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Abstract
Cities’ weaknesses have been revealed by their struggle to respond to current challenges (e.g.,
pandemic crises and population and urbanization exponential growth). Urban planners are
thus increasingly concerned about implementing initiatives in their metropolises that favor
a better present and future quality of life. In this context, cities need to become enablers
of economic and social development and increased prosperity through the integration of
technologies into projects promoting smarter and more sustainable urban ecosystems. These
ecosystems are, however, highly complex due to their specificities and multifaceted nature,
which makes analyzing them a difficult endeavor. Based on a constructivist and complemen-
tarity logic, this study sought to develop a multicriteria analysis model to support relevant
decision-making processes in this study context. A panel of experts was recruited to create the
analysis system using a combination of cognitive mapping and the decision-making trial and
evaluation laboratory technique in an neutrosophic context. This approach overcomes vari-
ous flaws identified in previous related research. The entire procedure focused on enhancing
the experts’ learning through participation not only to structure the problem under analysis
but also to identify and prioritize the factors and/or determinants of smartness and urban
sustainability. The model provides a holistic, solid, and clear vision of the decision prob-
lem that fosters appropriate choices when creating and evaluating smart, sustainable urban
ecosystems.
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1 Introduction

Over half of the world’s population currently lives in urban areas. Experts expect a further
exponential increase in population and urbanization (United Nations (UN), 2020), which
requires a stronger focus on living conditions in cities.Metropolises face numerous challenges
that jeopardize both these urban areas’ development and their current and future ability to
provide citizens with an adequate quality of life. This situation means that urban planners
urgently need to understand and organize their cities and provide creative solutions that make
them more livable.

Municipalities should be treated as urban ecosystems capable of combining natural and
built environments, integrating technologies that improve people’s way of life, and continu-
ously supporting long-term sustainability (Mouratidis, 2021). This approach creates smart,
sustainable urban ecosystems, yet no clear consensus exists on which factors influence the
development of smart, sustainable cities because of this topic’s complexity andwide scope. To
ensure a better quality of life, more livable environment, and more solid economic prospects
for metropolises, researchers need to reflect more deeply on urban ecosystems’ dynamics
and understand their challenges and the initiatives that facilitate the development of these
environments.

Urban ecosystems have been extensively analyzed and assessed, but the various evaluation
methods available suffer from limitations. These include: (1) the unclear way in which eval-
uation criteria are identified and defined (Barão et al., 2021; Pinto et al., 2022); (2) a failure
to identify these criteria’s relevance to smart, sustainable urban ecosystems’ construction;
and (3) the absence of analyses of the dynamics of cause-effect relationships between the
criteria (Ferreira et al., 2022). These past limitations can serve as catalysts for future research
that expands the existing knowledge and provides opportunities for improvement. To address
these general limitations, the present study sought to strengthen decision makers’ ability to
understand which determining factors have to be considered while creating and/or analyzing
smart, sustainable urban ecosystems. Two research questions were addressed:

– How can decision makers identify the key initiatives that contribute to and/or shape con-
ceptualizations of smart, sustainable urban ecosystems?

– Which determinants have a significant impact on—and thus should be prioritized dur-
ing—the development and analysis of these ecosystems?

To this end, the present research applied the strategic options development analysis
(SODA) method to simplify the application of cognitive mapping and decision-making trial
and evaluation laboratory (DEMATEL) techniques in a neutrosophic environment. The goal
was to help experts examine the dynamics of causal relationships between determining fac-
tors, dealwith uncertainty, and express their ideasmore accurately during thedecision-making
process (Abdel-Basset et al., 2018). The current study adopted a constructivist stance (i.e., a
process-oriented approach based on learning through participation), so the combinedmethod-
ology could facilitate the formulation of a consensus around recommended solutions. The
results thus offer a more complete, detailed, and self-evident view of the decision problem
under analysis.

The methodologies were applied during two online group sessions due to restrictions
related to the coronavirus disease-19 pandemic, with a panel of experts on relevant subjects.
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These sessions promoted group interactions and open discussions about how to structure
the factors affecting smart, sustainable urban ecosystems’ development, thereby providing
the necessary input for the creation of a group cognitive map. Subsequently, the DEMATEL
technique helped the decision-maker panel examine the key factors’ cause-and-effect rela-
tionships in the context of smart, sustainable cities and conduct the respective neutrosophic
assessments. The present research, therefore, combined DEMATEL and neutrosophic logic
for the first time to facilitate a study of smart, sustainable urban ecosystems. This novel
methodological framework contributes to the literature on operational research/management
science (OR/MS), on the assessment of this type of ecosystems, and encourages future inves-
tigations of the decision problem in question.

This paper is organized into five sections. The next section presents a literature review
of the conceptualization of smart, sustainable urban ecosystems and some supporting
approaches, after which the research gaps and theoretical framework are discussed. The
third section explains the methodologies adopted. The fourth follows up with the method-
ological application and main results. The final section concludes the paper by explaining
the insights gained and offering recommendations for future research.

2 Related literature and research gaps

The term ecosystem was initially used only to designate a system composed of living
organisms and their environment (Tansley, 1935). This concept is now closely linked to
urbanized areas as it is frequently associated with cities. Urban ecosystems’ distinctive,
multifaceted nature means that they are highly complex (European Commission, 2020). In
addition, increasingly dense social, environmental, and economic contexts currently affect
cities (Rzevski et al., 2020; Vieira et al., 2022), so researchers’ interest in analyzing these
ecosystems’ metabolism and urban ecology has grown noticeably. Thus, treating cities as
ecosystems appears to have become a fundamental part of urban planning.

Urban ecosystems are widely believed to be associated entirely with cities and their sur-
roundings. However, the European Union (2020) more broadly defines this concept as a
socio-ecological system in which most populations live, which has two dimensions. The first
is green infrastructure (i.e., strategically planned networks of natural areas), while the sec-
ond is built infrastructure (i.e., houses, buildings, roads, bridges, industrial and commercial
areas, and construction sites). The importance of urban ecosystems continues to increase as
populations and urbanization have expanded. The UN (2020) estimates that more than half of
the world’s population currently resides in urban areas. Population growth is also expected to
occur exclusively in metropolitan areas (UN, 2020). These trends have generated an urgent
need to create solutions that allow urban planners to understand their cities and organize
them into more livable environments (Allam & Newman, 2018).

The smart city concept emerged in response to this challenge. Despite being a relatively
recent concept, it has quickly gained importance due to governments’ interest in creating
smarter metropolises (Shamsuzzoha et al., 2021). According to the Institute for Management
Development (2016), the term smart city describes residential areas that apply technologies
to enhance urbanization’s benefits and reduce its challenges. The literature, however, shows
that no consensus exists on the conceptualization of smartness in urban contexts (Mora et al.,
2017).

Cities are vital to achieving sustainable development goals as these areas are the main cat-
alysts for economic development and increased prosperity (Castanho et al., 2021). Human
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capital development, in particular, is crucial for economic sustainability to be achieved. In
this sense, well-planned and managed cities can offer improved social value and promote
environmental sustainability. Formetropolises to be sustainable, theymust be planned, devel-
oped, and administered so that they provide economic, social, and environmental benefits,
and thus improve their residents’ quality of life. Smart, sustainable cities are urban entities
capable of integrating social and digital technologies into processes and coordinating the
existing knowledge to overcome economic, social, and environmental challenges that affect
municipalities’ long-term viability (Hara et al., 2016). According to Gil-Garcia et al. (2015),
cities become smarter when they are able to combine natural and built environments, with a
focus on achieving long-term sustainability. Smart cities also need a solid government that
provides residents with adequate, secure support systems through effective administration
and timely public services. Gil-Garcia et al. (2015), however, argue that these measures are
useless if the residents are not involved. Municipality smartness depends on the community’s
willingness to “accept and actively promote a self-sustainable economic policy, that can be
harnessed through [the] constant participation of local associations, crowdfunding projects
and other initiatives aimed at enhancing human capital” (Cappellaro et al., 2019, p. 161).

Cities must increasingly be treated as urban ecosystems capable of offering countless
benefits to all members of society. Measures should be implemented that make metropolises
smarter and more sustainable, which appears to be crucial to creating cities that provide a
better quality of life, a more livable environment, and stronger economic prospects. Given
the current rapid rate of urbanization, varied projects have already been developed to make
cities smarter and more sustainable in response to many urban problems. These adjustments
of urban environments require planners to overcome numerous challenges by implementing
appropriate initiatives. Thus, smart city initiatives are a long process that involves different
components of urban areas (Khan et al., 2020), but these efforts are extremely important to
making urban environments smarter and more sustainable.

Assessments and analyses of smart, sustainable urban ecosystems must consider a broad
set of indicators and variables, which makes these evaluations a complex task. Researchers
have increasingly sought to identifywhich variables should be taken into consideration during
analyses and how urban ecosystem assessments can be facilitated. Some studies have been
summarized in Table 1, including their corresponding contributions and limitations.

Anoverall reviewof the existing literature and an analysis ofTable 1 revealed that extensive
research has been carried out in recent decades on how to analyze and assess urban ecosys-
tems. However, three transversal limitations were detected in prior studies. First, the methods
used to identify and define evaluation criteria were not clearly explained (Barão et al., 2021;
Pinto et al., 2022). Second, researchers failed to specify the criteria’s significance for smart,
sustainable urban ecosystem development. Last, previous investigations lack analyses of the
dynamics of the criteria’s cause-effect relationships (Ferreira et al., 2022; Lemos et al., 2022).
Despite these limitations, the extant studies have served as catalysts for additional research,
which has expanded the current knowledge about this topic and offered opportunities for
improvement.

The present study sought tomeet the need for a different analysis model that can overcome
the aforementioned limitations and that will contribute to better practices and substantive
developments in smart, sustainable urban ecosystem assessment. This research took a con-
structivist, process-oriented position based on cognitive mapping and DEMATEL techniques
applied in a neutrosophic environment. The aim was to identify concrete initiatives that help
create and evaluate smart, sustainable urban ecosystems by using a multicriteria analysis
system that addresses some of the limitations of previous investigations.
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Table 1 Urban ecosystems studies: contributions and limitations

Authors Methods Contributions Limitations

Dakhia and
Berezowska-Azzag
(2010)

Urban institutional and
ecological footprint

The proposed instrument
helps decision makers
visualize ecological
deficits within urban
metabolisms

The model covers energy,
water, waste, materials,
transportation, and
built-up areas

The sample includes
sectors that do not
cover all dimensions
of sustainability

The instrument uses
sectors that are not
broad enough to offer
a comprehensive
understanding of
which indicators
contribute
information on how
to build sustainable
urban ecosystems

Dizdaroglu et al. (2012) Indexing model for
assessment of
sustainable urban
ecosystems

The proposed approach
assesses and monitors
interactions between
human activities and
urban ecosystems,
offering qualitative
information on signif-
icant environmental
problems

The model provides a
snapshot of the current
environmental situation
of different locations

The lack of data for
some indicators
forced the authors to
make assumptions

The instrument only
covers environmental
indicators

The assessment of land
use was done using
remote sensors, so
some lands’ utility
was not clearly
identified

Mörtberg et al. (2013) Land-use evolution and
impact assessment
model

The instrument developed
evaluates the sustain-
ability of urban develop-
ment projects

The indicators integrate
urban ecosystems and
urban systems, which is
useful to decision
makers

The model was only
applied in the Stock-
holm area, which
means the results
cannot be generalized

Relatively little
information was used
to develop the model,
which reduces the
credibility of results

Palumbo et al. (2021) Bibliometric analysis
and literature review

The results clarify the con-
cepts of smart, sustain-
able urban ecosystems,
and urban sustainability

The findings contribute to
the creation and
organization of smart,
sustainable urban
ecosystems

The methodology used
may take into account
articles that were
cited in other papers
for negative reasons

The methodology iden-
tified poorly discrim-
inated clusters, which
do not include causal
relationships between
the components

The identified clusters
have no practical
applications
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3 Methodological background

Problem solving and decision making are intrinsically linked. These processes are complex
and require methods and systems that enable decision makers to manage complex decision
problems. The decision-support tools used in the present study were applied in three main
phases: (1) problem definition and structuring; (2) evaluation of potential action plans; and
(3) definition of recommendations and implementation (Belton & Stewart, 2002).

The first phase involved cognitive mapping, which helped decision makers to identify
and select the evaluation criteria to be incorporated in the model. In the second phase, the
DEMATEL method was applied together with neutrosophic logic to analyze the criteria’s
interrelationships. During this process, a facilitator was present to ensure successful analyses
by intervening as an impartial observer during the group work sessions. This person was not
a specialist in the subject matter analyzed but was familiar with the techniques applied.

3.1 SODA approach, cognitive mapping, and neutrosophic logic

According to Keeney (1992), the decision-making process begins when a problem is rec-
ognized as an opportunity to reach good decisions rather than simply as an obstacle. For
this reason, Rosenhead (1996) further suggests that decision makers need to consider prob-
lem structuring as fundamental to successful assessment processes since “a well-structured
problem is a problem half solved” (Belton & Stewart, 2002, p. 35). Defining and structuring
challenges facilitates the identification, characterization, and prioritization of the elements
that need to be evaluated through a creative process of clarifying an initially perplexing
problem (Ferreira, 2011). Several methods have been developed previously to help decision
makers appropriately structure complex issues, which produce graphical representations of
problems and construct more innovative solutions (for examples and details, see Rosenhead
(1996) and Ackermann and Eden (2010)).

The current research relied on the SODAmethod to sustain and apply cognitive mapping.
With the assistance of a facilitator, SODA was used to focus the group work sessions on
individual actors and involve them in the decision-makingprocess by allowing them to express
their ideas and opinions about the problem in question. This method also seeks to ensure that
the issue is fully analyzed and understood, including producing a graphical representation of
the decision problem and acknowledging the individual experts’ different perspectives during
the entire process (Ackermann & Eden, 2010). As an integral part of SODA methodology,
cognitivemaps structure and visualize complex challenges. Thesemaps help decisionmakers
gain a fuller understanding of the relevant problem as they reflect on—and negotiate with
each other over—which key criteria and/or determinants most influence the issue. Cognitive
mapping is able to: (1) include qualitative variables; (2) structure complex decision situations;
(3) support group work; and (4) facilitate the development and implementation of strategic
solutions (Faria et al., 2018).

To represent problems more clearly, cognitive maps are based on “short pieces of text
linked with unidirectional arrows” (Eden, 2004, p. 674). That is, these maps are composed
of nodes (i.e., concepts or statements) and arrows that reveal the causal relationship between
the different concepts (Andrade et al., 2022; Village et al., 2013). Cognitive mapping is a
process that encourages stakeholders to learn about the problem analyzed, understand the
organization of decision makers’ thought process, and obtain information about the issue at
hand. Despite the method’s clear advantages, the resulting maps do not include the intensity
of causal relationships between concepts or take into account the uncertainty underlying
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these ideas. According to Agboola et al. (2012), the world is full of indeterminate situations
that decision makers cannot ignore. Thus, various approaches have been proposed as a way
to deal with this uncertainty. The present study specifically incorporated neutrosophic logic
to address indeterminacy.

Neutrosophic logic is used “to model phenomena that are not perfectly determined or
known” (Schweizer, 2020, p. 101) as this approach seeks to explore theorigins anddimensions
of neutrality to represent reality in a broader way (Smarandache, 2007). Neutrosophic logic
states that each variable x (i.e., the statement or criterion under analysis) can be described as
having three components: (1) a degree of truth (T ); (2) a degree of indeterminacy (I); and (3)
a degree of falsity (F) (Kandasamy & Smarandache, 2003). The neutrosophic components
T , I , and F are represented as standard or non-standard real subsets of [–0, + 1], in which T
= [–0, + 1]; I = [–0, + 1]; F = [–0, + 1]. Thus, experts analyzing a multicriteria decision
problem can respond to specific statements by expressing the probability that each statement
is true (e.g., T = 0.6), its degree of uncertainty (e.g., I = 0.4), and its chances of being false
(e.g., F = 0.1). The experts’ understanding of variable x in this case (i.e., 0.6, 0.4, and 0.1)
stresses that the T , I , and F percentages do not necessarily have to add up to 100%. In a final
step, a mechanism is used to transform the three neutrosophic components (i.e., T , I , F) into
a single value (i.e., crispification). For the current research, crispification Eq. (1) was applied
to obtain a crisp value for each causal relationship (Pramanik et al., 2016):

wc
k = 1 −

√
((1 − Tk)

2 + (Ik)2 + (Fk)2))/3

∑r
k=1

{
1 −

√
((1 − Tk)

2 + (Ik)2 + (Fk)2))/3

} (1)

in which wc
k ≥ 0.

Neutrosophic logic is a more empirically robust, realistic tool that supports decision mak-
ing since this logic, in addition to dealing with the issue of uncertainty, gives decision makers
greater freedom to follow their intuition regarding truth, falsity, and indeterminacy of causal
links. This approach is relatively new, but, when applied to complex decision problems, neu-
trosophic logic appears to generatemore realistic results (Ferreira&Meidutė-Kavaliauskienė,
2019).

3.2 DEMATEL

Gabus and Fontela (1972) created the DEMATEL technique to analyze and structure inter-
connected, complex decision problems, represent criteria’s interrelationships, and “help to
prioritize factors based on type of relationship as well as identifying the severity of their
effect on other factors” (Atthirawong et al., 2018, p. 2). DEMATEL can be used to evalu-
ate different factors in order to convert the interdependent relationships between them into
groups of causes (i.e., higher priority factors that have a greater effect on others) and effects
(i.e., less significant factors that receive more influence from others) (Si et al., 2018). This
technique thus identifies credible and feasible solutions and places them in a hierarchy by
importance. Sumrit and Anuntavoranich (2013) state that decision makers should follow a
sequence of essential steps to apply DEMATEL.
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3.2.1 Step one

The first step is to calculate initial direct-influence matrix Z after a group of specialists E
produces matrix n × n using a five-point scale ranging from 0 to 4 (0 = “No influence”; 1 =
“Little influence”; 2 = “Medium influence”; 3 = “Strong influence”; and 4 = “Very strong
influence”). Matrix Z is understood as Z = [aij] n × n and represented as shown in Eq. (2)
(Ullah et al., 2021):

Z =
C1
C2
...

Cn

⎡
⎢⎢⎢⎢⎣

0 a12
a21 0

· · · a1n
a2n

...
...

. . .
...

an1 an2 · · · 0

⎤
⎥⎥⎥⎥⎦

(2)

3.2.2 Step two

The second step is to create normalized direct-influence matrix X by applying normalization
to matrix Z . This procedure uses Eqs. (3) and (4):

X = Z

λ
(3)

λ = max

⎛
⎝ max

1≤i≤n

n∑
j=1

zi j , max
1≤ j≤n

n∑
i=1

zi j

⎞
⎠ (4)

in which λ is a normalizing constant equal to a criterion’s largest effect or the total of matrix
Z’s lines i has on other factors, as well as that criterion’s maximum influence or the total of
matrix Z’s columns j receives from the other factors.

3.2.3 Step three

The third step is to build total-influence matrix T using Eq. (5):

T = lim
h→∞(X1 + X2 + · · · + Xh) = X(I − X)−1 (5)

in which I is an identity matrix and elements tij are the direct and indirect effects that factor i
has on factor j. Matrix T represents the total influence present in each factor’s relationships.

3.2.4 Step four

The fourth step is to calculate the totals of total-influence matrix T ’s rows and columns,
whose respective values are represented by vectors R and C. These vectors are represented
by Eqs. (6) and (7), respectively:

R =
⎡
⎣

n∑
j=1

ti j

⎤
⎦n×1 = [ri ]n×1 (6)

C =
[

n∑
i=1

ti j

]
1×n = [

c j
]
1×n (7)
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in which ri is the total of the ith row in matrix T and ri represents the total direct or indirect
influence this factor has over all other evaluation criteria. In turn, cj is the total of the ith
column of matrix T , thereby representing the total direct or indirect effects that factor i
receives from other variables.

Since i = j and i, j ∈ {1, 2, … n}, the R + C value is understood as “prominence” (i.e., a
factor’s degree of importance in the analysis system). Concurrently, the R–C value represents
“relationship” (i.e., a factor’s degree of influence in the system). These values can be used to
divide the factors into a group of causes (i.e., donors) and a group of effects (i.e., receptors).
Two possible situations thus arise. First, when ri–cj is positive, factor i has direct influence
on the other criteria, so it belongs to the group of causes. Second, if ri–cj is negative, the
remaining factors influence factor i, so this variable is included in the effects group.

3.2.5 Step five

The fifth step is to determine the threshold (α) value to identify the most critical factors of the
decision-support system. This value is calculated by averaging the scores in matrix T using
Eq. (8):

α =
∑n

i=1
∑n

j=1

[
ti j

]

N
(8)

In this step, the goal is to eliminate the factors with the least effect and significance in the
total-influence matrix, which facilitates interpretations of the interrelationship map (IRM)
generated in the next step.

3.2.6 Step six

The last step is to develop a DEMATEL cause-effect map or IRM by mapping the coordinate
sets of (ri + ci, rj − cj).R+C values refer to the horizontal axis andR–C values to the vertical
axis. This graphic representation provides important information to decision makers about
the most significant factors and their respective influence on the other evaluation criteria.
As shown in Fig. 1, the cause-effect relationship diagram is divided into four quadrants that
reflect the factors or criteria’s relative positions. Quadrant I includes the core factors (i.e.,
central factors). Quadrant II contains the driving factors (i.e., determining factors). Quadrant
III are the independent factors. Finally, quadrant IV comprises the impact factors.

Overall, DEMATEL is an extremely useful tool that converts factors’ interdependence into
cause-effect relationships and determines which criteria have a greater or lesser impact on the

Fig. 1 Interrelationship map.
Source: Yazdi et al. (2020)
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decision-support model (Dalvi-Esfahani et al., 2019). This methodology can thus contribute
to a better identification andunderstandingof practical solutions to complexproblems through
graphical representations of causal relationships. These IRMs are based on experts’ opinions
and help decisionmakers understandwhich determining factors should be prioritized (Kumar
& Dixit, 2018).

4 Application and results

The main goal of this study is to develop a multicriteria analysis system to facilitate deci-
sion making by identifying and analyzing key initiatives and challenges inherent in smart,
sustainable urban ecosystems. To this end, cognitive mapping was applied in the structur-
ing phase, followed by DEMATEL combined with neutrosophic logic during the evaluation
phase. These techniques required a panel of experts with knowledge and experience related
to sustainability and urbanism, who met in two sessions to structure and evaluate the deci-
sion problem, thereby contributing to the creation of a more dependable model (Ferreira &
Meidutė-Kavaliauskienė, 2019).

The literature reveals a lack of unanimity on howmany panelmembers should be recruited,
but the general guideline followed is 6 to 10 people (Eden & Ackermann, 2004) to ensure
the results are consistent and realistic. An effort was also made in the current research to
incorporate a variety of decision makers with different opinions and types of experience.
The panel comprised a group of eight professionals who were available and committed to
participating in this study. Notably, due to the process-oriented nature of the methodology,
representativeness was not—and did not have to be—a significant concern (cf.Bell &Morse,
2013; Ormerod, 2020; Soares et al., 2022). The on-going pandemicmeant that all group work
sessions took place exclusively in online platforms. As mentioned previously, a facilitator
was present at all times to accompany decision makers during the sessions, providing crucial
assistance that made the discussions more productive.

4.1 Structuring phase: collective cognitive map

The first group session comprised the structuring phase and lasted approximately three hours.
The main objective was to gather the information needed to generate a group cognitive map.
This first group session was divided into three distinct parts. The Miro platform (see http://
www.miro.com)was used to apply themethodologies,which facilitated remote, simultaneous
interactions among all the decision makers.

The session began with each panel member briefly introducing themselves, followed by
the facilitator’s presentation of the research context. To kick off the first part of this session, the
panel was asked a trigger question: “Based on your professional knowledge and experience,
what challenges, measures, and initiatives should be considered during the development of
smart, sustainable urban ecosystems?”. The aim was to stimulate interactions between all
the experts.

To collect the necessary input for the map, the “post-its technique” (Ackermann & Eden,
2010) was applied, which required each panelist to write on post-it notes what he or she
considered the most pertinent response to the trigger question. The experts were told that
each note should contain only one evaluation criterion followed by a positive (+) or negative
(–) sign to indicate the criterion’s impact on the decision problem in question.
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After 177 criteria were identified, the second part of the first session began, in which the
post-it notes were grouped into clusters or areas of interest made up of groups of related
criteria, thereby dividing the contents into subtopics. In the end, seven clusters were defined
and labeled as follows: technological factors (C1); organizational factors (C2); communica-
tion and engagement (C3); environmental sustainability (C4); well-being and quality of life
(C5); information, training, and knowledge (C6); and funding sources (C7). In the last part
of the session, the experts discussed the internal structure of each cluster, ranking the criteria
within each by order of importance in that cluster’s overall context (i.e., the most significant
factors were placed at the top, the intermediate ones in the middle, and the least important
ones at the bottom).

After the first group session, the Decision Explorer software (http://www.banxia.com)
was used to construct a cognitive map based on the information collected, which generated
a holistic view of the decision problem. In the second session, the experts discussed and
validated the map. If they did not agree with its form and/or content, they could make the
necessary adjustments. The map’s final version is presented in Fig. 2.

The cognitive map proved to be extremely useful as a representation of the decision
makers’ knowledge, experience, and values. The results provide solid information about and
a holistic view of the problem in question. After the map had been confirmed, the second
session could focus on applying DEMATEL in a neutrosophic environment.

4.2 Evaluation phase: DEMATEL in a neutrosophic context

The structuring phase produced a collective representation of the group’s knowledge about
smart, sustainable urban ecosystems. The evaluation phase then proceeded with the incorpo-
ration of the quantitative methodology into the decision-making process during the second
group work session. Lasting approximately three hours, the evaluation began with a brief
presentation of the DEMATEL technique and neutrosophic logic.

The practical application of both approaches required the decision makers to fill in eight
influence matrices. The first matrix covered the relationships between clusters, while the
remaining seven matrices corresponded to the criteria’s interactions within each cluster.
The experts used the DEMATEL scale ranging from 0 to 4 (see Sect. 3.2.1) to determine the
strength of the causal relationships between the variables. The panel members also integrated
the neutrosophic components into their opinions, namely the probability as a percentage of
each relationship being: true (T ); uncertain (I); or false (F). Given the large number of criteria
in each cluster, the decision makers used nominal group technique (NGT) and multi-voting
to identify the most important criteria in each cluster and fill in the corresponding matrices.

After the second session ended, the next step consisted of applying crispification to the
values assigned by the panel, which produced a crisp value for each cause-effect relationship
that is closer to reality according to the experts’ opinions. These values were then used to
complete all the DEMATEL steps (see Sect. 3.2). The first round of analysis focused on the
relationships between the clusters defined by the panel (see Table 2). The second group work
session had previously generated the matrix shown in Table 3, which includes the causal
links’ neutrosophic values later subjected to crispification. The results of the latter step are
listed in Table 4.

Table 4 provided the values needed to construct direct-influence matrix Z . The crispifica-
tion equation numerator was multiplied by the degree of influence assigned by the decision
makers so that the scale value (x) could be determined for each causal relationship. The final
crisp weights were then used to fill in direct-influence matrix Z (see Table 5). After this step,
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Table 2 Clusters identified
Clusters

C1 Technological factors

C2 Organizational factors

C3 Communication and engagement

C4 Environmental sustainability

C5 Well-being and quality of life

C6 Information, training, and knowledge

C7 Funding sources

the panel could continue on to the remaining DEMATEL steps.
In the second step, normalized direct-influencematrixX was constructed using the relevant

equations (see Sect. 3.2.2). Table 6 exhibits the results of this step.
The third step was to develop total-influence matrix T using Eq. (5) (see Sect. 3.2.3) after

the three required matrices were completed (i.e., matrix I , I − X , and I − X−1). The results
are shown in Table 7.

In matrix T , column R reflects the total influence that a given cluster has on the others,
and row C comprises the remaining clusters’ total influence on a given cluster. This matrix
reveals that C6 has a strong total effect of 5.3111 on the other clusters. In contrast, C1 has
the weakest impact on the six other clusters given its R value of 3.8873. The results in row C
indicate that C6 is influenced strongly by the remaining clusters in the analysis system (i.e.,
a C value of 5.1426).

To retain only the most critical factors for further analysis, the α value was defined by
averaging the values of matrix T . In this case, α was 0.6388, which was then used to select
the most influential relationships and highest values (i.e., the italic cells in matrix T ). This
step was fundamental to the subsequent development of DEMATEL diagrams (i.e., IRMs)
as the results could be interpreted more fully. In addition, the R and C values were added
and subtracted to provide a fuller understanding of each factor’s degree of importance and
influence. Table 8 presents the resulting values.

The last step consisted of generating a DEMATEL diagram that represents the final results
of the cluster analysis. Figure 3 shows the distribution of the seven clusters along two axes, as
well as the cause-and-effect relationships among them. Given thatR+C values indicate each
cluster’s degree of prominence in the analysis model, the R + C axis provides the clusters’
order of importance since a higher value on this axis represents a greater impact within the
decision-support system. According to the specialist panel, C6 is the most significant, with
the highest R + C value (10.4537). In contrast, C3 has the lowest R + C value (8.0926).
Thus, this cluster is the least important, with a lesser impact on the system.

The R–C values represent each cluster’s degree of influence and thus its membership in
either the causes group, when R–C > 0, or effects group, when R–C < 0. Four of the clusters
(i.e., C3, C4, C6, and C7) are causes with direct influence on the remaining clusters. C1, C2,
and C5 are effects since they are more heavily influenced by the remaining clusters and have
weak relationshipswith the other clusters. Figure 3 not only highlights the relative importance
of the seven clusters (i.e., C6 > C7 > C5 > C1 > C4 > C2 > C3) but also reveals that C6 and C7
consist of core factors, C3 and C4 contain driving factors, C1 and C2 comprise independent
factors, and C5 has impact factors.
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Table 5 Direct-influence matrix Z for clusters

C1 C2 C3 C4 C5 C6 C7 Total

C1 0.00 2.58 1.75 1.72 1.72 3.68 1.50 12.9

C2 2.02 0.00 2.39 1.87 2.67 2.89 1.99 13.8

C3 1.55 2.40 0.00 3.20 2.19 2.89 2.29 14.5

C4 1.93 1.84 1.65 0.00 3.43 2.48 3.67 15.0

C5 3.60 2.82 1.61 1.48 0.00 2.40 3.15 15.1

C6 3.60 3.60 3.01 2.29 3.15 0.00 3.15 18.8

C7 3.60 0.85 2.29 2.92 3.60 3.60 0.00 16.9

Total 16.3 14.1 12.7 13.5 16.8 17.9 15.7

Table 6 Normalized direct-influence matrix X for clusters

Max 17.9 18.8

1/max 0.055729 0.053218

1/s 0.053217532

C1 C2 C3 C4 C5 C6 C7

C1 0.0000 0.1371 0.0931 0.0914 0.0917 0.1956 0.0798

C2 0.1076 0.0000 0.1274 0.0996 0.1419 0.1540 0.1059

C3 0.0827 0.1277 0.0000 0.1703 0.1164 0.1540 0.1216

C4 0.1028 0.0978 0.0876 0.0000 0.1828 0.1320 0.1955

C5 0.1916 0.1502 0.0857 0.0787 0.0000 0.1277 0.1676

C6 0.1916 0.1916 0.1599 0.1216 0.1676 0.0000 0.1676

C7 0.1916 0.0453 0.1216 0.1552 0.1916 0.1916 0.0000

Next, each cluster was analyzed by applying the same neutrosophic logic (i.e., x (T , I , F))
and DEMATEL steps. The numerous criteria in the clusters could not all be analyzed at once,
so the decision makers had to select the most significant criteria within each cluster using
NGTandmulti-voting.The remaining initialDEMATELmatrices (i.e., groupdirect-influence
matrix Z) include crisp weights estimated using the same equations as the above inter-cluster
analysis. The intra-cluster analyses thus followed the same sequence of procedures based on
more realistic values to construct a matrix T and final IRM for each cluster.

Beginning with C1, the experts chose the most significant criteria (see Table 9), which
are hereafter referred to as subcriteria (SC) to distinguish them from the cluster-head criteria
presented in the cognitive map. This reduced list facilitated the crispification of the values in
the neutrosophic matrix (see Table 10). Direct-influence matrix Z for C1 were then filled in
with crisp values (see Table 11), and the final results were generated.

According to Table 12, the most influential factor is SC15, with an R value of 6.8715.
Concurrently, SC15 is the most affected by the other selected SCs, with a C value of 7.2580.
According to the R + C values, C1 SCs’ prioritization by importance should be: SC19 >
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Table 7 Total-influence matrix T for clusters

C1 C2 C3 C4 C5 C6 C7

I

C1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C2 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

C3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

C4 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

C5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

C6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

C7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

I–X

C1 1.0000 – 0.1371 – 0.0931 – 0.0914 – 0.0917 – 0.1956 – 0.0798

C2 – 0.1076 1.0000 – 0.1274 – 0.0996 – 0.1419 – 0.1540 – 0.1059

C3 – 0.0827 – 0.1277 1.0000 – 0.1703 – 0.1164 – 0.1540 – 0.1216

C4 – 0.1028 – 0.0978 – 0.0876 1.0000 – 0.1828 – 0.1320 – 0.1955

C5 – 0.1916 – 0.1502 – 0.0857 – 0.0787 1.0000 – 0.1277 – 0.1676

C6 – 0.1916 – 0.1916 – 0.1599 – 0.1216 – 0.1676 1.0000 – 0.1676

C7 – 0.1916 – 0.0453 – 0.1216 – 0.1552 – 0.1916 – 0.1916 1.0000

(I–X)–1

C1 1.5042 0.5641 0.4848 0.4934 0.5878 0.7016 0.5514

C2 0.6292 1.4646 0.5316 0.5233 0.6548 0.6980 0.5991

C3 0.6332 0.5966 1.4380 0.6016 0.6638 0.7238 0.6389

C4 0.6744 0.5859 0.5319 1.4674 0.7336 0.7280 0.7125

C5 0.7329 0.6236 0.5260 0.5344 1.5649 0.7204 0.6761

C6 0.8492 0.7610 0.6790 0.6680 0.8292 1.7336 0.7912

C7 0.8015 0.6033 0.6053 0.6496 0.7956 0.8372 1.6022

C1 C2 C3 C4 C5 C6 C7 R

MatrixT

C1 0.5042 0.5641 0.4848 0.4934 0.5878 0.7016 0.5514 3.8873

C2 0.6292 0.4646 0.5316 0.5233 0.6548 0.6980 0.5991 4.1006

C3 0.6332 0.5966 0.4380 0.6016 0.6638 0.7238 0.6389 4.2959

C4 0.6744 0.5859 0.5319 0.4674 0.7336 0.7280 0.7125 4.4337

C5 0.7329 0.6236 0.5260 0.5344 0.5649 0.7204 0.6761 4.3782

C6 0.8492 0.7610 0.6790 0.6680 0.8292 0.7336 0.7912 5.3111

C7 0.8015 0.6033 0.6053 0.6496 0.7956 0.8372 0.6022 4.8947

C 4.8246 4.1991 3.7967 3.9376 4.8297 5.1426 4.5713
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Table 8 Given and received influence between clusters

R C R + C R–C

C1 3.8873 4.8246 8.7118 – 0.9373

C2 4.1006 4.1991 8.2996 – 0.0985

C3 4.2959 3.7967 8.0926 0.4992

C4 4.4337 3.9376 8.3714 0.4961

C5 4.3782 4.8297 9.2080 – 0.4515

C6 5.3111 5.1426 10.4537 0.1686

C7 4.8947 4.5713 9.4660 0.3234

Fig. 3 Interrelationship map for clusters

Table 9 Most significant
subcriteria: technological factors Selected SCs

SC11 Human resources training

SC12 Digital inclusion ensuring everyone’s participation

SC15 Integration of information platforms

SC19 Data standards created to homogenize solutions

SC21 Greater connectivity between systems

SC24 Real-time data sharing

SC31 Technological solutions adapted to local realities

SC11 > SC21 > SC12 > SC31 > SC24. SC19 is overall this cluster’s most prominent factor
in the present analysis system as its R + C value is the highest (i.e., 11.2726).

As shown in Fig. 4, SC21 and SC15 fall below the R–C axis (i.e., SCs with a negative
value). Thus, they form the effects group. The remaining SCs appear above the axis (i.e.,
with a positive R–C value), identifying them as causes that have more direct influence on the
other two SCs. The IRM also reveals that SC11, SC12, and SC19 are core factors; SC24 and
SC31 are driving factors; and SC15 and SC21 are impact factors.

123



Annals of Operations Research (2025) 347:131–171 151

Ta
bl
e
10

M
at
ri
x
w
ith

ne
ut
ro
so
ph
ic
va
lu
es
:t
ec
hn
ol
og
ic
al
fa
ct
or
s

SC
11

SC
12

SC
15

SC
19

SC
21

SC
24

SC
31

SC
11

–
3.
0
(0
.7
,0
.3
,0
.2
)

4.
0
(0
.7
,0
.3
,0
.2
)

3.
5
(0
.8
,0
.2
,0
.2
)

3.
5
(0
.6
,0
.3
,0
.1
)

3.
0
(0
.8
,0
.2
,0
.2
)

4.
0
(0
.9
,0
.1
,0
.1
)

SC
12

3.
5
(0
.7
,0
.3
,0
.2
)

–
4.
0
(0
.7
,0

.3
,0
.2
)

3.
5
(0
.7
,0

.3
,0
.2
)

3.
5
(0
.7
,0

.3
,0

.2
)

3.
0
(0
.8
,0

.4
,0

.2
)

4.
0
(0
.7
,0
.3
,0
.2
)

SC
15

3.
5
(0
.8
,0
.2
,0
.2
)

4.
0
(0
.9
,0
.1
,0
.1
)

–
3.
0
(0
.8
,0

.5
,0
.2
)

3.
5
(0
.7
,0

.3
,0
.1
)

4.
0
(0
.7
,0

.3
,0

.2
)

4.
0
(0
.9
,0

.1
,0
,1
)

SC
19

4.
0
(0
.7
,0
.2
,0
.2
)

2.
5
(0
.6
,0
.4
,0
.2
)

4.
0
(0
.9
,0

.1
,0
.1
)

–
4.
0
(0
.9
,0

.1
,0
.1
)

4.
0
(0
.8
,0
.3
,0
.2
)

3.
0
(0
.7
,0

.2
,0
.2
)

SC
21

3.
0
(0
.7
,0
.4
,0
.3
)

4.
0
(0
.8
,0
.2
,0
.2
)

4.
0
(0
.8
,0

.2
,0
.2
)

2.
0
(0
.7
,0

.3
,0
.3
)

–
3.
0
(0
.7
,0

.4
,0

.3
)

3.
5
(0
.8
,0

.3
,0

.2
)

SC
24

2.
0
(0
.7
,0
.3
,0
.3
)

2.
0
(0
.7
,0
.3
,0
.3
)

3.
5
(0
.9
,0
.1
,0
.1
)

4.
0
(0
.9
,0

.1
,0
.1
)

4.
0
(0
.8
,0

.3
,0
.3
)

–
3.
0
(0
.7
,0
.2
,0
.2
)

SC
31

4.
0
(0
.7
,0
.3
,0
.2
)

3.
5
(0
.7
,0
.3
,0
.2
)

4.
0
(0
.7
,0
.3
,0
.2
)

3.
5
(0
.7
,0
.3
,0
.2
)

3.
5
(0
.8
,0

.2
,0
.1
)

4.
0
(0
.8
,0
.2
,0
.1
)

–

123



152 Annals of Operations Research (2025) 347:131–171

Table 11 Direct-influence matrix Z: technological factors

SC11 SC12 SC15 SC19 SC21 SC24 SC31 TOTAL

SC11 0.00 2.19 2.92 2.80 2.40 2.47 3.60 16.4

SC12 2.55 0.00 2.92 2.55 2.15 2.55 2.92 15.6

SC15 2.80 3.60 0.00 2.01 2.92 2.62 3.60 17.5

SC19 3.05 1.63 3.60 0.00 3.05 3.60 2.29 17.2

SC21 1.40 1.40 3.15 3.60 0.00 2.92 2.29 14.8

SC24 1.99 3.20 3.20 1.40 1.99 0.00 2.67 14.4

SC31 2.92 2.55 2.92 2.55 3.31 2.89 0.00 17.1

TOTAL 14.7 14.6 18.7 14.9 15.8 17.1 17.4

Table 12 Total-influence matrix T : technological factors

SC11 SC12 SC15 SC19 SC21 SC24 SC31 R

SC11 0.7570 0.8657 1.0643 0.8878 0.9232 0.9749 1.0385 6.5114

SC12 0.8456 0.7303 1.0257 0.8454 0.8780 0.9421 0.9751 6.2421

SC15 0.9273 0.9660 0.9796 0.8981 0.9868 1.0266 1.0871 6.8715

SC19 0.9228 0.8731 1.1272 0.7842 0.9776 1.0525 1.0185 6.7560

SC21 0.7606 0.7651 0.9926 0.8513 0.7369 0.9186 0.9042 5.9293

SC24 0.7707 0.8293 0.9737 0.7458 0.8158 0.7626 0.9074 5.8053

SC31 0.9138 0.9046 1.0948 0.9034 0.9846 1.0196 0.9039 6.7247

C 5.8978 5.9340 7.2580 5.9159 6.3029 6.6967 6.8348

Fig. 4 Interrelationship map for technological factors
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Table 13 Most significant subcriteria: organizational factors

Selected SCs

SC22 Transportation management personnel and processes

SC53 Umbrella strategies and their implementation within organizations

SC54 Clear, detailed governance models

SC60 Creation of joint projects involving multiple universities and public and private companies

SC64 Processes and projects encouraging citizen involvement and participation in decision making

SC65 Political involvement and/or support at the highest government level

SC77 Public–private sector partnerships to help smart cities adapt

The SCs chosen for C2 are listed in Table 13. The neutrosophic matrix presented in Table
14 was next filled in by the decision makers. This matrix followed the same logic applied
in previous analyses and served as a basis for this cluster’s direct-influence matrix, which
contains the crisp weights needed to complete the analysis (see Table 15).

As Table 16 shows, SC64 was identified as the factor that most influences the other SCs,
with an R value of 7.3449. SC65, in contrast, is not only the most affected by the remaining
SCs, with the highestC value of 7.3769, but also this cluster’s factor of greatest importance to
the analysis system, with an R + C value of 14.2719. The following hierarchy was revealed:
SC65 > SC53 > SC54 > SC77 > SC22 > SC54 > SC60.

The R–C values indicate that SC22, SC64, and SC77 belong to the causes group, with
a positive R–C value, and thus have a direct impact on the remaining SCs. The remaining
factors are effects with a negative R–C value. Based on the SCs’ positions in the diagram
(see Fig. 5), SC64 and SC77 are core factors, SC22 is a driving factor, SC54 and SC60 are
independent factors, and SC53 and SC65 are impact factors.

C3 was then analyzed by following the same DEMATEL steps. After the most significant
SCs were selected (see Table 17), the neutrosophic value matrix was created by the panel
(see Table 18). Table 19 presents the results after crispification.

The IRM in Fig. 6 reflects the values listed in Table 20. SC88 has the most effect on the
other determinants, with the highest totalR value of 6.7281. This SC also is this cluster’s most
significant factor in the decision-support system, with an R + C value of 12.3205. SC108 is
the most affected by all the other SCs, with a C value of 6.7392. The R + C values reveal
that SC95 is the least important, producing the following overall ranking: SC88 > SC102 >
SC108 > SC89 > SC95.

The division of the SCs into causes and effects groups confirmed that SC88, SC89, and
SC102 are causes (i.e., positiveR–C values), while SC89 and SC102 are effects (i.e., negative
R–C values). The quartiles further reveal that SC88 and SC102 are core factors, SC89 is a
driving factor, SC95 is an independent factor, and SC108 is an impact factor.

The same analysis was conducted with C4, whose selected SCs are presented in Table 21.
The neutrosophic value matrix was created by the panel (see Table 22), which was later used
to construct the direct-influence matrix shown in Table 23.

Table 24 shows that SC123 has the most influence on the other factors, with an R value of
9.8110. SC118, in turn, receives the most effects from the remaining SCs, with the highest
C value (9.6939), as well as being this cluster’s most important SC in the analysis system,
with an R + C value of 19.1565. The R + C values thus confirm the following ranking by
importance: SC118 > SC123 > SC126 > SC122 > SC128.
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Table 15 Direct-influence matrix: organizational factors

SC22 SC53 SC54 SC60 SC64 SC65 SC77 TOTAL

SC22 0.0 2.7 3.0 3.4 2.4 3.2 3.4 18.2

SC53 2.0 0.0 3.6 2.9 2.9 3.6 2.5 17.4

SC54 2.1 3.6 0.0 2.1 1.8 2.9 2.2 14.7

SC60 1.7 2.4 1.7 0.0 2.2 3.1 2.4 13.5

SC64 3.0 2.7 3.6 2.8 0.0 3.6 3.6 19.4

SC65 2.1 3.4 3.4 2.8 3.6 0.0 2.7 18.0

SC77 3.6 2.6 2.3 3.8 2.3 3.2 0.0 17.7

TOTAL 14.5 17.5 17.6 17.8 15.2 19.5 16.8

Table 16 Total-relation matrix T : organizational factors

SC22 SC53 SC54 SC60 SC64 SC65 SC77 R

SC22 0.7508 1.0194 1.0334 1.0568 0.9070 1.1228 1.0072 6.8973

SC53 0.8152 0.8706 1.0273 1.0012 0.8989 1.1065 0.9394 6.6590

SC54 0.7223 0.9109 0.7558 0.8549 0.7547 0.9531 0.8194 5.7711

SC60 0.6650 0.8082 0.7800 0.7042 0.7205 0.9034 0.7759 5.3572

SC64 0.9340 1.0821 1.1155 1.0914 0.8482 1.2039 1.0698 7.3449

SC65 0.8478 1.0503 1.0524 1.0292 0.9532 0.9849 0.9773 6.8951

SC77 0.8910 0.9974 0.9846 1.0518 0.8852 1.1023 0.8401 6.7524

C 5.6262 6.7388 6.7490 6.7895 5.9677 7.3769 6.4291

Fig. 5 Interrelationship map for organizational factors
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Table 17 Most significant subcriteria: communication and engagement

Selected SCs

SC88 More participation in public decisions

SC89 Greater input from universities and/or research centers in urban and sustainable
mobility policies

SC95 Society’s participation in public decisions

SC102 Streamlining of synergies between companies, organizations, and other actors by
municipalities and parishes

SC108 Good ideas copied, abstracted, and adapted to local realities

Regarding C4’s causes and effects, SC123 and SC128 belong in the causes group (i.e.,
positiveR–C values), while the remaining factors (i.e., SC118, SC122, and SC126) are effects
(i.e., negativeR–C values). Figure 7 also reveals that SC123 is a core factor, SC128 is a driving
factor, SC122 is an independent factor, and SC118 and SC126 are impact factors.

The C5 SCs chosen by the panel members are listed in Table 25, and the corresponding
matrix of neutrosophic values is shown in Table 26. This cluster was analyzed after the
direct-influence matrix was generated (see Table 27).

Table 28 reveals that SC10 is both the most influential criterion, with the highest R value
at 4.7068, and this cluster’s most important factor in the decision-support system, with an R
+ C value of 8.9170. SC55, in contrast, is the most affected by the remaining SCs (i.e., a C
value of 4.2563). The selected SCs can be ranked by order of importance as follows: SC10
> SC136 > SC57 > SC55 > SC137.

The IRM in Fig. 8 also shows that SC10 and SC136 belong to the causes group because
of their positive R–C values (i.e., being a stronger influence on the other SCs versus being
more affected). The effects group comprises SC55, SC57, and SC137 given their negative
R–C values. Finally, the DEMATEL diagram reveals that SC10 and SC136 are core factors,
SC137 is an independent factor, and SC55 and SC57 are impact factors.

As for C6, the most important SCs are presented in Table 29. The neutrosophic matrix in
Table 30 was then created, as well as the initial DEMATELmatrix converted to crisp weights
in Table 31.

As shown in Table 32, SC139 is the most influential factor due to its R value of 6.6898.
SC138 is the most affected by all other factors, with a C value of 6.9834. SC138 also appears
to be this cluster’s most important criterion in the analysis system because of its R + C
value of 13.1055. According to Fig. 9, C6’s factors should be prioritized as follows: SC138
> SC139 > SC91 > SC147 > SC141.

In addition, SC88 is the most prominent criterion, appearing the farthest to the right in
Fig. 9 (i.e., R+C value of 5.9580). According to their R–C values, SC139 and SC141 belong
to the causes group, while SC91, SC138, and SC147 are effects. Finally, the SCs’ division
into quartiles indicates that SC139 is a core factor, SC141 is a driving factor, SC147 is an
independent factor, and SC91 and SC138 are impact factors.

The most important SCs in C7 were selected by the panel according to Table 33. The
matrices for this cluster were constructed as shown in Tables 34 and 35.

Table 36 reveals that SC162 is simultaneously the determinant with the greatest influence
on the others and C7’s most prominent factor in the decision-support system. In contrast,
SC164 is the most affected by the remaining SCs, with a C value of 7.7128. According to
Fig. 10, decision makers should give priority to these factors in this order: SC162 > SC165
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Table 19 Direct-influence matrix: communication and engagement

SC88 SC89 SC95 SC102 SC108 TOTAL

SC88 0.0 2.4 3.6 3.6 3.2 12.7

SC89 2.3 0.0 2.4 2.8 3.6 11.1

SC95 4.0 2.5 0.0 1.2 2.6 10.3

SC102 2.4 3.3 2.3 0.0 3.4 11.4

SC108 1.6 2.1 2.5 3.2 0.0 9.3

Total 10.2 10.2 10.8 10.8 12.7

Fig. 6 Interrelationship map for communication and engagement

Table 20 Total-relation matrix T : communication and engagement

SC88 SC89 SC95 SC102 SC108 R

SC88 1.1184 1.2791 1.3942 1.3953 1.5411 6.7281

SC89 1.1421 0.9972 1.1993 1.2281 1.4184 5.9851

SC95 1.1944 1.1106 1.0013 1.0974 1.3063 5.7101

SC102 1.1671 1.2288 1.2197 1.0734 1.4395 6.1284

SC108 0.9704 1.0069 1.0608 1.1008 1.0340 5.1728

C 5.5924 5.6226 5.8753 5.8949 6.7392

> SC163 > SC164 > SC167. SC162, SC163, and SC167 belong to the causes group, while
SC164 and SC165 comprise the effects group. The IRM shows that SC162 is a core factor,
SC163 and SC167 are driving factors, SC164 is an independent factor, and SC165 is an
impact factor.

After the evaluation phase was completed, a consolidation session was scheduled with
two experts on smart, sustainable ecosystems who were not present in the previous sessions.
The goal was to obtain a neutral opinion on the multicriteria analysis model developed.
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Table 21 Most significant subcriteria: environmental sustainability

Selected SCs

SC118 City planning based on sustainable behavior-change policies

SC122 Priority given to investments in transportation networks to the detriment of more vehicle
acquisitions

SC123 Sustainability defined as a public policy priority

SC126 Promotion of more efficient public transportation systems reflecting distances to jobs

SC128 Circular economy

4.3 Consolidation, expert discussion, and recommendations

The consolidation session was held with representatives of the Lisbon City Council Urban
Management and Intelligence Center, who were responsible for promoting a management
culture that includes monitoring and analyzing urban ecosystems. This meeting took place
in person at the center’s facilities and lasted approximately one hour. The interviewees con-
tributed ideas that complement the results of the previous phases, thereby ensuring greater
credibility.

The session began with a brief overview of the topic and the methodologies applied,
which emphasized that the proposed model was based on a constructivist logic and thus
each panel members’ knowledge, experience, and values. Next, the facilitator presented the
cognitivemap, aswell as thematrices and diagrams generatedwith theDEMATEL technique.
The experts expressed concern about the study’s qualitative component, specifically the
“abundance of information” in the cognitive map (in their words). However, after cognitive
mapping was explained, the interviewees became interested in analyzing each part of themap
more carefully since this methodology has been shown to facilitate greatly the structuring of
complex decision problems. Regarding the evaluation phase, one specialist underlined the
importance of proceeding to a diagnosis of real urban-ecosystem priorities.

Overall, these experts concurred that the methodologies applied in this second phase were
quite suitable for the research topic. The interviewees also commented that the model’s
practical applicability was enhanced by the diverse measures, initiatives, and challenges
included in the group cognitive map. This aspect could be one of the main advantages of
the proposed model because, if any restriction/limitation is present to prevent any criterion’s
application, the decision makers will have other alternative approaches to achieving the same
goal. These specialists concluded that the model has strong potential when adapted to the
local realities of each urban ecosystem, and that the indeterminacy incorporated provides
fundamental support to decision-making processes as neutrosophic logic produces a closer
approximation to reality and thus better results. By the end of the session, the experts were
pleased with the empirically robust outcomes obtained with the selected tools and were in
agreement regarding the potential applicability of the decision-support system developed in
this study.

The consolidation session was an essential step in the present research as the two intervie-
wees’ feedback strengthened the transparency of results and facilitated their interpretation.
However, the complementary perspective of the present researchmeans that the objectivewas
not to replace previousmethods ormodels but instead to augment their usefulness. The expert
panel members had previously noted that, because the proposed approach permits decision
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Table 23 Direct-influence matrix: environmental sustainability

SC118 SC122 SC123 SC126 SC128 TOTAL

SC118 0.0 2.9 3.6 3.2 3.2 12.8

SC122 3.4 0.0 2.3 3.0 1.7 10.5

SC123 3.6 3.6 0.0 3.6 2.7 13.5

SC126 3.3 3.6 3.2 0.0 1.7 11.8

SC128 2.8 3.0 3.6 2.6 0.0 12.1

TOTAL 13.1 13.1 12.7 12.4 9.3

Table 24 Total-relation matrix T : environmental sustainability

SC118 SC122 SC123 SC126 SC128 R

SC118 1.8682 2.0345 2.0024 1.9768 1.5806 9.4626

SC122 1.7896 1.5755 1.6668 1.7013 1.2958 8.0290

SC123 2.1490 2.1370 1.8550 2.0646 1.6055 9.8110

SC126 1.9351 1.9377 1.8503 1.6620 1.4075 8.7926

SC128 1.9519 1.9521 1.9164 1.8668 1.3246 9.0119

C 9.6939 9.6368 9.2909 9.2715 7.2139

Fig. 7 Interrelationship map for environmental sustainability

Table 25 Most significant
subcriteria: well-being and
quality of life

Selected SCs

SC10 Opportunities for change

SC55 Efficient services

SC57 Effective services

SC136 Data usage

SC137 Unsustainable human behavior
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Table 27 Direct-influence matrix: well-being and quality of life

SC10 SC55 SC57 SC136 SC137 Total

SC10 0.0 2.8 2.8 2.8 3.6 12.1

SC55 2.4 0.0 2.4 2.5 1.8 9.0

SC57 2.8 2.8 0.0 2.1 2.1 9.8

SC136 2.7 3.6 3.6 0.0 1.2 11.1

SC137 2.5 1.3 1.3 1.1 0.0 6.1

Total 10.4 10.5 10.1 8.5 8.6

Table 28 Total-relation matrix T : well-being and quality of life

SC10 SC55 SC57 SC136 SC137 R

SC10 0.8318 1.0267 0.9991 0.8980 0.9512 4.7068

SC55 0.8375 0.6828 0.8257 0.7455 0.7058 3.7973

SC57 0.9013 0.9102 0.6977 0.7606 0.7635 4.0334

SC136 0.9954 1.0605 1.0320 0.6999 0.7897 4.5776

SC137 0.6441 0.5760 0.5605 0.4955 0.4186 2.6946

C 4.2102 4.2563 4.1151 3.5994 3.6287

Fig. 8 Interrelationship map for well-being and quality of life

Table 29 Most significant subcriteria: information, training, and knowledge

Selected SCs

SC91 Partnerships with research and teaching institutions

SC138 Empowerment of existing human resources with a new smart city vision

SC139 Reinforcement of municipalities with public human resources companies focused on smart
cities

SC141 Identification of target audiences’ real needs

SC147 Empowered, smart residents needed to develop smart cities
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Table 31 Direct-influence matrix: information, training, and knowledge

SC91 SC138 SC139 SC141 SC147 TOTAL

SC91 0.0 2.7 2.3 1.7 2.9 9.6

SC138 3.4 0.0 2.1 2.2 2.5 10.2

SC139 2.6 3.6 0.0 2.3 2.8 11.2

SC141 2.4 3.2 3.2 0.0 2.4 11.1

SC147 2.9 2.4 2.5 1.7 0.0 9.5

TOTAL 11.3 11.9 10.0 7.8 10.5

Table 32 Total-relation matrix T : information, training, and knowledge

SC91 SC138 SC139 SC141 SC147 R

SC91 1.1292 1.3426 1.1525 0.9420 1.2547 5.8211

SC138 1.4121 1.2156 1.1969 1.0127 1.2848 6.1221

SC139 1.4745 1.5642 1.1420 1.1028 1.4063 6.6898

SC141 1.4594 1.5375 1.3504 0.9400 1.3798 6.6672

SC147 1.3219 1.3235 1.1642 0.9446 1.0579 5.8121

C 6.7971 6.9834 6.0061 4.9421 6.3835

Fig. 9 Interrelationship map for information, training, and knowledge

Table 33 Most significant subcriteria: funding sources

Selected SCs

SC162 Support used to fund innovative projects or the creation of added value

SC163 Recovery and Resilience Plan and other funds available to accelerate digitalization

SC164 Start-up investment using national and European funds and contributing to smart city creation

SC165 Companies and residents’ investments

SC167 Return on investment with regard to the implementation of sustainability strategies
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Table 35 Direct-influence matrix: funding sources

SC162 SC163 SC164 SC165 SC167 TOTAL

SC162 0.0 2.7 3.1 3.1 2.4 11.4

SC163 3.1 0.0 2.9 2.2 2.3 10.5

SC164 2.4 1.5 0.0 2.3 2.4 8.6

SC165 2.2 2.9 2.9 0.0 1.7 9.7

SC167 2.9 2.1 2.1 2.7 0.0 9.7

TOTAL 10.7 9.2 11.0 10.3 8.8

Table 36 Total-relation matrix T : funding sources

SC162 SC163 SC164 SC165 SC167 R

SC162 1.4845 1.5115 1.7570 1.6679 1.4424 7.8633

SC163 1.6186 1.2414 1.6557 1.5316 1.3679 7.4152

SC164 1.3522 1.1640 1.2208 1.3212 1.1834 6.2416

SC165 1.4740 1.3615 1.5608 1.2767 1.2542 6.9273

SC167 1.5185 1.3235 1.5184 1.4775 1.1253 6.9631

C 7.4477 6.6019 7.7128 7.2750 6.3732

Fig. 10 Interrelationship map for funding sources

makers to add new information at any time, the analysis model is both empirically robust and
versatile. Therefore, the use of combined methodologies ensured that the decision-support
system developed is different from—yet complements—the existing models.
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5 Conclusion

One of the main reasons for developing urban ecosystems is the urgent need to create smart,
sustainable solutions for cities.Analyses of these ecosystemsmust be conducted to understand
more fullywhat contributes to their success. Themost important result in the present studywas
a model to support decisions regarding how to promote smart, sustainable urban ecosystems,
whichwas producedby a combination of cognitivemapping andDEMATEL in aneutrosophic
environment. Thesemethodologies together generated a completemodel of the problemunder
analysis that integrates objective and subjective elements and incorporates indeterminacy,
thereby resulting in an analysis system of more evaluation criteria that reflect reality more
closely. In addition, the model simplifies decision-making processes as it identifies which
areas to prioritize and what should be done to support the conceptualization and analysis of
smart, sustainable urban ecosystems. This study relied on specialists’ knowledge. The expert
panel’s findings highlight that the construction of these ecosystems involves seven areas of
concern, namely: technological factors (C1); organizational factors (C2); communication
and engagement (C3); environmental sustainability (C4); well-being and quality of life (C5);
information, training, and knowledge (C6); and funding sources (C7).

The research included the definition of a set of measures essential to developing smart,
sustainable urban ecosystems. By identifying key initiatives and challenges, the proposed
model helps decision makers identify more clearly what contributes to the creation of these
ecosystems. The DEMATEL technique was applied in a neutrosophic environment to deter-
mine which determining factors should be prioritized in related analyses. This methodology
considered the element of uncertainty in order to expand the conceptualization of smartness
and urban sustainability and obtain more credible, transparent results.

Regardless of the many advantages of the selected approach, this study was not free of
limitations. The first was the proposed model’s dependency on the context in which it was
developed, which means the results cannot be generalized to other settings without first
making appropriate adaptations. The second limitation is that the methodologies required
the participants to be fully dedicated and available for hours at a time. Thus, the recruit-
ment of the decision-maker panel and harmonization of agendas proved challenging. The
last restriction was that the chosen experts’ profiles influenced the results since their differ-
ent knowledge and experience shaped their judgement regarding neutrosophic priorities and
values. The proposed model must, as a result, be adjusted to reflect the reality and/or vision
found in other contexts in which the analysis system is applied. Nonetheless, the method-
ological tools adopted facilitated the design of a decision-support model that brings greater
empirical robustness and clarity to the subject under analysis. The findings thus provide
city planners with a better understanding of smart, sustainable urban ecosystems. The above
results highlight the great potential of multicriteria methodologies for structuring and solving
complex decision problems related to these ecosystems. The combination ofmethods enables
more complete analyses, so these techniques offer advantages in terms of conceptualizing
smartness and urban sustainability.

The aforementioned limitations suggest further lines of research. First, other multicriteria
assessment techniques could be applied in combination with neutrosophic logic in order
to produce more credible, transparent results. Second, researchers need to follow the same
procedures with different expert panels. Last, additional analyses could be carried out in
specific contexts to compare the results and identify divergences from the present proposed
model. The construction of smarter and more sustainable urban ecosystems is clearly a
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topic with great potential for future research, and any new contributions that ensure more
empirically robust findings will always offer significant benefits.
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