ISCTE 2 1UL
REPOSITORIO

INSTITUTO UNIVERSITARIO DE LISBOA

Repositério ISCTE-IUL

Deposited in Repositdrio ISCTE-IUL:
2023-11-29

Deposited version:
Accepted Version

Peer-review status of attached file:
Peer-reviewed

Citation for published item:

Almeida, J. C. de., Brito e Abreu, F. & Almeida, D. S. de. (2023). Cross-platform mobile app
development: The IscteSpots experience. In Jodo, A. R., and Freek (Ed.), 2023 38th IEEE/ACM
International Conference on Automated Software Engineering Workshops (ASEW). (pp. 11-16).
Luxembourg, Luxembourg: IEEE.

Further information on publisher's website:
10.1109/ASEW60602.2023.00006

Publisher's copyright statement:

This is the peer reviewed version of the following article: Almeida, J. C. de., Brito e Abreu, F. &
Almeida, D. S. de. (2023). Cross-platform mobile app development: The IscteSpots experience. In
Joao, A. R., and Freek (Ed.), 2023 38th IEEE/ACM International Conference on Automated Software
Engineering Workshops (ASEW). (pp. 11-16). Luxembourg, Luxembourg: IEEE., which has been
published in final form at https://dx.doi.org/10.1109/ASEW60602.2023.00006. This article may be
used for non-commercial purposes in accordance with the Publisher's Terms and Conditions for self-
archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
¢ a link is made to the metadata record in the Repository
o the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Servicos de Informagdo e Documentagdo, Instituto Universitario de Lisboa (ISCTE-IUL)
Av. das Forgas Armadas, Edificio II, 1649-026 Lisboa Portugal
Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1109/ASEW60602.2023.00006

Cross-platform mobile app development:
the IscteSpots experience

Jodo Cambaia de Almeida

, Fernando Brito e Abreu

, Duarte Sampaio de Almeida

ISTAR-IUL, Iscte - Instituto Universitario de Lisboa,
Av. das For¢as Armadas, 1649-026 Lisboa, Portugal
Email: {jccga, fba, dsbaa} @iscte-iul.pt

Abstract—Cross-platform development frameworks allow pro-
ducing a single codebase for an app targeting web browsers and
native mobile operating systems. However, detractors stress their
limitations in accessing platform-specific features or achieving
optimal performance compared to native platform development.
Although interest in cross-platform development has increased
recently, few case studies are published on using them, often on
toy examples.

Therefore, it is important to provide sound evidence on
the usage of a cross-development platform for a full-fledged
app development case study, from requirements specification
to quality assurance, using well-understood standard modeling
notations (UML and BPMN).

This case study is about IscteSpots, a gamified app developed
in the scope of Iscte’s commemoration of its 50" anniversary to
promote its heritage and history. Iscte is one of three public uni-
versities based in Lisbon, Portugal. IscteSpots provides publicly
organized access to a chronological corpus of the university’s
past and is available on web browsers and on Android and iOS
smartphones. IscteSpots is specifically targeted to mobile devices,
implementing a contest with gamification strategies, specially
targeted to the current community members (students mostly,
but also teaching and administrative staff).

Development went through several iterations, including vali-
dations with groups of users that were instrumental in the app’s
continuous improvement. The vast majority of the suggested
changes had repercussions at the Graphical user interface (GUI)
level, that had to be propagated to the web, Android, and
iOS platforms. The agility achieved by generating versions for
the three target platforms, without noticeable degradation of
execution efficiency and requiring only minor adaptations, amply
proved the advantage of using a cross-platform framework.

Index Terms—cross-platform development, mobile app devel-
opment, Flutter and Dart, software quality, UML, BPMN

I. INTRODUCTION

To maximize availability, apps should run in web browsers,
as well as in the two leading mobile operating systems:
Android and iOS [8]. Creating separate codebases for each
platform requires duplicating efforts, resources, and mainte-
nance.

Several approaches have been proposed to write code that
can be executed on different platforms with minimal changes,
either (i) using platform-agnostic programming languages (i.e.
not tied to a specific platform), such as Python, Java, or
JavaScript [2], or (ii) by using progressive web app devel-
opment frameworks [3]. However, although both alternatives
offer some portability, they sacrifice the native-like user expe-
rience on each platform.

Granting native-like user experience requires using
platform-specific User interface (UI) components, design
patterns, and guidelines to ensure that an app looks and
behaves consistently with other apps on the target platform.
This ability to create software applications with just one
codebase that can run on multiple operating systems or
platforms, thereby reducing development time, cost, and
effort, while leveraging native constructs is what is meant
by cross-platform development [1]. There are generally two
main strategies employed by cross-platform frameworks:

i) compilation to native code — some frameworks, such
as Microsoft’s Xamarin') and open-source NativeScript, use
a compilation approach where the code is transformed into
native code specific to each platform. These frameworks
typically provide bindings to platform-specific Application
programming interface (API)’s, allowing developers to access
native functionality. The code is compiled ahead of time
(AOT) or just-in-time (JIT) during runtime, depending on the
framework, to generate native binaries that can be executed
on the target platform.

ii) interpretation or runtime execution — other frame-
works, like Facebooks’ React Native and Google’s Flutter,
use an interpretation or runtime execution approach. In these
frameworks, the code is written using a common language
(JavaScript for React Native, Dart for Flutter) and then in-
terpreted or executed by a runtime environment provided by
the framework. The runtime environment bridges the code to
platform-specific APIs and UI components, rendering native-
like interfaces and functionality.

Both approaches aim to provide cross-platform functional-
ity, but there are trade-offs to consider. Compilation to native
code often provides better performance and access to low-
level platform features but may require additional setup, con-
figuration, and potential platform-specific adjustments. On the
other hand, interpretation or runtime execution simplifies the
development process, allows for faster iteration, and provides
a unified codebase, but it may introduce slight performance
overhead and dependency on the framework’s runtime. The
popularity/interest in interpretation or runtime execution cross-
platforms has peaked in the last months, as seen in Figure 1°.

' Xamarin is now part of .NET
2NativeScript is not represented since it never rises above 1% in Google
Trends’ percentile scale

https://orcid.org/0000-0002-9354-1476
https://orcid.org/0000-0002-9086-4122
https://orcid.org/0000-0001-5459-4113
https://dotnet.microsoft.com/en-us/apps/xamarin
https://nativescript.org/
https://reactnative.dev
https://flutter.dev

Flutter

—Xamarin React Native

Fig. 1. Popularity of cross-platforms worldwide (source: Google trends)

This paper is organized as follows: Section II holds the
related work for this article; in section III our development en-
vironment and choice of the Flutter framework in comparison
with other frameworks are explained; section VI is where our
code quality pipeline is described, in section V a Business Pro-
cess Model and Notation (BPMN) model is used to describe
our internal improvement and deployment processes; in section
IV we delve extensively into every conceivable interaction that
can be performed with the developed application; in section
VII validations with real students are briefly described along
with a focus on their feedback, and finally, in section VIII, we
draw some conclusions on our case study.

II. RELATED WORK

By just focusing on the interpretation or runtime execution
frameworks that account for the largest market share, as
mentioned in the previous section (React Native and Google’s
Flutter) we performed some searches on SCOPUS, using the
following search string: "cross-platform development" AND
"case study" AND (Flutter OR "React Native"). We then
selected the papers that provided the most interesting insights
into the use of Flutter and React Native in real-world scenarios.

Khan et al. [6] compare the performance of Flutter and
React Native in terms of efficiency, effectiveness, compatibil-
ity, community growth, documentation, architecture, developer
productivity, and testing automation support. Zohud and Zein
[10], on the other hand, compare the performance of cross-
platform development compared with native app development.

Szczepanik and Kedziora [9] discuss state management
approaches used for Flutter applications development and
propose a combination of two approaches that solve the main
problem of existing approaches related to global and local state
management.

Galén et al. [5] present a multi-criteria comparison of two
mobile applications built with the use of Android and Flutter
SDK, showing that a mobile application written using Android
SDK is often not only faster and more efficient but also
has greater community support and the number of libraries
available.

Cheon and Chavez [4] describe a case study of converting
an existing Android app written in Java to a Flutter version
to support both Android and i0S, discussing technical issues,
problems and associated with such a rewriting effort.

Overall, the previous papers provide valuable insights into
the use of Flutter and React Native in real-world scenarios,
highlighting their strengths and weaknesses in terms of per-
formance, state management, community support, and app
conversion.

III. DEVELOPMENT ENVIRONMENT

The communities surrounding a language or framework are
essential in a software development ecosystem. Therefore, its
popularity conveys technology’s stability and longevity, since
if it is widely used, it is more likely to have ongoing devel-
opment, updates, and bug fixes. Abandoned or less popular
technologies may face a higher risk of becoming obsolete.

According to Google Trends (see Figure 1), Flutter became
the most popular cross-platform framework in April 2020. It
is a framework built on top of the Dart programming language
and the Skia 2D graphics engine with a unique take on front-
end development where everything is a widget. These widgets
are primarily objects that represent Ul as code but can contain
functionality, logic, and also hold state.

Both popularity winners — Flutter and React Native — have
strong online communities and a wealth of tutorials and
package libraries; therefore, popularity should not be the single
choice criterion. Performance is also important to consider
when choosing a framework or language to develop with.
Although React Native supports performant native animations,
its performance in most cases is outshined by Flutter, which
revealed to have performance “on par with native solutions
for CPU-intensive tasks” as mentioned in [7].

We then chose Flutter due to its focus on performance, rich
ecosystem corroborated by its popularity, and its use of the
Dart programming language, similar to the traditional OOP
languages like Java that the IscteSpots team was familiar with.

IV.

Our technology stack consists of a Django web server and
a mobile app developed with Flutter and deployed on both
Android and IOS devices.

IMPLEMENTATION

A. Software architecture

Figure 2 describes how IscteSpots components interact with
each other. Figure 3 shows how those components were
deployed in the intervening computing nodes.

Quizmanagement —(O. ‘ Timeline Website
website []
BackEnd Server j\
Database [O~ [5 ‘ Mobile application

Fig. 2. IscteSpots UML Component Diagram

1) Backend: Our Django server is used as the storage
and logic backbone of our solution also providing Content
management system (CMS) capabilities, using Django’s admin
panel we created a web portal for authorized members of
Iscte’s staff to interact with and manage the contents present
in the app (i.e. questions and images). It also provides a

https://dart.dev/
https://skia.org/

Cloud Server

Android phone
Android Operating System

Personal C

Linux Operating

Operating system
system

<<component>> 8]
<<component>> g) IscteSpots mobile application
IscteSpots Quiz

Management website

<<component>> &) ﬁ
IscteSpots
REST Application

]
server REST

<<component>> Z]
Database

10S phone

10S Operating System

<<component>>]
IscteSpots Timeline
Website

<<component>> g
IscteSpots mobile application

Fig. 3. IscteSpots UML deployment diagram

Restful API programmed by our IscteSpots team that the
mobile and web applications consume to provide consistent
user progression within our game.

2) Mobile application: As the main consumer of the API
provided by our Django Backend, the mobile application
published on the app stores for both Android and Ios devices
serves as the main platform for the user to interact with our
IscteSpots game.

3) Web application: An easier method to consult the time-
line curated for the IscteSpots game was developed as a
website, which due to Flutter’s now great support for the
web, could be as simple as copying code from one repository
to another. The only reason it was not as straightforward as
it seemed, was due to external packages that supported the
mobile platforms but not the web. Such an example was sqflite,
since it forced us to rewrite the logic for the timeline, which
in turn made us rethink and redesign the Rest API provided
in the backend for the contents of this page.

To develop the web application, we needed to make modifi-
cations to 27 out of 155 “.dart” files which involved changing
a total of 2115 lines of code out of the entire project’s 14309
lines (i.e. 14.8% of the entire codebase). This number can be
further reduced through refactoring.

4) Web Content Management Portal: The Anthropology
team, which collaborated with the IscteSpots team, created the
corpora on the history and heritage of the University. Building
a custom portal to edit these contents was key in building an
improved repertoire of questions, images, and events to display
on the IscteSpots app and timeline website. For that purpose,
we used Django’s Admin panel so that the Anthropology team
could have editing permissions on the database tables relevant
to the contents, such as the one storing the questions for the
quizzes and the timeline events.

B. Mobile Application Overview

In this section the complete application flow will be de-
scribed, using the BPMN diagram in Figure 4 as an anchor.
The latter was developed with Signavio academic version, and
contains a single pool, named “Flutter Mobile App” which
represents the IscteSpots mobile application, containing 14
lanes, each representing a specific page of the app. Whenever
tasks were more complex, we used sub-processes instead. The
corresponding diagrams cannot be reproduced here due to size
limitations.

1) Onboarding: On the initial load of the app, the Onboard-
ing page is displayed, composed of a series of “tabs” that the

user can horizontally scroll through to learn the details of the
“IscteSpots” game.

2) Application Drawer: The app drawer consists of a
vertical list of buttons that navigate the user to the different
pages of the app, serving as the main method of navigating
the user through the app, represented through the Intermedi-
ate conditional event named “App drawer/nav bar” that also
encompasses the behavior of the bottom navigation bar of the
home page

3) Home page : The home page is composed of three
different tabs, present as buttons on the bottom navigation
bar. The first button takes the user to the puzzle page, the
default page where the app initially loads into, explained in
section IV-B3a, the middle button takes the user to the leader-
board screen, where he can see how he compares to the rest
of the players using the app, further explained in section
I'V-B8. Finally, the right button takes the user to the scan page,
where he can scan for spots/Quick response code (QR code)s,
explained in section IV-B5

a) The Puzzle: is the main page of the application, where
the user can drag pieces of the puzzle around the screen while
trying to slot them onto their designated place, task number 5
of the diagram. The image used for the puzzle is based on the
user’s chosen Spot, explained in detail in section IV-B4. When
the user completes the puzzle he is recommended by the app
to perform a scan on a QR code, task number 6 and better
explained in section IV-B5. The user can provide feedback
about the app using a button present on the top bar, which
displays an overlay containing a form, task 7 in the diagram.

4) Choose the next spot: Here the user can see a grid
of blurred images, each corresponding to a physical location
where a “Spot” or QR code can be found and scanned, each
of these images is clickable, selecting it as the current spot
and changing the puzzle accordingly.

5) Scan a spot: The scan-a-spot page displays what is being
captured by the phone’s camera and draws an overlay on top
that guides the user while pointing his phone at the QR code.
This lane in the diagram features a single collapsed task named
“Scan spot page Sub-process” number 9 that encompasses all
the behavior and interactions present in this Scan Spot page
in greater detail.

6) Timeline: The timeline page, lane number 7 in the
diagram, presents a horizontal list of years on the top and
a vertical list of all the events from the selected year. The top
bar features a button to display an explanation dialog and a
magnifying glass button that opens the filter overlay where
the user can select topics and scopes filtering the displayed
years and events. Once filtered, they can either view event
details or return to the main timeline page, without the ability
to apply additional filters. The Study timeline page is a filtered
version of the normal timeline page (sharing the majority of
their code), that only contains the events relevant to a Quiz or
Spot/QR code and cannot be further filtered.

7) Quizzes: This page contains the list of available quizzes,
each one displaying the user’s points for each attempt, a
button for studying the quiz’s content, and one to begin a

https://pub.dev/packages/sqflite
https://academic.signavio.com/

oo

'TE"_ /\>(Yes

3 go > X No

Lo User .
o onboarded?

Onboarding

<x>-> Onboarding (1) .
User

Logged in?

& (B >
B Login (2) V\X
6 v -
<& € > >
Log Out
R <
é:’.{% —>@—}/¥>(Choose next spsub process (3) J ; >\\X>
Choose next Spot b
& \/ X
n Nextspot g Recommend A No
& Puzzll selected7 ° L (LTINS) Acce ts Accepts
& reccomendatlon7 reccomendatlnn7
)
N App Puzzle sub-process (5)
§ x "drawer @' gScEﬁCSET;edr;d (6) /X x
- / nav bar \\
uE) Feedback sub-process (7) A
£ Eeedb ck L [=al J
uttor]
Q H\D Z—
% é%% —> /x (Scan Spot page sub-process (9)J
= g Scan Spot k [+
(<] [
= c = (]
| T3~ —> Timeline sub-process (10) X>
RS E'E ~"Timeline \
= o
< | 52 ore (Recommend
£ | S5|% <X udy tlmellne (11) "Solve Quiz" (12)
F | BElg Accepts
7 reccomendatlon Yes
28 &
3P —>Q—> x>—>/\—> cgh Study for Quiz (13) Choose Quiz (14)
v [§5 uizzes \\
H O]
g o Goes back
NET Chooses next spot Recommend user to
3 2l x -¢ (g "Choose the next spot" \ CQD Solve Quiz (15)
22 or "Explore Leaderboard" (16))
S Chooses expYore
— = Teaderboard _
VO —
B S — 4 X b(Leaderboard sub-process (17)
o8 eaderboard L +
= o~
s o~
g E R —b@ >(Iscte's Memories sub-process (18)
2s & Iscte's Memories L [
o® (i i |—>§
= *@ > & View Profile >
S 8o Information (19
o g \-’grofile L {9
& — ; =
=0 _> > & Explore x
£ oo
g ettings L settings page (20) >

Fig. 4. BPMN diagram describing all the application tasks and navigations possible (tasks are numbered to facilitate descriptions’ traceability)

new attempt. Answering the quiz questions, task number 15,
the app displays a horizontal timer to display the timed nature
of the questions to the user. After answering the questions the
user is presented with a score page and offered options to visit
the “Leaderboard” or the “Next Spot” page.

8) Leaderboard: The Leaderboard page contains three tabs
corresponding to different sub-screens. In them, the user can
view a global list of all the players, filter by course or
department, and even view a list of the closest players to him.

For further details and screenshots see our source code on
the GitHub repository.

V. ITERATIVE DEVELOPMENT PROCESS

The iterative development process will be described using
the BPMN diagram in Figure 5 as an approximation to the
adopted process that contains three distinct process flows, a
weekly and sporadic development cycle flows, and one for
the interactions between the user and the application.

A. The weekly development cycle

The development cycle encompassed weekly Zoom meet-
ings where a specific set of features were agreed to develop,
kickstarting the weekly flow of the diagram in Figure 5.

Firstly the latest version of the project is fetched from our
GitHub online code repositories, then the defined changes
are fetched from our product backlog hosted on our internal
Trello board and implemented through code, testing for bugs
or errors and fixing those if they are found, represented in task
number 2 and lastly uploading the new version of the project
to our GitHub repository through a new commit on the specific
branch created for the feature in mind.

B. The deployment cycle

The sporadic cycle that is represented in the lower half of
the Android Studio lane in the diagram, Figure 5 represents
the deployment process that is triggered when a new version
of the app is required on the public application marketplaces.

https://github.com/quasarresearchgroup/iscte50anos-app
https://zoom.us
https://trello.com

Github code repositories

i Latest version of

application and

T backend server

i Latest version of

application and

T backend server

Latest version of _:
application and
backend server

Latest version of

application and -
backend server —;

g
sy

o backlog & Fix problems (2)

3 lement >
% ki @ @ deﬂneé)changesﬂ) problems \>_.@_’O i
g 3 Weekly present? Boep!
4] > eploy new :
< v Fix android (8, Teston oy
o (& Build android Test on &1 & yes version
H G >_”&app A /x &dewce (@_]—D ? sE7ec|f|c bugs (5)] » evice (6) X 9 <X>t0 android app <t @—’O
@ | New version ugs present? : bugs pfesent? store (7) A
O [required H
v bug! © bugs

3 present7 ; present’

g (. Build ios > Test on ves [Fix ios Test on < > yes . Deploy new version

= &5 archive (8) Cgad(-:w e(9) S ecific bugs (10) deV| (11) 5 X G to ios app store (12)

Android Phone A S
; Google App
\ 10S Phone | ore Apple App Store
Install the .
application (13
A Be 43) date the \‘

App User

O_’\x< T —— appﬁcatlon (14) }x
Uninstall the application (15) T

Use the ap cation (16)

Fig. 5. Iterative development process described in BPMN (tasks are numbered to facilitate descriptions’ traceability)

This deployment cycle begins with the "New version re-
quired" event node and similarly to the weekly cycle, the
first operation required is to download the latest version from
GitHub’s repository, then the respective app compilations are
built, in tasks numbers 3 and 8, represented in different lanes
due to the different programs used for each one.

Once the compilations are built, thorough testing of the app
is conducted on both platforms, if any issues are found they
are resolved and testing is repeated on the devices, represented
on Android with tasks 4, 5, and 6 and on IOS with tasks 9,
10, and 11. Otherwise, we skip directly to deploying the new
version on the respective app stores, with task number 7 and
12. The process concludes by uploading any code changes to
the online repository on GitHub.

VI. CODE QUALITY AND CI/CD

Code quality plays a pivotal role in the realm of software de-
velopment, significantly impacting the reliability of a software
product, if executed correctly demonstrates several crucial ben-
efits. First and foremost, it enhances maintainability, making
it easier for developers to understand and extend the codebase
over time. Clean, well-structured code fosters collaboration,
and improves software robustness and stability, reducing the
occurrence of defects. By adhering to coding best practices
and standards, developers can create optimized and scalable
code. Ultimately, ensuring great code quality results in a more
stable, scalable, and maintainable software product, thereby
enhancing customer satisfaction and overall project success.

A. CodeMagic

CodeMagic is a Continuous Integration and Continuous De-
velopment (CI/CD) platform specifically designed for Flutter
and Dart development, now with support for other frameworks
and native development. It is easy to use and understand, and it

has a great quantity of documentation and community support
specifically for Flutter pipelines, making it a great contender
for creating a CI/CD solution for Flutter apps.

CodeMagic provides the option to configure the CI/CD
pipeline through a customizable configuration file in YAML
allowing the whole pipeline to be declared in code (infrastruc-
ture as code) as opposed to a manual configuration which is
time-consuming, error-prone, and difficult to replicate.

Such pipelines can include running static code analysis, unit
tests, building the app compilation bundles, and publishing the
new version on the app stores.

B. SonarCloud

As for the Django web server code, we have chosen Sonar-
Cloud, a cloud-based static analysis tool with easy set-up,
Python support, the primary language used with Django, and
provides a direct connection to our GitHub code repository.

Besides the configurable Python codebase quality checks,
including the identification of code smells, maintainability
issues, and best practice violations, SonarCloud detects se-
curity vulnerabilities and identifies potential weaknesses, thus
enforcing the app’s robustness and security.

VII. VALIDATION TESTS

We conducted two beta testing sessions with students on
our campus, each lasting approximately one hour. In total,
we had 22 participants, 8 recruited by the IEEE Iscte Student
Branch and 14 by the ISCTE-IUL ACM Student Chapter. As
we did not establish any preconditions for the profile of the
participants, other than their willingness to participate, nor did
we interfere in the selection process itself, we can consider that
the selection of subjects was random.

By the end of each beta-test, they filled the NASA Task
Load Index (NASA-TLX) and the Mobile Application Rating

https://codemagic.io/start/
https://www.sonarsource.com/products/sonarcloud/
https://www.sonarsource.com/products/sonarcloud/
https://iscte.ieee-pt.org/
https://iscte.ieee-pt.org/
https://iscte.acm.org/chapter/
https://humansystems.arc.nasa.gov/groups/TLX/
https://humansystems.arc.nasa.gov/groups/TLX/
https://pdfs.semanticscholar.org/959b/3526bbd2c3a46ee3b729590a41d6516f77f3.pdf

Scale (MARS) forms to provide feedback about their usage
with the app. Overall, this assessment exercise provided very
positive feedback regarding the effort involved in using the
app, visuals and functionality were regarded as good (4 out
of 5), customization was considered fair (3 out of 5) and,
frustration levels while using the app were very low (3.5 out
of 21). The only less positive aspect was temporal demand
(10 out of 21) indicating that the game took up too much
time. A compilation of the answers to both feedback forms is
presented in Figure 6. Each radar chart represents the multiple
sections of both forms as a separate axis with the mean scores
in blue, the minimum in red, and the maximum in yellow, the
NASA-TLX chart ranging from 0 to 21, and the one of MARS
from O to 5.

MARS Engagement NASA-TLX entei vemand
5
4 21
g RN Frustration 16, Physical Demand
2 \ 11
/ \ \\
/ / : \ \ &
[/ 0 \ X
Information —{{—{ }—}— FFunctionality NS
\ \ / yar \
\ 4 L A
® Mean \\\ // ® Mean S
® Min \ R ® Min ffort Temporal Demand
Max Max

Aesthetics Performance

Fig. 6. Feedback from validation tests on IscteSpots app’s usability

VIII. CONCLUSIONS

Mobile app development presents a multitude of challenges,
ranging from platform fragmentation and varying device ca-
pabilities to optimizing user experience across different screen
sizes and addressing security concerns. Balancing functional-
ity with performance, ensuring seamless offline capabilities,
navigating through app store guidelines, and maintaining user
engagement through frequent updates further compound the
intricacies.

In this paper, we described our experience in the devel-
opment of the IscteSpots app where cross-platform develop-
ment allowed us to mitigate the aforementioned challenges.
The main benefits that we can report and hope will inspire
researchers and professionals when they will need to develop
a mobile app are:

Code reusability/resource efficiency — Writing code once
and deploying it across multiple platforms reduced our devel-
opment time and effort, as well as the need for maintaining
separate codebases.

Wider audience reach — By targeting multiple platforms we
could reach users on different operating systems either using
mobile apps (iOS and Android) or using web browsers on
Windows, MacOS, or Linux.

Consistent user experience — We were able to offer con-
sistent user interfaces and functionality across the different
platforms, providing a seamless experience.

Throughout the development process, Flutter allowed us to
rapidly iterate over concepts and features, Dart’s flexibility
and user-friendliness accompanied by Flutter’s vast online

community with packages for practically every developer
challenge, along with a wealth of tutorials including those
from the Flutter team detailing their framework’s different
widgets and their uses further emphasized its excellence.

We performed IscteSpots validation tests using two instru-
ments (NASA Task Load Index, and the Mobile Application
Rating Scale) with 22 subjects as surrogates of the final users.
Overall the feedback received on these validation tests was
very positive, highlighting the quality of the IscteSpots app.

We believe this was due to a combination of factors: (i)
the aforementioned potentialities inherent to Flutter/Dart itself,
(ii) the iterative development approach with users’ feedback in
each cycle, (iii) the shared understanding of the intended app
behavior, where the BPMN models were a cornerstone and,
last but not least (iv) the adoption of an automated CI/CD
pipeline with embedded quality assurance tools.

ACKNOWLEDGMENTS

This work was partially supported by the Portuguese
Foundation for Science and Technology (FCT) projects
UIDB/04466/2020 and UIDP/04466/2020.

REFERENCES

[1] Amatya, S., Kurti, A.: Cross-Platform Mobile Development: Challenges
and Opportunities. In: ICT Innovations 2013, pp. 219-229. Springer
International Publishing (2014). doi:10.1007/978-3-319-01466-1_21

[2] Andreeva, J., Dzhunov, 1., Karavakis, E., Kokoszkiewicz, L., Nowotka,
M., Saiz, P., Tuckett, D.: Designing and developing portable large-
scale JavaScript web applications within the Experiment Dashboard
framework. Journal of Physics: Conference Series 396(5), 052069 (dec
2012). doi:10.1088/1742-6596/396/5/052069

[3] Bigrn-Hansen, A., Majchrzak, T.A., Grgnli, T.M.: Progressive Web
Apps: The Possible Web-native Unifier for Mobile Development. In:
Proceedings of the 13th International Conference on Web Information
Systems and Technologies. SCITEPRESS - Science and Technology
Publications (2017). doi:10.5220/0006353703440351

[4] Cheon, Y., Chavez, C.: Converting Android Native Apps to Flutter
Cross-Platform Apps. In: 2021 International Conference on Computa-
tional Science and Computational Intelligence (CSCI). IEEE (dec 2021).
doi:10.1109/csci54926.2021.00355

[5] Gatan, D., Fisz, K., Kopniak, P.: A multi-criteria comparison of mobile
applications built with the use of Android and Flutter Software Devel-
opment Kits. Journal of Computer Sciences Institute 19, 107-113 (jun
2021). doi:10.35784/jcsi.2614

[6] Khan, S.M., Nabi, A.U., Bhanbhro, T.H.: Comparative Analysis
between Flutter and React Native. International Journal of Artifi-
cial Intelligence & Mathematical Sciences 1(1), 15-28 (sep 2022).
doi:10.58921/ijaims.v1il.19

[7]1 Oliveira, W., Moraes, B., Castor, F.,, Fernandes, J.P.: Analyzing the
Resource Usage Overhead of Mobile App Development Frameworks.
In: Proceedings of the 27th International Conference on Evalua-
tion and Assessment in Software Engineering. pp. 152-161 (2023).
doi:10.1145/3593434.3593487

[8] StatCounter: Mobile operating system market share worldwide. Stat-
Counter Global Stats (2023), https://gs.statcounter.com/os- market-share/
mobile/worldwide, accessed 2023 Jul 17

[9] Szczepanik, M., Kedziora, M.: State Management and Software Ar-
chitecture Approaches in Cross-platform Flutter Applications. In: Pro-
ceedings of the 15th International Conference on Evaluation of Novel
Approaches to Software Engineering. SCITEPRESS - Science and
Technology Publications (2020). doi:10.5220/0009411604070414

[10] Zohud, T., Zein, S.: Cross-Platform Mobile App Development in In-
dustry: A Multiple Case-Study. International Journal of Computing pp.
46-54 (mar 2021). doi:10.47839/ijc.20.1.2091

https://pdfs.semanticscholar.org/959b/3526bbd2c3a46ee3b729590a41d6516f77f3.pdf
https://doi.org/10.1007/978-3-319-01466-1_21
https://doi.org/10.1088/1742-6596/396/5/052069
https://doi.org/10.5220/0006353703440351
https://doi.org/10.1109/csci54926.2021.00355
https://doi.org/10.35784/jcsi.2614
https://doi.org/10.58921/ijaims.v1i1.19
https://doi.org/10.1145/3593434.3593487
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://doi.org/10.5220/0009411604070414
https://doi.org/10.47839/ijc.20.1.2091

