, the risk factor for AFS bonds will be

given by the Market VaR, which is σi = N−1(0.95)si, i ∈ {4, 6}, where

si is the standard deviation of the return of asset i.

Expression (5) is a coverage ratio that determines if market-related assets

cover wholesale liabilities. Market-related assets are given by
∑

i∈A Sixi, where

Si is zero for loans, and 1 for the remaining assets, whereas wholesale liabilities

are given by M := l2 + l3, i.e., the total proportion of money market funds

and issued bonds in the liability structure.

The following constraint (6) describes the legacy assets that we have de-

scribed prior to the formulation of the model, whereas (7) states that the

proportions of legacy assets x̂i and new assets x̃i in a certain asset class i have

to be equal to the total proportion xi in asset class i.

The global turnover restrictions are shown in equations (8) - (9), where we

posit that the global variation of the assets (as measured by the sum of the

absolute value of the differences to the previous portfolio x0) is not greater

than a constant h. This constant essentially describes the fact that banks

should not reallocate their assets in an abrupt manner, given the difficulty in

reallocating large proportions of assets in practice. Such difficulty stems from

the practical constraints on selling loan portfolios and whole business units,

or reallocating systems or people to other business units. Variables yi and zi

allow us to write this constraint in a linear manner.

Finally, local turnover constraints are shown in equations (10) and (11).

These equations specify that, for long-term assets in AL, the bank cannot

reallocate assets by an amount greater than αix
0
i . This restriction stems, to

a great extent, from the fact that banks cannot liquidate legacy assets easily,

so we enforce that xi ≥ x̂i, which is equivalent to x0
i − xi ≤ αix

0
i , and it is

obtained from equations (8) and (10). We also enforce a local upper bound

on x, given by xi − x0
i ≤ αix

0
i , and in the tests this bound will be relaxed on

some versions of the model.

Although the theme of limited reinvestments by repayments has also been

addressed in [23], that research neither considers the upper bound local turnover

constraint (10) nor the global turnover constraint (9). Consequently, that

11



model allows an arbitrarily large investment in assets belonging to AL which

can not be easily divested in the following years. Additionally, the global

turnover is not restricted, leading to solutions that show large variations which

are hard to accomplish in practice.

This model represents a nonlinear problem since the constraint (4) is non-

linear. This constraint can be converted to

IRR +
√
V (x) + K3

∑
i∈A

RWixi − C ≤ 0. (17)

The left-hand side, as a sum of convex functions, is convex. Since the other

constraints are linear (or can be transformed into linear ones), all constraints

are convex, wherefore the admissible region is convex. Consequently, the op-

timization problem is convex, ensuring that the local optimum is global.

For that reason, we used the interior-point method (see for instance [30])

to find the optimal solution x∗ for this model through the fmincon tool that

belongs to the Matlab Optimization Toolbox.

2.2 Model parameter estimation

As we already mentioned, we assume that the liability structure is fixed and

corresponds to:

Liabilities

Deposits Money Market Issued Bonds Capital

Allocation 0.5 0.2 0.2 0.1

Table 2 reports the fixed input data to our model. In this table, IRR

represents the sensitivity of net interest income to a 300 basis point shock

in interest rates. Since all the asset classes are at fixed rates, the liability

structure determines completely this sensitivity. In our test case, a 300 basis

point increase in rates has a negative impact of 1.1% in the balance sheet.

We now address the estimation of repayments αi. For cash and available-

for-sale assets (i ∈ {1, 4, 6}), we assume yearly rebalancing, so that αi = 1.

For mortgages and personal loans i ∈ {2, 3}, we assume the approximation
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Λ = 21.5% λ = [100% 0% 0% 100% 100% 50% 50%]
N = 78% ν = [0% 65% 85% 5% 5% 5% 5%]
C = 10% IRR = 1.1%
h = 15% RW=[0% 35% 100% 0% 0% 100% 100%]
K1 = K2 = 110% S = [100% 0% 0% 100% 100% 100% 100%]
K3 = 10% K4 = 100%
M = 40%

Table 2: Fixed input data for the model

that every year the bank gives a constant amount of new loans and that the

amortization is constant. Since the amortization on the loan is a function of

the interest rate, for simplification, we posit that all loans have the same initial

amount and fixed interest rate corresponding to the average interest rate in

the evaluation period (5.46% for mortgages and 11.54% for personal loans).

Using this method, we arrive at the amortization rates in Table 3.

For held-to-maturity bonds (i ∈ {5, 7}), amortizations occur only at the

end of the period. If we make a similar assumption, in that the bank invests in

a constant amount every year, let us say c, the bank will have an outstanding

amount cMi in these bonds, on which every year c will amortize and c will

be reinvested. The amortization rate is thus αi = c/(cMi) = 1/Mi. For

example, suppose the bank invests 100 million dollars in 10-year Treasuries

every year. In that case, the bank will have a constant outstanding amount of

1 billion after ten years, on which 100 million will amortize, corresponding to

an amortization rate of 10%, or 1/10.

Additionally, the interest rate on legacy contracts of asset i, r̂i, is initialized

as the average rate of the previous 10 years for the first year in our study.

Subsequently, r̂i is updated with (1− αi)r̂i + αiri, ∀i ∈ A.

The interest rate on new contracts (ri) is taken from the end of the previous

year. When the bank decides the allocation at the beginning of year t, it knows

the interest rates that it will receive on the assets by the end of that year t,

given that all assets have fixed rates. This part is deterministic and does

not need to be estimated. The bank does not know the default rate on the

assets that will occur by the end of year t, so it needs to estimate it. This is
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Ai A1 A2 A3 A4 A5 A6 A7

Mi — 30 2 — 10 — 20
αi 1 0.0518 0.655 1 1/10 1 1/20

LGDi 0 0.471 0.64 0 0 0.628 0.628

Table 3: Values for the fixed parameters used in the model for each asset.

Parameter Value
ρ2 0.15

ρ3 0.03× 1− e−35PD3

1− e−35
+ 0.16×

(
1− 1− e−35PD3

1− e−35

)

ρ7 0.12× 1− e−50PD7

1− e−50
+ 0.24×

(
1− 1− e−50PD7

1− e−50

)

Table 4: Value of parameter ρi, i ∈ {2, 3, 7}.

estimated by PDi ∗ LGDi, where the probability of default on asset i (PDi)

was estimated using the (simple) moving average method over the previous 10

years (see [4, 39]). The LGDi parameters (loss given default) are reported in

Table 3 and were obtained from [3, 40] for loans and from [32] for corporate

bonds. For mortgages and personal loans (i ∈ {2, 3}), we don’t have statistics

of historical default rates, so the expected loss PDi ∗ LGDi was estimated

using the ten-year moving average of the the previous charge-off rates [16, 17].

We would like to emphasize that the prospective return ri on AFS bonds

is given by yi, where yi is the yield on AFS bonds at the end of the previous

year.

Table 4 reports the ρi values, i ∈ {2, 3, 7} that correspond to the correla-

tion between different contracts within the same asset class. These were used

to compute the risk of assets i ∈ {2, 3, 7} (given by the credit V aR) and were

taken from [1, 5, 12].
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3 Computational experiments

In this section, we report an extensive computational study comparing the

proposed model with classical heuristic strategies, and we evaluate the ex-post

performance, using historical data.

Since the heuristic approaches may not give a solution that is compliant

under Basel III, we search the nearest solution that verifies these constraints

by solving the following model:

min
x∈Ω

||x− xH || (18)

subject to (2)− (12),

where xH is a heuristic solution. In this research, we consider norm ℓ1, that

is, ||x− xH || =
∑

i∈A |xi − xH
i |, since it allows us to get solutions that modify

fewer components of the original one, making this approach less sensitive to

parameters than other norms, such as the Euclidean norm. However, other

norms could be considered.

3.1 Tested approaches

Altogether, six approaches (three optimized and three heuristics) were tested

in this work. Three of them come from the optimized model suppressing some

turnover constraints to better understand their effect in the final solution.

These strategies are:

• M1: this approach consists of applying the original model presented in

section 2;

• M2: similar to the previous one but removing upper bound local turnover

constraint (10);

• M3: similar to the previous one but removing also the global turnover

constraint (9).
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We compare the optimized approaches against classical heuristic approaches,

which we list below:

• EW (Equal Weighting): all the assets have the same allocation in the

balance sheet;

xEW =
[100

7
%

100

7
%

100

7
%

100

7
%

100

7
%

100

7
%

100

7
%
]
.

• 60/40: this is an adaptation of the 60/40 equity/bond portfolio allocation

[9] to banks. In this work, we use this strategy to define a balance sheet

allocating 60% in assets with high risk and 40% to assets with lower

risk. We consider the cut-off point for risk as 2% and set equal weightings

inside each group. Taking into account the average risk reported in Table

7, this leads to the following allocation:

x60/40 =
[40

3
%

60

4
%

60

4
%

60

4
%

40

3
%

60

4
%

40

3
%
]
.

• RP (Risk Parity): this strategy makes the allocations in such a way that

all the assets contribute with the same risk to the final solution. Then,

in case σi > 0, ∀i ∈ A, this solution could be defined as xi = 1/σi∑
j∈A 1/σj

,

i ∈ A. However, some assets have no risk or very low risk, so that we

need to adapt the methodology to our bank setting. Consequently, for

a specific year of the simulation, we define the set of assets AR that

have a risk penalty greater than 2% and apply a risk parity strategy

to these assets, and an equal weighting strategy to the remaining ones.

This set has to be updated for each year in the simulation. To compare

the behaviour of this solution with the previous one, we keep the same

allocation proportion between high-risk and low-risk assets. Thus, this

solution is given by

xRP
i = 0.6× 1/σi∑

j∈AR
1/σj

, i ∈ AR, (19)
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and

xRP
i =

0.4

#(A\AR)
, i /∈ AR. (20)

3.2 Initial balance sheet

In order to assess the robustness of the results on the performance of the

optimized and heuristic strategies, we defined seven different initial balance

sheets (see Table 5), which are defined as follows:

A: allocate 50% of the balance sheet to Cash;

B: allocate 50% of the balance sheet to Loans ;

C: distribute the asset allocation evenly;

D: typical asset structure of a diversified retail bank. We consider a retail

bank that deals mostly with individuals, so it focuses on solutions for

these costumers, such as personal loans and mortgages. The bank should

have enough liquid securities and cash to withstand liquidity shocks, thus

showing a significant allocation to liquid assets;

E: typical asset structure of an investment bank. Investment banks usually

deal with securities. Therefore, the example we consider reflects the

activity in investment securities;

F: typical asset structure of a consumer credit bank. The consumer credit

bank we consider has its core activity in consumer credit or personal

loans, but will also have to allocate a significant amount to liquid assets

such as Treasury bonds or cash to withstand unforeseen liquidity shocks;

G: typical asset structure of a mortgage loan bank. In this case, we consider a

bank whose core activity is granting mortgage loans. Thus, its balance

sheet reflects its activity. Naturally, the bank will still have to allocate

a significant amount to liquid assets.

All of these initial balance sheets are compliant under Basel III.

17



Initial balance sheet
Assets A B C D E F G

Cash 50% 10% 100
7

% 5% 20% 25% 10%

Mortgage loans 10% 20% 100
7

% 40% 0% 0% 60%

Personal Loans 10% 30% 100
7

% 20% 0% 50% 0%

Treasury bonds AFS 7.5% 15% 100
7

% 25% 40% 0% 10%

Treasury bonds HTM 7.5% 10% 100
7

% 5% 20% 25% 10%

Corporate bonds AFS 7.5% 10% 100
7

% 2.5% 20% 0% 5%

Corporate bonds HTM 7.5% 5% 100
7

% 2.5% 0% 0% 5%

Table 5: Description of the seven initial balance sheets (corresponding to the
balance sheet for 1994 in our simulation).

3.3 Out-of-sample results

We use historical data used to evaluate the performance of the proposed model,

namely public USA data for interest rates and defaults from 1985 until 2022.

Table 6 indicates the data sources, and Table 7 reports a summary overview

of the average return and the average risk penalty for each asset.

Asset Interest
structure rate Defaults
Cash [18] —
Mortgage loans [15] [17, 40]
Personal loans [19] [16, 3]
Treasury bonds AFS [14] —
Treasury bonds HTM [14] —
Corporate bonds AFS [20] [32, Exhibit 23 (page 28) and Exhibit 7 (page 8)]
Corporate bonds HTM [20] [32, Exhibit 23 (page 28) and Exhibit 7 (page 8)]

Table 6: Sources for the rates for each asset.

Although we have available data from 1985 to 2022, in order to obtain a

solution in the ex-ante optimization process, we need to predict some param-

eters of our model (PDi, ri, σi), smoothing their values with the average over
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Asset structure Return (%) Risk penalty (%)
Cash 2.402 0.000
Mortgage loans 5.176 4.679
Personal Loans 9.067 7.370
Treasury bonds AFS 5.264 8.726
Treasury bonds HTM 3, 870 0.000
Corporate bonds AFS 7.609 7.178
Corporate bonds HTM 6.278 1.348

Table 7: Average return and risk penalty for each asset during the evaluation
period (1995− 2022).

the previous 10 years, as discussed in section 2.2. Consequently, our ex-post

simulation only runs from 1995 to 2022.

At year t, the ex-post simulation consists on evaluating the solution ob-

tained in the ex-ante optimization process with the effective return function

at the end of that year:

r̃(x) = x1r1 +
∑
i∈AL

(x̂ir̂i + x̃iri − xiLGDiPDi) +
∑
i=4,6

xir̃i, (21)

where ri is the actual value of the interest rate at the end of the previous year

t − 1, for i = 1 or i ∈ AL, and PDi is the default rate observed at the end

of year t. Since all assets have fixed interest rates, the interest rates that the

bank receives are from the end of t − 1, knowing that the bank decided the

allocation at the beginning of year t. When the bank decides the allocation

at the beginning of year t, it does not know the default rate that will occur at

the end of that year. This will be only known by the end of the year t.

For AFS bonds (i=4,6) and year t, the effective return ri is given by

r̃i = ri −Dur(ri)∆, (22)

where ri is the yield on AFS bonds at the end of the previous year t − 1,

Dur(y) is the modified duration on the bonds, and ∆ is the increase/decrease

in interest rates from the beginning to the end of the year. Let us first give
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the intuition for Equation (22) and then explain in detail how it is computed.

Recall that, unlike held-to-maturity bonds, available-for-sale bonds are regis-

tered at market prices in the balance sheet, so their price variations affect the

return on the bank. The effective return is thus governed by two parts. The

first is the yield on the bonds, which is a proxy for the income that the bonds

generate. The second is the variation in market prices which can be approxi-

mated by multiplying the negative of the modified duration on the bonds by

the interest rate variation. Let us give an example. Suppose that a 10-year

Treasury bond has a modified duration of 9, that in the beginning of the year t

(end of year t−1) has a yield of 4%, and that at the end of the year t the yields

have increased from 4% to 5%. The effective return can be approximated by

two parts: the first is the income, which is given by 4%, and the second is the

variation in market prices, which can be approximated by the duration times

the variation in yields, which is equal to −9 ∗ 1% = −9%. As a result, the

effective return for year t in this example is 4%− 9% = −5%.

For the sake of clarity, we review the computation of the modified duration

for the bond. Let us denote P (y) the bond price as a function of its yield

y, with a coupon c and maturity T . Assuming yearly coupon payments, the

bond price can be determined by

P (y) =
1

(1 + y)T
+

T∑
t=1

c

(1 + y)t
. (23)

where the first term is the present value of the principal payment and the

second corresponds to the annuity associated with coupon payments. The

previous expression can be cast as

20



P (y) =
1

(1 + y)T
+

T∑
t=1

c

(1 + y)t
=

1

(1 + y)T
+

c

(1 + y)

T−1∑
t=0

1

(1 + y)t
(24)

=
1

(1 + y)T
+

c

(1 + y)

1−

(
1

1 + y

)T

1−

(
1

1 + y

) (25)

=
1

(1 + y)T
+

c

y

[
1−

(
1

1 + y

)T]
(26)

=
c

y
+

1

(1 + y)T

[
1− c

y

]
. (27)

The modified duration Dur(y) is a measure of the interest rate risk on the

bond, which allows one to estimate the impact of an increase or decrease in

interest rates, as we have exemplified above. Bonds with longer durations tend

to be riskier. The modified duration is given by

Dur(y) = −dP (y)/dy

P (y)
. (28)

In our setting we assume that AFS bonds are rebalanced every year, and that

the new investments in bonds are made at par, which means that c = y and

P (y) = 1. The modified duration therefore is given by first differentiating

expression (27) and then setting c = y, yielding

Dur(y) =
1

y
− 1

y(1 + y)T
. (29)

Figure 2 shows the evolution of the accumulated effective return, ra, for

each one of the strategies tested and the initial balance sheets considered. It

is computed as
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ra0 = 100 and rat = rat−1(1 + r̃(xt)), t > 0, (30)

where t is the index of each one of the years under study and xt = (xt,1, . . . , xt,7)

is the corresponding solution computed in the beginning of that year. Notice

that the models presented (original model presented in section 2 and model

described in section 3) are one-period models that are executed consecutively

over the years so that the solution in a given year is determined at the expense

of the previous one.

The flowchart (Figure 1) shows the simulation procedure used. Algorithms

are presented below in pseudocode to make the concept clearer after a brief

explanation.

Algorithm 1 allows computing the solution (xt) to be implemented in the

beginning of year t and depends on the chosen model and the legacy balance

sheet received from the previous year. The solution obtained in this algorithm

is then used in Algorithm 2 that, after the initialization step (step 2) and

for each year in the time windows considered (step 3), updates the balance

sheet to be executed in the beginning of year t (step 4); this algorithm sub-

sequently computes the effective return at the end of year t (step 5) and the

accumulated effective return at the end of year t (step 6). Finally, Algorithm

3 gives us a sketch of the simulation procedure, where we compared the 3

mathematical models (M1,M2,M3) described in Section 2 and the 3 heuristics

(EW, 40/60, RP ) considered in Section 4.
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Figure 1: Simulation procedure flowchart
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Algorithm 1 Algorithm to determine the solution for a new year given a
model and the solution of the previous year.

1: procedure x∗ = solutionApproach(x0, model, r, r̂, PD, σ)

2: if model ∈ {M1} then
3: return x∗ = optimal solution of the problem described

in Section 2 with constrains (1)-(11);

4: if model ∈ {M2} then
5: return x∗ = optimal solution of the problem described

in Section 2 with constrains (1)-(7), (9)-(11);

6: if model ∈ {M3} then
7: return x∗ = optimal solution of the problem described

in Section 2 with constrains (1)-(7), (10)-(11);

8: if model ∈ {EW} then
9: return x∗ = optimal solution of the problem described

in Section 4 with xEW ;

10: if model ∈ {40/60} then
11: return x∗ = optimal solution of the problem described

in Section 4 with x40/60;

12: if model ∈ {RP} then
13: return x∗ = optimal solution of the problem described

in Section 4 with xRP ;
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Algorithm 2 Computation of the accumulated effective return.

1: procedure acumEffectiveReturn(x0, model, T )

▷ Initialization

2: ra0 ← 100;

3: r̂ ← 1
10

∑10
j=1 r1−j;

4: σ1 ← 0; σ5 ← 0;

▷ Solution path

5: for t = 1 to T do

6: PD ← 1
10

∑10
j=1 PDt−j; ▷ Estimated PDt

▷ Estimation of penalty risk

7: σi ← ULi(0.999)− ELi, i ∈ {2, 3, 7}; ▷ Credit VaR

8: r̄ ← 1
10

∑10
j=1 rt−j;

9: σi ← N−1(0.95)
√

1
10

∑10
j=1(rt−j − r̄)2, i ∈ {4, 6}; ▷ Market VaR

10: xt ← solutionApproach(xt−1, model, rt−1, r̂, PD, σ);

11: r̂ ← (1− α)r̂ + αrt; ▷ Update of legacy returns

▷ Compute effective return

12: r̃i ← rt,i − PDt,i ∗ LGDi, i ∈ {1, 2, 3, 5, 7};
13: r̃i ← rt−1,i − ( 1

rt−1,i
− 1

rt−1,i(1+rt−1,i)Mi
)(rt,i − rt−1,i), i ∈ {4, 6};

14: r̃ ← r̃⊤t xt; ▷ effective return of solution xt

15: rat ← (1 + r̃)rat−1; ▷ accumulated effective return in year t

16: return raT

Algorithm 3 Simulator procedure.

1: procedure simulation(T )

2: Load Tables 1, 2 and 3;

3: Read T

4: for model ∈ {M1,M2,M3, EW, 40/60, RP} do
5: for x0 ∈ {A,B,C,D,E, F,G} do
6: ramodel,x0 ← acumEffectiveReturn(x0, model, T );

The evolution of the allocation for these solutions is presented in Figures

3 - 9 (see the annex section). Table 8 summarizes the accumulated effective
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Initial balance sheet
Strategy A B C D E F G

M1 693.338 760.171 773.512 764.127 526.912 728.770 691.136
M2 744.107 797.012 799.521 815.475 765.217 774.616 820.094
M3 813.458 820.666 822.837 845.664 801.622 803.806 845.956
EW 546.830 573.969 573.848 570.998 376.969 537.538 540.952

60/40 554.267 581.636 581.309 578.035 377.038 537.283 545.577
RP 513.692 572.313 570.460 562.435 385.640 517.123 533.804

M4 789.344 785.791 793.872 789.948 771.917 771.682 777.700

Table 8: Accumulated effective return in the last year of the simulation.

Initial balance sheet
Strategy A B C D E F G Average

Optimized 7.74 7.97 8.00 8.04 7.40 7.85 7.92 7.84
Heuristic 6.43 6.70 6.69 6.66 5.07 6.38 6.45 6.34
Difference 1.31 1.27 1.30 1.38 2.33 1.47 1.47 1.51

Table 9: Comparison between the average accumulated effective return on
both types of strategy (values in percentage).

return in the last year of the ex-post simulation and Table 9 compares the

average results of optimized approaches with the heuristic ones.

These results attested the greater performance of the optimized solutions

over heuristics in the ex-post simulation, reaching an average annual outper-

formance of 1.51% in terms of return on assets and 15.1% in terms of return

on equity, since we consider a capital allocation of 10%.

When the constraints are removed from the model presented in section

2, the performance increases but the stability is penalized. For example, the

strategy M 3, which does not use turnover constraints, shows annual variations

in the allocations above 40%, which does not happen in practice, as the allo-

cations in the banking sector tend to be rigid for the reasons explained in the

introduction.

The heuristic approaches show similar out-of-sample performances at the

end of the simulation. Finally, as the initial balance sheets are different from

the heuristic solutions, we can observe that the allocations converge to the
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Figure 2: Accumulated effective return from 1995 to 2022.
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heuristic solution.

To assess the effect of the constraints in our model, we consider version

M4 allowing sales of legacy loans without limits on turnover constraints by

penalizing the sales on legacy loans with transaction costs of 20%. Transaction

costs of such magnitudes for loan portfolios are reported for example in [31].

The results in Table 8 show that, in general, models M2 and M3 outperform

this strategy. However, model M4 outperforms strategy M1 overall, which

reinforces the idea that excessive turnover restrictions have a negative impact

on the efficiency of the method.

4 Conclusion

In this paper, we developed a testing framework for bank portfolio optimiza-

tion by comparing a properly calibrated model with turnover constraints to

heuristic strategies. For that purpose, we used an extensive historical data set

to evaluate each strategy’s out-of-sample performance and stability.

Our testing framework allowed us to confirm a series of conclusions:

1. When we remove global turnover constraints from the optimization mod-

els, this results in excessive variations in the allocations that cannot be

implemented in practice.

2. Optimization models with turnover constraints show smoother alloca-

tions and therefore can be implemented in an industrial context.

3. Optimization models show superior out-of-sample performance when

compared to heuristic strategies. Notice that this is not a given, as

numerous studies have shown that, in the case of portfolio optimiza-

tion, often heuristic strategies outperform portfolio optimization strate-

gies when considered out-of-sample. Using our dataset, we report an

increase in annual ex-post outperformance of 1.51% in terms return on

assets and of 15.1% in terms return on equity.

These findings confirm that properly calibrated bank optimization mod-

els can be used in practice and outperform considerably heuristic strategies,
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in contrast to many of the investment portfolio optimization models which

have been shown to underperform, as highlighted for instance in [11]. Thus,

this research enables the use of bank optimization methodologies by banks in

practice.
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Annex

In this annex, we develop further tests on the evolution of the asset alloca-

tions for the different methodologies highlighted in the paper (M1,M2,M3,

EW, 60/40, RP ). In order to assess the robustness of the results, we use dif-

ferent initial balance sheets, which are highlighted in Table 5. The analysis of

the results is conducted in Section 3.3. These tests are critical to assess the

stability of the different balance sheet approaches. For further details, please

refer to Section 3.3.
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Figure 3: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet A).
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Figure 4: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet B).
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Figure 5: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet C).
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Figure 6: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet D).
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Figure 7: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet E).
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Figure 8: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet F).
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Figure 9: Evolution of the balance sheet during the simulation of the tested
approaches over the period 1994 - 2022 (initial balance sheet G).


