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Abstract 
 

The goal of this dissertation is to compare the Black-Scholes and the Heston model using 

Deterministic Volatility Functions (DVF) on option pricing. It is important to emphasize that 

consistency in the choice of loss functions is crucial. On one hand, for any given model, the loss 

function should be the same for the parameter estimation and model evaluation, otherwise 

suboptimal parameter estimates can happen. On the other hand, the estimation of loss functions 

should be identical across models, in order to avoid inappropriate comparisons. Therefore, it will 

be used three different loss functions in order to estimate and evaluate which of these option 

valuation models is the most accurate. The sample data contains S&P 500 Index options traded on 

Chicago Board Options Exchange (CBOE) and it was considered some exclusionary criteria as 

suggested by Dumas et al. (1998). The remaining data needed to price options was the risk-free 

rate for each option maturity and the S&P 500 estimated dividend-yield. For both models, the 

practical application starts with the usage of the Ordinary Least Squares (OLS), with the objective 

to minimize the Implied Volatility Root Mean Squared Error for each DVF. Secondly, the 

objective was to minimize the Dollar Root Mean Squared Error and the Percentage Root Mean 

Squared Error using the Non-linear Least Squares (NLS), for each DVF. For the Heston model, 

the parameters are estimated using the loss functions, to get the quoted option prices as close to 

the model option values as possible. After estimating the loss functions, the objective is to decide 

which model is the most accurate for option pricing. 
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Resumo 
 

O objetivo desta dissertação foca-se em comparar os modelos Black-Scholes e Heston 

através do uso de Funções Determinísticas de Volatilidade (DVF) na avaliação de opções 

financeiras. É importante enfatizar que a consistência na escolha das loss functions é crucial. Por 

um lado, a loss function deve ser a mesma para a estimação dos parâmetros e avaliação do modelo, 

caso contrário, podem acontecer estimativas de parâmetros abaixo do nível ideal. Por outro lado, 

a estimação das loss functions deve ser idêntica entre os modelos, de modo a evitar comparações 

inadequadas. Deste modo, serão utilizadas três diferentes loss functions para estimar e avaliar qual 

destes modelos de avaliação de opções é o mais preciso. Os dados da amostra contêm opções 

financeiras do índice S&P 500 negociadas na Chicago Board Options Exchange (CBOE) e foram 

considerados alguns critérios de exclusão sugeridos por Dumas et al. (1998). Os restantes dados 

necessários para proceder à avaliação das opções financeiras foram a taxa de risco para cada nível 

de maturidade da opção e o rendimento estimado de dividendos do S&P 500. Para ambos os 

modelos, a aplicação prática inicia-se com a utilização dos Ordinary Least Squares (OLS), com o 

objetivo de minimizar o erro médio quadrático da raiz da volatilidade implícita para cada DVF. 

Em segundo lugar, o objetivo foi minimizar o erro médio quadrático da raiz do dólar e o erro médio 

quadrático percentual usando o Non-linear Least Squares (NLS), para cada DVF. Para o modelo 

de Heston, os parâmetros são estimados utilizando as loss functions, para obter os preços das 

opções cotadas o mais aproximado possível dos valores das opções avaliadas no modelo. Após 

estimar as loss functions, o objetivo passa por decidir qual o modelo mais preciso para avaliação 

de opções financeiras. 
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Acronyms 
 

$MSE – Dollar Mean Squared Error 

%MSE – Percentage Mean Squared Error 

AIC - Akaike Information Criterion 
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CBOE - Chicago Board Options Exchange 

DTM – Days to Maturity 

DVF - Deterministic Volatility Functions 

EMM - Efficient Method of Moments 

FED – Federal Reserve System 

GMM - Generalized Method of Moments 

ITM – In the Money 

IV – Implied Volatility 

IVMSE – Implied Volatility Mean Squared Error 

NLS - Non-linear Least Squares 

NSS - Nelson-Siegel-Svensson 

OLS - Ordinary Least Squares 

OTM – Out of the Money 

PBS - Practitioner Black-Scholes 

RMSE - Root Mean Squared Error 

RMSVE - Root Mean Squared Valuation Error 

TAM - Time Adjusted Moneyness 
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Introduction 
 

The economy is no exception to the fact that we now live in a global civilization that affects 

practically all facets of life. Since the world's largest economies depend on one another and 

frequently cooperate, there are actual global markets where the prices of financial products are 

always fluctuating, with financial options being no exception. The market indices record changes 

that are reported on option exchanges and serve as a reliable signal for market analysis. In practice, 

the returns reveal skewness and kurtosis, which the model does not consider. When the implied 

volatility from the Black and Scholes (1973) equation is displayed with respect to the time to 

maturity and strike price of options, the volatility surface is flat. Therefore, as it is known, in the 

last four decades, option pricing has witnessed an explosion of new models that address the 

empirical shortcomings of the restrictive Black-Scholes model.  

There are numerous choices available for each of the assumptions of the Black-Scholes 

model. For instance, the underlying pricing may proceed according to a discrete-time or 

continuous-time process. It can be a Poisson jump process or a diffusion process, a Markov jump 

process or a non-Markov jump process, or a combination of jump and diffusion components with 

or without stochastic volatility and with or without random leaps. Similar numbers of options exist 

for interest rate term structure.  

In fact, the Black-Scholes model is frequently used for option pricing. The foundation of 

this model, however, is based on a variety of assumptions that are not applicable to actual financial 

markets. It considers that until the options reach maturity, the volatility remains constant. Because 

of the volatility skew of stock options, the Black-Scholes model usually overvalues out-the-money 

(OTM) and undervalues in-the-money (ITM) options if the VIX value is used.  

Therefore, one strategy was to make volatility a stochastic quantity by introducing 

uncertainty into its behavior. A stochastic process can be used to estimate prices that are near to 

market values by calculating its parameters. Heston (1993) proposed one of the most used 

stochastic volatility models for pricing options. The major characteristic that distinguishes 

stochastic volatility models from other models is the assumption that volatility is random rather 



 

2 

 

than constant. For example, the SABR, Chen, and GARCH models are more varieties of stochastic 

volatility models. 

Although the search for the ideal option pricing model can seem never-ending, the present 

dissertation was carried out to conduct a comprehensive empirical study on the relative merits of 

testing some different specifications of the Deterministic Volatility Functions (DVF) for the Black-

Scholes model and the Heston model, in order to estimate which is the most accurate for option 

pricing. 

For that matter, the structure, and guidelines of the paper “Implied Volatility Functions: 

Empirical Tests”, from Dumas et al. (1998) will be considered. On the similar manner, the format, 

and principles of Fabrice Douglas Rouah's book (2013), "The Heston Model and Its Extensions 

in MATLAB and C#," will also be taken into consideration. In that way, it will be developed some 

codes/scripts in MATLAB, in order to test whether the conclusion from the collected data matches 

the insights for the Black-Scholes model and Heston model, taken by the authors from the papers 

referred above, and compare them to determine the most accurate model.  

Since many authors have the opinion that the Black-Scholes valuation formula no longer 

holds in the financial markets, due to the constant variance assumption, it will be estimated the 

implied volatility functions from the DVF option valuation model, to compare with the observed 

prices from collected data. According to the authors, having an option valuation framework with 

nonconstant volatility would only be possible when the “volatility of the underlying asset’s return 

is a deterministic function of the asset price and/or time to expiration”. That said, it will be assessed 

the stability of the implied volatility functions.  

Regarding the Heston model, the parameters are estimated, to get the quoted option prices 

as close to the model option values as possible. Prices can also be replaced with quoted, and model 

estimated volatilities. This method uses the error between quoted market prices and model prices, 

or between market and model implied volatilities. In order to respect the constraints on the 

parameters, a constrained minimization algorithm must be used. 

In this dissertation, it will also be given consideration to the paper “The importance of the 

loss function in option valuation”, from Christoffersen and Jacobs (2004). For that matter, an 

analysis will also be carried out to test and compute the Root Mean Squared Error (RMSE) from 
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in-sample and out-of-sample data for 1, 5 and 20 days, taken different loss functions into 

consideration. 

The sample data contains S&P 500 Index options traded on Chicago Board Options 

Exchange (CBOE) and it was considered some exclusionary criteria as Dumas et al. (1998) 

suggest. The remaining data needed to price options was the risk-free rate for each option maturity 

and the S&P 500 estimated dividend-yield.
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Literature Review 
 

Despite how helpful past investigations have been, they are always looking backwards and 

projecting future behavior. Using reported option prices to infer volatility expectations is an 

alternate strategy, but one that has received less attention in the literature. Because predicted future 

volatility depends critically on expected future volatility, market participants' expectations of 

volatility can be recovered by inverting the option valuation formula. 

Louis Bachelier introduced the Brownian motion to the financial markets in 1900. Fischer 

Black and Myron Scholes proposed a well-known model in 1973 for pricing European options 

based on Geometric Brownian Motion. The logarithm of a quantity that is randomly fluctuating, 

such as the stock price, moves in a geometric Brownian motion. It makes the supposition that the 

stock market's volatility will remain constant, and that the distribution of logarithmic returns will 

be uniform. Therefore, the volatility expectation derived from reported option prices depends on 

the assumptions underlying the option valuation formula.  

The Black-Scholes model presupposes that the price of the asset moves in a geometric 

Brownian motion with constant volatility. As a result, the implied volatility is the same on all 

options on the same asset. Black-Scholes implied volatilities, however, tend to differ across 

exercise prices and times to expiration. However, the implied volatility surface is really skewed, 

meaning that the volatility varies depending on the strike price and time till maturity. Numerous 

attempts were made to develop models that would better estimate the option pricing as a result of 

this mismatch. 

For instance, S&P 500 option-implied volatilities display a "smile" pattern before the 

market crash in October 1987. Higher implied volatilities occur to options that are deeply ITM or 

OTM rather than to options that are at the money (ATM). The implied volatilities decline 

monotonically as the exercise price increases in relation to the index level after the crash, with the 

rate of decrease accelerating for options with shorter time to expiration. 

It is believed that the Black-Scholes model's assumption of constant volatility is what 

prevents it from accurately describing the structure of reported option prices. Volatility is known 

to decrease when stock values rise, and vice versa. However, it is not simple to account for non-
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constant volatility within an option valuation framework. With stochastic volatility, option 

valuation typically calls for a market price of the risk parameter, which is challenging to measure 

among other things. An exception occurs when volatility is a deterministic function of asset price 

and/or time.  

Option valuation using the Black-Scholes partial differential equation is still feasible in 

this situation, though not using the Black-Scholes formula itself. This unique situation is known 

as the "deterministic volatility function" hypothesis. Derman and Kani (1994a), Dupire (1994), 

and Rubinstein (1994) develop variations of the DVF approach. Their techniques try to interpret 

the cross section of option prices and determine the volatility's predicted future behavior. 

Instead of proposing a structural form for the volatility function, they look for a lattice of 

binomial or trinomial equations that precisely fits reported option prices across the cross-section. 

For example, Rubinstein (1994) makes use of an "implied binomial tree" whose branches at each 

node are intended to reflect the time change of volatility (either through the selection of up-and-

down increment sizes or probabilities). Assessing the time-series validity of the hypothesis that 

volatility is a deterministic function of asset price and time was the aim of Dumas et al. (1998). 

This strategy is a potent statistical method that more quickly reaches a conclusion regarding the 

applicability of the DVF strategy. Dumas et al. (1998) use this strategy to determine whether the 

volatility function implied today is the same as that embedded in option pricing tomorrow by 

moving out-of-sample.  

If the estimated volatility function is stable over time, this conclusion supports the DVF 

approach as a crucial new method for determining the mechanism that drives financial market 

prices as well as for determining hedge ratios and exotic option pricing. On the other hand, if the 

estimated function is not stable, it can be inferred that the DVF approach to risk management and 

valuation is incorrect, and it is necessary to look for alternative reasons for the patterns of Black-

Scholes implied volatility. 

Deterministic volatility functions should be considered when valuing options due to the 

Black-Scholes model's apparent shortcomings. These deficiencies are most commonly expressed 

in cross section as the relation between the Black-Scholes implied volatility and option exercise 

price. Higher maturities typically have lower implied volatilities than options with smaller 
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maturities. This pattern implies that the DVF model's local volatility rate is a function of time. It 

may be economically relevant for implied volatilities to vary across exercise prices.  

For instance, the short-term ITM call's bid-implied volatility typically exceeds the short-

term ATM call's ask-implied volatility, indicating a potential for profit through arbitrage. 

However, selling ITM calls and purchasing ATM calls is a more complex strategy that involves 

dynamic rebalancing over time to take advantage of the "arbitrage opportunity" than just spreading 

the options. However, as can be seen in Constantinides (1997), the costs of dynamic rebalancing 

cannot explain the disparities in implied volatilities since they are too large. 

In addition to the DVF approach considered in Dumas et al. (1998) study, several option 

valuation models can explain the previously observed behavior documented. When the asset price 

and volatility are negatively correlated, they can be explained by stochastic volatility models like 

those of Hull and White (1987) and Heston (1993), for instance. The Heston (1993) model contains 

two stochastic processes, one for the stock price and the other for volatility, in contrast to Black-

Scholes' model, which only had the stock price following a stochastic process. Jumps in the stock 

price dynamics were included to the model by Bates (1996a), which is helpful for pricing out-of-

the-money options. However, when the model's complexity rises, more parameters must be 

estimated, some of which may not be applicable in practice. 

Indeed, similar patterns can be produced by the Bates (1996b) jump model when the mean 

jump is negative. However, deterministic volatility models are the most straightforward since they 

maintain the arbitrage theory that forms the basis of the Black-Scholes model. They do not call for 

extra presumptions on investor risk preferences or additional assets that can be used to hedge 

volatility or jump risk, in contrast to stochastic volatility and jump models.  

Given that option valuation models can be used for a variety of purposes, including 

hedging, speculation, or market manipulation, the choice of loss function is particularly crucial 

when estimating these models. Naturally, different goals imply various loss functions. One could 

anticipate that the choice of loss function would be a strongly contested topic in the option 

valuation literature because the specification of a loss function implicitly equates to the 

specification of a statistical model by Engle (1993). Compared to other topics like model 

formulation and the estimate of continuous-time processes underlying option models, the 
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specification of the loss function has not been given much consideration in the substantial and 

developing literature on option valuation. 

For instance, the outstanding review of the literature by Campbell et al. (1997) omits any 

contributions addressing the significance of the choice of the loss function. Additionally, 

discussions of the loss function in option valuation that have already been made tend to focus on 

the statistical framework required to estimate the parameters of a hypothetical option valuation 

model, implicitly ignoring the influence the loss function has on the specification of the statistical 

model. The unspoken rule appears to be that, regardless of the purpose of any out-of-sample 

evaluation exercise, model parameters that are "correctly" estimated in-sample are automatically 

eligible for use. Contrarily, Christoffersen and Jacobs (2004) suggested that by applying the same 

loss function during estimate, one may typically reduce out-of-sample loss. 

The realization that the selection of the loss function is in fact a component of the model 

specification serves as the basis for this advice. Therefore, using the same (statistical) models for 

estimation and evaluation seems logical. It is commonly acknowledged and frequently utilized in 

the literature that several loss functions can be used during the estimating and evaluating processes. 

Bakshi et al. (1997), for instance, used Dollar Mean Squared Error ($MSE) in estimates but also 

Percentage Mean Squared Error (%MSE) and $MSE in the evaluation stage, where $MSE stands 

for mean-squared absolute option pricing errors and %MSE for mean-squared relative option 

pricing errors. Mean squared absolute implied volatility error is referred to as Implied Volatility 

Mean Squared Error (IVMSE). Rosenberg and Engle (2002) use $MSE in estimation, but % 

hedging errors in evaluation, for example.  

Hutchinson et al. (1994) evaluated the model outside of the sample using hedging mistakes 

in addition to an MSE-based option price divided by exercise price. Many papers (e.g., Renault, 

1997; Jacquier and Jarrow, 2000) estimate model parameters from option prices using an 

estimation loss function based on the statistical characteristics of the underlying process or the 

statistical structure of the measurement errors, and then go on to evaluate the models outside of 

the sample using a different loss function. Pan (2002) uses the IVMSE for evaluation and the 

generalized method of moments (GMM) loss function for estimation. Chernov and Ghysels (2000) 

uses the efficient method of moments (EMM) to estimate parameters and the $MSE and %MSE 

loss functions to assess models. 
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EMM and $MSE (normalized by the index value) are both used by Benzoni (2002) to 

estimate parameters, and $MSE is then used to evaluate the model (again normalized). Finally, up 

until recently, many option valuation studies were carried out by estimating option model 

parameters from asset returns and inserting these parameters into option valuation formulas out-

of-sample. However, most recent papers estimate option valuation parameters using option data or 

option data along with returns data. Once more, this relates to utilizing various loss functions both 

inside and outside of samples.  

Comparing out-of-sample errors resulting from misaligned loss functions with errors from 

models where the in-sample and out-of-sample loss functions are the same could lead to issues. 

According to statistical literature, modifying the loss function is equivalent to adjusting the model 

specification (Granger, 1969; Engle, 1993). From this viewpoint, it is obvious that the "properly 

stated" model will produce the best in-sample fit but may or may not produce the greatest out-of-

sample fit. An incorrectly specified model with precisely estimated parameters may perform better 

outside of the sample than an appropriately specified model. 

Aligning the estimation and evaluation loss functions acts as a rule of thumb because there 

are no universal theorems that can direct authors in this situation. Therefore, there’s a need to be 

cautious to point out that while issues may occasionally develop when loss functions are out of 

alignment, they won't typically do so because the usefulness of this rule is an empirical topic. 

Dumas et al. (1998), for instance, compare the Practitioner Black-Scholes (PBS) model's out-of-

sample performance to the out-of-sample performance of deterministic volatility models that were 

implemented with the same in- and out-of-sample loss functions. They conclude that the PBS 

model's valuation performance compares favorably to that of the deterministic volatility models. 

The conclusions of Dumas et al. (1998) will therefore be strengthened if the PBS model is 

implemented properly because it is highly unlikely that doing so will cause the model's 

performance to decrease. But for the investigations of Heston and Nandi (2000) and Garcia et al. 

(2000), this might not be the case. Both of these publications employ the $MSE loss functions for 

the out-of-sample comparison, but they estimate the PBS model using the implied volatility-based 

loss function. The PBS model and a GARCH model, both of which have identical in-sample and 

out-of-sample loss functions, are then contrasted by Heston and Nandi (2000).  
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According to Garcia et al. (2000), the PBS model outperforms the new Generalized Black-

Scholes model, which is also constructed with aligned loss functions. The probable issue is that, 

even though both studies employ the PBS model as an evaluation benchmark, the benchmark's 

performance isn't as strong as it would be if it were implemented using the proper loss function.  

Bakshi et al. (1997), Bams et al. (2009), Christoffersen and Jacobs (2004), Mikhailov and 

Nogel, (2003), and many others have used loss functions to estimate the parameters of the Heston 

model. 

On that note, this dissertation has the objective to conduct a more thorough analysis of the 

loss function's effects on the Black-Scholes and Heston models. 
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Data Analysis 
 

S&P 500 index options are used for the sample data because, as Rubinstein (1994) argues, 

this option market provides a context where the Black-Scholes condition seems most reasonably 

satisfied. Therefore, the sample data contains S&P 500 Index options traded on CBOE obtained 

on 1-May-2022 between 11:55 and 12:00. The reason behind using data that is not from the present 

period of this dissertation can be explained by the fact that 2022 data is prior to financial crisis 

resulting from the recent war. Therefore, extracted data wouldn’t follow the normal flow from the 

financial markets and could cause misleading results. The Index Spot level registered at 11:55 of 

that day was 4,131.93 USD, and the dividend-yield registered at 11:55 of that day was 1.37 %. 

These options are European-style options and meet different expiration dates. 

The cross-section data was obtained using Yahoo Finance and it includes the observed 

price, the spot price, the strike price, and the expiration date. It was also added a vector to 

distinguish between calls and puts (-1, 1 respectively), denominated VecPhi.  

The remaining data needed to price options was the risk-free rate for each option maturity 

and the S&P 500 estimated dividend-yield. The dividend-yield was obtained using Bloomberg 

terminal. For the risk-free interest rate for each period, it was used the Nelson-Siegel-Svensson 

(NSS) approach to compute the USD yield curve. Therefore, the parameters used were taken from 

the FED’s website on the 29th of April of 2022. 

Thus, the parameters were applied on the next formula, for each corresponding maturity to 

the collected data to compute the risk-free interest rate: 

 

𝑟𝑐( 𝑇 ) =  𝛽1 +  𝛽2 ∗  [
1 − exp (−

 𝑇 
𝜆1

)

𝑇
𝜆1

] +  𝛽3 ∗  [
1 − exp (−

 𝑇 
𝜆1

)

𝑇
𝜆1

− exp (−
 𝑇 

𝜆1
)]

+  𝛽4 ∗  [
1 − exp (−

 𝑇 
𝜆2

)

𝑇
𝜆2

−  exp (−
 𝑇 

𝜆2
)] 

 

 

( 1 ) 

 

For the collected data, it was considered some exclusionary criteria as Dumas et al. (1998) 

suggest. First, were not taken into consideration options with fewer than six or more than hundred 
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days to expiration. Finally, options deep ITM or deep OTM were also eliminated. Therefore, the 

criteria was the absolute moneyness (|
𝑆𝑡𝑟𝑖𝑘𝑒 𝑝𝑟𝑖𝑐𝑒

𝑆𝑝𝑜𝑡
− 1| ) being higher than 10 %, because options 

with these characteristics have small time premiums and hence contain close to zero information 

about the volatility function used on the option. On that note, 2 336 options were used within this 

dissertation. The table below shows the distribution of the collected data with the exclusionary 

criteria: 

 

 DTM < 60 60 < DTM < 80 80 < DTM All 

Number of calls 736 266 166 1,168 

Number of puts 736 266 166 1,168 

Average Price 154.89 210 234.76 178.79 

Average IV 0.2705 0.2626 0.2602 0.2672 

Table 1 - Distribution of Collected Data 

The goal is to use the collected data described before for the methodology and code/script 

developed to identify the most appropriate volatility function for Black-Scholes and Heston 

models, by minimizing the errors. To do so, it is imperative to first evaluate the goodness-of-fit of 

each model within the loss function used. 

To access the quality of each model within the loss function, the following measurements 

were considered:  

A. The root mean squared valuation error (RMSVE) that is the square root of the 

average squared deviations of the reported option prices from the model’s 

theoretical values. 

B. The F-test for the Black-Scholes model which refers to the global significance of 

the model, which means that if p < 0.05 the null is rejected and there is at least one 

coefficient that is statistically different from zero. 

C. The Akaike (1973) Information Criterion (AIC) is calculated to appraise the 

potential degree of overfitting. The AIC is a statistical measure used to compare the 

relative performance of different pricing models. It takes into account both the 

goodness of fit and the complexity of the model. A lower AIC value suggests a 

better balance between model accuracy and complexity. The AIC penalizes the 



 

13 

 

goodness-of-fit as more degrees of freedom are added to the model in a manner 

similar to an adjusted R2. Therefore, the R2 it will be used instead. The highest value 

of the adjusted R2 identifies the “best” model based on in-sample performance. 

D. The RMSE - which is the most important criterion to fit if the main purpose of the 

model is prediction, is a statistical measure that quantifies the average difference 

between the model-implied prices and the observed market prices. It provides an 

overall assessment of the model's accuracy in pricing options. A lower RMSE 

indicates a better fit to the market data. 

E. Out-of-Sample Testing: It is important to evaluate the models performance on data 

that was not used in the calibration process. This is known as out-of-sample testing 

and helps assess the model's ability to generalize to new data. By comparing the 

model's pricing accuracy on unseen data, practitioners can gain insights into its 

robustness and predictive power. 
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Methodology 
 

Black-Scholes Model 
 

As stated before, one of the weaknesses of the Black-Scholes model is the assumption of a 

constant volatility during the life of the option. The paper by Dumas et al. (1998), as well as many 

authors, for example Hull  and White (1987), addressed the volatility of the underlying asset as 

not constant, and it is straight-forward to understand this issue. According to Dias (2022), “one 

possible explanation for the volatility skew found in equity option markets concerns leverage”.  If 

the value from the company’s equity declines, the leverage (debt-equity ratio) from the company 

will increase, the equity becomes riskier, and, therefore, its volatility increases. Inversely, if the 

company’s equity increases in value, its volatility decreases. In summary, “it seems natural to 

expect the volatility of equity to be a decreasing function of price”. 

The Black-Scholes model call option formula is given by,  

 𝑐𝑡 = 𝑆𝑡𝑁(𝑑1) − 𝑋𝑒−𝑟𝜏𝑁(𝑑2) ( 2 ) 

 

𝑑1 =
ln [

𝑆𝑡

𝑋 ] + (𝑟 + 0.5𝜎2)𝜏 

𝜎√𝜏
 

      

( 3 ) 

 𝑑2 = 𝑑1 −  𝜎√𝜏 ( 4 ) 

 

where S is the price of the underlying asset at time t, X is the option's exercise price, 𝜏 is the expiry 

date, r is the risk-free interest rate, σ is the volatility rate, and N(d) is the cumulative unit normal 

density function with upper integral limit d. The interest rate on a T-bill with a comparable maturity 

is used for the risk-free rate. The implied volatility is calculated for each option price by finding 

the volatility rate that correlates the model price with the actual bid or ask quote. 

Focusing on an improvement for the Black-Scholes model, we can introduce the model S, 

which “switches among the volatility functions given by models 1, 2 or 3, depending on whether 

the number of different option expiration dates in a given cross section is one, two or three, 

respectively”, presented by Dumas et al. (1998) as discussed before. Although the model S tries to 
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approach Black-Scholes limitations, the dissertation will not focus on this model since it requires 

a big complexity for the calibration and computation. 

 

Heston Model 
 

The Heston model is a widely used stochastic volatility model in options pricing that 

addresses one of the key limitations of the Black-Scholes model – the assumption of constant 

volatility.  

In reality, volatility is observed to be time-varying, and the Heston model introduces a 

stochastic process for the volatility parameter to capture this phenomenon. By allowing volatility 

to vary over time, the model can generate more accurate option prices that align with market 

observations. This is particularly valuable in pricing options with non-standard features, such as 

those with early exercise features, exotic options, or options on assets with time-varying volatility. 

The incorporation of stochastic volatility in the Heston model provides several advantages. 

Firstly, it captures the empirically observed volatility clustering phenomenon, where high volatility 

tends to be followed by high volatility and vice versa. This feature is crucial for accurately pricing 

options during periods of market turbulence or sudden shifts in market sentiment. Secondly, the 

Heston model generates a volatility smile or skew, which matches market data more closely, 

reflecting the fact that options with different strike prices often have different implied volatilities. 

In order to implement the Heston model, it is necessary to make several assumptions to 

simplify the dynamics of asset prices and volatility. These assumptions form the foundation of the 

model and provide a framework for option pricing and risk analysis. Therefore, the key 

assumptions typically include: constant interest rates – can be seen as a reasonable approximation 

for short-term options, hovewer it may not accurately capture the dynamics of interest rates for 

longer-term options; constant dividends; stochastic volatility process; independent asset price and 

volatility processes – in reality, there may be some correlation between asset prices and volatility, 

especially during times of market stress. 

Although there are various numerical techniques available to calculate option prices under 

the Heston model, including Monte Carlo simulation, Fourier transform methods, and finite 
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difference methods, this dissertation will not focus on the usage of these methdods because of the 

complexity and the computational intensity.  Therefore, this dissertation will be focused on 

optimizing the parameters in order to minimize a heston calibration cost function in MATLAB. 

Therefore, the estimation of the parameters for the Heston model is crucial for accurately 

calibrating the model to market data and obtaining reliable option prices.  

These parameters that need to be estimated include: 

• v0 - The initial volatility level. 

• Kappa - mean reversion rate: It determines how quickly the volatility reverts to its long-

term average. A higher value implies faster mean reversion. 

• Theta - long-term volatility: It represents the long-term average volatility level that the 

stochastic volatility tends to revert to. It is a measure of the mean level of volatility. 

• Sigma - volatility of volatility: It represents the volatility of the volatility process. It 

quantifies the variability in the rate of change of the volatility. 

• Rho - correlation: It represents the correlation between the Brownian motions driving 

the asset price and the volatility process. It measures the degree of correlation between 

the two processes. 

Although initial guesses for the estimation of the parameters for the Heston model are not 

mandatory, it addresses the problem of the complexity of the calibration process and the fact that 

employes variety of optimizers. The optimal parameters may vary depending on the specific 

dataset and market conditions. Therefore, the chosen initial guesses follow the most commonly 

used initial guesses for the Heston model studies:  

• v0 - average observed historical variances. For example, a value of 0.1 is often used as a 

starting point. 

• Kappa - can be derived from the time scale over which volatility mean reverts. For 

example, a value of 1 or 2 is often used as a starting point. 

• Theta - long-term average of the observed variances. For example, a value of 0.5 is often 

used as a starting point. 

• Sigma - based on empirical observations or market knowledge. Values around 0.5 to 1.0 

are often used as reasonable initial estimates. 
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• Rho - a moderate negative correlation between asset price and volatility. An initial guess 

of -0.5 or -0.7 is often used as a starting point. 

There are various methods available for parameter estimation in the Heston model, with 

the Maximum Likelihood Estimation (MLE) being one of the most widely used approaches. The 

MLE method seeks to find the parameter values that maximize the likelihood of the observed 

option prices given the model. These parameters are essential in the Heston model for option 

pricing as they govern the dynamics of the underlying asset's volatility. They can be estimated 

from historical data or calibrated using option prices through various techniques, such as maximum 

likelihood estimation or optimization methods. In this dissertation, it was used the historical data 

for the parameter estimation. 

Calibrating the Heston model to market data is an essential step in option pricing. The 

calibration process involves adjusting the model parameters to minimize the difference between 

the prices predicted by the Heston model and the observed market prices. By achieving a close 

match between the model-implied prices and the market prices, the calibrated model can accurately 

capture the market dynamics and provide reliable option valuations. The calibration technique 

used requires an objective function that quantifies the difference between the model prices and the 

market prices. Therefore, minimizing the root mean squared error will be the main focus of this 

objective function in order to find the parameter values that provide the best fit to the market data. 

 

Double Heston Model 
 

The double Heston model is an extension of the Heston model that incorporates two stochastic 

volatility processes to capture additional features and complexities of the underlying asset. It is a 

popular model in quantitative finance and is used to price and hedge exotic options and structured 

products. Like the Heston model, the double Heston model also has some assumptions: 

• Constant interest rates: The model assumes a constant risk-free interest rate throughout 

the option's life. 

• Constant dividends: It assumes a constant dividend yield for the underlying asset, 

which represents the periodic cash flows received by the option holder. 



 

19 

 

The option pricing in the double Heston model is typically done using numerical methods 

such as Monte Carlo simulation or finite-difference methods. These methods involve simulating 

paths for the asset price and the two volatility processes and calculating the option's payoff under 

each simulated path. 

The double Heston model provides a flexible framework for pricing complex options, 

especially those with features that cannot be accurately captured by a single volatility process. By 

incorporating two stochastic volatility processes, it can capture more intricate volatility dynamics 

and improve the accuracy of option pricing. However, it is important to note that the model's 

increased complexity also requires careful calibration and validation to ensure its suitability for 

specific applications and market conditions. 

On that note, the double Heston model offers several advantages when comparing to the 

standard Heston model such as: 

• Improved Volatility Surface Fitting: The double Heston model introduces an additional 

stochastic volatility process, allowing for greater flexibility in capturing complex volatility 

dynamics. The Heston model has a single volatility process, which may not be sufficient 

to accurately capture certain market behaviors, such as volatility smiles or skewness. 

• Improved Calibration: The Heston model calibration can sometimes be challenging due to 

the interplay between the model parameters. The additional flexibility of the double Heston 

model allows for better calibration to market data. By incorporating the second volatility 

process, the model can more effectively match observed option prices. This is particularly 

important in risk management and pricing of options that are sensitive to extreme events, 

such as barrier options or options with path-dependent features. 

Although double Heston model is an improved version of the Heston model when it comes to 

option pricing, it also has its limitations when compared to other option pricing models, for 

example: 

• Complexity and Computational Intensity: The double Heston model is more 

complex compared to simpler option pricing models like the Black-Scholes model 

or even the standard Heston model. This increased complexity can lead to higher 
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computational requirements and longer computation times, especially when pricing 

exotic options or performing extensive simulations.  

• Calibration Challenges: with more parameters to estimate, the calibration may 

become more challenging, and there is a risk of overfitting the model to the 

historical data. Robust calibration techniques and careful validation are essential to 

ensure reliable parameter estimation. 

• Simplicity of Other Models: While double Heston model incorporates additional 

features and complexities through two stochastic volatility processes, there may be 

cases where simpler models can provide comparable pricing accuracy.  

Although the double Heston model can be more accurate for some cases of option 

pricing, its complexity and calibration challenges make this model less appealing to use. 

Therefore, only the Black-Scholes model and the Heston model will be taken into 

consideration for option pricing.  

 

Deterministic Volatility Functions 
 

The behavior of the volatility on options is observable when computing the implied 

volatility since, usually, ATM options show a lower value of volatility, comparing with deep OTM 

calls and deep ITM puts. 

 

Figure 1 - Volatility Smile 
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The plot above relates the implied volatility observed with the time adjusted moneyness 

(TAM).  Negative values of the TAM match with ITM puts and OTM calls, which suggests that 

the implied volatility is not constant, showing some dependency on the Tau (time to expiration) 

and/or on the strike price. For that matter, it is possible to conclude that a Deterministic Volatility 

Function depends on those two specifications from an option.  

On that note, the code/script will be developed to compute and determine which functional 

form of the model is the best fitted volatility model. These computations are going to be made 

using a regression model, assuming the implied volatility, computed from collected data, as the 

dependent variable and using the strike price and the Tau as explanatory variables. The parabolic 

shape of the volatility smile, and its dependence on moneyness and time to maturity, has motivated 

researchers to model implied volatility as a quadratic function, since the dependency between the 

variables is not linear. 

Dumas et al. (1998) names this approach as the deterministic volatility function for 

modeling the implied volatility, considering four different volatility specifications for the DVF: 

Model 0: 𝜎𝐼𝑉 = max (0.01, 𝑎0)    ( 5 ) 

Model 1: 𝜎𝐼𝑉 = max (0.01, 𝑎0 +  𝑎1 .  𝐾 +  𝑎2 .  𝐾2)  ( 6 ) 

Model 2: 𝜎𝐼𝑉 = max (0.01, 𝑎0 +  𝑎1 . 𝐾 + 𝑎2 . 𝐾2 +  𝑎3 . 𝑇 +  𝑎4 .  𝐾 .  𝑇)   ( 7 ) 

Model 3: 𝜎𝐼𝑉 = max (0.01, 𝑎0 +  𝑎1 . 𝐾 + 𝑎2 . 𝐾2 +  𝑎3 . 𝑇 +  𝑎4 .  𝑇2 +

 𝑎5 .  𝐾 .  𝑇) 

 ( 8 ) 

  

where 𝜎𝐼𝑉  is the Black-Scholes model (BSM) implied volatility, K is the strike price, T is the time 

to maturity, and 𝑎𝑖 are the model parameters, with i ∈ {1,2,3,4,5}. Observing these models, it is 

possible to take some conclusions regarding the volatility: 

 Model 0: Assumes constant volatility with no dependence on the strike price or the time to 

maturity, thus corresponding to the BSM model. 

 Model 1: Attempts to capture the variation in the volatility with a quadratic function of the 

strike price and with no dependency on time to maturity. 
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 Model 2: Adds a dependence on time to maturity when compared to the model 1 and 

assumes an interaction between moneyness and time to maturity in its last term. 

 Model 3: Allows for the relationship between volatility and time to maturity to be quadratic 

also, with the objective of capturing additional variation due to the time to maturity of the option. 

It can also be concluded that all models have a threshold value of 0.01 in order to avoid 

possible negative values of fitted volatility. 

 

Loss Functions 
 

Loss Functions – Black-Scholes Model 
 

As it was said before, different purposes, for example, market manipulation, speculating, 

or hedging, imply different loss functions for the model errors. Since the existing academic 

literature tend to ignore the evaluation loss function when estimating the parameters, this 

dissertation will also have a focus on this.  

As well as in the paper from Christoffersen and Jacobs (2004), the focus will not be on a 

specific loss function but rather in testing the different loss functions presented by these authors 

and taking some conclusions regarding the collected data and option valuation. For that matter, it 

was used in-sample and out-of-sample fits, since a miss specified model with precisely estimated 

parameters (out-of-sample) may outperform the correctly specified model. In that way, the out-of-

sample data was calculated to 1-day, 5-days, and 20-days out-of-sample, by adding 1, 5 and 20 

days and divide by 365 that corresponds to the number of days from a year to the time-to-maturity 

from collected data. 

Christoffersen and Jacobs (2004) identify three different loss functions at the estimation 

and evaluation stages:   

IV MSE: Stands for mean squared absolute implied volatility error and it is defined as: 
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𝐼𝑉 𝑀𝑆𝐸(𝜃) ≡  

1

𝑛
 ∑(𝜎𝑖

𝑛

𝑖 = 1

−𝜎𝑖(𝜃))2  
       

( 9 ) 

 

where the implied volatilities are:  

 𝜎𝑖 =  𝐵𝑆−1(𝐶𝑖, 𝑇𝑖, 𝑋𝑖, 𝑆, 𝑟) and 𝜎𝑖(𝜃) =  𝐵𝑆−1(𝐶𝑖(𝜃), 𝑇𝑖, 𝑋𝑖, 𝑆, 𝑟), 

and 𝐵𝑆−1 is the inverse of the Black-Scholes formula, 𝑇𝑖 is the time-to-maturity, 𝑋𝑖 is the strike 

price, S is the price of the underlying stock, and r is the riskless interest rate.  

 

$ MSE: Stands for mean squared dollar errors and it is defined as: 

 
$ MSE(𝜃) =  

1

𝑛
 ∑(𝐶𝑖

𝑛

𝑖 = 1

− 𝐶𝑖(𝜃))2 
       

( 10 )    

 

where 𝐶𝑖 and  𝐶𝑖(𝜃) are the data and model option prices, respectively, and n is the number of 

option contracts used. This loss function has the advantage that the errors are easily interpreted as 

$-errors once the square root is taken of the mean-squared error. “However, the relatively wide 

range of option prices across moneyness and maturity raises the problem of heteroskedasticity for 

$MSE-based parameter estimation” Christoffersen and Jacobs (2004).  

% MSE: Stands for percent mean-squared error and it is defined as: 

 
% MSE(𝜃) =  

1

𝑛
 ∑((𝐶𝑖

𝑛

𝑖 = 1

−  𝐶𝑖(𝜃))/𝐶𝑖)
2 

       

( 11 )      

 

where the % sign is a convenient measure for the relative loss. In fact, it is not multiplied 

by 100, therefore the losses are not expressed in percent but rather in decimals. 

This loss function “has the advantage that a $1 error on a $50 dollar option carries less 

weight than a $1 error on a $5 option, which is sensible from a rate-of-return perspective” 

Christoffersen and Jacobs (2004). But the fact that the short time-to-maturity out-of-money options 
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with valuations close to zero will implicitly get assigned a lot of weight and thus create a numerical 

instability, can be seen as a disadvantage to this loss function. 

Some researchers instead favor the relative or percent mean-squared error loss function 

because the $ MSE loss function implicitly assigns a lot of weight to options with high valuations 

and, thus, high $-errors.  

As mentioned before, there are other estimation loss functions that are used in the literature. 

“Functions based on hedging or speculation loss could potentially be more interesting” 

Christoffersen and Jacobs (2004), but the focus will be on these three functions listed before since 

they are the most suitable to this kind of research.  

Christoffersen et al. (2004) stated that the estimation of the loss function can be done by 

using the simple model possible, the PBS model, which is implemented in three steps. First, the 

implied volatility is calculated for each observed option. Secondly, the implied volatilities are 

regressed on different polynomials, using simple ordinary least squares (OLS) for the IV MSE loss 

function. Finally, the fitted values for volatility are plugged back into the Black-Scholes formula 

with the objective of obtaining the estimated model price. As seen before, the estimation loss 

function, defined on implied volatilities, is different from the evaluation loss functions, defined on 

percent or dollar pricing errors. For that reason, when the evaluation loss function is $ MSE or is 

% MSE, the use of the non-linear least squares (NLS) to directly estimate 𝜃 is the appropriate 

procedure. 

 

Loss Functions – Heston Model 
 

As was previously mentioned, the Heston model's parameters are estimated using loss 

functions to bring quoted option prices as closely as possible to model option values. Volatilities 

that are quoted and predicted by models can also be used in place of prices. This strategy makes 

use of the discrepancy between model prices or indicated volatilities and quoted market prices. In 

order to make the model prices as near to market prices as possible, these estimates are values that 

minimize the value of the loss function. On that note, it is necessary to use a restricted minimization 

technique in order to respect the parameter limitations: 
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𝑘 > 0 ;  𝜃 > 0 ;  𝜎 > 0 ;  𝑣0 > 0 ;  𝜌 ∈ [−1,1] 

Loss functions generate estimates of the risk-neutral Heston model parameters because 

they employ market option prices (or implied volatility derived from those prices) as inputs. 

Assuming that there’s a set of 𝑁𝑘 strikes 𝐾𝑘 (𝑘 = 1, … , 𝑁𝑘 )  and a set of 𝑁𝑇 maturities 

𝑇𝑡 (𝑡 = 1, … , 𝑁𝑇 ). Then, the market price 𝐶(𝑇𝑡, 𝐾𝑘) =  𝐶𝑡𝑘 and a corresponding model price 

𝐶(𝑇𝑡, 𝐾𝑘;  ϴ ) =   𝐶𝑡𝑘
ϴ  produced by the Heston model for each maturity-strike combination (𝑇𝑡, 𝐾𝑘). 

Each option has an optional weight 𝑤𝑡𝑘 attached to it. 

Those loss functions that reduce the difference between quoted and model prices fall under 

the first group of loss functions. The error is typically expressed as the squared difference between 

the model price and the quoted price, though relative errors may also be used. When applying the 

mean error sum of squares (MSE) loss function, parameter estimates are generated by minimizing 

with respect to ϴ, where N is the number of quotes. 

 1

𝑁
∑ 𝑤𝑡𝑘

𝑛

𝑡,𝑘

(𝐶𝑡𝑘 − 𝐶𝑡𝑘
ϴ )2 

       

( 12 )         

 

The formula described above is a loss function that is used to estimate the RMSE 

parameter. 

 1

𝑁
∑

𝑤𝑡𝑘 (𝐶𝑡𝑘 −  𝐶𝑡𝑘
ϴ )2

𝐶𝑡𝑘

𝑛

𝑡,𝑘

 
       

( 13 ) 

As an alternative, one might describe the mistake in terms of the absolute value, which 

would result in |𝐶𝑡𝑘 −  𝐶𝑡𝑘
ϴ |, and establish a loss function as in Equations (12) and (13). 

The fact that short maturity, deep OTM options with minimal value contribute little to the 

sum in the MSE loss function is one of its well-known drawbacks (12). As a result, the optimization 

will typically favor ITM, long-maturity options at the expense of other options. One solution is to 

only utilize ITM options, in which case call options would be used for strikes below the spot price 

and put options would be used for strikes above the spot price in (12). Utilizing the RMSE loss 

function is the other solution (13). But with RMSE, the reverse result happens, which is a problem. 
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In fact, because 𝐶𝑡𝑘 is in the denominator, options with low market value will significantly increase 

the amount in (13). 

However, the over-and under-contribution can be reduced by giving each component in the 

objective function a weight, though the weights are often chosen subjectively. Those loss functions 

that reduce the discrepancy between quoted and model suggested volatilities fall under the second 

group of loss functions. Once more, the error is typically described as the squared difference, 

absolute difference, or relative difference between the implied volatilities in the model and those 

in the quoted price. Since options are frequently quoted in terms of implied volatility and since the 

model's fit is frequently evaluated by comparing quoted and model implied volatilities, this kind 

of loss function makes sense. 

Therefore, for instance, the loss function is used to estimate the IVMSE parameter. 

 1

𝑁
∑ 𝑤𝑡𝑘

𝑛

𝑡,𝑘

(𝐼𝑉𝑡𝑘 − 𝐼𝑉𝑡𝑘
ϴ )2 

       

( 14 )    

             

where 𝐼𝑉(𝑇𝑡, 𝐾𝑘) =  𝐼𝑉𝑡𝑘 and 𝐼𝑉(𝑇𝑡, 𝐾𝑘;  ϴ ) =   𝐼𝑉𝑡𝑘
ϴ  are the quoted and model implied volatilities, 

respectively. The relative and absolute versions can also be used like on the other loss functions 

described above. 

Equation (14) primary drawback is that it requires a lot of numerical computation.  To 

generate the quantity (𝐼𝑉𝑡𝑘 −  𝐼𝑉𝑡𝑘
ϴ )2, one must first collect each Heston price 𝐶𝑡𝑘 at each iteration 

of the optimization. From there, one must use a root-finding procedure, such as the bisection 

algorithm, to extract the implied volatility 𝐼𝑉𝑡𝑘 from 𝐶𝑡𝑘. One solution is to substitute 𝐼𝑉𝑡𝑘 with 

the approximated implied volatility from Lewis (2000) Series II extension. This allows to 

completely avoid the bisection algorithm. Using the loss function presented in Christoffersen et al. 

(2009), which approximates the IVMSE in Christoffersen and Jacobs (2004), is another way of 

solving this problem. 

It uses the reciprocal of the squared Black-Scholes Vega as the weight in (16). Therefore, 

the parameter estimates from their method are based on the loss function.  
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 1

𝑁
∑

 (𝐶𝑡𝑘 −  𝐶𝑡𝑘
ϴ )2

𝐵𝑆𝑉𝑒𝑔𝑎𝑡𝑘
2

𝑛

𝑡,𝑘

 
       

( 15 )       

             

where 𝐵𝑆𝑉𝑒𝑔𝑎𝑡𝑘 is the sensitivity of the Black-Scholes option price with respect to the market 

implied volatility 𝐼𝑉𝑡𝑘, evaluated at the strike 𝐾𝑘and maturity 𝑇𝑘, that is 

 

                                               𝐵𝑆𝑉𝑒𝑔𝑎𝑡𝑘 = 𝑆𝑒−𝑞𝑇
𝑛(𝑑𝑡𝑘)√𝑇     , ( 16 )             

             

with 

 

𝑑𝑡𝑘 =
ln [

𝑆
𝐾𝑡

] + (𝑟 − 𝑞 + 0.5
𝜎2

2
) 𝑇 

𝜎√𝑇
 

       

( 17 )            

             

and where 𝑛(𝑥) =  
𝑒

−𝑥2

2

√2П
 is the standard normal density. 
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Code/Script Steps 
 

Black-Scholes Model – IVMSE Loss Function  
 

For the first part, the objective was to minimize the IV RMSE using the ordinary least 

squares (OLS), for each DVF and compare which is the best model. To do so, it was used the 

function fitlm which returns a linear regression model of the dependent variable, in this case the 

implied volatility computed before, fit to the explanatory variables, corresponding to the strike 

price and time to expiration.  

Given these three linear regressions, it was made a comparison between the models, using 

the p-values and the adjusted R2 (is a better model evaluator when compared to the R2 because it 

correlates the variables more efficiently). Thus, only the linear regressions with p-value higher 

than 0.05 are not rejected, and the model with higher adjusted R2 is chosen as the best fitted model 

to explain the volatility from the options on the collected data.  

Having the best fitted model, the next step from the code/script was to compute the 

volatility, considering either the model 1, 2 or 3 from the DVF corresponding to the chosen model. 

As it was said before, it was also considered the criteria of the maximum between 0.01 and the 

volatility computed using the best fitted model. The next step had the intention of calculating the 

option prices, using the BSM_price, considering the implied volatility computed before and the 

implied volatility from the best fitted model.  

Therefore, it was possible to compare the difference obtained from the theoretical prices 

computed by the Black-Scholes model formula, using the implied volatility and the volatility from 

the best fitted model, with the bid-ask mid prices observed in the market. These valuation errors 

were compared between each other, returning a final vector for the lower values when summing 

the valuation error.  

It was used the loss function IV MSE to the model's evaluation performance in-sample and 

on the next step the focus it to make out-of-sample (1-Day, 5-Days, 20-Days) simulations for the 

best fitted model, from the DVF. In that way, it was added 1/365, 5/365 and 20/365 years to the 

time to expiration from the collected data, and therefore were created three different vectors for 
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each new maturity. Since the maturities are different, it was needed to compute the implied 

volatility from this out-of-sample data, using the function ImpVolBSM, considering the threshold 

value of 0.01. In the next step, it was computed three different linear regression models, using the 

implied volatility for each maturity as dependent variable. 

The final focus from the part 1 was to compare the RMSE values from the best fitted model 

and the regressions from out-of-sample data to understand which is the model that best fits the 

observed data and better explains the volatility within the collected data.  

 

Black-Scholes Model – $ MSE Loss Function 
 

For the second part, the objective was to minimize the $ RMSE using the non-linear least 

squares (NLS), for each DVF and compare which is the best model. To do so, it was used the 

function nlinfit which returns a non-linear least-squares estimates of the parameters of a non-linear 

model. The dependent variable, in this case is the observed price from collected data, and the 

explanatory variables, corresponding to the strike price and time to expiration.  

To use the NLS in MATLAB it is necessary to determine a model function, which in this 

case was the formula from the BSM model adjusted to the sigma (volatility) being defined as either 

the model 1, 2 or 3 from the DVF. It was also needed to make some initial guesses for the beta 

values about to be estimated. Considering the initial guesses as zeros, the code/script returned the 

estimated betas, residuals, jacobian matrix, estimated variance-covariance for the estimated 

coefficients, estimate of the variance of the error term, defined as MSE, and a structure containing 

details about the error model. 

After computing the NLS for each model from the DVF, it was computed the RMSE which 

corresponds to the square root of the MSE, calculated before. As it was done in part 1, the models 

from the regressions were compared and one was considered as the best fitted model, although the 

measure of comparison for this regression is the RMSE since both the p-value and the adjusted R2 

are invalid measures for the NLS. In that way, the best fitted model will be the one with the lowest 

RMSE.  

Similarly, to the first part, it was computed the volatility for the chosen model, using the 

estimates for the betas regressed before and the estimated option prices using these values for the 
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volatility. The estimated option prices using the implied volatility were also computed, as well as 

the valuation errors between the estimated prices from the implied volatility and the volatility from 

the best fitted model, and the code/script compares both and returns the best as the final valuation 

error computed. 

Until this step it was used the loss function $ MSE to the model's evaluation performance 

in-sample and on the next step the focus was to make out-of-sample (1-Day, 5-Days, 20-Days) 

simulations for the best fitted model from the DVF. Therefore, the code/script was developed with 

the same logic from part 1, with the exception that the regressions were made with the NLS and, 

consequently, considering different times to expiration on the function model for this regression.  

After computing these three new regressions, it was again computed the RMSE for each 

model, in order to be able to compare the results with the RMSE from the best fitted model from 

the DVF. Thus, the main and final focus from the second part was to compare the RMSE from all 

the models in order to understand which is the model that best fits the observed data and better 

explains the volatility within the collected data.  

Black-Scholes Model – % MSE Loss Function  
 

For the third part, the objective was to minimize the % RMSE using the non-linear least 

squares (NLS), for each DVF and compare which is the best model. To do so, it was used the 

function nlinfit which returns a non-linear least-squares estimates of the parameters of a non-linear 

model. The dependent variable, in this case is considered as being a vector of ones, and the 

explanatory variables, correspond to the strike price and time to expiration. Therefore, the model 

function used is given by: 

 
𝑚𝑜𝑑𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  

𝐶𝑖 −   𝐶𝑖(𝜃)

 𝐶𝑖
= 1 −  

 𝐶𝑖(𝜃)

 𝐶𝑖
 

( 18 ) 

 

As it was said before, to use the NLS in MATLAB it is necessary to determine a model 

function, which in this case was the formula from the BSM model adjusted to the sigma (volatility) 

being defined as either the model 1, 2 or 3 from the DVF, divided by the observed prices from the 

collected data. It was also needed to make some initial guesses for the beta values about to be 



 

32 

 

estimated. Considering the initial guesses as zeros, the code/script returned the same measures as 

on the previous part. 

The rest of the steps are very similar to the ones made for the second part, applying the 

same formulas, and using the same logic but with the exception that the regressions were made 

with a different function model for the NLS. 

 

Heston Model – IVMSE Loss Function 
 

For the first part, the objective was to minimize the parameters of the Heston model for the 

Implied Volatility Loss Function using an optimization function, for each DVF and compare which 

is the best model. To do so, it was used the function fmincon which returns optimized values for 

the Heston model parameters, in order to reduce the discrepancy between the model-implied prices 

and the market prices. The process continues until a satisfactory level of fit is achieved. 

Regarding the initial parameters, it was necessary to make some initial guesses for the 

initial variance, kappa, theta, sigma, and rho, as it was mentioned before. Therefore, the initial 

guesses used are shown at the table below: 

v0 Kappa Theta Sigma Rho 

0.1 1 0.5 0.8 -0.6 

Table 2 - Initial Values for Heston Model Parameters 

As it was mentioned before, even though the MLE estimation for the parameters could 

have been used to optimize the IVMSE Loss function, it is believed that it could result in a worst 

optimization rather of an improvement. Even though it was not applicated, it is important to 

mention that to use this approach it is necessary to define a likelihood function based on the Heston 

model and use a suitable optimization algorithm. 

The next objective was to minimize the IV RMSE using the ordinary least squares (OLS) 

like it was used on the BSM model, for each DVF and compare which is the best model. To do so, 

it was used the function fitlm which returns a linear regression model of the dependent variable, in 

this case the implied volatility computed before, fit to the explanatory variables, corresponding to 

the strike price and time to expiration.  
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Given these three linear regressions, it was made a comparison between the models, using 

the p-values and the adjusted R2 (is a better model evaluator when compared to the R2 because it 

correlates the variables more efficiently). Thus, only the linear regressions with p-value higher 

than 0.05 are not rejected, and the model with higher adjusted R2 is chosen as the best fitted model 

to explain the volatility from the options on the collected data.  

Therefore, it was necessary to define the DVF and the initial parameters for the IVMSE 

Loss Function optimization to be completed. These four models include the model 1, 2 or 3 from 

the DVF mentioned before and the model that is given by the implied volatility, computed by using 

the Heston model option pricing.  

Having the best fitted model, the next step from the code/script was to compute the 

volatility, considering either the model 1, 2 or 3 from the DVF corresponding to the chosen model. 

The next step had the intention of calculating the option prices, using the Heston_price, 

considering the implied volatility computed before and the implied volatility from the best fitted 

model.  

Therefore, it was possible to compare the difference obtained from the theoretical prices 

computed by the Heston model formula, using the implied volatility and the volatility from the 

best fitted model, with the bid-ask mid prices observed in the market. These valuation errors were 

compared between each other, returning a final vector for the lower values when summing the 

valuation error.  

It was used the loss function IV MSE to the model's evaluation performance in-sample and 

on the next step the focus it to make out-of-sample (1-Day, 5-Days, 20-Days) simulations for the 

best fitted model, from the DVF. In that way, as it was done on the Black-Scholes code/script, it 

was added 1/365, 5/365 and 20/365 years to the time to expiration from the collected data, and 

therefore were created three different vectors for each new maturity. Since the maturities are 

different, it was needed to compute the option prices from this out-of-sample data, using again the 

function Heston_price.  

The final focus was to compute and compare the RMSE values from the best fitted model, 

the implied volatility, and out-of-sample option prices to understand which is the model that best 

fits the observed data and better explains the option pricing within the collected data, which will 

be the model with the lowest RMSE. 



 

34 

 

Heston Model – $ MSE Loss Function  
 

For the second part, the objective was also to minimize the parameters of the Heston Model 

for the Dollar Loss Function using an optimization function, for each DVF and compare which is 

the best model. To do so, it was also used the function fmincon which returns optimized values for 

the Heston model parameters, in order to reduce the discrepancy between the model-implied prices 

and the market prices. The initial parameters were the same as the ones used on part I. 

For the second part, the objective was to minimize the $ RMSE using the non-linear least 

squares (NLS), for each DVF and compare which is the best model. To use the NLS in MATLAB 

it is necessary to determine a model function, which in this case was the formula from the Heston 

model adjusted to the parameters. 

Therefore, the code/script was developed with the same logic from Part I for the initial 

parameters and the DVF, as well as the verification of the best-fitted model and the out-of-sample 

simulations but applying it for the Dollar MSE Loss Function.  

After computing all option prices for the different simulations, it was again computed the 

RMSE for each model, in order to understand which is the model that best fits the observed data 

and better explains the option pricing within the collected data, which will be the model with the 

lowest RMSE once again. 

 

Heston Model – % MSE Loss Function  
 

For the third part, the objective was also to minimize the parameters of the Heston model 

for the Percentage Dollar Loss Function using an optimization function, for each DVF and 

compare which is the best model. To do so, it was also used the function fmincon which returns 

optimized values for the Heston model parameters, in order to reduce the discrepancy between the 

model-implied prices and the market prices. The initial parameters were the same as the ones used 

both on part I and part II. 
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The rest of the steps are very similar to the ones made for the second part, applying the 

same formulas, and using the same logic but with the exception that all computations and 

simulations were done by applying for the Percentage Dollar MSE Loss Function. 
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Estimation Results 
 

Black-Scholes Model 
 

Regarding the values from the regressed models for the F-test p-values, it is necessary to 

consider that the number of observations can have an impact on the real distribution. If there is 

bias, more observations would have a negative impact but if there is conformity with the real data, 

more observations improve the F-test. Usually, more observations reduce the p-values as it 

optimizes the calibration of the parameters. It is similar to identify the probability of the population 

as random and not a good sample to use, to test the DVF.  

Nowadays, the markets are not flowing according to the past years, since there are many 

sources of uncertainty at the moment, having an immediate impact on the option prices. Thus, 

since the market is very volatile these days, there can be very specifications that impact the 

collected data as being an outlier per say. Therefore, the usage of the DVF may not be the best 

way to determine the implied volatility and evaluate option prices, under the BSM model.  

 

IVMSE Loss Function 
 

Regarding part 1, that corresponds to the IVMSE loss function, all the p-values from the 

F-statistic are below 0.05, which means that there is at least one coefficient that is statistically 

different from zero on all models from the DVF. Therefore, all models were also compared, taking 

the adjusted R2 into account, with the code/script returning the best fitted model as the one with 

the highest value. Thus, the model chosen (best fitted model) within the DVF, for in-sample data 

represents the model 3 and, consequently it will be the model used on out-of-sample analysis.  

The next step, and the focus of the dissertation, was to compare the RMSE between the 

best fitted model, the 1-day out-of-sample model, the 5-days out-of-sample model, and the 20-

days out-of-sample model. Looking to table 2, presented below, it is possible to understand that 

the best fitted model (BFM) represents the model that best fits the collected data and has a better 
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performance to explain the observed prices, for the first loss function. The model given by 20-days 

out-of-sample is the one that performs worst, taking this measure into consideration.   

RMSE Outputs from Part 1 

RMSE from BFM 0.2838 

RMSE from OFS 1 Day 0.2842 

RMSE from OFS 5 Days 0.2862 

RMSE from OFS 20 Days 0.2923 

Table 3 - RMSE Outputs from Black-Scholes Model Part I 

This can be explained by the fact that the third model of the DVF includes additional terms, 

tending to provide a better fit to the observed prices in the in-sample dataset, meaning that it can 

capture nuances and variations more effectively in the historical data. In the case of the 20-days 

out-of-sample scenario, the market conditions on underlying factors may change over time and the 

third DVF, being more complex, may not adapt well to these changes resulting in less accurate 

predictions, meaning that it may be overfitting to the historical data. 

In the paper presented by Dumas et al. (1998), the model S is the model that has a better 

performance to explain the observed prices. 

 

$ MSE Loss Function 
 

Regarding part 2, that corresponds to the $ MSE loss function, and since the p-values from 

the F-statistic and the adjusted R2 are not measures used on the NLS regression, the comparison 

between models was made using the MSE measure. Thus, the model chosen within the DVF, for 

in-sample data represents the model 1 and, consequently it will be the model used on the out-of-

sample analysis. Comparing the valuation error between the prices given by the implied volatility 

from model 0 and the best fitted model with the observed prices on the collected data, it was 

possible to understand that the model 1 from the DVF has the best results for this measure.  

Again, the next step, and the main focus of the dissertation was to compare the RMSE 

between the best fitted model, the 1-day out-of-sample model, the 5-days out-of-sample model and 

the 20-days out-of-sample model. Looking to table 3, presented below, it is possible to understand 
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that the model, given by 20-days out-of-sample data, represents the model that best fits the 

collected data and has a better performance to explain the observed prices, for the second loss 

function. Curiously, the supposedly best fitted model (model 1) is the one that performs worst, 

taking this measure into consideration.  

RMSE Outputs from Part 2 

RMSE from BFM 0.3955 

RMSE from OFS 1 Day 0.3951 

RMSE from OFS 5 Days 0.3938 

RMSE from OFS 20 Days 0.3889 

Table 4 - RMSE Outputs from Black-Scholes Model Part II 

Even though the first model of the DVF might have achieved the best fit to the in-sample 

data, this strong fit might also have resulted from overfitting the model to the noise or random 

fluctuations in the training data, meaning that the first DVF might have captured the historical 

data’s idiosyncrasies rather that the underlying market dynamics. On the other hand, simpler 

models tend to have higher bias but lower variance, which means they may generalize better to 

new, unseen data. In the case of the 20-days out-of-sample scenario, market conditions and 

underlying factors can change significantly and the first DVF might not be flexible enough to adapt 

to these changes because of its simplicity, leading to large prediction errors. This highlights the 

importance of cross-validation and out-of-sample testing to assess a model’s true predictive 

performance. 

For the paper presented by Christoffersen and Jacobs (2004) the best fitted model from the 

DVF is the one that has a better performance to explain the observed prices. 

 

% MSE Loss Function 
 

Regarding part 3, that corresponds to the % MSE loss function, once again the p-values 

from the F-statistic and the adjusted R2 are not measures used on the NLS regression. Therefore, 

the comparison between models was also done using the RMSE measure. Thus, the model chosen 

within the DVF, for in-sample data represents the model 1 and, consequently it will be the model 

used on out-of-sample analysis. Comparing the valuation error between the prices given by the 
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implied volatility from model 0 and the best fitted model with the observed prices on the collected 

data, it was possible to understand that the model 0 from the DVF has the best results for this 

measure.  

The next step, and again the main focus of the dissertation was to compare the RMSE 

between the best fitted model, the 1-day out-of-sample model, the 5-days out-of-sample model and 

the 20-days out-of-sample model. Looking to table 4, presented below, it is possible to understand 

that the best fitted model (model 1) represents the model that best fits the collected data and has a 

better performance to explain the observed prices, for the third loss function. Curiously, all models 

present very close results and the model, given by 20-days out-of-sample data, is the one that 

performs worst, taking this measure into consideration.  

RMSE Outputs from Part 3 

RMSE from BFM 0.43483 

RMSE from OFS 1 Day 0.43484 

RMSE from OFS 5 Days 0.43485 

RMSE from OFS 20 Days 0.43487 

Table 5 - RMSE Outputs from Black-Scholes Model Part III 

This can be explained by the fact that the first model of the DVF tends to have higher bias, 

which means it can generalize better to different market conditions. In the case of the 20-days out-

of-sample scenario, the market conditions on underlying factors can change significantly and the 

first DVF might not be flexible enough to adapt to these changes because of its simplicity, leading 

to larger prediction errors. 

For the paper presented by Christoffersen and Jacobs (2004) the best fitted model from the 

DVF is also the one that has a better performance to explain the observed prices and the 20-days 

out-of-sample model is also the one that performs worst. 

 

Heston Model 
 

Since there are numerous causes of uncertainty at the present, which have a direct impact 

on option pricing, the markets are not currently operating in a manner consistent with previous 
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years. As a result, given how unpredictable the market is right now, there may be several factors 

that cause the data to be obtained to be an outlier. Considering this, using the DVF in the Heston 

model to calculate the option prices also may not be the best course of action.  

IVMSE Loss Function 
 

Regarding part 1, that corresponds to the IVMSE loss function, all the p-values from the 

F-statistic are below 0.05, which means that there is at least one coefficient that is statistically 

different from zero on all models from the DVF. Therefore, all models were also compared, taking 

the adjusted R2 into account, with the code/script returning the best fitted model as the one with 

the highest value. Thus, the model chosen (best fitted model) within the DVF, for in-sample data 

represents the model 3 and, consequently it will be the model used on out-of-sample analysis.  

Comparing the RMSE between the best fitted model, the 1-day out-of-sample model, the 

5-days out-of-sample model, and the 20-days out-of-sample model was the following stage and 

the main emphasis of the dissertation. The 20-days out-of-sample model is the one that best fits 

the collected data and performs better to explain the observed prices, according to table 5, which 

is shown below. This is true for the first loss function. Curiously, the model that performs the worst 

when this metric is considered is the one provided by the BFM.  

RMSE Outputs from Part 1 

RMSE from BFM 0.3415 

RMSE from OFS 1 Day 0.3098 

RMSE from OFS 5 Days 0.3188 

RMSE from OFS 20 Days 0.2666 

Table 6 - RMSE Outputs from Heston Model Part I 

Although the BFM represents the best-fitted model among the candidate models based on 

the calibration process, it may not necessarily have the lowest IVMSE, as calibration aims to fit 

option prices, not necessarily implied volatilities. Thus, even though it’s the best-fitted model in 

terms of options prices, it might not be the best at reproducing implied volatilities, leading to a 

higher IVMSE. Therefore, the BFM may have overfitted the historical data, meaning that the 

model captures noise in the data rather than the underlying patterns. The third model is more 

complex which can lead to more flexibility in fitting historical data. Therefore, considering that 
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financial markets are dynamic, and implied volatilities can change over time due to various factor, 

the BFM may not capture changes in implied volatilities as effectively as a model specifically 

designed for forecasting over longer time horizons, such as the 20-days out-of-sample scenario. 

For the paper presented by Christoffersen and Jacobs (2004) the best fitted model from the 

DVF is the one that has a better performance to explain the observed prices. 

 

$ MSE Loss Function 
 

Regarding part 2, that corresponds to the $ MSE loss function, the comparison between 

models was done using the RMSE measure. Thus, the model chosen within the DVF, for in-sample 

data represents the model 1 and, consequently it will be the model used on out-of-sample analysis. 

It was feasible to determine that the model 1 from the DVF has the best results for this measure by 

comparing the valuation error between the prices indicated by the implied volatility from model 0 

and the best fitted model with the observed prices on the collected data. 

Once more, the following step and the primary objective of the dissertation was to compare 

the RMSE between the best fitted model, the 1-day out-of-sample model, the 5-days out-of-sample 

model, and the 20-days out-of-sample model. By examining table 6, which is provided below, it 

is feasible to comprehend that the model provided by the BFM reflects the one that best fits the 

data that was gathered and has a better ability to explain the observed prices, for the second loss 

function. The 20-days out-of-sample model is the one that performs the worst.  

RMSE Outputs from Part 2 

RMSE from BFM 0.5224 

RMSE from OFS 1 Day 0.5305 

RMSE from OFS 5 Days 0.5650 

RMSE from OFS 20 Days 0.7015 

Table 7 - RMSE Outputs from Heston Model Part II 

This can be explained because the BFM may have overfitted the historical data, meaning 

that it captures noise in the data rather than the underlying patterns. Over fit models can perform 

exceptionally well on the calibration data but generalize poorly to new, out-of-sample data. This 
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is a common issue when choosing models based solely on calibration performance. On this case, 

the first DVF is a simpler model with fewer parameters which may be less prone to overfitting but 

may also have limited flexibility to capture complex patterns in the data.  Therefore, the BFM’s 

superior performance in terms of $ MSE on historical data could be due to its calibration to this 

specific dataset. However, this advantage may not necessarily extend to out-of-sample data, 

specifically if the DVF is not that complex. On that note, the 20-days out-of-sample while 

performing poorly in the calibration dataset, could be better to forecasting longer periods and could 

avoid overfitting issues if the purpose was to choose a model for financial forecasting. 

For the paper presented by Christoffersen and Jacobs (2004) the best fitted model from the 

DVF is the one that has a better performance to explain the observed prices, therefore following 

the same results as the first loss function computed before. 

 

% MSE Loss Function 
 

The RMSE metric was also used to compare the models in relation to part 3, which 

corresponds to the % MSE loss function. As a result, the model selected within the DVF to describe 

in-sample data is model 1, and as a result, it will be the model utilized in out-of-sample analysis. 

It was feasible to determine that the model 1 from the DVF has the best results for this measure by 

comparing the valuation error between the prices indicated by the implied volatility from model 0 

and the best fitted model with the observed prices on the collected data.  

The dissertation 's following stage was comparing the RMSE of the best fitted model with 

that of the 1-day out-of-sample model, the 5-day out-of-sample model, and the 20-day out-of-

sample model. The 5-days out-of-sample data is the model that best fits the collected data and 

performs better to explain the observed prices, for the third loss function, according to table 7 that 

is provided below. The model that performs the worst when this metric is considered is the one 

that is based on 20 days of out-of-sample data.  
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RMSE Outputs from Part 3 

RMSE from BFM 0.2038 

RMSE from OFS 1 Day 0.2021 

RMSE from OFS 5 Days 0.1996 

RMSE from OFS 20 Days 0.2133 

Table 8 - RMSE Outputs from Heston Model Part III 

This can be explained because the 5-days out-of-sample period is relatively short and may 

better capture the short-term dynamic of the financial market. In contrast, the 20-days out-of-

sample period is longer and may introduce more uncertainty and variability in market conditions. 

Financial markets are subject to changes in volatility regimes, interest rates and other 

macroeconomic factors. Over a longer time horizon, these factor may change significantly leading 

to parameter drift in the Heston model, resulting in poorer performance.  

Therefore, the 5-days out-of-sample model’s superior performance in terms of % MSE for 

a short-term horizon can be attributed to is adaptability to the specific dynamics of the market 

within the timeframe. On that note, the 20-days out-of-sample, while potentially performing well 

in longer-term forecasting, may struggle to capture the nuances of shorter-term market movements. 

This can also be explained because the first DVF is simpler when compared to the other 

deterministic volatility functions which can impact on the out-of-sample analysis as well, meaning 

that the 20-days out-of-sample will cause in a bigger overfitting of the historical data. 

For the paper presented by Christoffersen and Jacobs (2004) the best fitted model from the 

DVF is the one that has a better performance to explain the observed prices and the 5-days out-of-

sample model is the one that performs worst. 
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Conclusions 
 

As it was said before, the main purpose of this dissertation was to compare the Black-

Scholes with the Heston model and understand which is the best model in terms of explaining the 

market dynamics. This dissertation was also focused on testing different specifications of 

deterministic volatility functions and evaluating the best loss function within each model. On that 

note, the objective was to assess whether a deterministic volatility function can be a good option 

valuation model, and after computing some tests, understand which of the purposed models best 

fits the observed data and better explains the volatility within the collected data. 

In order to evaluate and determine if the deterministic volatility functions were a good 

approach for modeling the implied volatility and which loss function should be used when 

estimating and evaluating option valuation models, the dissertation followed the same path 

presented on both papers referred before (Dumas et al., 1998 and Christoffersen and Jacobs, 2004). 

Although the path was similar from the one registered on those papers, this dissertation didn’t 

make the hedging and the prediction analysis made on the paper from Dumas et al. (1998).  

Therefore, the focus was to analyze which of the models from the DVF would be better for 

each loss function, understand which model performs the best and also compare these values with 

the results computed on both papers. It is necessary to take into consideration that the data from 

the papers and the historical collected data presents a long interval between them and that can 

influence the results and, consequently, the conclusions. 

The choice of the loss function is very important and can impact tremendously on the 

outputs. Regarding part 1 for the Black-Scholes model, the best model for the first loss function 

represents the BFM, which means that different values for the time to expiration can influence the 

results. For the Heston model, the 20-days out-of-sample model was the model that best fits the 

extracted data.  

Taking part 2 into consideration, the best model for the second loss function is the model 

given by 20-days out-of-sample data. This means that a miss specified model with precisely 

estimated parameters (out-of-sample) outperformed the correctly specified model. For the Heston 

model, the BFM is the one that best explains the market dynamics. 
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Regarding part 3, the best model for the third loss function is the model 1 from the DVF, 

having, therefore, a better performance to explain the observed prices, regarding the implied 

volatility. The 5-days out-of-sample scenario is the model that best fits the collected data to the            

% MSE Loss function within the Heston model. 

Based on the estimation results, it is possible to understand that the third DVF consistently 

performs well across different loss functions. However, the choice of the best model can vary 

depending on the specific context and objectives of the analysis implemented. 

If we focus on all RMSE results for the two models, we can reach the conclusion that the 

IVMSE Loss Function is the best loss function within the usage of the Black-Scholes model and 

the % MSE is the best Loss function within the usage of the Heston model. But the purpose of this 

dissertation is to compare both models. On that note, looking at the estimation results from both 

models, we can conclude that if we focus on the IVMSE and the % MSE loss functions, the Heston 

model yields better results but if we focus on the $ MSE, the Heston model fits worse when 

compared to the Black-Scholes model. Therefore, it is possible to reach the conclusion that the 

Heston model is the one that best explains the historical collected data and better fits the market 

dynamics. 

The paper from Christoffersen and Jacobs (2004) compares the Heston model with the PBS 

stating that “Regardless of whether one uses $RMSE or %RMSE loss functions, and regardless of 

whether one evaluates the loss functions in-sample or out-of-sample, the PBS model performs 

better than the Heston model when implemented using the appropriate loss function. However, 

when the PBS model is implemented using the IVMSE loss function to estimate the parameters, 

as is standard in the literature, it performs much worse than the Heston model.” Therefore, the 

conclusion was that when comparing both models the PBS model slightly outperforms the Heston 

model.  

Taking these conclusions into consideration, it is possible to understand that there is a 

discrepancy between conclusions. This can be explained for various reasons, such as market gaps, 

market dynamics and most importantly because of the collected data.  

On that note, it is important to say that the results can be misleading considering that 

structural models like the Heston model can provide the key link between the dynamics of the 
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option price and the dynamics of the underlying asset price. Therefore, the Blacks Scholes model 

only indicates its usefulness as a benchmark, and consequently it is not qualified to be a competitor 

of the structural models. There are also factors such as accuracy of calibration or market conditions 

that can impact tremendously on the results and consequently the conclusions. The historical data 

retrieved can also impact tremendously the outcomes and the conclusions. 
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