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Resumo

A detecdo de estruturas megaliticas tem uma grande importancia, a nivel humano ou
arqueoldgico. Neste documento, sera descrito o trabalho desenvolvido em prol do desafio de
automatizar a detecdo de dolmens, através de um caso de estudo destes monumentos na regido
do Alentejo, Portugal. Para a automatizagdo, serdo utilizados algoritmos de aprendizagem
profunda, especialmente as arquiteturas YOLOV8 e FasterRCNN, conjugando a informacéo do
terreno, de modo a refinar os resultados.

A motivagdo por detrds desta dissertacdo, surge da abundancia de dolmens por descobrir,
resultando na necessidade de sistemas de detecéo eficientes. A metodologia envolve o pré
processamento de imagens de modo a revelar elementos de interesse e a aplicar aprendizagem
profunda, fazendo prospecdo automatica de dolmens numa regiao similar.

A descoberta principal do estudo foi a eficacia conseguida com a aproximacédo FasterRCNN na
detecdo de dolmens, no qual conseguimos atingir 93% de precisdao média. Criando um sistema
robusto, a ser utilizado como ferramenta de trabalho aos arqueodlogos na identificacdo de
potenciais areas de prospecdo de monumentos megaliticos.

Contudo, foram encontradas limitacfes, devido a falta de disponibilidade de imagens de
qualidade na Google Earth, o que afeta, necessariamente, a precisdo dos resultados. Trabalho
futuro podera focar em adquirir imagens de maior resolucdo, por forma a melhorar o
desempenho do algoritmo.

Este estudo criou um sistema promissor para detecdo automatica de dolmens através da
aprendizagem profunda. No entanto, sera sempre necessario procurar a melhoria continua, quer

na capacidade do sistema, quer pela aquisicdo de dados de diferentes fontes de informacéo.



Vi



Abstract

The detection of dolmens, ancient megalithic structures, holds significant human and
archaeological importance. We address the challenge of automating dolmen detection in the
region of Alentejo, Portugal, by leveraging deep learning algorithms, specifically YOLOv8 and
FasterRCNN, and exploring the potential influence of terrain information, including distance
to water and rocky outcrops for refining the detection results.

The motivation behind this research stems from the abundance of undiscovered dolmens in the
area, prompting the need for an efficient and accurate detection pipeline. The methodology
involves preprocessing the images to enhance relevant features and applying the Deep Learning
approach for dolmen detection.

The key finding of the study demonstrates the efficacy of FasterRCNN architectures in dolmen
detection, which have achieved a confidence degree of 93% (average precision). These findings
offer valuable insights and practical assistance to local archaeologists in identifying small
megalithic structures in similar regions.

However, limitations were encountered, mostly due to the unavailability of high-quality images
in Google Earth databases, thereby affecting the precision of the results. Future work should
focus on acquiring more comprehensive and high-resolution image datasets to enhance the
performance of the detection algorithm.

Our research provides a promising pipeline for automated dolmen detection using Deep
Learning algorithms. However, we must emphasize the need for continued improvement and
for the acquisition of additional data from different information sources to enhance the
accuracy, efficiency, and generalization capacity of dolmen detection algorithms.
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CHAPTER 1
Introduction

1.1. Context

Nowadays, the increasing usage of satellite imagery allows for a better understanding of
potential archeological sites to help archeologists with their discoveries and studies.
Archeology is the study of tangible remains from the past and the present [1], usually involving
terrain prospection to discover human remains that enable the study of ancient societies.
Computer vision makes it possible to obtain more features faster, by training suitable Deep
Learning (DL) algorithms and applying adequate pre-processing to the images before using it
for object detection. Therefore, the last decade has seen an increasing interest in remote-sensing
technologies and methods for monitoring cultural heritage [2].

The objects that the work focuses on detecting are dolmens. These are megalithic
monuments built with rocks in a table shape, formed by a central camera that can vary in
dimensions, sometimes covered by vegetation. Its name came from Breton origins where “d61”
means table and “men" means rock, so (rock table) [3].

In terms of structural and contextual characterization, Camara describes the main
differences in Portuguese dolmens from the rest of the dolmens in the world, based on their
geometry, architecture, and spatial distribution, which turns them unique [3]. While Portugal is
known to be one of the richer areas in terms of small megalithic monuments, it is believed that
there are still many unknown monuments, particularly in the Alentejo region [4].

This work directs its focus on a significant research gap in terms of automated archeological
prospection in the country where the study is taking place: Portugal. We believe that, combining
terrain and expert information with DL shows significant benefits for remote identification,
where the landscape and the object must be studied together and where some terrain features,
such as water, rock outcrops, and vegetation, could indicate key areas with higher probability

of occurrence of dolmen sites [5].

1.2.  Motivation
There is an increase in the usage of satellite imagery within several areas of study, particularly

in archaeology, which has led to a need to optimize the traditional manual methods used in



image prospection. Some investigations and case studies are taking place in various locations
and involving various object types, as evidenced by multiple studies [6] — [16].

To this day, satellite sensors are still evolving, but researchers keep having data
accessibility restrictions. Moreover, there are not that many studies in remote automation within
the archeology field and the ones that exist demonstrate the need to automate their processes
from end-to-end and enhance the difficulty in the extraction of useful knowledge to get the best
remote identification zones, that is, with higher likelihood of finding (buried) monuments.

However, an important issue arises with object detection in an image, especially in
dolmen detection that this work tries to tackle. Usually, object detection of small or (partially)
buried monuments in a remote image ends with a high number of false positive detections. The
reasons vary from the images having to many small objects, the dolmen being very similar to a
rock outcrop, or, as previously mentioned, the object being buried or hidden in vegetation [5].

Therefore, our motivation is to create a new and effective approach in this area of study
for dolmen detection decreasing the number of false positives and presenting a likelihood for
each object detection. This work intends is built on a previous work on the same case study
here used that employed pixel-based detection and applied Machine Learning methods based
on the pixel detection of a dolmen [14]. The innovation concerns mainly the fact that we employ
a different approach with focus on the dolmen object itself, contributing for a new
methodological process for remote dolmen identification thus contributing to the area of

archeological prospection on remote imagery.

1.3. Research Questions

This dissertation main goal is that of finding the best DL framework to further build a
continuous learning pipeline capable of automatically recognizing dolmens in images. We use
the Alentejo Portuguese region as a case study, gathering open-source images provided by
Google Earth.

Our aims are (a) to understand the viability of employing DL architectures for the detection
of dolmens in a mostly granitic region by nature, and (b) to investigate the use of expert domain
information for detection improvement. Therefore, the results of the application of the DL
model will be further analyzed using information from the terrain to understand if there are any
landscape features that can be attached to critical areas for improving precision and, either
decreasing the number of false positives or enabling the labelling of positives with an effective
probability for the existence of a dolmen at that location.



To achieve this purpose, we decided to investigate the following research questions:

1) How important is it to enhance and preprocess the images before feeding the algorithm?

2) Which DL detection algorithm shows the best results in the detection of megalithic
monuments, and which is the one presenting fewer false positive results?

3) Is the information available about the landscape features and the background of the
object correlated with the existence of a dolmen?

1.4. Objectives

Taking into consideration the previous context and research questions, we can formulate the
following research objectives. Firstly, to create the best possible system for dolmens detection
in remote images. The images used were extracted from an open-data source and we have
thrived to implement effective preprocessing and useful image augmentations in order to
highlight the monuments, since these can be partially or almost totally covered by vegetation
or other surrounding structures.

One other objective relates with the investigation of the role that the landscape and available
expert domain information may have to refine the results from the detection model. In addition,
we intend to find which would be the best terrain features to employ in this approach, in order
to see if there is any correlation between the monuments and these features.

In the end, the main objective is to be able to contribute to help experts in their archeological
prospection with some form of automation of their processes and help archeologists to detect

monuments in a more efficient way by exploring a new automated methodology.

1.5. Contributions
This work makes significant contributions to the fields of Deep Learning as a tool in
Archaeology by introducing novel approaches for the detection of small megalithic objects in
the Portuguese Alentejo region in poorly contrastive images obtained from satellite imagery.
Through the utilization of advanced object detection techniques in the domain of DL, this
research presents innovative methods that exhibit remarkable accuracy in identifying these
small megalithic structures, thereby enhancing the efficiency of archaeological site
identification. Moreover, this work extends its applied impact beyond algorithmic

advancements, addressing practical challenges faced by local archaeologists.



By developing automated processes for the detection and localization of megalithic objects,
the dissertation contributes to streamlining archaeological investigations. This automation not
only expedites the detection process but also empowers archaeologists by providing them with
powerful tools to aid in their analyses. In amalgamating cutting-edge technology with
archaeological exploration, this thesis not only expands the horizon of DL applications but also
facilitates and enriches archaeological research efforts in the culturally significant region of
Alentejo, working as a proof-of-concept for an automated tool that experts can use in other
regions and monuments.

The dataset used in this work is one other contribution. The data was gathered from Google
Earth and was manually labeled. This dataset is available and public on RoboFlow [17].

Finally, it should be noticed that a conference paper describing the DL detection system
and preliminary results has been submitted for peer review under the usual paper submission

process in conference “2023 Symposium of Applied Computing”.

1.6. Research Methodology

The research methodology used has been the Design Science Research (DSR) [18], which is a
methodology that aims to investigate, develop, and evaluate innovative artifacts, models, or
systems to address specific real-world problems. It is commonly applied in fields such as
information systems, computer science, and engineering [18]. DSR combines rigorous
scientific investigation with the creation of practical solutions, bridging the gap between theory
and practice.

DSR is divided into seven main steps next described.

(1) Problem identification and motivation: identify a specific problem or opportunity in a
particular domain.

(2) Design and requirements definition: define the design requirements based on the
identified problem and the objectives associated.

(3) Design and development: create a conceptual design for the artifact that addresses the
identified problem. This step involves determining the architecture, components, interfaces,
algorithms, or other relevant aspects of the artifact.

(4) Evaluation: assess the artifact's effectiveness, efficiency, and utility.

(5) Reflection and learning: reflect on the evaluation results and analyze the findings to
gain insights into the artifact's strengths, weaknesses, and potential improvements. This step
guides the refinement and enhancement of the artifact based on the obtained insights.



(6) Communication and dissemination: document and communicate the research process,
outcomes, and artifacts to the relevant audience.

(7) Repeat iteratively in case it is needed: DSR may act as an iterative process, and steps
2 to 5/6 are usually repeated multiple times until a satisfactory artifact is developed. Each
iteration builds upon the knowledge gained from previous iterations, leading to an enhanced
understanding of the problem and the artifact's effectiveness.

In our case, chapter I and Il illustrates the first step, where we identify the problem and
opportunities in this domain, also the entire literature that is essential to get the state of art based
on the methodologies applied.

Step two dates to early in this year, where it was defined the plan and design of the
requirements based on our object detection problem, and also taking account the resources and
datasets available.

Step three to five are referred to chapters 111 to V respectively, where the development and
design of methodologies are described and determined, the results obtained and evaluated, and
the main conclusions based on the evaluation results are made. Analyzing all the results and

giving insights for future work.

1.7. Dissertation Structure
This document is divided into five chapters that describe the different phases of the work and
give the organization necessary to address every step.

The first chapter introduces the dissertation, where it is given the context, motivations,
objectives, and contributions, as well as the research questions and research method.

The second chapter addresses all the necessary literature review, to give context to the
dissertation and to fundament some points made along the document. Based on existent
scientific work.

The third chapter describes the entire proposed work for this thesis. Where it is addressed
the methodologies and technologies used.

The fourth chapter is the implementation and results of the proposed work described in the
previous chapter.

In the fifth chapter, is where the main conclusions about the results and methodologies are

described, as well as future work recommendations.






CHAPTER 2
Literature Review

This chapter describes all the necessary literature review, to give context to the dissertation and
to fundament some points made along the document. Based on existent scientific work, this
chapter can be divided into six sections: the first contextualizes the archeology study field; the
second addresses the monuments and its ontology; the third describes remote sensing
techniques used nowadays and how it has evolved; the fourth presents the state of art in image
enhancement techniques to data used in object detection; the fifth describes some of the object
detection approaches in general; the sixth gives context about related work and studies in

archelogy, by describing all the methodologies and their best takeaways and conclusions.

2.1. Archeological Context

Alentejo is the region selected to gather all the data for this dissertation. Having just 60 dolmens,
consist of relatively small megalithic funerary monuments that can be visualized from satellite
images. Some of these structures can date more than 4000 years, being essential for the social
and cultural development during the Neolithic [3].

Dolmens are made of large stones composing geometrics chambers that can be circular,
semi-circular, or quadrangular. Because they have survived the rise and fall of several
civilizations, they may have been reused, buried, destroyed, or annexed to other structures and
can be found in rural or urban areas [4]. The majority of these monuments it’s not in their
original shape, most of them are destroyed, but their structure still can be visualized even those
who are not complete anymore, or the existence of soil marks indicate their presence [4].

These monumental structures were not visible in their original form because they were
covered by successive layers of earth and stone, known as barrows or tumulus; the presence of
the tumulus may have vanished over the long period of time since its construction. The dolmens
are scattered throughout the region, with most of them located near major riversides and rocky
outcrops. They are commonly found in groups of up to a dozen, with relatively short distances
between them. In Figure 1 is possible to see the structure of a dolmen [4][5].



Figure 1 - Dolmen Structure (Source: [4]).

Given the natural environment's irregular placement of rocks, the geometric shape present
in the chamber stands out from the surroundings, even though such regular forms are found in

nature, being up to meters smaller than the diameter of the dolmens chamber [5].

2.2. Ontology in Archeology

Ontology, in the context of knowledge representation, refers to the formal specification of
concepts, their properties, and the relationships between them within a particular domain. It
provides a structured framework for organizing and categorizing knowledge, facilitating
effective communication, and reasoning [19].

Ontologies are widely used in various domains, including artificial intelligence,
information science, and the semantic web. By creating a shared understanding of a subject
area, ontologies enable interoperability between different systems and support tasks such as
data integration, information retrieval, and decision-making [20].

In archaeology, ontology plays a vital role in knowledge organization and data
management. An archaeological ontology aims to represent the concepts, classifications, and
relationships relevant to archaeological data, such as artifact types, excavation methods, and
archaeological contexts [21]. It provides a standardized vocabulary and framework for
describing and categorizing archaeological information, improving data consistency, and
facilitating data sharing among researchers. Ontologies in archaeology enable more efficient
data integration, support advanced querying and analysis, and enhance the interoperability of
archaeological databases and information systems.

2.3.  Remote Sensing
Remote sensing refers to the collection of information about an object or area without direct
physical contact, typically using satellites, aircraft, or drones equipped with sensors [22].

Satellite imagery, a key application of remote sensing, provides valuable data about the Earth's



surface and atmosphere from space. This imagery offers numerous benefits across various
domains, including environmental monitoring, agriculture, urban planning, and disaster
management [23], providing a wide range of advantages. Firstly, it allows for large-scale
coverage of areas that may be inaccessible or difficult to survey on the ground. This capability
is particularly useful in remote or hazardous regions. Secondly, satellite imagery provides a
historical record of the Earth's surface, enabling the analysis of changes over time.

This longitudinal perspective is crucial for understanding long-term trends, such as
deforestation, urban growth, or climate change impacts [22]. Additionally, satellite images offer
multi or hyper-spectral data, capturing information beyond what is visible to the human eye. By
analyzing different wavelengths, researchers can infer properties such as vegetation health, land
surface temperature, or oceanic phenomena, aiding in ecosystem monitoring and resource
management [24].

Moreover, remote sensing using object detection techniques has gained prominence. Object
detection algorithms automatically identify and delineate specific objects or features within
satellite imagery [25]. This approach facilitates the extraction of valuable information at scale.
Obiject detection enables the identification of objects such as buildings, roads, vehicles, and
vegetation, providing crucial inputs for urban planning, infrastructure development, and

disaster response [26].

2.4. Image Enhancement Approaches
Image enhancement techniques play a crucial role in improving object detection performance,
especially in challenging environments. These techniques aim to enhance the quality, contrast,
or clarity of images, making it easier for object detection algorithms to identify and localize
objects of interest. Several studies highlight the importance of image enhancement techniques
in object detection, emphasizing their ability to enhance image quality, improve visibility, and
mitigate various challenges [27]-[31].

Image enhancement techniques were employed to improve object detection in challenging
environments. The authors highlighted the significance of enhancing images to mitigate issues
such as low contrast, noise, or uneven illumination, which can negatively impact the accuracy

of object detection algorithms [27].



Aladem et al. emphasized the importance of color enhancement techniques in enhancing
object detection performance [28]. By manipulating the color properties of images, such as
saturation, brightness, or contrast, the authors demonstrated improved object detection results,
especially in scenarios with complex backgrounds or lighting variations.

In the field of surveillance systems, the authors of [29] explored image enhancement
techniques for better object detection. The authors emphasized the need for enhancing low-
resolution or low-contrast surveillance images to enhance the visibility of objects and increase
the accuracy of detection algorithms. Improving the contrast between objects and their
backgrounds, showed significant improvements in the detection accuracy and robustness of
object detection algorithms [30].

2.5. Object Detection Approaches

The use of satellite imagery these days allows for a better understanding about potential
archeological sites to help archeologists in their discoveries and studies [32]. The issue lies in
the fact that, given the cost and labor-intensive nature of traditional methods, archaeologists
cannot effectively analyze these datasets [33].

Through computer vision, it’s possible to obtain more features faster, by training suitable
DL algorithms and applying adequate pre-processing to the imagery before using it. The last
decade has seen an increasing interest in remote-sensing technologies and methods for
monitoring cultural heritage [33].

Luo et al. made a review on a century of work in this topic, from 1917 to 2017, and
discovered that remote sensing technology was not originally designed for archaeological
purposes, but it has become an indispensable and powerful tool for archeologists and is being
applied for various purposes. He also described that exists a lot of potential to use DL and cover
many research gaps for the experts in the field [34].

Obiject detection is a computer vision task that involves identifying and localizing objects
of interest within an image or video [35]. The goal is to draw bounding boxes around these
objects and classify them into predefined categories. Object detection has numerous
applications, including autonomous vehicles, surveillance systems, medical imaging, and more
[36].

10



There are various techniques for object detection and one popular approach is the use of
DL models, particularly convolutional neural networks (CNNs). CNN-based object detection
methods have shown remarkable performance in recent years due to their ability to learn
complex features from images. The classification technique is based on the obtained segments,
and each segment is assigned to a class based on the target object characteristics, such as
geometry and background relationships.

One of the widely used CNN-based object detection models is Faster R-CNN (Region-
based Convolutional Neural Networks), which was proposed by [37] in their 2020 paper. Faster
R-CNN improved upon earlier methods like R-CNN and Fast R-CNN by introducing a region
proposal network (RPN) that efficiently generates region proposals, allowing the model to focus

on potential object locations and refine its predictions.

2.6. Object Detection Methodologies

Some applications using the detection of archelogy objects have been successfully used. In
archaeology, these applications have a significant disadvantage, where each application is
created based on the specific features of a region and structural monumental typology, resulting
in a non-generalizable solution for other applications in different geographical or cultural
contexts [38]. This is due to the extremely high structural differences present in archaeological
remains, which are caused by the culture and available materials in the area, resulting in highly
divergent characteristics or environmental insertions [38][39].

Around the world, some authors used these methodologies to detect multiple archeological
objects such as mounds, barrows, and Celtic fields [6] - [16]. Choosing Faster R-CNN proves
to perform well on difficult objection detection tasks, and it is well suited for semi-automatic
detection of cultural heritage [6] - [13]. It has been demonstrated that Faster R-CNN is
convenient, in terms of the consumer’s accuracy, for automated detection of cultural heritage
objects in high resolution data. However, one may expect that the method must be improved in
terms of the accuracy in order to limit the number of false positives when applied to large areas
for detailed archaeological mapping. One such study worked in this precise area, using pixel-
based detection and classifiers to obtain detection results, having 83% accuracy in their
developed system and being able to eliminate 71% of false positive detections [14].

YOLO has been used in the detection of Portuguese burial mounds in Alto Minho,
obtaining a 72.53% positive rate in their detections [16]. They also conclude that is a faster
method than traditional CNN approaches that also mitigates the issue of false positive detection.

11



The pre-processing of the data is also a crucial step before training the algorithms. The use
of image augmentation shows to be an essential technique for improving the performance and
robustness of object detection models [12] [13]. Augmentation involves applying various
transformations to the original training data to create new, slightly altered versions of the
images. These transformed images are then used to train the object detection model, since they
enable for a more robust model, that is, a with a better generalization capacity [13]. Some
authors conclude that overall, this pre-processing technique increases data diversity, by helping
the model to generalize better to unseen data and different real-world scenarios and improves
model robustness: by exposing the model to augmented data during training, it becomes more
resilient to various challenges, such as changes in lighting conditions, different object scales,
rotations, and occlusions [6] [7].

Most of these studies found in this literature review used the average precision and F1-
score as metrics to evaluate their algorithms [6] [7] [10] [11] [13], basing the results on their
test and validation sets. Table 1 summarizes the few studies on object detection in archeology

that have been here reviewed, gathering the state of art in this area of study.

Table 1 - Object Detection Studies in Archeology.

Object of the
Reference Country Year Method detection
6 France 2018 CNN's Mounds
’ Norway 2019 | Faster RCNN | Mounds, Kilns
8 Norway 2021 | Faster RCNN Mounds
Barrows, Celtic
9 Netherlands 2019 Faster RCNN fields
10 USA 2021 | Faster RCNN | ShellRings
11 Brazil 2021 RetinaNet Mounds
12 USA 2018 CNN's Mounds
13 Pakistan 2023 | Faster RCNN Mounds
15 Spain 2019 CNN's Mounds
16 Portugal 2023 YOLO Mounds

A few conclusions we can have from this chapter are that Satellite imagery is a valuable
tool for archaeologists, providing enhanced insights into potential archaeological sites.
However, the conventional methods for analyzing such datasets are hindered by their high cost

and labor-intensive nature.
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The integration of computer vision techniques, particularly deep learning algorithms, with
remote sensing technologies has revolutionized the field of cultural heritage monitoring. This
advancement has not only accelerated the extraction of features from imagery but also
addressed longstanding research gaps, showcasing the potential of deep learning in
archaeological applications. The introduction of Faster R-CNN, with its innovative region
proposal network, represents a significant stride forward in CNN-based object detection,
offering improved localization and classification capabilities for archaeological studies.

Faster R-CNN and YOLO emerge as a promising choice for complex object detection tasks
in megalithic monuments. While it demonstrates good performance in terms of consumer's
accuracy, there is room for improvement, particularly in reducing false positive detections when

applied over large areas for detailed archaeological mapping.

13



CHAPTER 3
Dolmens Detection System

This chapter describes the system proposed for the detection of dolmens in remote images of
terrain. We start by introducing the necessary technologies, tools, and methodologies supported
by related work. Firstly, we describe the system’s pipeline scheme that sums up the work
developed, divided by all the main steps that took place in this investigation. Beginning with
the Google Earth images acquisition, describing why it is viable and how it is used; the
techniques for image augmentation and enhancements proposed; the use of RoboFlow during
the process of the image’s preparation; the options of algorithms used and proposed for this
work; the necessary evaluation for these algorithms.

Following up on the methodological design research process, this chapter encompasses step
three where we create a conceptual design for the artifact that addresses the identified problem.

3.1. Pipeline Architecture

Considering all the important aspects of the proposed work, it is possible to build a pipeline
that can be automated to obtain the desired results. From image gathering to dolmen detection
in an image, the pipeline is presented in Figure 2 and will be briefly described over the next

sections.
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Figure 2 - Pipeline Architecture.
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3.1.1. Data Gathering

This phase relates to the acquisition of all the image data that can be used to train and test the
algorithm. This could be done by using Google Earth satellite imagery or other high-resolution
sources and image databases. We procceded by extracting all the data from Google Earth. For
future automation of the process, this dataset can be further used for testing images of interest
or, since the images have been labelled, it can be used as a training dataset for new models.

3.1.2. Image Processing
This step will be described further down and where all the input images are going to be
enhanced and augmented with techniques, in this case using RoboFlow.

3.1.3. Algorithm Inference

With the images ready and fed to train a model, this will receive the new inputs and load its
weights and parameters to obtain a final output of the detection (or not) with a certain level of
confidence and precision.

The outputs from this step can be stored and further analyzed or discarded, depending on the
level of detection pretended and the result obtained.

3.1.4. Post Processing

The outputs now can be taken to a GIS application to be georeferenced in order to get the
coordinates for the location of the positive hits resulting from the previous step.

Before taking this outputs to the application, an analysis of the output comes in place to
decide if the image and its results are good enough (based on their score and level of confidence)
to feed the algorithm with more of this new labelled data so that it can became more robust and
overall better at detecting new objects. To this end, a bad detection optionally can be
reprocessed from the image preprocessing step or discarded to not become part of the learning

process of the algorithm.
3.2. Google Earth Imagery

In this study all the images were gathered from Google Earth Pro, which can be extracted and

saved with 8k resolution, providing high quality images.
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DL models have demonstrated better capabilities in detecting and localizing objects within
images. However, the accuracy and reliability of these models heavily rely on the quality of the
input data [40]. Thus, higher quality images play a crucial role in improving object detection
performance in Deep Learning. When higher quality images are used for object detection,
several benefits emerge. Firstly, high resolution images contain more detailed information,
enabling more differences between background and objects [40].

Higher quality images tend to have less noise, which interferes with object detection. Noise
reduction techniques, such as better sensor technology, improved image preprocessing, or
higher signal-to-noise ratios, result in cleaner images with fewer distractions. Cleaner data
allows the model to focus on relevant features, leading to improved object detection
performance [41].

Additionally, higher quality images often have better color fidelity and dynamic range,
which can benefit object detection in certain scenarios. For example, in applications where
contrast or distinguishing objects based on color is essential, better image quality can provide
more accurate information for the model to learn from [40][41].

Google Earth platform has become a valuable tool for researchers in a wide range of fields,
namely in Archeology, enabling them to explore and analyze the Earth's surface in detail [42]-
[44]. The authors of [44] utilized Google Earth imagery to identify potential archaeological
sites in Egypt. The high-resolution imagery allowed the researcher to identify subtle variations
in surface features, indicating buried archaeological structures, which were then confirmed
through ground-truthing and archaeological investigations.

We can extract images from Google Earth picturing the Alentejo, Portugal area dating since
2006. After 2015, each year presents data with multiple timeframes within the year, with quality
varying throughout the timeline. This does not necessarily mean better quality over the years,
but rather depends on which satellite captured the images. For example, images from 2017 show

better resolution than images from 2021 (see Figure 3 for comparison).
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Figure 3 - Google Earth Images from 2017 (left) vs 2021 (right) for the same region.

3.3.  Image Augmentation

Image augmentation, artificially increase the size and diversity of training datasets is used as a
technique in computer vision that applies a variety of transformations to the original images.
These transformations introduce variations in the data that serve to improve the generalization
robustness and capacity of machine learning models towards new data. Image transformations

employed, will be next described.

Rotation
Rotating an image by a certain angle can help create additional variations in the dataset. For
example, rotating an image by 90 degrees, 180 degrees, or between those angles can be used to

simulate different viewpoints [45].

Translation

Translating an image by shifting it horizontally or vertically can add diversity to the dataset.
This transformation can simulate different object positions within the image [46].

Scaling

Scaling an image by changing its size and scale can account for variations in object sizes. It can

simulate objects being closer or farther from the camera [47].
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Flipping
Mirroring an image horizontally or vertically can create additional training samples that are

horizontally or vertically flipped versions of the original images [48].

Noise Injection
Adding random noise to an image can enhance the model's robustness to improve generalization
[46].

Image color augmentation is also a technique used to introduce variations in the color
properties of images during the data augmentation process. It can be beneficial for training
robust computer vision models that can handle variations in lighting conditions, color shifts,
and other color-related factors. Some of the commonly used image color augmentation

techniques and adjustments, will be described next.

Brightness
This technique involves changing the overall brightness of an image. By scaling the pixel
values, you can make the image brighter or darker. It helps models become more robust to

varying lighting conditions [49].

Contrast
Contrast adjustment alters the difference between the light and dark areas of an image. It can
enhance or reduce the contrast to simulate different lighting environments and improve model

generalization [50].

Saturation
Saturation refers to the intensity of colors in an image. Modifying the saturation level can make
colors more vibrant or less saturated (depending on the range set), providing the model with

variations in color appearance [49].

Hue
Hue adjustment involves shifting the colors in an image along color spectrums. It allows for
modifications in the color tone, simulating different lighting conditions and different color

variations [49].
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Color Channel Shuffling
Color channel shuffling involves rearranging the color channels (e.g. RGB) of an image. This
technique interferes with the original color distributions, promoting robustness to color channel

variations [50].

Color Inversion
Color inversion flips the color values in an image, changing each pixel's hue and brightness
values. It can be useful for training models to recognize objects in negative or inverted color
representations [50].

Color augmentation techniques can be applied individually or in combination between
themselves or even with other data augmentation methods. The choice of techniques always
depending on the specific problem requirements of the detection task and the types of variations

expected in the data.

3.4. Roboflow

Roboflow is a computer vision platform that provides tools and infrastructure to help developers
and researchers create, train, and deploy computer vision models in a more efficient
way. Offering features and services that simplify the process of creating, managing, and
deploying computer vision models and algorithms. In order to take advantage from Roboflow

there are some key aspects to be taken into account.

3.4.1. Data preparation and Annotation
It supports different data formats, from images to videos, additionally adding capabilities for
data preprocessing, augmentation, and labeling. These tools help in preparing high-quality

training datasets for computer vision models.

3.4.2. Data Versioning and Collaboration

Enables versioning and collaboration on datasets, allowing all team members to work on data
and images annotation and management. With a version control features implemented, it is
possible to track changes between different versions, and collaborate effectively on the dataset

preparation process.

19



3.4.3. Model Training and Evaluation

By integrating with popular DL frameworks, such as TensorFlow and PyTorch, the model
training is simplified on previous and existing versions of the annotated datasets. It provides
infrastructure and automates the algorithm training, hyperparameter tuning, and model

evaluation, making the training process more streamlined and efficient.

3.4.4. Model Deployment and Integration
Offering deployment options for object detection models, so the users can deploy the trained
models.

It is also possible to integrate with popular deployment platforms and frameworks,

simplifying the process of the model deployment into production environments.

3.4.5. Monitoring and Performance Tracking
It provides tools for monitoring and tracking model performance. After training it is possible to
analyze the metrics and insights to obtain the performance of deployed models, including
accuracy, precision, recall, and other relevant metrics. This facilitates users monitoring and
improving the performance of their object detection models.

Overall, Roboflow aims to provide a comprehensive platform that covers all the stages of
the object detection pipeline, from data preparation to model deployment. It aims to automate
and accelerate the development and deployment of computer vision applications by simplifying

complex tasks and offering infrastructure and tools to support the entire workflow.

3.5. Object Detection Algorithms

This sub-chapter serves as an introduction to the object detection algorithms discussed in this
thesis, namely Faster R-CNN and YOLO. These algorithms represent two distinct approaches
to object detection, each with its unique strengths and trade-offs. By providing an overview of
these methods, it is possible to establish a foundation for the subsequent discussions on their
architectures, training procedures, analyses, compare practical uses, and also setting the stage
for the exploration of these algorithms, laying the groundwork for the subsequent chapters in

this thesis.

20



3.5.1. Faster R-CNN
Faster R-CNN (Region-based Convolutional Neural Network) is a popular object detection
framework that combines the advantages of DL and region-of-interest (Rol) proposal methods.
It improves upon earlier region-based object detection methods, such as R-CNN and Fast R-
CNN (Figure 4), by introducing a Region Proposal Network (RPN). The RPN shares
convolutional layers with the detection network, enabling end-to-end training and significantly
speeding up the process [51]. It generates region proposals by sliding a small network over the
convolutional feature map. It predicts objects scores and refined bounding box coordinates for
potential object locations called anchor boxes. These proposals are then passed to the
subsequent detection network for object classification and bounding box regression [51]. A
region of interest pooling layer is introduced to adaptively resize the fixed-size feature maps
generated by the RPN to a fixed spatial extent. This allows the detection network to operate on
region proposals of variable sizes and aspect ratios [52].

The training procedure of the Faster R-CNN consists of a two-stage process (see Figure 4).
In the first stage, the RPN is trained to generate accurate region proposals. In the second stage,
the region proposals are used to train a Fast R-CNN network, which performs object
classification and bounding box regression.

Faster R-CNN has become a popular choice for object detection tasks due to its accuracy
and real-time performance. It has been widely adopted in various applications, including

autonomous driving, surveillance systems, and image analysis [51].
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Figure 4 - Structure of a FastRCNN algorithm (Source: [35]).
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The authors of [35] introduced Faster R-CNN and the bottleneck of the architecture, stating
that Fast R-CNN is a selective search. This search accounts for a significant portion of the
architecture’s training time. It was replaced by the region proposal network in Faster R-CNN
[53]. First and foremost, it passes the image into the backbone network in this network (Figure
5). A convolution feature map is generated by this backbone network. These feature maps are
then fed into the network of region proposals. The region proposal network generates the
anchors from a feature map. These anchors are then passed into the classification layer (which
classifies whether there is an object or not) and the regression layer (which localizes the

bounding box associated with an object) [54].
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Figure 5 - Simple Structure of a FasterRCNN algorithm (Source: [35]).

352. YOLO

YOLO (You Only Look Once) is an object detection algorithm that achieves real-time object
detection in images and videos with impressive accuracy [55]. YOLO approaches object
detection as a regression problem, directly predicting bounding box coordinates and class
probabilities in a single pass through the network. Unlike traditional object detection methods
that involve multiple stages, YOLO provides a unified architecture that simultaneously predicts

object locations and class labels [55].
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The input preparation (image) is resized to a fixed size that the YOLO network expects. It
is divided into a grid of cells, typically, with a size of, for example, 13x13 or 19x19. This
technique employs a grid-Based approach, where the input image is divided into a grid and each
grid cell is responsible for detecting objects. For each grid cell, YOLO predicts a fixed number
of bounding boxes with associated confidence scores and class probabilities. The predictions
are made based on the features extracted from the entire image using a convolutional neural
network (CNN) that also predicts a fixed number of bounding boxes.

These bounding boxes are defined by their coordinates relative to the grid cell. For each
bounding box, YOLO predicts the probability of containing an object and the associated class
probabilities for different object categories [56].

In a next level, it uses anchor boxes of different shapes and sizes within each grid cell to
improve the detection of objects with various aspect ratios and scales. These anchor boxes serve
as reference templates and are used to predict the offsets for bounding box regression. In the
end, YOLO assigns class probabilities to each bounding box, indicating the likelihood of
containing different object categories. It employs softmax activation to produce class
probabilities across all possible classes.

The network architecture employs a custom CNN architecture called Darknet, which was
specifically designed to optimize the trade-off between accuracy and speed in real-time object
detection.

This approach has been widely adopted for various applications, including object detection
in images and videos, robotics, autonomous vehicles, and surveillance systems [55], due to its
ability to provide real-time object detection on resource-constrained devices. Since the original
YOLO release, several improved versions, from YOLOv2 to YOLOvV8 (Figure 6), have been
introduced, each bringing enhancements in terms of accuracy and speed [57]. Yolov8 medium

was further used in this work.
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Figure 6 — Structure of YOLOVS8 algorithm (Source: [58]).

The key advantages of YOLO are its efficiency and real-time performance. By eliminating
the need for region proposal networks and performing detection in one pass, YOLO achieves

impressive speed while maintaining competitive accuracy [56].

3.6. Algorithm Evaluation

When evaluating an object detection model, several metrics are commonly used to assess its
performance [59]. The choice of metrics depends on the specific requirements and goals of the
application. Some important metrics for evaluating object detection models [60] are: True
Positive (TP) count, that is, counting the number of times that the model correctly identifies
and locates an object within the image. The model's prediction of the object's presence is
accurate and matches the actual object's location. The False Positive (FP) count, when the
model incorrectly detects an object that isn't present in the image. It's a case of the model

producing a positive detection when it shouldn't. The False Negative (FN) count of when the
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model fails to detect an object that is present in the image. It's a case of the model missing a
positive detection that should have been made. These counts are also used to compute the
Average Precision (AP), a widely used metric for object detection evaluation. It calculates the
precision-recall curve by varying the confidence threshold for object detection. AP summarizes
the overall performance of the model by considering the area under the precision-recall curve.
Other metrics are: Mean Average Precision (mAP) calculates the average AP across multiple
object categories. The Intersection over Union (loU) is the one that measures the overlap
between the predicted and ground truth bounding boxes. It is defined as the ratio of the
intersection area to the union area of the two boxes. A higher loU indicates better object
localization accuracy. Commonly used loU thresholds include 0.5 (loU=0.5), 0.75 (loU=0.75),
and 0.5 to 0.95 with a step of 0.05 (loU=0.5:0.05:0.95) to evaluate different levels of object
localization precision. On its own, Precision defines the ratio of the true positive detections to
the total number of positive detections (both true positives and false positives), while Recall,
known as the sensitivity or true positive rate, it measures the ratio of true positive detections to
the total number of ground truth objects.

These metrics help assess the model's ability to correctly detect objects while minimizing
the false positives, and F1-score is the mean of precision and recall, harmonized. It is a metric
that provides a measure that balances both precision and recall. F1 score is useful when there
is an imbalance between the number of positive and negative examples.In DL, box loss,
classification loss, and dynamic feature learning loss are terms associated with object detection
models, specifically those utilizing anchor-based methods. These losses are used to train the
model and improve its accuracy in detecting objects within an image [61]. Box Loss or
regression loss is applied in object detection where each object is typically represented by a
bounding box, which consists of four values representing the coordinates of the box's top-left
and bottom-right corners. It measures the discrepancy between the predicted box coordinates

and the ground-truth box coordinates.
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Common regression loss functions include smooth L1 loss and mean squared error (MSE).
Classification Loss, along with predicting bounding box coordinates, is used in models that also
need to classify the objects present in the image. It calculates the difference between the
predicted class probabilities and the true class labels. Common loss functions for classification
include softmax cross-entropy and binary cross-entropy. Dynamic Feature Learning Loss (DFL
Loss), a component specific to the Region-based Convolutional Neural Network (Cascade R-
CNN) framework, which is used for accurate object detection. It is applied after the initial
detection stage and aims to refine the bounding box predictions. The DFL loss measures the
discrepancy between the refined bounding box coordinates and the ground-truth box
coordinates. This loss helps in iteratively improving the accuracy of object localization.

These loss functions are typically combined to form a multi-task loss (total loss), which is
then minimized during the training process using techniques like backpropagation and gradient
descent. The relative importance of each loss component can be adjusted through
hyperparameters to achieve the desired balance between localization accuracy and

classification performance in the object detection model [61].
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CHAPTER 4
Implementations and Results

This chapter describes the implementation of the previous pipeline, step by step. First, we start
by introducing the geographical area of the case study to give context to all the implementations
and results obtained. At the end of the chapter, we find a discussion of all the results obtained
after this implementation.

Following the design research methodology, we terminate its third step where
implementations of the artifact are made. Next, we step into an evaluation that intends to assess

the artifact's effectiveness, efficiency, and utility.

4.1. Case Study’s geographical area

This study targets the region of Mora and Arraiolos, Alentejo, Portugal, because it is the one
for which we have both expert knowledge and data to evaluate our proposal’s success. The
geographical area covers 185 km2 and its situated in the southern half of the country, in central
Alentejo. According to [4], it is primarily composed of alkaline granites, granodiorites,
tonalites, and trondhjemite. Other authors state that this territory contains the most extensive
plateaus of Portugal, with local topography curves averaging an altitude of around 200m and
little variation in declivity or relief, also containing three major hydrographic basins, one being

in the Mora region.

4.2. Images and Data

After acquiring all the dolmens’ locations, the next step was to get their satellite images. Using
Google Earth Pro we got around 60 dolmens visible - from a software perspective - and took
five images of each dolmen, making sure that the monument’s position varies from image to
image and therefore the background changes too as seen in Figure 7. In total, we collected a
dataset of around 300 images. In order to test the algorithm on an image that doesn’t contain
any dolmen, two more images were collected. These images are similar in terms of background

but, as far as we know, are void of monuments.
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Figure 7 - Five images used of the same dolmen in different backgrounds.

Images saved from Google Earth Pro are in pan-sharpened (or simply, pan) format. Pan-
sharpening is the process of combining a higher-resolution panchromatic (black and white)
image with a lower-resolution multispectral (color) image to create a single high-resolution
color image as depicted in Figure 8. This process improves the image's visual quality and

details.

Figure 8 - Process of a Pan Sharpened Image (Source: [62]).

Google Earth Pro saved images are typically in pan-sharpened format, which provides a
more detailed and visually appealing representation of the Earth's surface.
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To train and test the algorithms the data had to be split. The test images set contains 17
images: 15 of only three distinct dolmens (S&o Pedro da Gafanhoeira 1, Telhal 1, Anta de
Prates 7) that contribute with five images each. Moreover, we added the two previously
mentioned images that are void of monuments. The remaining 285 images were used to train

the algorithms. The following image in Figure 9 explains how the data was split.

8 57 Dolmens 8 3 Dolmens

5 images )
%—‘ gach % 5 images
each
2 NULL L
images

235 images 17 images

TRAIN TEST

Figure 9 - Train and test data split of the images.

4.3. Image Pre-Processing
Before training the model, images had to be pre-processed using some of the image
enhancement and augmentation techniques already referred to in previous chapters.

We begin by describing the enhancement techniques that have been used and afterwards

we describe the augmentations that we have performed.

4.3.1. Image Enhancement

We decided to only use one type of image enhancement: adjustment of the image’s contrast.
Roboflow displays two pre-processing tools that use histogram and adaptive histogram
equalizations of the contrast. It consists in an algorithm that uses histograms computed over
different tiles of the image so that local details can be enhanced, even in regions that are darker
or lighter than most of the image, like we can see in Figure 10. These features help particularly

to enhance images where the vegetation index is higher.
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Figure 10 - Image before (on the left) and after enhancement (on the right).

4.3.2. Image Augmentation
As previously stated, augmentation is a crucial step before training any algorithm. After
reviewing the state of the art, we could conclude that the best way to apply augmentation is to
add random values of different types of augmentation until finding the best set of modifications
in order to obtain better results.

Cropping and Rotation were two of the non-color-based augmentation used, where
cropping could vary from 0% to 50% maximum zoom and rotation from -45° to 45°.

The color-based augmentations added were hue, saturation, brightness, and exposure, all in
a range -50% to 50%, with a random spectrum of 100 points for each augmentation, where
images could vary between those ranges.

Figure 11 shows two examples of finished preprocessing images after suffering both

enhancement and augmentation.

Figure 11 - Examples of image used in training after pre-processing: original (on the left) and pre-processed (on the right).
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4.4. Algorithm Implementation

After pre-processing the images was time to develop and train the algorithms. As previously
discussed in Chapter 2, the algorithms used were YOLO in its newest version (version 8) and
FastRCNN using nine different architectures.

After augmentation, 855 images were used for training, where the 285 initial training
images were multiplied by 3 using different augmentation techniques (crop and rotation).

Auto-tunning was used with both algorithms to obtain the best parameters and
hyperparameters possible for the data used in training.

Using Google Colab, an algorithm takes approximately 40 minutes to train 5000 iterations
to get the minimum total loss possible and to get closer to the established learning rate for each
algorithm, overall consuming 10 GB of RAM and 8 GB of GPU memory.

Regarding the implementation of Faster-RCNN models, two types of backbone networks
were used - ResNet-101 and ResNet-50 - along with three different network structures - Feature
Pyramid Network (FPN), Dilated Convolutional Network (DCN), and Convolutional Network

(CN). Additionally, two types of training schedules were used (1x and 3x) in the architectures.

45. Results

After all the iterations and training processes were concluded, the models were tested using the
previously described test set. Table 2 presents the average precision and F1-score metrics that

have been obtained for each of the trained models for the test set.

Table 2 — Chosen models test results (with the Top-3 best results highlighted).

Model Average F1-
Precision Score

R_50_FPN_3x 0.67 0.51
R_50_FPN_1x 0.69 0.64
R_50_DC_3x 0.70 0.65
R_50 _DC_1x 0.93 0.78
R 50 C_3x 0.61 0.57
R_50_C_1x 0.60 0.57
R_101 _FPN_3x 0.71 0.64
R_101 _DC_3x 0.74 0.71
R_101_C_3x 0.63 0.59
YOLOVS 0.79 0.71
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As previously mentioned, the test set consisted in images from three different dolmens, S&o
Pedro da Gafanhoeira 1, Telhal 1, and Anta de Prates 7, shown the images in Figure 12,

respectively, where the dolmen can be seen in the middle of each image.

Figure 12 - Test Dolmens Images (with the dolmen in the center of each one).

For each set of images next presented (Figure 13-15), we show the models’ results, with
the “R_101_DC_3x” detection at the left (a), the “YOLOVS8” detection in the middle (b), and
the “R_50 DC 1x” result at right (c), since these are the three models that obtained a better

average precision and F1-score among all the models tested. The detection results are presented

(@) (b) (©)

Figure 13 - Object detection results for SGo Pedro da Gafanhoeira 1.

In Figure 13 the “R_101_DC_3x” model, image (a), has a TP detection with 96%
confidence degree but, however, has four FP detections whose confidence ranges range from
71% to 88%. The YOLOv8 model (b) presents a TP of 80% confidence degree and two FP
detections with 64% and 53% each. The “R_50 DC 1x” model (c) detected a TP with 90%
confidence degree and one FP with 85%.
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(a) (b) (©)

Figure 14 - Object detection results for Telhal 1.

In Figure 14 model “R_101_DC_3x” (a) and “R_50 DC _1x” (b) both detected a TP with
99% confidence degree while YOLOVS (c) detected a TP of 71% confi

dence degree.
AR s P

0 j( 5 e

(@) (b) (©)

Figure 15 - Object detection results for Anta de Prates 7.

The Figure 15 shows that the model “R_101_DC_3x” (a) detected a TP with 95% confidence
degree and a FP with 97%. The YOLOv8 model detected only a TP with 61% confidence
degree. Model “R_101_DC_1x” (a) detected a TP with 91 % confidence degree and two false

positives, one with 95% (same FP that (a) detected) and 76% confidence degree.
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(a) (b)

(c) (d)

Figure 16 - Results from model R_50_DC_1x Sdo Pedro da Gafanhoeira 1 (4 test images)

The image (a) on the top left has a TP with 96% and one FP with 77% confidence degree. The
image (b) contains a TP with 96% confidence degree and one FP of 80%. Image (c) only has a
TP of 94% and (d) has a 95% TP and a FP of 81% confidence degree.

It is also important to refer that the model R_50_DC_1x did not detected anything in the
images that had no dolmens in it, which is a good indicator, and the best result possible, that
being because any detection would be a FP detection. The other models, three had FP with an
accuracy between 34% and 68%.

The remaining results from all the models can be visualized in Anex A.

34



4.6. Discussion of Results

The results of the object detection experiments reveal an intriguing trade-off between both
Faster R-CNN and YOLO models. The Faster R-CNN models demonstrate a higher overall
accuracy in detecting objects, indicating their proficiency in precise localization. However, the
YOLO models exhibit a noteworthy characteristic: despite their lower accuracy, they present
fewer FP detections.This suggests that the YOLO model excel in minimizing the instances
where non-existent objects are mistakenly identified.

This trade-off has practical implications. While Faster R-CNN models are adept at precise
object localization, the YOLO models may offer advantages in scenarios where minimizing FP
is crucial. Although the number of FP is higher in FasterRCNN models, it’s not a big number
per image detected, and some are with a much lower level of confidence degree than the TP,
indicating that we could reduce the number of final FP, considering a desired or suggested level
of confidence degree.

The object detection results regard true positive detections across varying confidence
levels. It becomes apparent that certain detections exhibit discrepancies in confidence scores,
likely attributed to differences in background contexts. This phenomenon highlights the
sensitivity of the detection models to environmental factors. Objects situated against distinct
backgrounds may receive varying confidence ratings, underscoring the influence of contextual
information on the model’s detection process. This nuanced behavior implies the importance
of considering background diversity in training datasets to enhance the robustness and
adaptability of object detection models across diverse real-world scenarios. These findings
emphasize the need for a comprehensive evaluation of detection performance that considers the
characteristics of the surrounding environment.

FasterRCNN using a ResNet-50 backbone network and Dilated Convolutional Network for
structure and a standard training schedule proved to obtain the best performance values and
results for this test set, therefore it was chosen to be employed the in the final pipeline
architecture.

During the training of this algorithm, it was possible to track a few metrics to detect any
sign of over and underfitting during the epochs defined. The losses and accuracy metrics
throughout the training can be analyzed from the graphs that can be found in Figure 16-21. The
axis of these graphs correspond to the metric percentage versus the number of epochs (5000).
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Since classification loss represents the difference between predicted class probabilities and

the true class labels, ideally during training we want to minimize this metric along the epochs.

Classification loss
o
=
&

0 500 1k 15k 2k 2.5k 3k 3.5k 4k 4.5k 5k
Iterations

Figure 17 - Classification loss graph.

Clearly, rigure 17 shows the classification loss decrease that appears to become more stable
after 4000 epochs, converging towards an optimal solution. This suggests that the training
process has effectively learned the underlying patterns in the data, enabling the model to make
accurate predictions. The stabilization of the loss indicates a reduced sensitivity to minor
fluctuations in the training data, which is indicative of a well-generalized model [63].

Box Loss measures the discrepancy between the predicted box coordinates and the ground-
truth box coordinates, minimizing this value throughout the epochs is ideal for training [63].

Box loss

0
Iterations

Figure 18 - Box Loss graph.
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The box loss graph in rigure 18 exhibits a generally favorable trend of minimization over the
course of 5000 epochs. This indicates that the optimization process is effectively converging
towards the desired objective. However, the presence of occasional upward and downward
spikes suggests that there might be certain points in the training process where the model
encounters local optima or fluctuations in the loss landscape. These spikes could be attributed
to various factors, such as noisy or inconsistent data, learning rate adjustments, or the model's
sensitivity to specific input patterns. It's crucial to monitor and investigate these spikes further,
as they could potentially lead to suboptimal performance or indicate areas for improvement in
the training process [64]. Overall, while the trend is positive, attention should be given to these
spikes to ensure the model's robustness and stability.

Minimizing the Classification loss in the Region Proposal Network, the RPN learns to
predict high objects scores for anchors that overlap significantly with ground-truth object
bounding boxes and low scores for anchors that are far from any object. Ideally, the algorithm
must focus on relevant regions likely to contain objects and ignore the regions likely to be

background or irrelevant [63].
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Figure 19 - Classification loss in the Region Proposal network graph.

Observing rigure 19, we can see that after around 2000 epochs the model starts to stabilize
until the end of the training, suggesting that the model has reached a point of diminishing returns
in terms of classification improvement. This stabilization is a positive sign, indicating that the
RPN has likely converged to a satisfactory level of classification accuracy. However, it's
important to note that further training beyond this point may not yield significant additional
benefits [63] [64].
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In Figure 20, another loss analyzed was the localization loss in the RPN where the
minimization is essential because it ensures that the algorithm learns to accurately predict the
correct bounding box coordinates for the positive region proposals. Better training results on
the regression of the predicted bounding box coordinates for each positive anchor to align it

with the ground-truth bounding box [63].
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Figure 20 - Location loss in the Region Proposal Network graph.

However, the presence of numerous spikes suggests that there are instances where the
model encounters challenges in precisely pinpointing object locations. These spikes may be
attributed to various factors, such as complex object geometries, augmentations, or the image
background. Despite the spikes, the overall decreasing trend indicates that the RPN is on the
right path towards achieving accurate object localization [64].

The total loss (Erro! A origem da referéncia néo foi encontrada.) can be calculated by
summing the location and classification losses. During training, the algorithm aims to minimize

the total loss, which means it seeks to minimize both the classification loss and the localization
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loss simultaneously [64].

Figure 21 — Total Loss
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The graph demonstrates a favorable trend of consistent reduction, signifying that the model
is effectively converging towards the desired objective. This suggests that both the
classification and localization components of the Region Proposal Network (RPN) are jointly
improving in performance. The diminishing total loss indicates that the model is successfully
learning to classify objects and refine their precise locations [63] [64].

For this algorithm, the classification accuracy (Figure 22) was also measured by epoch, where
during training, the algorithm aims to adjust the object detections in order to classify with better
precision the objects. The higher accuracy, the more the algorithm is adjusting to the training
set [65].
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Figure 22 - Classification Accuracy graph.

The training classification accuracy graph depicts a highly positive trend, as it consistently
approaches a value of 1. This indicates that the model's ability to correctly classify objects in
the training set is steadily improving. The increasing accuracy signifies that the model is
effectively learning the underlying patterns and features associated with the detection. This is
a strong indication that the training process is successful and that the model is becoming
increasingly proficient in its classification task. It's important to continue monitoring this metric
to ensure that the model doesn't plateau prematurely, and to validate its performance on unseen
data [65].

The successful training of the Faster R-CNN algorithm with minimal losses and good
accuracy demonstrates proficiency in implementing object detection models. The faster R-CNN
model is ready to be deployed to perform object detection in similar applications. Depending
on the specific use case, fine-tuning the model on domain-specific data can be applied to further
improve its performance in a specific context [64].
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However, we stress that, despite achieving a lower confidence rate in true positive results,
YOLOVS stands out as the model with the fewest false positive detections. In terms of our
overall objective of building a useful tool to help archeologists in their prospection work, a
lower number of false positives is an important advantage.

Using only these images to test, it is not possible to fully demonstrate that there is a best
model for future training sets because the results may vary from set to set and other algorithms
could perform better in those other tests.

Finally, when compared with the pixel-based study previously performed in the context of
the same case study ([14]), our overall accuracy results show an improvement although slight.
Nevertheless, our approach was tested using a different set of images and trained in different

samples.
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CHAPTER 5
Conclusions

Entering now in the fifth step of the research method, it is time to reflect on the evaluation
results and analyze the findings and potential improvements.

This dissertation investigated the possibility of developing an automatic object detection
system that uses satellite imagery to detect Portuguese dolmens and related archeological
monuments. For this investigation, Alentejo satellite images were used, namely in the areas of
Mora and Pavia. Ten different algorithms were trained and tested in order to get the best model,
that is, the one to detect with high accuracy and high confidence levels new objects in a set of
dolmens previously identified by experts. A pipeline was built, from the data gathering to the
final algorithm results, being open for further training and tunning.

This conclusion chapter is divided in two sections. main conclusions, where the objectives

and research questions are addressed, and proposals for future work.

5.1. Main Conclusions

Looking back at the objectives and research questions set for this thesis, for the first
question we can conclude that the augmentation and enhancement of the images is a crucial
step to be taken for the algorithm training. Using the right amounts and techniques we could
verify that it plays a significant role in improving the performance and robustness of the models.
Techniques, such as rotation, flipping, scaling, and translation, help create variations of the
original images, effectively increasing the dataset's size and diversity. These augmented images
exposed the model to different object appearances, orientations, and scales, making it more
adaptable to various situations. With these, the object detection model became more robust and
less sensitive to small changes in the inputs, leading to better generalization of unseen data.
From the training results, we could conclude that the augmentation acts as a form of
regularization, preventing the model from memorizing specific instances in the training data. It
helped the model to focus on learning important features and relationships between objects and

backgrounds rather than memorizing individual training samples.
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Regarding the second research question, it is not yet possible to select the best algorithm
for object detection since it may vary with different test sets and new geographical locations.
Although, for this investigation, the FasterRCNN using a ResNet-50 backbone network and
Dilated Convolutional Network for structure, trained with a standard training schedule proved
to show the best evaluation metric values for the test set used, the YOLO architecture showed
the lower number of FP. Nevertheless, therefore FasterRCNN is our choice to be the in the final
pipeline architecture for the current case study. In fact, false positive detection is a major issue
in this area since in satellite imagery a lot of rock outcrops can be miss perceived as dolmens.
YOLOVS was the best model at avoiding false positives, despite the lower confidence rate on
true positive detection. Now it is up to the archeologists and experts to choose what they feel
better fits their job, balancing the pros and cons of each of the models. Despite having a few
false positive detections, the FasterRCNN proves to be reliable, that being because the false
positive detections have a lower confidence rate detection and accuracy compared to the true
positive detections.

As usual, there were limitations for the work here presented. One such limitation is the
small dataset used, despite the techniques used to multiply the images on the dataset resulting
in a total of 855 images, for DL model training this is deemed too small a dataset. In the case
of FasterRCNN, it is recommended to use around 5000 samples [35] and, in the case of YOLO,

the recommendation is even higher: 10,000 instances per class [66].

5.2. Future Work and Research

Megalithic monuments exhibit different characteristics that preclude the application of
automated approaches to new geographical areas. Through time, this topic is being further
addressed and improved and new findings are always appearing. From our revision of the
literature, we noted that such systems have mostly been developed and applied in foreign
countries, leaving Portuguese regions and monuments with a significant lack of work and
applications. Portuguese monumental heritage deserves further attention and investigation,
especially because it presents unique characteristics worth been registered and studied.
Despite the good results here presented, it would be interesting to expand the system by
adding new domain knowledge based on the terrain characteristics and environment capable of

further refining areas presenting higher probability of monument’s presence.
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Regarding the third research question and the last objective, that was to try to use the terrain
information for further analysis of the object detection results or to complement the algorithms
with the given information about the terrain to build up the confidence in the detection. Experts
discovered that dolmens in Alentejo are usually located within a hundred meters up to one
kilometer from lines of water, and less than one kilometer from rock outcrops. With this
information is possible to create a sort of a hot zone area where dolmens are more likely located.
We achieved to created buffers in order to understand where dolmens are more likely to be as

presented in Figure 23.

Figure 23 - Mora and Arraiolos regions with Rock outcrops and water buffered layers.

Future work on how to best hybridize this information with the models is expected to achieve
better results, by filtering the information and being able to recalculate the accuracy based on

location too.
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Anex A

This Anex refers to all the other seven FasterRCNN detection results in the images used for the

test set, five from each of the three dolmens.

Object Detection Results from the FasterRCNN algorithms:
Faster_rcnn_R 50 FPN_3x

Sao Pedro da Gafanhoeira 1
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Anta de Prates 7

Faster rcnn R 50 FPN 1x

Sao Pedro da Gafanhoeira 1
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Faster rcnn_R 50 DC5 3x

Sdo Pedro da Gafanhoeira 1
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Anta de Prates 7

Faster rcnn R 50 C 3x

Sao Pedro da Gafanhoeira 1
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Faster_rcnn_R_101_FPN_3x

Sdo Pedro da Gafanhoeira 1

55



Anta de Prates 7

Faster rcnn R 101 DC 3x

Sao Pedro da Gafanhoeira 1
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Faster_rcnn_R_101_C4 3x

Sdo Pedro da Gafanhoeira 1
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