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Resumo
Doença Pulmonar Obstrutiva Crónica (DPOC) é a terceira principal causa de
morte em todo o mundo. Sistemas de Monitorização Remota de Saúde (SMRS)
desempenham um papel crucial na gestão de doentes com DPOC, identificando
anomalias em seus sinais biométricos e alertando profissionais de saúde. Ao anal-
isar as relações entre os sinais biométricos e os fatores ambientais, é possível de-
senvolver modelos de inteligência artificial capazes de inferir os riscos futuros de
deterioração da saúde dos doentes. Esta dissertação tem como objetivo desenvolver
um Sistema Inteligente de Apoio à Decisão Clínica (SISDC) capaz de fornecer in-
formações precoces sobre a evolução da saúde do paciente e análise de risco para
apoiar o tratamento de doentes com DPOC. O SISDC do presente trabalho é
composto por dois módulos principais: o Módulo de Previsões de Sinais Vitais e o
Módulo de Cálculo do Early Warning Score, que geram informações sobre a saúde
do paciente e o risco de deterioração, respectivamente. Além disso, o SISDC gera
alertas sempre que uma medição de sinal biométrico estiver fora da intervalo nor-
mal de valores para um paciente ou no caso de uma mudança significativa em um
valor basal. Finalmente, o sistema foi implementado e avaliado em um caso real
e também validado em termos clínicos por meio de um inquérito respondido por
profissionais de saúde envolvidos no projeto. Em conclusão, o SISDC demonstra
ser uma ferramenta útil e valiosa para profissionais de saúde, permitindo inter-
venções proativas e facilitando ajustes no tratamento médico dos doentes.

Palavras-chave: Doença Pulmonar Obstrutiva Crónica; Sistema Inteligente
de Apoio à Decisão Clínica; Sistema de Monitorização Remota de Saúde; Detecção
de Erros em Sinais Biométricos; Escala de Alerta Precoce; Inteligência Artificial;
Previsão de Séries Temporais.
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Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death
worldwide. Health remote monitoring systems (HRMSs) play a crucial role in man-
aging COPD patients by identifying anomalies in their biometric signs and alerting
healthcare professionals. By analyzing the relationships between biometric signs
and environmental factors, it is possible to develop artificial intelligence models
capable of inferring patients’ future health deterioration risks. In this research
work, we review recent works in this area and develop an intelligent clinical de-
cision support system (ICDSS) capable of providing early information concerning
patient health evolution and risk analysis in order to support the treatment of
COPD patients. The present work’s ICDSS is composed of two main modules:
the vital signs prediction module and the early warning score calculation module,
which generate the patient health information and deterioration risks, respectively.
Additionally, the ICDSS generates alerts whenever a biometric sign measurement
falls outside the allowed range for a patient or in case a basal value changes sig-
nificantly. Finally, the system was implemented and assessed in a real case and
validated in clinical terms through an evaluation survey answered by healthcare
professionals involved in the project. In conclusion, the ICDSS proves to be a use-
ful and valuable tool for medical and healthcare professionals, enabling proactive
intervention and facilitating adjustments to the medical treatment of patients.

Keywords: Chronic Obstructive Pulmonary Disease; Intelligent Clinical Deci-
sion Support System; Health Remote Monitoring Systems; Biometric Signs Errors
Detection; Early Warning Score; Artificial Intelligence; Time Series Prediction.
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Chapter 1

Introduction

1.1 Chronic Obstructive Pulmonary Disease

According to the World Health Organization (WHO), Chronic obstructive pul-

monary disease (COPD) is one of the most deadly major lung diseases and the

third leading cause of death worldwide [1]; the organization further indicates that

COPD was responsible for about 3.24 million deaths in 2019. The Portuguese So-

ciety of Pulmonology [2] estimates that 5.42% of individuals in Portugal between

the ages of 35 and 69 suffer from COPD. According to the Portuguese Lung Foun-

dation [3], COPD was responsible for approximately 2834 fatalities in the country.

The same organization estimates that in 2019, this illness cost the economy 1.6

billion euros.

1.1.1 Disease Symptoms

COPD is caused by airway obstruction. The most common symptoms of COPD

are coughing, wheezing, and dyspnea (shortness of breath). Patients often seek

medical attention only when the disease reaches an advanced stage, as it is a

condition that progresses slowly.

Initially, the disease presents as a cough accompanied by increased sputum

production. However, as it progresses, it can lead to repeated episodes of acute
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Chapter 1. Introduction

bronchitis and respiratory infections. As the disease develops, shortness of breath

becomes more frequent, even with seemingly minor tasks, such as talking and

performing daily hygiene. Shortness of breath is most noticeable during activities

that require physical effort.

1.1.2 COPD Exacerbations and Their Prevention

COPD exacerbations are associated with a worsening of the disease, a deterioration

in the patient’s health status, and an accelerated decline in the patient’s respiratory

function. A severe exacerbation of COPD always leads to the need for medical

intervention and eventual hospitalization.

A medical professional can determine whether a patient is experiencing an

exacerbation through the values of the vital signs using an Early Warning Score

system. The Early Warning Score is a protocol that aims to improve the detection

and response time to situations of clinical deterioration. Depending on the score

given by this protocol, we can detect the level of deterioration of the patient, as

shown in Figure 1.1 as an example.

Figure 1.1: The current NEWS2 scoring system. This is the version currently
recommended by the UK Royal College of Physicians for use in clinical practice

[4].

2
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1.2 Motivation

The integration of technology into healthcare has revolutionized patient care, with

health remote monitoring systems (HRMSs) emerging as powerful tools [5]. By

storing data, such as heart rate (HR) and oxygen saturation (SPO2) levels, HRMSs

help medical professionals to treat patients with COPD. These systems offer real-

time monitoring and personalized treatment options. However, to maximize the

potential of HRMSs, it is crucial to integrate them with well-defined clinical pro-

cesses, therapeutics, and rules. This integration ensures that the collected mea-

surements are correlated and directly linked to effective patient care, enabling

proactive interventions and improving health outcomes.

The Internet of Things plays a crucial and influential role in the successful

implementation of HRMSs [6]. Wearable device sensors, videos, and images are

essential to gathering valuable patient information. Daily physiological data of the

patient is collected and stored by the HRMS through data processing tools, ana-

lytics, and artificial intelligence (AI). Recording daily physiological data provides

healthcare providers with actionable insights, facilitating proactive and personal-

ized care.

The use of AI by HRMSs to predict patient health deterioration is a significant

benefit[7, 8].AI algorithms examine historical patient data to find patterns that

might point to higher risks of unfavorable events or health deterioration. These

forecasts offer healthcare professionals with insightful information that enables

them to intervene early and prevent complications. A more preventive model of

care is promoted by this proactive approach, which also enhances patient safety

and lowers hospital admissions.

1.3 Objectives

The research question addressed by this study is: “Is it possible to automatically

monitor and analyse the risk of potential health deteriorations of COPD patients?”.

With this research question in mind, the defined objective is to develop a system

3
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capable of providing early information concerning patient health evolution and ex-

acerbation risk analysis in order to support the treatment of patients with COPD.

Additionally, the system allows healthcare professionals to more efficiently manage

their time by automatically providing said professionals with alerts, supported by

a risk analysis of the patient’s COPD health status.

1.4 The HC PSI Project

The Hope Care Intelligent Services Platform (HC PSI) is a P2020 project that

involves the participation of Hope Care SA, INOV—INESC Inovação and the

University of Beira Interior. Its main objective is to research and develop an

intelligent services platform that enables healthcare professionals to make more

informed decisions regarding the health conditions of COPD patients, thereby

increasing the efficiency of clinical entities.

The components of the HC PSI include a ICDSS, HCAlert platform, and en-

vironmental data sources, all geared toward automating the clinical treatment of

remotely monitored COPD patients.

This dissertation focuses on the ICDSS developed by INOV—INESC Inovação.

The ICDSS assists in making decisions regarding patient treatment. This platform

is composed of three modules: an HRMS that provides patients’ health information

through a mobile application to the ICDSS, a TVM that receives and processes

patient risk information from the ICDSS, and a graphical user interface (GUI)

that displays relevant clinical information to healthcare professionals.

Figure 1.2 presents the HC PSI architecture, which includes the ICDSS devel-

oped by INOV, the HCAlert platform, and other external data sources.

4
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Figure 1.2: HC PSI architecture including ICDSS developed by INOV, the
HC Alert Platform and other external data sources.

The HCAlert platform was developed by Hope Care SA and includes a mo-

bile application that supports HRMSs and a set of backend services for clinical

validation and triage.

In the scope of the HC PSI project, the requirements for the HCAlert mobile

application include the collection of patient symptoms and residential data. For

the clinical validation and triage backend services, the following requirements are

defined:

• Capability to categorize alerts.

• Capability to provide Early Warning Scores and other relevant metrics per

patient to healthcare professionals.

• Capability to obtain information about hospital visits internally or from

other sources.

• Enabling the clinical team to have an overview of new alerts per patient,

including client name, data type and last measurement date.

5
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• Allowing the clinical team to define which relevant health values to display

on the dashboard.

1.5 Methodology

The DSR methodology is a research methodology commonly used in the field of

information systems; it focuses on the development and evaluation of innovative

artifacts, which include cutting-edge framework prototypes, techniques, and algo-

rithms that address present-day challenges. It consists of the following six phases:

problem identification, definition of objectives, design and development, demon-

stration, evaluation, and communication. This methodology focuses on creating

and evaluating artifacts based on their effectiveness, quality, and usefulness in

addressing real-world problems [9].

In this dissertation, since we developed a Intelligent Clinical Decision Support

System (ICDSS) which is an interactive information system that analyzes large

volumes of data for informing business decisions, we applied the design science

research methodology.

Figure 1.3 presents the iterations within the design science research methodol-

ogy (DSRM) process.

Figure 1.3: Iterations represented in the design science research methodology
(DSRM) process model; Peffers et al.[10]

6
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1.6 Outline of the Dissertation

Having the objectives and methodology defined, we will have five chapters (Intro-

duction included). The chapters are:

Chapter 2: Outlines a systematic literature review on In-Home Healthcare for

COPD, E-Health Care supported by Predictive Analytics, factors related to COPD

deteriorations, and Machine Learning for Early Identification of Deterioration,

using the PRISMA method.

Chapter 3: Provides a detailed description of our ICDSS. This includes a

thorough exploration of each module within the system, covering aspects such

as data extraction, system modules, and health information provided to medical

professionals.

Chapter 4: Presents a demonstration of the system, showcasing the interaction

between modules, including the generation and reception of input and output.

Additionally, we highlight the system’s evaluation process, ensuring its usefulness

and impact in a clinical context.

Chapter 5: Presents the discussion and conclusions of the work developed,

where we highlight the contributions and limitations of our efforts.

7





Chapter 2

Related Work

In this chapter, we present an overview of the systematic review conducted in

this article, which followed the PRISMA (Preferred Reporting Items for System-

atic Reviews and Meta-Analysis) Methodology [11]. This chapter also covers the

latest advances in managing pulmonary disease patients, particularly on COPD

patients. It includes the improvement of effectiveness that remote health moni-

toring brings to patients’ treatment by providing a real-time warning to medical

professionals.Additionally, we explore how the integration of predictive analytics

in remote health monitoring improves patients’ assistance management by offering

early warnings of potential patient deterioration risks, thus optimizing effective-

ness.

The systematic review also covers factors and biometric signs related to the

acute deterioration of COPD and how prediction of biometric signs and subsequent

early warning generation provide a risk of patient future deterioration. Table 2.1

presents the topics and the respective queries used to extracted and filtered related

works.

9
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Table 2.1: Related work topics and the corresponding queries used to filter
research papers related to each topic.

Subsection Query

In-Home Health Care for COPD
("Healthcare Management Systems"

AND "Real-time Detection")

E-Health Care

supported by

Predictive analytics

("Healthcare Management Systems" AND

"Early Detection" AND ("Artificial Intelligence"

AND "Machine Learning"))

Factors related

with COPD deteriorations

("Early Detection" AND

"Vital Signs" AND "COPD")

Machine Learning for

for Early Identification

of a Deterioration

("Early Detection" AND

"Vital Signs" AND "Machine Learning")

Table 2.2 presents the eligibility criteria used to filter documents in the related

work.

Table 2.2: Eligibility criteria to filter research papers

Eligibility criteria

Inclusion Criteria Exclusion Criteria

Written in English or Portuguese Not written in English nor Portuguese

Publication date after/during 2010 Publication date before 2010

We identified 810 documents, with 10 documents removed due to duplication

issues. A total of 400 articles not related to healthcare or artificial intelligence (AI)

were excluded from further screening based on titles and abstracts. Moreover, 40

articles were excluded as we were unable to access their full versions, leaving 160

articles for full-text screening. A total of 82 articles were removed as they did not

fit the eligibility criteria. Finally, 56 articles were excluded as they did not contain

relevant information concerning vital signs, time series techniques, and HRMSs.

10
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The selection results, according to the PRISMA flow diagram, are shown in Figure

2.1.

Figure 2.1: PRISMA methodology [11]

2.1 In-Home Healthcare for COPD

Home telemonitoring refers to the utilization of audio, video, and various telecom-

munication technologies to monitor a patient’s status from a distance [12]. This

method involves remotely monitoring a patient’s health parameters, usually within

a larger chronic care model. Telemonitoring is a crucial component of telehealth

and telemedicine [13], showing potential in aiding patients in managing diseases

11
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and predicting complications [14]. Projects using telemonitoring with patients hav-

ing pulmonary conditions have demonstrated the capability to detect early changes

in a patient’s condition, allowing for immediate intervention and the prevention

of exacerbation. Patients have shown a positive reception toward telemonitoring

as a patient management strategy [12].

A systematic review and meta-analysis have found that telemonitoring inter-

ventions can prevent unnecessary visits to the emergency room and potentially

reduce severe COPD exacerbations. In a meta-analysis of 20 studies with six-

month telemonitoring interventions, it was found that the intervention effectively

decreased the number of ER visits (pooled SMD = 0.14, corresponding to a small

effect size; 95% CI: 0.28, 0.01) [13].

In a retrospective, population-based cohort study involving 944 individuals

using telemonitoring and 9838 control individuals, the total direct medical costs

were significantly lower in the telemonitoring group (EUR −895.11, p = 0.04). The

main factor driving the total cost difference was the reduction in hospitalization

costs by EUR −1056.04 (p = 0.01). A lower percentage of individuals died in the

intervention group than in the control group (3.23 vs. 6.22%, p < 0.0001), result-

ing in a mortality hazard ratio (HR) of 0.51 (95% CI: 0.30–0.86). Over a 12-month

period, the proportion of patients hospitalized due to all causes (−15.16%, p <

0.0001), due to COPD (−20.27%, p < 0.0001), and for COPD-related emergency

department (ED) visits (−17.00%, p < 0.0001) was consistently lower in tele-

monitoring patients, leading to fewer all-cause admissions (−0.21, p < 0.0001),

fewer COPD-related admissions (−0.18, p < 0.0001), and fewer COPD-related

ED admissions [15].

2.2 E-Healthcare Supported by Predictive Analyt-

ics

Telemonitoring has become indispensable in diagnosing and medically intervening

for COPD patients. Nowadays, due to better storage of electronic health records
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and improved vital sign detection methods, large amounts of patient data are

available daily in ICUs [16]. Medical equipment, ranging from hands-free monitors

and portable devices to modern wristbands and watch-like monitors, have helped

in the collection of biometric data, such as heart rate, blood pressure, physical

activity, and sleep information [17].

A remote monitoring system, capable of gathering extensive data and backed

by predictive analytics algorithms and techniques for effective data assessment and

identifying underlying patterns, provides better efficiency in identifying declining

patient health [18]. In the present COPD case study, such systems can reduce

emergency room (ER) visits, acute deterioration-related readmissions, days spent

in the hospital, and mortality in patients with COPD [19].

Predictive analytics refers to the systematic use of statistical or machine learn-

ing methods to make predictions and support decision-making. Predictive analyt-

ics applied to healthcare can be divided into two components: the data underlying

the model, particularly predictors or features, and machine learning and statistical

methods, both based on a set of mathematical techniques applied to data in order

to generate an output [20].

Machine learning is a crucial methodology in predictive analytics. Conven-

tional statistical analysis focuses on explaining data and relies on an expert (i.e.,

human) to formulate and discover cause–effect relationships, driven by a set of

predefined assumptions. Machine learning is more data-focused and orientated

toward generating hypotheses and building predictive models using algorithms. It

has enabled clinical support research and applications to provide actionable in-

sights by utilizing large amounts of intensive care unit patient datasets that are

useful in many clinical scenarios [16]. Machine learning can predict in-hospital

mortality and the risk of 30-day readmission due to COPD exacerbation [21].
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2.3 Factors associated with COPD exacerbations

2.3.1 Biometric signs associated with COPD exacerbations

The prevention of acute exacerbation in COPD requires the identification of fac-

tors associated with exacerbation. Most studies have shown that oxygen saturation

(SpO2) (p-value < 0.05), respiratory rate (RR), and heart rate (HR) (p-value <

0.05) influence exacerbation events, with SpO2 being the most predictive vital

sign. The deterioration in COPD patients has been associated with a slight de-

crease in oxygen saturation and a slight increase in HR. One article suggested that

using multiple vital signs as the inputs of a single classifier could provide better

predictions, given that these multiple-input models showed the best AUC results

[22].

Although some studies monitored blood pressure in order to determine whether

there was a significant correlation with acute exacerbation, there was no sufficient

evidence indicating that a change in blood pressure during a COPD exacerbation

was a potent predictive factor for exacerbation (p-value > 0.05, i.e., not signifi-

cant).

Body temperature with a p-value equal to 0.059 could be considered an exac-

erbation predictor. In the study conducted by Martin-Lesende, changes in body

temperature had triggered 27.8% of alerts, of which, 5% were due to temperatures

exceeding 37 ◦C [23].

2.3.2 External factors associated with COPD exacerbations

Most studies have focused on vital signs and internal factors of COPD patients,

rather than external ones, despite being equally relevant. Some meteorological

data, such as humidity (p-value = 0.0137), variation of diurnal temperature (p-

value = 0.0472), the cumulative lowest temperature 7 days prior to acute de-

terioration (p-value = 0.005), and total rainfall in the 7 days preceding an acute

exacerbation (p-value = 0.0389) was associated with acute exacerbation in COPD.
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Over the recent decades, several epidemiological studies have shown that expo-

sure to particulate matter (PM), including coarse and fine fractions, has a negative

influence on health [24, 25, 26, 27]. This particulate matter may originate from

either a natural source, like desert dust, or a human-made one, such aerosols pro-

duced by burning biomass or burning fossil fuels. The concentration of particles

in the atmosphere relies on emission sources, meteorological factors, and transport

mechanisms, considering that aerosols can traverse great distances (transported

by air masses). Additionally, household activities can be significant sources of

fine particles. Particles resulting from cooking and heating can penetrate the

respiratory system more deeply, particularly when they are finer. Lee J. [28] con-

ducted a univariate analysis on air pollution and COPD exacerbations, revealing

a substantial correlation between PM10 levels one day before a patient’s condition

deteriorated and acute exacerbation (p-value = 0.0260) [28].

The World Health Organization’s data on household air pollution indicates that

COPD accounts for 19% of the 3.2 million deaths linked to exposure to household

air pollution. In addition, 23% of all COPD-related deaths in adults in low-income

and middle-income countries are linked to exposure to household air pollution [29].

The analysis of both internal and external factors with significant correlations

to COPD exacerbation revealed that the frequency with which certain variables

are measured must also be taken into consideration. The higher the frequency

of a vital sign measurement, the better the perception of its association with an

exacerbation occurrence. Daily or multi-daily vital sign monitoring improves the

analysis of these signs. For example, Pépin J-L [17] mentions that overnight pulse

oximetry increases sensitivity, allowing for early detection of deterioration [17].

2.4 Machine learning for Early Identification of a

Deterioration

In recent literature, machine learning techniques have attracted attention for pre-

dicting the clinical conditions of patients. Time series forecasting models have
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been applied successfully in medical applications to predict disease progression,

estimate mortality rates, and assess time-dependent risks. These models are able

to identify patterns and trends from sequential data collected over time, such as

health-related signals [30, 31].

Some traditional machine learning techniques, such as random forest, SVM

(support vector machine), Bayesian networks, and logistic regression, have been

employed to improve predictive performance in identifying early clinical deterio-

ration [32]. However, these traditional models are not optimized for handling the

unique characteristics of time series data, such as autocorrelation, seasonality, and

trend patterns [33, 34].

With sufficient data, the development of deep learning models can reduce sev-

eral preprocessing steps, emphasizing the relationships between the data, without

the need to identify the best predictors, leading to better results [35]. For in-

stance, long short-term memory network (LSTM) can learn extended time series

dependencies, while a convolutional neural network can generate a compact latent

representation.

Gradient boosting models are alternatives to specialized models, such as long

short-term memory network (LSTM) and gated recurrent unit (GRU) [36, 37].

Although these models are not ideal for time series forecasting, they are still

generally better suited for handling sequential data compared to non-sequential

algorithms (such as random forest, SVM, logistic regression, and naive Bayes) [34].
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Intelligent Clinical Decision Support

System Design & Development

The ICDSS receives every patient’s vital signs, which are remotely monitored

by Hope Care SA as inputs. Additionally, it daily incorporates weather forecast

conditions and air particle forecasts that are specific to each patient’s location. In

response, the system provides daily vital sign predictions and early warning scores

for each patient for the following five days. It also provides the basal values of

each patient and issues an alert whenever a vital sign measurement falls outside

the expected parameter range, requiring a reevaluation.

Figure 3.1 illustrates the ICDSS developed by INOV—INESC Inovação, its

interactions with weather and air pollution data providers, and the HCAlert plat-

form. The ICDSS comprises five distinct modules, each serving a specific purpose.

These modules are as follows:

Communication manager - This module assumes a crucial role within the

system, and is responsible for the communication interactions among HC (Hope

Care) Alert, weather, air particles API, and the clinical decision support system.

Vital signs prediction module - It is designed to generate forecasts for a

five-day period regarding four essential vital signs: oxygen saturation level (SpO2),

heart rate, systolic blood pressure (SBP), and body temperature. This module
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utilizes various machine learning algorithms to accomplish the predictions. The

input data for these models are sourced from the stored vital sign records within the

database. Subsequently, the predicted vital signs are stored back in the database

for further reference and analysis.

Early warning score calculation module - Within this module, the recorded

vital sign predictions from the database play a crucial role in calculating the early

warning score for each of the five predicted days. The early warning score is com-

puted using the aforementioned vital sign data and the resulting early warning

scores are subsequently stored in the database.

Biometric signal error detection module - The primary objective of this

module is to thoroughly analyze and evaluate potential measurement errors and

abnormal variations detected within the patient’s historical data. The purpose is

to promptly alert both the patients themselves and the attending nurse regarding

the invalidity or questionable nature of the entered information. By diligently

identifying such anomalies, this module serves as a critical mechanism for ensuring

data accuracy and reliability within the system.

Basal value monitoring module - The main function is to monitor and

continuously and intelligently adjust the patient’s baseline values. This adjustment

is based on the historical records of vital sign values measured by the patient and

documented within the HCAlert platform. The module’s purpose is to enhance

the precision and effectiveness of the monitoring system by dynamically adapting

the baseline values in accordance with the patient’s specific health history.
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Figure 3.1: ICDSS architecture and interactions with external modules

3.1 Requirements

During the initial phase of the HC PSI project, we defined the functional require-

ments through an interactive and iterative process involving UBI and Hope Care

SA. Certain clinical-oriented requirements were specifically delegated based on

their domain of expertise. Subsequently, the remaining requirements served as the

fundamental basis for the development of the ICDSS discussed in this article. All

ICDSS functional requirements have been grouped into system modules, as shown

in the following Table 3.1.
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Table 3.1: Functional requirements associated with each module.

Description Module

The predictive service should collect environmental data, such as

air quality, seasonal infection incidences, and weather conditions
Vital Signs

Prediction
The predictive service should correlate parameters and detect patterns

The predictive service should reevaluate the weighting of each

parameter depending on the context (e.g., patient, clinical history, etc.)

The collected data should undergo anonymization (if applicable),

normalization, and data fusion

The predictive service should consider the Early Warning Score

to generate alerts
Communication

Manager
The predictive service should consider the

alert classification to detect false positives

The predictive service should advise the user to take

a new measurement and launch inquiries to validate

if it’s a false positive

Biometric Signs

Error Detection

The predictive system should apply the Early Warning Score

to the clinical protocol and suggest changes to the protocol

based on the basal value

Early

Warning

CalculationThe predictive service should calculate the Early Warning

Score (defining the correlation weighting of each parameter

in the EWS calculation)

The predictive system should recommend reassessment

of the basal value
Basal

Value

Monitoring
The predictive system should take into account changes

made to the clinical protocol by the clinical team

The predictive system should analyze the threshold

for advising changes to the applied clinical protocol

for the patient
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3.2 Database Architecture

The ICDSS database architecture represented in Figure 3.2 was developed based on

MariaDB. Its main purpose was to store all information related to vital signs and

external data used as input for the model, as well as the predictions generated by

the vital signs predictions module. This includes the error between the predicted

values and the real values recorded and provided by the Hopecare API, along with

information concerning the early warning score. The database was also intended

to record the history of basal values and to store information regarding whether

a certain vital sign was valid or not, determined by the biometric signs error

detection.

Figure 3.2: ICDSS Database architecture
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3.3 Communication Manager

This module is composed of four submodules: data extraction, measurement error

alert, basal values notification, and the patient’s risk information delivery sub-

module, as is present in Figure 3.3.

Figure 3.3: Communication manager module architecture

3.3.1 Data Extraction

The medical records, which stored the vital signs used as input for the ICDSS,

are presented in Table 3.2. Each record is formatted to have one entry per day

per parameter. Each record had an ID (idRawMeasurement), the collection date

(createdOn), the coordinates where it was collected (latitude and longitude), the

measurement type (ProviderMNameStandard), measurement value (value), and

the units representing the value (units).
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The measurement type could address various factors, including vital signs, such

as oxygen saturation level (SpO2), heart rate (HR), body temperature, systolic

blood pressure (SBP), and diastolic blood pressure (DBP), as well as other bio-

metric indicators, like the number of steps, body fat, energy burned, weight, and

height.

Table 3.2: Clinical information extracted from the Hope Care API.

idRawMeasurement Measurement identifier

createdOn Measurement creation date

clientID
Identification of the patient to whom

the measurement belongs

Latitude Latitude of the patient

Longitude Longitude of the patient

ProviderMNameStandard Standard name of the type of measurement

Value Measurement value

Unit
Units of measurement (in the dataset are available %, C,

bpm, count, mmHg, NA, null and percent)

The weather historical information used as input for the predictive models was

provided by the Weatherbit API. Each record had an ID (idWeatherMeasurement),

the coordinates of the station (latitude, longitude), date of measurement (columns

year, month, day), mean daily temperature (T_MED), and mean relative humidity

(HR_MED), as shown in Table 3.3.
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Table 3.3: Weather historical information.

idWeatherMeasurement Measurement identifier

Station ID Station identifier

Latitude Latitude of the station

Longitude Longitude of the station

Year Year of the collected measurement

Month Month of the collected measurement

Day Day of the collected measurement

T_MED Value of the daily mean temperature in celsius

HR_MED Value of the daily mean relative humidity in percent

The air pollution historical information used as input for the predictive models

was provided by the OpenWeather API. Each record had an ID (idWeatherMea-

surement), the coordinates of the station (latitude, longitude), date of the mea-

surement, an average count of 10-micrometer particles (PM10), and an average

count of 2.5-micrometer particles (PM2_5), as shown in Table 3.4.

Table 3.4: Air pollution historical information.

idParticlesMeasurement Measurement identifier

Location Location of the station

Latitude Latitude of the station

Longitude Longitude of the station

Date Date of the collected measurement

PM10 Value of PM10

PM2_5 Value of PM2.5
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3.3.2 Measurement Error Alert

This submodule was designed to receive alerts from the biometric sign error de-

tection module and subsequently send alerts to the HCAlert platform. After a set

short duration, it sends a notification to the data extraction submodule to exe-

cute the data extraction of biometric signs from HCAlert, concerning the specific

patient dataset where the error was found.

3.3.3 Basal Value Monitoring Notification

The basal value update notification submodule was designed to receive notifica-

tions from the basal value monitoring module; it subsequently notifies the HCAlert

platform with new basal value recommendations for a specific patient.

3.3.4 Patients Risk Information Delivery

The patient risk information delivery submodule extracts information regarding

the last five days of vital sign predictions and the calculated early warning scores

stored in the database. It then sends this information to the HCAlert platform.

3.4 Biometric Signs Errors Detection

The HCAlert platform’s operational efficiency is affected by the patients’ inac-

curate vital sign measurements, which can result in inaccurate clinical protocol

adjustment alerts and future vital sign projections. It is necessary to guarantee

that the system receives data that obey certain quality levels.
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Prior to the implementation of the current project, measurements are vali-

dated by nurses who identified instances of anomalous readings, reporting poten-

tial causes, such as deterioration in the patient’s condition, measurement errors,

cold fingers during measurements, etc.

The biometric sign error detection module consists of three components:

• Validation of clinical rules: This component compares the measurements

taken by the patient with a set of business rules defined according to Hope

Care guidelines. For example, a measurement of oxygen saturation above

100 or below 20 cannot be correct since a percentage value cannot exceed

100, and a value below 20 corresponds to situations of compromised brain

function and even comas. The medical team involved in this research work

validated all ranges used to filter the vital signs.

• Patient pattern modelling: The objective of this component is to approx-

imate a probability density function for each metric in the patient’s measure-

ments. These probability density models are then stored in the database,

eliminating the need to repeat the function modelling each time a new in-

ference is made. This module runs monthly to create a new probability

function that captures the variability of the new measurements entered by

the patient.

• Validation of atypical measurements based on the patient’s history:

This module uses the probability density models stored in the database,

which are associated with each patient’s vital signs, to determine whether

a newly recorded measurement falls within the normal patterns for that

specific patient. Considering these variations could be due to disease exac-

erbation, improvements from a new medication, or other factors, these need

to be validated by a nurse and, if necessary, by the patients themselves, to

determine the true cause of the variation.
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The operationalization of this module is presented in Figure 3.5. The system

begins with the measurement and input of a vital signal by a patient in the HCAlert

application. The measurement is compared and validated based on clinical rules,

according to the type of measurement performed. The following clinical rules are

defined, where the value is considered erroneous and discarded in the following

cases:

• Oxygen saturation above 100 or below 20;

• Body temperature below 30 or above 40;

• Systolic blood pressure below 50 or above 350;

• Diastolic blood pressure below 40 or above 200;

• Pulse rate less than or equal to 30, or greater than 250.

Figure 3.4 presents the architecture of the Biometric sign error detection mod-

ule.

Figure 3.4: Biometric sign error detection module architecture.
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In the event of an incorrect measurement, a type 1 alert is triggered, recom-

mending a new measurement of the vital signal by the patient.

If there is no inconsistency with the rules, the system then determines if the

measurement is atypical for a patient. If it is not considered atypical, the verifi-

cation process is concluded without any identified errors. If an atypical value is

recorded, a type 2 alert is triggered, and human verification of this alert is rec-

ommended to a nurse and the patient. This is done to verify whether this value

corresponds to a health deterioration, an improvement in the clinical condition,

or a measurement error.

Figure 3.5: Biometric sign error detection implementation.

Probability density functions were applied in order to model the pattern of

vital signs of each patient and assess the probability that a newly measured value

fits the distribution function computed for that specific patient’s vital sign. The

process of training a model for a given patient begins with the request for all the

vital sign measurements made by this patient. From this request, as shown in

Figure 3.6, a distribution function is trained and stored in the database for each

vital sign recorded, with the following steps:

1. From all the measurements collected for the patient, only the measurements

made for specific vital signs in training are used.
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2. Existing outliers in the database, prior to modelling, are removed. Outliers

are removed based on the standard deviation by calculating the standard

score (z-score), which corresponds to the number of standard deviations

by which a newly recorded value deviates from the mean of the observed

measurements. If the z-score is greater than 3, which corresponds to a value

that is three times the standard deviation away from the mean of the data,

the value is not used in the modelling.

3. The following distributions are tested: normal, exponential, Pareto, double

Weibull, t, generalized extreme value distribution, gamma, lognormal, beta,

and uniform. For each distribution, the density and weights of the histogram

are computed. Subsequently, an estimation of the function parameters is

performed based on the data. The maximum likelihood estimation (MLE)

is used to identify the values that best fit the data.

4. The goodness-of-fit is calculated with a test of the sum of squares of the

residuals for each distribution found.

5. The model with the best goodness-of-fit, which implies a lower value in the

sum of squares of the residuals, is stored for the vital signs of the patient

under study.

Figure 3.6: Biometric sign error detection model development.

The inference starts with the reception of a vital sign measurement taken by

a patient and entered into the HCAlert system. The system selects the model
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corresponding to the probability density function that models the distribution of

the vital signs measured for the patient who entered it into the system, as is present

in Figure 3.7.

This model is then used to test the null hypothesis, which corresponds to

checking whether the value that has been measured is outside the typical pattern

of the patient, based on the selected distribution and the parameters adjusted

according to the empirical distribution of the patient. If the p-value is less than

0.05, it implies that the null hypothesis is not rejected, which means that there is

a probability that the measurement may correspond to an error, exacerbation, or

improvement of the condition. A reminder should be sent to both the nurse and

the patient to investigate the situation.

Figure 3.7: Biometric sign error detection inference process.

3.5 Basal Value Monitoring

The deterioration or improvement of COPD reflected in the negative or positive

evolution of the patient’s baseline values may be due to several explanatory factors,

such as weather conditions, exposure to particulate matter, a change in medication

or lifestyle, among others. The recorded baseline values are indicative of the

severity of a condition, as outlined by the Global Initiative for Chronic Obstructive

Lung Disease (GOLD) [38] strategy for the diagnosis, management, and prevention

of COPD.

Values below or above the standards result in the patient’s category changing

into one of the GOLD I–GOLD IV [38] categories, depending on the severity of the
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patient’s condition, with GOLD I being the most severe condition. It is important

to identify and monitor any deterioration in a patient’s baseline values in order to

adjust the clinical protocol and treatment guidelines.

Figure 3.8 presents a clinical protocol defined by the Hope Care SA medical

team; it is based on the GOLD strategy and addresses patients whose basal values

are within a normal range and, thus, do not belong to categories GOLD I–GOLD

IV. Consequently, the range of colors isn’t associated with the GOLD categories.

The color is associated with the severity of the COPD patient’s condition: Cate-

gory I (red) corresponds to a higher degree of deterioration in their health condi-

tion, while Category V (green) corresponds to the lowest or non-deterioration of

their health condition. Some fields are filled with the expression "N/D" because

there is no defined range of values for that specific category.

Figure 3.8: Clinical protocol defined by the Hope Care SA Medical Team and
based on the GOLD clinical protocols.

3.5.1 Basal Value Monitoring Module Architecture

This module, as shown in Figure 3.9, uses the list of metrics to be monitored

and the history of vital signs recorded by each patient as input. Based on these
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measurements, the patient’s current baseline value and the forecast of the evolution

of the same value are determined. In case there is a substantial difference between

the most recently recorded value and the historical baseline value, an alert should

be triggered, containing the previous baseline value, the newly calculated value,

and the difference. The newly calculated baseline value is suggested as a change

to the clinical protocol.

Figure 3.9: Basal value monitoring module architecture.

The following variables are also used as input to the module:

• Number of months considered: This indicates the past time window that is

analyzed for the baseline calculation. The default value is 3 months, which

indicates that when this module runs, the measurements taken from the

last 3 months are extracted for the baseline calculation. This value can be

configured by rules in the system.

• Minimum number of records: This corresponds to the minimum number of

measurements taken by the patient, so that the calculated baseline infor-

mation is considered reliable. If the patient does not have a satisfactory
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number of measurements in the time horizon under study, the module will

not provide recommendations. For example, a patient with only five SpO2

measurements over 3 months will not be considered for updating the baseline

value. This value is configurable by a rule, and value 50 is used by default

in the system.

• Patience: In case the patient does not present enough measurements of a

certain parameter in the defined time horizon, the system expands the time

horizon of the search to include more months of history until it finds an

acceptable amount of records. For example, with a patience of 3 months

and a minimum of 50 required measurements, if the patient only has 30

measurements, an additional month will be incorporated into the analysis,

and the module will be rerun using the past four months, reducing the pa-

tience counter by 1. In case patience reaches zero, and the minimum value

of measurements defined is not reached, the system will not provide any rec-

ommendation for the given parameter due to the lack of consistency in the

measurements. The default value for patience, which can be configurable by

a rule, is 3.

The default values in the system are set and adjusted after testing with histor-

ical values recorded by patients in the HCAlert platform, provided by Hope Care

SA.

3.5.2 Basal Value Monitoring Module Implementation

In this section, we present the implementation details of the basal value monitoring

module. Figure 3.10 shows an activity diagram, which represents the operations

performed by the module.
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Figure 3.10: Basal value monitoring module implementation

As presented and detailed in the previous section, the system inputs are the

list of metrics under evaluation, the patient’s vital signs history, the number of

months to be considered, the minimum number of records, the baseline value of

the patient’s clinical protocol, and patience.

For each metric under evaluation, the system performs the following process:

1. A flag representing the current patience is initialized to zero.

2. The measurements are related to the period of months corresponding to the

last X months from the date of execution of the module, where X is the sum
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between the system input “number of months to consider” and the current

patience value.

3. The number of measurements performed by the patient is calculated.

(a) In case the number of measurements is not sufficient, the current pa-

tience is incremented by 1.

(i) If the current patience value is equal to the user-defined patience

value, no recommendation is displayed, and the cycle continues to

the next measurement in the list.

(ii) If the current patience value is less than the set patience value, the

system summarizes the run from step 2.

(b) In case the measurements are sufficient, the system summarizes the run

in step 4.

4. The median of the patient’s measured values of a given vital sign is calcu-

lated.

5. The median value is compared with the baseline value recorded in the clinical

protocol.

(a) If the values are very different, a recommendation is made to update

the baseline value to reflect the new median value recorded in the time

interval under consideration. This recommendation should be evaluated

by a medical professional.

(b) If the values are similar, the baseline value is not adjusted, and the

system summarizes in step 1, with a new iteration of a new metric

under evaluation.

6. The cycle ends when all metrics in the list have been processed.

This process is run independently for each patient in the system. It is worth

noting the use of the median as the metric calculated for the baseline value. This is

due to the fact that it better handles extreme values outside of a patient’s normal
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patterns, such as exacerbation, which should not be considered for the calculation

of a baseline value, as it does not correspond to a normal patient pattern.

3.6 Vital Signs Prediction Module

3.6.1 Predictive Model Development

Data Treatment

For the predictive model development and evaluation, 91 patients who were

flagged as having COPD were included. Each patient was monitored remotely

and provided health status information for tracking their health status. The vital

sign information was then gathered by each medical center. These patients were

from different districts of the country, such as Aveiro (Anadia), Leiria (Óbidos,

Pombal), Santarém (Ourém) Castelo Branco (Fundão), Coimbra (Cantanhede,

Cernache, Assafarge, Antanhol, Condeixa-A-Nova, Mira, Almargem Bispo), Lis-

boa (Amadora, Rinchoa, Queluz, Algueirão, Tapada Das Merces, Rio de Mouro),

and Faro (Quarteira, Albufeira, Tavira, Olhão, Loulé, Lagos, Portimão, and Castro

Marim).

Meteorological variables (temperature, humidity, wind, and rain) and exterior

particle matter concentrations (PM10, PM2.5) were obtained from the nearest

IPMA (Portuguese Institute for the Ocean and Atmosphere) and EPA (Environ-

mental Protection Agency) stations. To analyze the source and transport path-

ways of the air masses and relate the air masses with aerosols, we used the NOAA

HYSPLIT model [39, 40].

Information about the weather, air quality, and vital signs was analyzed. The

data processing module was divided into four sub-phases: data cleaning, data

transformation, patient datasets selection, and environmental data integration, as

is present in Figure 3.11.
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Figure 3.11: Data preparation pipeline.

During the data cleaning process, a thorough analysis was conducted on out-

liers (values that deviated significantly from the rest of the dataset and could

potentially introduce anomalies in the results obtained from algorithms and anal-

ysis systems) based on the distribution of values in Figures 3.12–3.15, as well as

on null values within the vital signs.

Figure 3.12: Oxygen saturation level value distribution of all patients analyzed
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Figure 3.13: Heart rate level value distribution of all patients analyzed

Figure 3.14: Systolic blood pressure level value distribution of all patients
analyzed
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Figure 3.15: Body temperature level value distribution of all patients analyzed

Regarding vital signs, any values that met the following criteria were identified

as outliers and subsequently removed:

• For oxygen saturation (SpO2), any values below or equal to 70% and above

100%. Since we have detected many measurements at exactly 70%, we sus-

pect these are measurement errors;

• For body temperature, all values below 30 ◦C and above 40 ◦C;

• For systolic blood pressure (SBP), any values below 50 mmHg and above

350 mmHg;

• For heart rate (HR), any values below 39 BPM and above 250 BPM.

• For diastolic blood pressure (DBP), any values below 40 mmHg or above 200

mmHg.

In the data transformation process, we adjusted the format of historical records

related to the vital sign data of patients. The data, initially in a format of one

record per day per parameter, were converted to one record per day with all the
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collected vital sign values for that day. Specifically, there was a change in the

granularity of each data row from one row per measurement of a specific vital

sign at a specific moment in time for a specific patient to one row for each day of

measurements taken for a specific patient, with columns representing the measured

vital signs (data pivoting). After the format change, every time segment with over

10 consecutive days of missing data was removed and only patients with over 180

records whose vital sign data were fully complete were selected.

In the data integration process, the historical records of each patient’s vital

signs were supplemented with information regarding weather data (average daily

temperature, average relative humidity, and amount of daily precipitation) and air

particle data (10 µm particles and 2.5 µm particles, as these two dimensions have

a greater impact on the patients’ respiratory capacity).

Modelling and Evaluation

Following the data treatment, we modeled the development and evaluation. As

a result of the data treatment phase, only 14 datasets were considered for the model

training and evaluation phase. Since the ICDSS was designed to assist COPD

patients with different health profiles, we developed models using 14 different

datasets and incorporated the best models in the system. Figure 3.16 shows the

steps of the development and evaluation phase.

Figure 3.16: Modelling and evaluation pipeline

We employed multivariate machine learning models capable of conducting the

multi-step-ahead time series prediction of vital signs. Multi-step-ahead forecasting
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involves predicting multiple future time steps in a time series [41]. In our case,

it would mean predicting the vital sign values for the following 5 days. The

vital signs chosen for prediction include SpO2, heart rate, body temperature, and

systolic blood pressure, which are utilized in the early warning score calculation

module to assess the risk of deterioration.

During the feature selection process, we conducted a comprehensive correlation

analysis between vital signs and clinical validation, resulting in the identification

of the most relevant vital signs for predicting health variations in COPD patients.

Figure 3.17 shows an example of a correlation between SpO2 values (Spo2_1_day),

the pm25 external parameter (PM25), relative humidity (HR_MED), and SpO2

values (SpO2) of the previous day, using the dataset for the patient with ID no.

156.

Figure 3.17: Correlation matrix between Spo2, Spo2 from the previous day,
relative humidity, the levels of precipitation, the pm25 concentration, the exter-
nal temperature values, and SpO2 level from the previous day, using the dataset

for the patient with ID no. 156.
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For multi-step-ahead time series prediction, all vital signs receive the previous

day’s value (n − 1) as input to forecast the value for the current day (n). To

predict the value of SpO2, we selected the following inputs: the SpO2 value of

the previous day, the relative humidity value of the previous day, the levels of

precipitation from the previous day, the pm25 value from the previous day, and

the external temperature value from the previous day.

Regarding the other vital signs, based on the analysis of the correlation between

the four vital signs analyzed in Figure 3.18, and the clinical insight provided by

the Hope Care SA medical team suggesting that SpO2 influences heart rate, body

temperature, and systolic blood pressure, we decided to use only the SpO2 value

from the previous day and the specific vital sign in question from the previous day

as inputs.

Figure 3.18: Correlation matrix of values of SpO2 parameter with the pulse
rate, systolic blood pressure and body temperature values of the following day,

using the dataset for the patient with ID no. 156.
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To ensure the selection of the most optimal model architecture for predicting

a specific vital sign, we trained and evaluated six distinct machine learning mod-

els. These models encompassed a diverse range of architectures, namely ARIMA

(autoregressive integrated moving average), LSTM (long short-term memory),

BILSTM (bidirectional long short-term memory), GRU (gated recurrent unit),

LightGBM (light gradient boosting machine), and XGBoost (extreme gradient

boosting).

The training process was preceded by essential hyperparameter tuning, which

is a critical step in developing machine learning models. This tuning allowed

us to optimize the models for the best possible performance. In our case, the

models’ performance was assessed using the root mean square error (RMSE), which

measures the difference between prediction and the ground truth in the regression

algorithm evaluation.

Table 3.5 presents an example of the RMSEs achieved for the fifth-day predic-

tions via different machine learning model architectures for each vital sign predic-

tion using the dataset for the patient with ID no. 156.

Table 3.5: Root mean square error values for the 5th-day predictions of dif-
ferent model architectures trained using the dataset for the patient with ID no.

156.

Model SpO2 Heart Rate Systolic Blood Pressure Body Temperature

ARIMA 2.080718 7.089329 9.783878 0.247163

XGBoost 0.817778 0.96435 2.407083 0.302518

LightGBM 0.064668 0.380769 2.170715 0.058705

GRU 0.083168 0.110159 0.130179 0.131379

LSTM 0.092241 0.573169 0.135822 0.137075

BILSTM 0.084948 0.113384 0.132097 0.130094

As a result of our evaluation, we saved the models that demonstrated the

lowest root mean square error (RMSE) for each vital sign. Consequently, we had

4 distinct models for each of the 14 patient-specific datasets, with each model

specialized in predicting a specific vital sign.
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Table 3.6 presents an example of the RMSEs for the 5th-day predictions

achieved by the best machine learning model architectures for each vital sign

prediction using the dataset for the patient with ID no. 156.

Table 3.6: Root mean square error values for the 5th-day predictions using the
best model architectures trained on the dataset for the patient with ID no. 156

Vital Sign Predicted Type RMSE

SpO2 LightGBM 0.064668

Heart Rate GRU 0.110159

Systolic Blood Pressure GRU 0.130179

Body Temperature LightGBM 0.058705

3.6.2 Production

In this section, we present the incorporation of the previously described predictive

models into the ICDSS.

The vital signs prediction module presented in Figure 3.19 is composed of two

sub-processes: a data pre-processing stage followed by the application of predictive

models. The data pre-processing stage is essential to ensure that the data is in the

correct format and that the vital sign measurements are appropriately integrated

with the external measurements, as previously mentioned in Section 3.6.1.

The vital signs prediction process takes place daily, and the resulting pre-

dictions are stored in the database for future reference. Subsequently, the early

warning module utilizes this data to assess and calculate the risk of a patient

experiencing deterioration within the following five days.

When a new patient is integrated into the system, the prediction for each vital

sign is calculated as the average of the predictions from all the models that predict

the particular vital sign. After a period of 6 months, the error (root mean squared

error—RMSE) of each predictive model is analyzed by measuring the distance

between the values predicted by each model and the actual values of the vital
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signs for each patient. The model with the lowest error is the one associated with

the patient.

Figure 3.19: Vital signs predictions module architecture

3.7 Early Warning Score Calculation Module

In this module, the risk of a patient experiencing deterioration is assessed using

the early warning score (EWS) clinical protocol. The EWS is utilized for monitor-

ing and detecting the risk of health deterioration in patients and it is calculated

by combining vital signs and clinical data, such as heart rate, blood pressure,

respiration rate, body temperature, oxygen saturation (SpO2), and degree of con-

sciousness. Individual scores for each vital sign are then totaled up, resulting in a

total EWS score.

The higher the overall EWS score, the more likely a patient is suffering from a

health deterioration. This clinical protocol presented in Table 3.7 is indicated by

Hope Care SA’s medical team.
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Table 3.7: Early warning score clinical protocol suggested by Hope Care SA’s
medical team

Description 0 Points 1 Point 2 Points 3 Points

SpO2

Difference between the

predicted value for the

day and the value from

the previous day

<3% 3-5% 6-7% >7%

Heart Rate BPM Value 46-100 101-110 111-115
>115 or

<46

Systolic

Blood

Pressure

Percentage difference

between the predicted

value for the day

and the baseline value

<20% >=20% >=23% >=25%

Body

Temperature

Temperature value

in Celsius
<37.5 37.5-37.9 38-38.4 >38.5

Similar to the vital signs prediction module, the early warning score calculation

is performed daily, and the resulting scores are stored in the database.
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4.1 System Demonstration

To demonstrate how the ICDSS addresses the research question, we present a

system trial with the incorporation of a new patient. We use the patient with ID

no. 300. The patient health information used in this trial consists of historical

information for a three-year period consisting of HRMS monitoring provided by

Hope Care SA through the HCAlert platform.

The monitoring for the patient with ID no. 300 was initiated on 21th of April,

2022. The ICDSS received a notification from the HCAlert platform, regarding

the need to incorporate this new patient, leading to the creation of a new record

in the database. All vital signs monitored for the patient with ID no. 300 were

transmitted to the HCAlert platform and subsequently extracted by the ICDSS,

starting from 21th of April. These vital signs underwent analysis through the

biometric sign error detection module. As no outliers were detected in the vital

signs, they were seamlessly integrated into the database..

Table 4.1 presents the last five days of data extracted from the database for

vital sign predictions on the 25th of April, 2022.
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Table 4.1: Last 5 days of data extracted from the database for vital sign
predictions on the 25th of April.

Date

Heart

Rate

(BPM)

Body

Temperature

(ºC)

SpO2

(%)

Systolic

Blood

Pressure

(mmHg)

T

MED

(ºC)

HR

MED

(%)

PR

QTD

(mm)

pm25

(Count)

2022-04-21 61.0 36.2 95.0 95.0 9.60 63.25 1.86 1.66

2022-04-22 63.0 36.0 95.0 93.0 7.53 82.97 23.25 0.93

2022-04-23 59.0 36.5 96.0 96.0 8.95 69.24 1.91 0.58

2022-04-24 65.0 36.2 96.0 100.0 10.79 67.82 0.29 1.14

2022-04-25 57.0 35.9 96.0 102.0 12.35 65.43 0.01 2.63

By the 25th of April, a sufficient amount of vital sign data is available to provide

insights into the patient’s risk of health deterioration. The ICDSS proceeds with

the prediction of vital signs and subsequently calculates the early warning score.

Various models are employed to forecast the patient’s vital signs for the initial

6 months of integration. The risk information regarding the patient’s potential

deterioration is provided to the HCAlert platform through a JSON file.

Table 4.2 presents the vital sign prediction values for the 26th of April. The

predicted vital signs are then used to calculate the risk.

Table 4.2: Predicted Values of Vital Signs from 26th of April to 30th of April

Date
SpO2

(%)

Heart

Rate

(BPM)

Systolic

Blood

Pressure

(mmHg)

Body

Temperature

(Celsius)

2022-04-26 95.028053 63.863962 98.327346 36.244274

2022-04-27 94.801013 64.027884 98.783749 36.162657

2022-04-28 94.948091 64.413307 99.589877 36.218256

2022-04-29 95.127560 64.438053 99.516291 36.246443

2022-04-30 95.054558 64.429125 99.496265 36.196343
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Table 4.3 presents the values of the early warning score calculated on the 25th

of April.

Table 4.3: Calculated values of the early warning score from 26th of April to
30th of April.

Date
SpO2

(%)

Heart

Rate

Systolic

Blood

Pressure

Body

Temperature

2022-04-26 0 1 0 0

2022-04-27 0 1 0 0

2022-04-28 0 1 0 0

2022-04-29 0 1 0 0

2022-04-30 0 1 0 0

Listing 4.1presents part of the structure of a part of the JSON file concerning

the predicted vital signs and early warning score calculated from the 26th of April

to the 30th of April.
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Listing 4.1 Structure of the JSON file provided to HCAlert for patient
risk information on the 25th of April.

1 {'predict_date': '2022-04-26',

2 'global_ews_score': 1,

3 'vitals’:

4 '{"spo2": {

5 "predict_value": "95.02805293812013",

6 "predict_score": "0", "units": "{\%}"},

7 "pulse": {

8 "predict_value": "63.86396198309728",

9 "predict_score": "1", "units": "BPM"},

10 "systolic": {

11 "predict_value": "98.32734618907372",

12 "predict_score": "0", "units": "mmHg"},

13 "body_temperature": {

14 "predict_value": "36.244273924492624",

15 "predict_score": "0", "units": "ºC"}}}

After an evaluation spanning over 6 months, we focused on identifying the

most suitable models to enhance the care of patient 300. Our selection process

prioritized models with the lowest root mean square error (RMSE), as shown in

Table 4.4.
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Table 4.4: Root mean square error (RMSE) values of the top selected models
for predicting the vital signs of patient 300.

Dataset used

to train the

model

Model Parameter
Value

(RMSE)

304 BILSTM Spo2 0.285014

181 GRU Heart Rate 1.520008

184 BILSTM
Systolic

Blood Pressure
1.904305

181 GRU Body Temperature 0.250580

We analyzed the patient’s data from the previous 6 months; we provide a new

basal value that reflects the patient‘s health condition, which is, consequently,

used for the patient‘s clinical protocol adjustment, as shown in Listing4.2.
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Listing 4.2 Suggested new basal values for patient 300 to the HCAlert
platform.

1 {

2 'spo2': {

3 'median_value': 96.0,

4 'number_of_months': 6},

5 'body_temperature': {

6 'median_value': 35.6,

7 'number_of_months': 6},

8 'pulse': {

9 'median_value': 73.0,

10 'number_of_months': 6},

11 'systolic': {

12 'median_value': 99.0,

13 'number_of_months': 6}

14 }

15

During the course of 6 months, while closely monitoring patient 300’s health,

we detected an error involving one of the SpO2 measurements. Initially, this

measurement seemed to comply with the clinical rules and was considered valid.

However, upon atypical measurement validation, it became evident that the prob-

ability of this value (p = 0.01599) belonging to the distribution of SpO2 values

for patient 300 was relatively low, falling below the threshold of 0.05. Due to this

fact, the measurement was discarded from the dataset.

Figure 4.1 presents the distribution of SpO2 values of patient 300 analyzed for

the error alert validation.
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Figure 4.1: Distribution of SpO2 values analyzed of patient 300.

On the 25th of October, the ICDSS provided essential health information about

the risk of patient deterioration. However, this risk was generated using predictions

from the selected best models, as mentioned earlier.

Table 4.5 presents the last five days of extracted data from the database for

vital sign predictions on the 25th of October.
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Table 4.5: Last 5 days of data extracted from the database for vital sign
predictions on the 25th of October.

Date

Heart

Rate

(BPM)

Body

Temperature

(ºC)

SpO2

(%)

Systolic

Blood

Pressure

(mmHg)

T

MED

(ºC)

HR

MED

(%)

PR

QTD

(mm)

pm25

(Count)

2022-10-21 68.0 35.60 96.0 96.0 15.05 79.13 3.94 1.94

2022-10-22 74.0 35.80 96.0 96.0 14.91 74.00 18.72 1.20

2022-10-23 70.0 35.90 95.0 94.0 14.15 67.11 5.45 2.91

2022-10-24 72.0 35.80 97.0 93.0 14.32 72.58 1.47 1.93

2022-10-25 76.0 35.00 95.0 98.0 16.13 64.89 7.87 1.94

Table 4.6 presents the vital sign prediction values from the 25th of October.

The predicted vital signs are then used to calculate the risk.

Table 4.6: Predicted vital sign values from the 26th of October to 30th of
October.

Date
SpO2

(%)

Heart Rate

(BPM)

Systolic

Blood

Pressure

(mmHg)

Body

Temperature

(ºC)

2022-10-26 96.386055 70.779388 95.078346 35.292265

2022-10-27 96.228622 72.117355 94.664948 35.597720

2022-10-28 96.208916 72.186485 94.973228 35.796912

2022-10-29 96.297836 73.253487 95.260201 35.886715

2022-10-30 96.020462 72.828354 96.042572 35.796912

Table 4.7 presents the early warning score values calculated on the 25th of

October.
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Table 4.7: Calculated early warning score values from the 26th of October to
the 30th of October.

Date
SpO2

(%)

Heart Rate

(BPM)

Systolic

Blood

Pressure

(mmHg)

Body

Temperature

(ºC)

2022-10-26 0 1 0 0

2022-10-27 0 1 0 0

2022-10-28 0 1 0 0

2022-10-29 0 1 0 0

2022-10-30 0 1 0 0

Listing 4.3 presents the structure of a JSON file concerning the predicted vital

signs and early warning score calculated from the 26th of October to the 30th of

October.
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Listing 4.3 Structure of the JSON file provided to HCAlert for patient
risk information on the 25th of October.

1 {'predict_date': '2022-10-26',

2 'global_ews_score': 1,

3 'vitals': '{

4 "spo2":{

5 "predict_value": "96.38605499267578",

6 "predict_score": "0", "units": "\%"},

7 "pulse": {

8 "predict_value": "70.85945892333984",

9 "predict_score": "1", "units": "BPM"},

10 "systolic": {

11 "predict_value": "94.98711395263672",

12 "predict_score": "0", "units": "mmHg"},

13 "body_temperature": {

14 "predict_value": "36.07156866129014",

15 "predict_score": "0", "units": "ºC"}}'},

16
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4.2 System Evaluation

We performed a set of white-box tests, evaluating each module for its functionality

(unit tests) and integration with the related modules of the system (integrated

tests). Afterward, we conducted a survey to gather feedback from two medical

professionals to evaluate the system based on a set of criteria inspired by Prat et

al. [42]. Based on the positive feedback collected from the survey, it appears that

the system was well-designed and valuable for managing the treatment of COPD

patients.

Table 4.8 shows the evaluation given by two medical professionals specialized

in COPD disease. The sample was slightly small, but highly significant since

these medical professionals had experience in this disease. They were asked to

answer questions, indicating a number between 1 and 5, where 1 corresponds to

not relevant or not useful and 5 corresponds to very relevant or very useful [43].
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Table 4.8: Results of the evaluation of the system by medical professionals.

Criteria Questions Objective Statement Eval 1 Eval 2

Clinical

Impact

on Patients

Treatment

Indicate the importance of an

smart clinical decision support

system capable of provide a

5-day Early Warning Scores

for monitoring patients with COPD.

Importance of the

intelligent clinical

decision support system for

monitoring patients with COPD

5 5

Patients Life

Quality

Impact

Indicate the impact of a smart

clinical decision support system

providing a 5-day Early Warning

Scores on the quality of life of

a patient with COPD.

Impact of a clinical

intelligent decision

support system on the quality

of life of a patient with COPD

5 5

Utility

Indicate the usefulness of a

system for healthcare professionals

that generates information whenever

there are changes in

patients’ baseline values.

Usefulness of a

clinical intelligent

decision support

system that notifies patients

baseline values modifications

4 5

Indicate the importance of a system

that provides short time horizon

(in minutes) Early Warning Scores

for the clinical follow-up of patients

with COPD.

Importance of a

clinical intelligent

decision support system

on the clinical follow-up

of patients with COPD.

5 5

Indicate the usefulness of a real-time

alert system for healthcare professionals

whenever an abnormal measurement

occurs for a specific patient.

Usefulness of a clinical

intelligent decision support

system that notifies abnormal

measurements detections

5 5

Consistency

with the

organization

Indicate the relevance of involving

healthcare professionals in defining

clinical intervals for abnormal

measurements.

Clinical validation on the

definition of intervals for

abnormal measurements

5 5

Indicate the relevance of involving

healthcare professionals in defining

the formula for calculating the basal value.

Clinical validation on the

definition of the basal value

calculation formula

4 5

Indicate the relevance of involving

healthcare professionals in selecting

environmental and clinical parameters

(e.g., vital signs) that most influence

the clinical progression of patients with COPD.

Clinical validation on the

selection of environmental

and biometric signs that

most influence the clinical

progression of patients with COPD

5 5

Integration

with

clinical

protocols

Indicate the relevance

of the adopted Early Warning

Score matrix for clinical

decision-making and adjustment of

therapeutic protocols for patients.

Relevance of the adoption

Early Warning Score

matrix for clinical

decision-making and

adjustment of therapeutic

protocols for patients

5 4
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5.1 Conclusions

In this dissertation, we developed a system prototype that answers our research

question: “Is it possible to automatically monitor and analyse the risk of a poten-

tial health deterioration of COPD patients?”. This system aims to provide early

information concerning a patients health status evolution in order to support the

treatment of patients with COPD.

As mentioned in Section 3, the ICDSS comprises two primary components:

the vital signs prediction module and the early warning score calculation module.

These components specifically address the research question.

The vital signs prediction module, as mentioned in Section 3.6, generates vital

sign predictions using different types of model architectures. These predictive

models are optimized using a fine-tuning process, with each model corresponding

to a specific patient with a specific health profile. As demonstrated in Section

3.6.2, the integration of predictive models developed using data from fourteen

different patients shows that the ICDSS has the flexibility to predict vital signs

and, in turn, calculate the patient deterioration risk for various health profiles.

This system has the ability to evolve and adapt to every patient condition since

the first stage corresponds to using an ensemble of models to predict vital signs

and the second stage corresponds to only using models with the lowest RMSE.
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The early warning score calculation module uses vital sign records and deter-

mines the patient health deterioration based on a clinical protocol.

The ICDSS is also composed of three other modules: biometric sign error

detection, basal value monitoring, and the communication manager.

The biometric sign error detection ensures the quality of all information con-

cerning vital signs by validating, in a two-phase process, whether the vital sign

values fall within the normal range for general COPD patients and subsequently,

within the specific patient’s normal range using a probability density function.

The basal value monitoring analyzes the vital signs and suggests recommenda-

tions for new basal values to the patient if they deviate from the baseline provided

by the HCAlert platform. The communication manager deals with all connections

between the ICDSS modules, the HCAlert platform, and weather information

sources.

The ICDSS system completed the white-box tests, including unit tests and

integration tests.

All of these tests validate its functionality and contribution to preventing and

potentially improving patient treatment by offering an early indication of the pa-

tient’s risk for deterioration.

Despite our ability to leverage real-time telemonitoring patient data, we em-

ployed clinical historical longitudinal data that was gathered over a substantial

period of time (2–3 years) through a telemonitoring application. This extended

time frame enabled us to formulate conclusions regarding the system’s validity,

supported by the early warning score implementation and the errors of the ap-

plied predictive models.
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5.2 Limitations

The non-approval of the incorporation of new patients by the ethics committee

associated with the HC PSI project made the testing and analysis of the ICDSS ef-

fectiveness in providing quality information regarding patient health deterioration

risk difficult.

The scarcity of data was a limitation in our study, and two key aspects con-

tributed to this challenge. Firstly, the measurements we had access to were not

collected at hourly intervals, which restricted our ability to capture fine-grained

variations in the data. The absence of hourly data points hindered our capacity

to discern short-term patterns and trends, potentially hiding crucial insights that

might have emerged with more frequent data collection.

Another significant data gap stemmed from the lack of information concerning

home sensors, specifically data related to humidity levels. Humidity is a vital en-

vironmental factor that influences various aspects of indoor comfort, air quality,

and overall well-being. All houses are different, with varying insulation and heat-

ing, leading to distinct risk profiles. Even two houses in the same location can

exhibit varying humidity levels and significantly different temperatures (better in-

sulated houses, air conditioning/heating, dehumidifiers, etc). The absence of the

essential sensor data limited our ability to comprehensively assess the interplay

between different environmental parameters, potentially leading to an incomplete

understanding of the complex dynamics within the studied environment.

Despite the limitations, the system was validated, end-to-end, and clinically

recognized as important for COPD monitoring, being adjustable enough to inte-

grate these data sources if included in the project and handle a lower granularity

of information to make predictions.

5.3 Communication

During this dissertation, we have contribute to the scientific community with a

publication regarding the mentioned artifact. This article is named "Intelligent
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Clinical Decision Support System for Managing COPD Patients" and is in ed-

itorial process for MDPI’s special issue Transforming Precision Medicine: The

Intersection of Digital Health and AI [44].

5.4 Future work

As part of our future work, we will aim to identify some potential advancements

to pursue. Firstly, we will aim to validate the effectiveness of the ICDSS (clinical

deterioration surveillance system) by obtaining real-time patient data through

the HCAlert platform. Analyzing these data over an extended period will help

us assess the accuracy and quality of early information provided by the ICDSS,

particularly regarding a patient’s risk of deterioration.

To enhance the robustness of our research, we will seek to access a more ex-

tensive and diverse dataset that includes patient data from different countries.

Expanding our data collection to the international stage will ensure that our

findings are relevant to a broader population.

Adopting a more inclusive approach involves considering a broader range of

age-related values. By including individuals across various age groups, we could

reveal some patterns and trends that may be present within different life stages.

To achieve more precise and detailed analyses, we propose incorporating more

daily frequent recordings. This higher data capture frequency will enable us to

detect subtle fluctuations and temporal dynamics that might be missed in less

frequent sampling, providing real-time insights into patients’ vital signs.

Additionally, the integration of sensor technology to monitor indoor humidity

and temperature levels would facilitate the extraction of valuable insights regard-

ing the relationship between environmental factors and health deterioration.

By pursuing these advancements, we seek to increase the importance and reli-

ability of our research, which could ultimately contribute to better patient treat-

ment.
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