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Resumo

Doenga Pulmonar Obstrutiva Crénica (DPOC) é a terceira principal causa de
morte em todo o mundo. Sistemas de Monitorizacgdo Remota de Satde (SMRS)
desempenham um papel crucial na gestao de doentes com DPOC, identificando
anomalias em seus sinais biométricos e alertando profissionais de saiide. Ao anal-
isar as relagoes entre os sinais biométricos e os fatores ambientais, é possivel de-
senvolver modelos de inteligéncia artificial capazes de inferir os riscos futuros de
deterioracao da satde dos doentes. Esta dissertacao tem como objetivo desenvolver
um Sistema Inteligente de Apoio a Decisao Clinica (SISDC) capaz de fornecer in-
formagcoes precoces sobre a evolugao da satde do paciente e analise de risco para
apoiar o tratamento de doentes com DPOC. O SISDC do presente trabalho é
composto por dois modulos principais: o Médulo de Previsoes de Sinais Vitais e o
Modulo de Célculo do Early Warning Score, que geram informagoes sobre a satde
do paciente e o risco de deterioracao, respectivamente. Além disso, o SISDC gera
alertas sempre que uma medicao de sinal biométrico estiver fora da intervalo nor-
mal de valores para um paciente ou no caso de uma mudanca significativa em um
valor basal. Finalmente, o sistema foi implementado e avaliado em um caso real
e também validado em termos clinicos por meio de um inquérito respondido por
profissionais de satide envolvidos no projeto. Em conclusao, o SISDC demonstra
ser uma ferramenta tutil e valiosa para profissionais de satde, permitindo inter-

vengoes proativas e facilitando ajustes no tratamento médico dos doentes.

Palavras-chave: Doenga Pulmonar Obstrutiva Croénica; Sistema Inteligente
de Apoio a Decisao Clinica; Sistema de Monitorizacao Remota de Satude; Deteccao
de Erros em Sinais Biométricos; Escala de Alerta Precoce; Inteligéncia Artificial;

Previsao de Séries Temporais.
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Abstract

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death
worldwide. Health remote monitoring systems (HRMSs) play a crucial role in man-
aging COPD patients by identifying anomalies in their biometric signs and alerting
healthcare professionals. By analyzing the relationships between biometric signs
and environmental factors, it is possible to develop artificial intelligence models
capable of inferring patients’ future health deterioration risks. In this research
work, we review recent works in this area and develop an intelligent clinical de-
cision support system (ICDSS) capable of providing early information concerning
patient health evolution and risk analysis in order to support the treatment of
COPD patients. The present work’s ICDSS is composed of two main modules:
the vital signs prediction module and the early warning score calculation module,
which generate the patient health information and deterioration risks, respectively.
Additionally, the ICDSS generates alerts whenever a biometric sign measurement
falls outside the allowed range for a patient or in case a basal value changes sig-
nificantly. Finally, the system was implemented and assessed in a real case and
validated in clinical terms through an evaluation survey answered by healthcare
professionals involved in the project. In conclusion, the ICDSS proves to be a use-
ful and valuable tool for medical and healthcare professionals, enabling proactive

intervention and facilitating adjustments to the medical treatment of patients.

Keywords: Chronic Obstructive Pulmonary Disease; Intelligent Clinical Deci-
sion Support System; Health Remote Monitoring Systems; Biometric Signs Errors

Detection; Early Warning Score; Artificial Intelligence; Time Series Prediction.
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Chapter 1

Introduction

1.1 Chronic Obstructive Pulmonary Disease

According to the World Health Organization (WHO), Chronic obstructive pul-
monary disease (COPD) is one of the most deadly major lung diseases and the
third leading cause of death worldwide [I]]; the organization further indicates that
COPD was responsible for about 3.24 million deaths in 2019. The Portuguese So-
ciety of Pulmonology [2] estimates that 5.42% of individuals in Portugal between
the ages of 35 and 69 suffer from COPD. According to the Portuguese Lung Foun-
dation [3], COPD was responsible for approximately 2834 fatalities in the country.
The same organization estimates that in 2019, this illness cost the economy 1.6

billion euros.

1.1.1 Disease Symptoms

COPD is caused by airway obstruction. The most common symptoms of COPD
are coughing, wheezing, and dyspnea (shortness of breath). Patients often seek
medical attention only when the disease reaches an advanced stage, as it is a

condition that progresses slowly.

Initially, the disease presents as a cough accompanied by increased sputum

production. However, as it progresses, it can lead to repeated episodes of acute
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bronchitis and respiratory infections. As the disease develops, shortness of breath
becomes more frequent, even with seemingly minor tasks, such as talking and
performing daily hygiene. Shortness of breath is most noticeable during activities

that require physical effort.

1.1.2 COPD Exacerbations and Their Prevention

COPD exacerbations are associated with a worsening of the disease, a deterioration
in the patient’s health status, and an accelerated decline in the patient’s respiratory
function. A severe exacerbation of COPD always leads to the need for medical

intervention and eventual hospitalization.

A medical professional can determine whether a patient is experiencing an
exacerbation through the values of the vital signs using an Early Warning Score
system. The Early Warning Score is a protocol that aims to improve the detection
and response time to situations of clinical deterioration. Depending on the score
given by this protocol, we can detect the level of deterioration of the patient, as

shown in Figure [1.1] as an example.

Physiological
parameter

Respiration rate

(per minute) 1=

Sp0, Scale 1 (%) >96

88-92 93-94 on

Sp0, Scale 2 (%
pO, Scale 2 (%) 293 onair | Oxygen

Air or oxygen? Ar

Systolic blood

: 101=-110 | 111=219
pressure (mmHg)

Pulse (per minute) ' 41-50 51-90 111-130

Consciousness Alert

Temperature (*C) 35, 35.1-36.0 | 36.1-38.0 | 38.1-39.0

FIGURE 1.1: The current NEWS2 scoring system. This is the version currently
recommended by the UK Royal College of Physicians for use in clinical practice

.
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1.2 Motivation

The integration of technology into healthcare has revolutionized patient care, with
health remote monitoring systems (HRMSs) emerging as powerful tools [5]. By
storing data, such as heart rate (HR) and oxygen saturation (SPO2) levels, HRMSs
help medical professionals to treat patients with COPD. These systems offer real-
time monitoring and personalized treatment options. However, to maximize the
potential of HRMSs; it is crucial to integrate them with well-defined clinical pro-
cesses, therapeutics, and rules. This integration ensures that the collected mea-
surements are correlated and directly linked to effective patient care, enabling

proactive interventions and improving health outcomes.

The Internet of Things plays a crucial and influential role in the successful
implementation of HRMSs [6]. Wearable device sensors, videos, and images are
essential to gathering valuable patient information. Daily physiological data of the
patient is collected and stored by the HRMS through data processing tools, ana-
lytics, and artificial intelligence (AI). Recording daily physiological data provides
healthcare providers with actionable insights, facilitating proactive and personal-

ized care.

The use of AI by HRMSs to predict patient health deterioration is a significant
benefit[7, 8].Al algorithms examine historical patient data to find patterns that
might point to higher risks of unfavorable events or health deterioration. These
forecasts offer healthcare professionals with insightful information that enables
them to intervene early and prevent complications. A more preventive model of
care is promoted by this proactive approach, which also enhances patient safety

and lowers hospital admissions.

1.3 Objectives

The research question addressed by this study is: “Is it possible to automatically
monitor and analyse the risk of potential health deteriorations of COPD patients?”.

With this research question in mind, the defined objective is to develop a system

3



Chapter 1. Introduction

capable of providing early information concerning patient health evolution and ex-
acerbation risk analysis in order to support the treatment of patients with COPD.
Additionally, the system allows healthcare professionals to more efficiently manage
their time by automatically providing said professionals with alerts, supported by

a risk analysis of the patient’s COPD health status.

1.4 The HC PSI Project

The Hope Care Intelligent Services Platform (HC PSI) is a P2020 project that
involves the participation of Hope Care SA, INOV—INESC Inovacao and the
University of Beira Interior. Its main objective is to research and develop an
intelligent services platform that enables healthcare professionals to make more
informed decisions regarding the health conditions of COPD patients, thereby

increasing the efficiency of clinical entities.

The components of the HC PSI include a ICDSS, HCAlert platform, and en-
vironmental data sources, all geared toward automating the clinical treatment of

remotely monitored COPD patients.

This dissertation focuses on the ICDSS developed by INOV-—INESC Inovacao.
The ICDSS assists in making decisions regarding patient treatment. This platform
is composed of three modules: an HRMS that provides patients’ health information
through a mobile application to the ICDSS, a TVM that receives and processes
patient risk information from the ICDSS, and a graphical user interface (GUI)

that displays relevant clinical information to healthcare professionals.

Figure [1.2| presents the HC PSI architecture, which includes the ICDSS devel-
oped by INOV, the HCAlert platform, and other external data sources.
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Intelligent Clinical [y
Pl emote Triage
Decision Support Monitoring Validation
S Module
System (3?32") ui
(ICDSS)
Graphical
HC Alert ——

Interface
Platform (Gun

Data Extraction

Data Delivery

Weather & Air

Particles
INFO

FiGure 1.2: HC PSI architecture including ICDSS developed by INOV, the
HC Alert Platform and other external data sources.

The HCAlert platform was developed by Hope Care SA and includes a mo-
bile application that supports HRMSs and a set of backend services for clinical

validation and triage.

In the scope of the HC PSI project, the requirements for the HCAlert mobile
application include the collection of patient symptoms and residential data. For

the clinical validation and triage backend services, the following requirements are

defined:

e Capability to categorize alerts.

e Capability to provide Early Warning Scores and other relevant metrics per

patient to healthcare professionals.

e Capability to obtain information about hospital visits internally or from

other sources.

e Enabling the clinical team to have an overview of new alerts per patient,
including client name, data type and last measurement date.

5
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e Allowing the clinical team to define which relevant health values to display

on the dashboard.

1.5 Methodology

The DSR methodology is a research methodology commonly used in the field of
information systems; it focuses on the development and evaluation of innovative
artifacts, which include cutting-edge framework prototypes, techniques, and algo-
rithms that address present-day challenges. It consists of the following six phases:
problem identification, definition of objectives, design and development, demon-
stration, evaluation, and communication. This methodology focuses on creating
and evaluating artifacts based on their effectiveness, quality, and usefulness in

addressing real-world problems [9).

In this dissertation, since we developed a Intelligent Clinical Decision Support
System (ICDSS) which is an interactive information system that analyzes large
volumes of data for informing business decisions, we applied the design science

research methodology.

Figure [1.3| presents the iterations within the design science research methodol-

ogy (DSRM) process.

Process Iteration

Identify > Defre  [~»| Desgn&a [P p N i 1 Communication
Problem Objectives of Development »
& Motivate a Solution 2 N . Q
. 3 u = . 2 Find suitable _: o ot;s”eer:ligaw E S Scholarty
Nominal process Define problem b4 Artifact Qo context co v =] publications
sequence g | whatwouoa | @ H £3 efficient g2
q _ Show -g better artifact | 2 " 3 H 22 .
importance = accomplish? X Use artifactto | .2 S Iterate backto | & % Professional
o solve problem g design publications
H
I

Problem- Obijective- Design & Client/
Centered Centered Development Context

Initiation Solution Centered Initiated
Initiation

Possible Research Entry Points

FIGURE 1.3: Iterations represented in the design science research methodology
(DSRM) process model; Peffers et al.[10]
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1.6 Outline of the Dissertation

Having the objectives and methodology defined, we will have five chapters (Intro-

duction included). The chapters are:

Chapter 2} Outlines a systematic literature review on In-Home Healthcare for
COPD, E-Health Care supported by Predictive Analytics, factors related to COPD
deteriorations, and Machine Learning for Early Identification of Deterioration,

using the PRISMA method.

Chapter Provides a detailed description of our ICDSS. This includes a
thorough exploration of each module within the system, covering aspects such
as data extraction, system modules, and health information provided to medical

professionals.

Chapter 4} Presents a demonstration of the system, showcasing the interaction
between modules, including the generation and reception of input and output.
Additionally, we highlight the system’s evaluation process, ensuring its usefulness

and impact in a clinical context.

Chapter [5} Presents the discussion and conclusions of the work developed,

where we highlight the contributions and limitations of our efforts.






Chapter 2

Related Work

In this chapter, we present an overview of the systematic review conducted in
this article, which followed the PRISMA (Preferred Reporting Items for System-
atic Reviews and Meta-Analysis) Methodology [I1]. This chapter also covers the
latest advances in managing pulmonary disease patients, particularly on COPD
patients. It includes the improvement of effectiveness that remote health moni-
toring brings to patients’ treatment by providing a real-time warning to medical
professionals. Additionally, we explore how the integration of predictive analytics
in remote health monitoring improves patients’ assistance management by offering
early warnings of potential patient deterioration risks, thus optimizing effective-

ness.

The systematic review also covers factors and biometric signs related to the
acute deterioration of COPD and how prediction of biometric signs and subsequent
early warning generation provide a risk of patient future deterioration. Table
presents the topics and the respective queries used to extracted and filtered related

works.
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TABLE 2.1: Related work topics and the corresponding queries used to filter
research papers related to each topic.

Subsection Query

("Healthcare Management Systems"

AND "Real-time Detection")

In-Home Health Care for COPD

E-Health Care ("Healthcare Management Systems" AND
supported by "Early Detection" AND ("Artificial Intelligence"
Predictive analytics AND "Machine Learning"))
Factors related ("Early Detection" AND
with COPD deteriorations "Vital Signs" AND "COPD")

Machine Learning for
("Early Detection" AND

for Early Identification
"Vital Signs" AND "Machine Learning")

of a Deterioration

Table presents the eligibility criteria used to filter documents in the related

work.

TABLE 2.2: Eligibility criteria to filter research papers

Eligibility criteria

Inclusion Criteria Exclusion Criteria

Written in English or Portuguese | Not written in English nor Portuguese

Publication date after/during 2010 Publication date before 2010

We identified 810 documents, with 10 documents removed due to duplication
issues. A total of 400 articles not related to healthcare or artificial intelligence (Al)
were excluded from further screening based on titles and abstracts. Moreover, 40
articles were excluded as we were unable to access their full versions, leaving 160
articles for full-text screening. A total of 82 articles were removed as they did not
fit the eligibility criteria. Finally, 56 articles were excluded as they did not contain

relevant information concerning vital signs, time series techniques, and HRMSs.

10



Chapter 2. Related Work

The selection results, according to the PRISMA flow diagram, are shown in Figure

2.1

C
& Records identified through Additional records identified
S database searching through other sources
= (n=710) (n =100)
0]
] l
Y
— Records after duplicates removed
(n=10)
] i
c
c
[
o
O
@ Records screened Records excluded
(n = 200) ” (n=400)
) N
Full-text articles assessed Full-text articles excluded,
= for eligibility > with reasons
E (n =160) (n=40)
o
w
Y
) Studies included in
qualitative synthesis
(n=78)
3 Y
ko)
=2
= Studies included in
- qualitative synthesis
(meta-analysis )
(n=22)

FIGURE 2.1: PRISMA methodology [11]

2.1 In-Home Healthcare for COPD

Home telemonitoring refers to the utilization of audio, video, and various telecom-
munication technologies to monitor a patient’s status from a distance [12]. This
method involves remotely monitoring a patient’s health parameters, usually within
a larger chronic care model. Telemonitoring is a crucial component of telehealth

and telemedicine [13], showing potential in aiding patients in managing diseases

11
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and predicting complications [14]. Projects using telemonitoring with patients hav-
ing pulmonary conditions have demonstrated the capability to detect early changes
in a patient’s condition, allowing for immediate intervention and the prevention
of exacerbation. Patients have shown a positive reception toward telemonitoring

as a patient management strategy [12].

A systematic review and meta-analysis have found that telemonitoring inter-
ventions can prevent unnecessary visits to the emergency room and potentially
reduce severe COPD exacerbations. In a meta-analysis of 20 studies with six-
month telemonitoring interventions, it was found that the intervention effectively
decreased the number of ER visits (pooled SMD = 0.14, corresponding to a small
effect size; 95% CI: 0.28, 0.01) [13].

In a retrospective, population-based cohort study involving 944 individuals
using telemonitoring and 9838 control individuals, the total direct medical costs
were significantly lower in the telemonitoring group (EUR —895.11, p = 0.04). The
main factor driving the total cost difference was the reduction in hospitalization
costs by EUR —1056.04 (p = 0.01). A lower percentage of individuals died in the
intervention group than in the control group (3.23 vs. 6.22%, p < 0.0001), result-
ing in a mortality hazard ratio (HR) of 0.51 (95% CI: 0.30-0.86). Over a 12-month
period, the proportion of patients hospitalized due to all causes (—15.16%, p <
0.0001), due to COPD (—20.27%, p < 0.0001), and for COPD-related emergency
department (ED) visits (—17.00%, p < 0.0001) was consistently lower in tele-
monitoring patients, leading to fewer all-cause admissions (—0.21, p < 0.0001),
fewer COPD-related admissions (—0.18, p < 0.0001), and fewer COPD-related
ED admissions [15].

2.2 E-Healthcare Supported by Predictive Analyt-
ics

Telemonitoring has become indispensable in diagnosing and medically intervening

for COPD patients. Nowadays, due to better storage of electronic health records

12
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and improved vital sign detection methods, large amounts of patient data are
available daily in ICUs [16]. Medical equipment, ranging from hands-free monitors
and portable devices to modern wristbands and watch-like monitors, have helped
in the collection of biometric data, such as heart rate, blood pressure, physical

activity, and sleep information [17].

A remote monitoring system, capable of gathering extensive data and backed
by predictive analytics algorithms and techniques for effective data assessment and
identifying underlying patterns, provides better efficiency in identifying declining
patient health [I8]. In the present COPD case study, such systems can reduce
emergency room (ER) visits, acute deterioration-related readmissions, days spent

in the hospital, and mortality in patients with COPD [19].

Predictive analytics refers to the systematic use of statistical or machine learn-
ing methods to make predictions and support decision-making. Predictive analyt-
ics applied to healthcare can be divided into two components: the data underlying
the model, particularly predictors or features, and machine learning and statistical
methods, both based on a set of mathematical techniques applied to data in order

to generate an output [20].

Machine learning is a crucial methodology in predictive analytics. Conven-
tional statistical analysis focuses on explaining data and relies on an expert (i.e.,
human) to formulate and discover cause—effect relationships, driven by a set of
predefined assumptions. Machine learning is more data-focused and orientated
toward generating hypotheses and building predictive models using algorithms. It
has enabled clinical support research and applications to provide actionable in-
sights by utilizing large amounts of intensive care unit patient datasets that are
useful in many clinical scenarios [16]. Machine learning can predict in-hospital

mortality and the risk of 30-day readmission due to COPD exacerbation [21].
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2.3 Factors associated with COPD exacerbations

2.3.1 Biometric signs associated with COPD exacerbations

The prevention of acute exacerbation in COPD requires the identification of fac-
tors associated with exacerbation. Most studies have shown that oxygen saturation
(SpO2) (p-value < 0.05), respiratory rate (RR), and heart rate (HR) (p-value <
0.05) influence exacerbation events, with SpO2 being the most predictive vital
sign. The deterioration in COPD patients has been associated with a slight de-
crease in oxygen saturation and a slight increase in HR. One article suggested that
using multiple vital signs as the inputs of a single classifier could provide better
predictions, given that these multiple-input models showed the best AUC results
[22].

Although some studies monitored blood pressure in order to determine whether
there was a significant correlation with acute exacerbation, there was no sufficient
evidence indicating that a change in blood pressure during a COPD exacerbation
was a potent predictive factor for exacerbation (p-value > 0.05, i.e., not signifi-

cant).

Body temperature with a p-value equal to 0.059 could be considered an exac-
erbation predictor. In the study conducted by Martin-Lesende, changes in body
temperature had triggered 27.8% of alerts, of which, 5% were due to temperatures

exceeding 37 °C [23].

2.3.2 External factors associated with COPD exacerbations

Most studies have focused on vital signs and internal factors of COPD patients,
rather than external ones, despite being equally relevant. Some meteorological
data, such as humidity (p-value = 0.0137), variation of diurnal temperature (p-
value = 0.0472), the cumulative lowest temperature 7 days prior to acute de-
terioration (p-value = 0.005), and total rainfall in the 7 days preceding an acute

exacerbation (p-value = 0.0389) was associated with acute exacerbation in COPD.
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Over the recent decades, several epidemiological studies have shown that expo-
sure to particulate matter (PM), including coarse and fine fractions, has a negative
influence on health [24] 25, 26, 27]. This particulate matter may originate from
either a natural source, like desert dust, or a human-made one, such aerosols pro-
duced by burning biomass or burning fossil fuels. The concentration of particles
in the atmosphere relies on emission sources, meteorological factors, and transport
mechanisms, considering that aerosols can traverse great distances (transported
by air masses). Additionally, household activities can be significant sources of
fine particles. Particles resulting from cooking and heating can penetrate the
respiratory system more deeply, particularly when they are finer. Lee J. [28] con-
ducted a univariate analysis on air pollution and COPD exacerbations, revealing
a substantial correlation between PM10 levels one day before a patient’s condition

deteriorated and acute exacerbation (p-value = 0.0260) [28§].

The World Health Organization’s data on household air pollution indicates that
COPD accounts for 19% of the 3.2 million deaths linked to exposure to household
air pollution. In addition, 23% of all COPD-related deaths in adults in low-income

and middle-income countries are linked to exposure to household air pollution [29].

The analysis of both internal and external factors with significant correlations
to COPD exacerbation revealed that the frequency with which certain variables
are measured must also be taken into consideration. The higher the frequency
of a vital sign measurement, the better the perception of its association with an
exacerbation occurrence. Daily or multi-daily vital sign monitoring improves the
analysis of these signs. For example, Pépin J-L [17] mentions that overnight pulse

oximetry increases sensitivity, allowing for early detection of deterioration [17].

2.4 Machine learning for Early Identification of a

Deterioration

In recent literature, machine learning techniques have attracted attention for pre-

dicting the clinical conditions of patients. Time series forecasting models have
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been applied successfully in medical applications to predict disease progression,
estimate mortality rates, and assess time-dependent risks. These models are able
to identify patterns and trends from sequential data collected over time, such as

health-related signals [30, 31].

Some traditional machine learning techniques, such as random forest, SVM
(support vector machine), Bayesian networks, and logistic regression, have been
employed to improve predictive performance in identifying early clinical deterio-
ration [32]. However, these traditional models are not optimized for handling the
unique characteristics of time series data, such as autocorrelation, seasonality, and

trend patterns [33], 34].

With sufficient data, the development of deep learning models can reduce sev-
eral preprocessing steps, emphasizing the relationships between the data, without
the need to identify the best predictors, leading to better results [35]. For in-
stance, long short-term memory network (LSTM) can learn extended time series
dependencies, while a convolutional neural network can generate a compact latent

representation.

Gradient boosting models are alternatives to specialized models, such as long
short-term memory network (LSTM) and gated recurrent unit (GRU) [36], 37].
Although these models are not ideal for time series forecasting, they are still
generally better suited for handling sequential data compared to non-sequential

algorithms (such as random forest, SVM, logistic regression, and naive Bayes) [34].

16



Chapter 3

Intelligent Clinical Decision Support
System Design & Development

The ICDSS receives every patient’s vital signs, which are remotely monitored
by Hope Care SA as inputs. Additionally, it daily incorporates weather forecast
conditions and air particle forecasts that are specific to each patient’s location. In
response, the system provides daily vital sign predictions and early warning scores
for each patient for the following five days. It also provides the basal values of
each patient and issues an alert whenever a vital sign measurement falls outside

the expected parameter range, requiring a reevaluation.

Figure illustrates the ICDSS developed by INOV—INESC Inovagao, its
interactions with weather and air pollution data providers, and the HCAlert plat-
form. The ICDSS comprises five distinct modules, each serving a specific purpose.

These modules are as follows:

Communication manager - This module assumes a crucial role within the
system, and is responsible for the communication interactions among HC (Hope

Care) Alert, weather, air particles API, and the clinical decision support system.

Vital signs prediction module - It is designed to generate forecasts for a
five-day period regarding four essential vital signs: oxygen saturation level (SpO2),

heart rate, systolic blood pressure (SBP), and body temperature. This module
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utilizes various machine learning algorithms to accomplish the predictions. The
input data for these models are sourced from the stored vital sign records within the
database. Subsequently, the predicted vital signs are stored back in the database

for further reference and analysis.

Early warning score calculation module - Within this module, the recorded
vital sign predictions from the database play a crucial role in calculating the early
warning score for each of the five predicted days. The early warning score is com-
puted using the aforementioned vital sign data and the resulting early warning

scores are subsequently stored in the database.

Biometric signal error detection module - The primary objective of this
module is to thoroughly analyze and evaluate potential measurement errors and
abnormal variations detected within the patient’s historical data. The purpose is
to promptly alert both the patients themselves and the attending nurse regarding
the invalidity or questionable nature of the entered information. By diligently
identifying such anomalies, this module serves as a critical mechanism for ensuring

data accuracy and reliability within the system.

Basal value monitoring module - The main function is to monitor and
continuously and intelligently adjust the patient’s baseline values. This adjustment
is based on the historical records of vital sign values measured by the patient and
documented within the HCAlert platform. The module’s purpose is to enhance
the precision and effectiveness of the monitoring system by dynamically adapting

the baseline values in accordance with the patient’s specific health history.
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Intelligent Clinical Decision Support System
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FIGURE 3.1: ICDSS architecture and interactions with external modules

3.1 Requirements

During the initial phase of the HC PSI project, we defined the functional require-
ments through an interactive and iterative process involving UBI and Hope Care
SA. Certain clinical-oriented requirements were specifically delegated based on
their domain of expertise. Subsequently, the remaining requirements served as the
fundamental basis for the development of the ICDSS discussed in this article. All
ICDSS functional requirements have been grouped into system modules, as shown

in the following Table
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TABLE 3.1: Functional requirements associated with each module.

Description Module

The predictive service should collect environmental data, such as

air quality, seasonal infection incidences, and weather conditions . .
Vital Signs

The predictive service should correlate parameters and detect patterns

Prediction
The predictive service should reevaluate the weighting of each
parameter depending on the context (e.g., patient, clinical history, etc.)
The collected data should undergo anonymization (if applicable),
normalization, and data fusion
The predictive service should consider the Early Warning Score L

Communication

to generate alerts

Manager

The predictive service should consider the

alert classification to detect false positives

The predictive service should advise the user to take
Biometric Signs
a new measurement and launch inquiries to validate
Error Detection
if it’s a false positive

The predictive system should apply the Early Warning Score

to the clinical protocol and suggest changes to the protocol Early
based on the basal value Warning
The predictive service should calculate the Early Warning Calculation

Score (defining the correlation weighting of each parameter

in the EWS calculation)

The predictive system should recommend reassessment

Basal
of the basal value
Value
The predictive system should take into account changes L
Monitoring

made to the clinical protocol by the clinical team

The predictive system should analyze the threshold

for advising changes to the applied clinical protocol

for the patient
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3.2 Database Architecture

The ICDSS database architecture represented in Figure[3.2)was developed based on

MariaDB. Its main purpose was to store all information related to vital signs and

external data used as input for the model, as well as the predictions generated by

the vital signs predictions module. This includes the error between the predicted

values and the real values recorded and provided by the Hopecare API, along with

information concerning the early warning score. The database was also intended

to record the history of basal values and to store information regarding whether

a certain vital sign was valid or not, determined by the biometric signs error

detection.

‘ Prediction
Prediction_Agg PK fid it
- FK |prediction_agg_id |int
PK |id it H—S
FK |model_id int
Early Warning FK |early_warning_id int J N 1
red_error oat
PK lid int J ~—=< FK |parameter_id int prec.
pred_value float
run_date |date pred_value float
pred_date |date pred_error ifloat
lglobal_ews [float early_warning_score (float
L Prediction_Model_Logs
PKFK |model_id int - n
Station [l T PK |id int
e m PK id int 1 ~< PK,FK [parameter_id  |int \d #K |prediction.id int
atitude foat —=< FK [client_id varchar (100) FK |prediction_agg_id int
longitude [float —< FK |parameter_id |varchar (500) ~—1 FK |vital_measurement_id int
ype varchar (100) description  |varchar (100) FK |external_measurement_id |int
county varchar (100) file varchar (500) lextrapolated_value float
har (100) is_measured_value tinyint
source varchar
description |varchar (500) External Measurement
" Vital_Measurement
PK |i int
PK |id int
Client_vs_Station FK |station_id int — ' "
i int
————< PK,FK|station_id |int FK  |parameter_id fint : chent,ldt 4 ::t
PK.FK|client_id |int is forecast  |tinyint] parameter-! A
— date date FK |period_of_day_id int
date
Client value float date 3
time time
PK lid int ' value float
provider_id |varchar (50) Parameter provider_measurement_id |yuid
zip_code varchar (100) H Pk Jid int is_valid finyint
latitude float Basal Value name [varchar (100)
longitude float PK id int unit lvarchar (100) Period_Of Day
registry_date |date A description |varchar (500) —
FK |parameter_id |int id int
FK |client_id int period_name |varchar (100)
value int start_time time
date date end_time time

FIGURE 3.2: ICDSS Database architecture
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3.3 Communication Manager

This module is composed of four submodules: data extraction, measurement error
alert, basal values notification, and the patient’s risk information delivery sub-

module, as is present in Figure [3.3]

Basal Values
Monitoring

Basal Values
Patients Risk pdate

limlpaizy Notification

Weather & Air

Particles
INFO

Database Measurement Data
Error Alert Extraction

Communication Manager

—

Data Extraction Biometric Signs
------------- Errors Detection

————im e

HC Alert

Platform

-——em e = = P

- ===

Error Detection Alert

FIGURE 3.3: Communication manager module architecture

3.3.1 Data Extraction

The medical records, which stored the vital signs used as input for the ICDSS,
are presented in Table [3.2l Each record is formatted to have one entry per day
per parameter. Fach record had an ID (idRawMeasurement), the collection date
(createdOn), the coordinates where it was collected (latitude and longitude), the
measurement type (ProviderMNameStandard), measurement value (value), and

the units representing the value (units).
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The measurement type could address various factors, including vital signs, such
as oxygen saturation level (SpO2), heart rate (HR), body temperature, systolic
blood pressure (SBP), and diastolic blood pressure (DBP), as well as other bio-
metric indicators, like the number of steps, body fat, energy burned, weight, and

height.

TABLE 3.2: Clinical information extracted from the Hope Care API.

idRawMeasurement Measurement identifier
createdOn Measurement creation date
) Identification of the patient to whom
clientID
the measurement belongs
Latitude Latitude of the patient
Longitude Longitude of the patient

ProviderMNameStandard | Standard name of the type of measurement

Value Measurement value

Unit Units of measurement (in the dataset are available %, C,
ni
bpm, count, mmHg, NA, null and percent)

The weather historical information used as input for the predictive models was
provided by the Weatherbit API. Each record had an ID (idWeatherMeasurement),
the coordinates of the station (latitude, longitude), date of measurement (columns
year, month, day), mean daily temperature (T _MED), and mean relative humidity

(HR_MED), as shown in Table [3.3]

23



Chapter 3. Intelligent Clinical Decision Support System Design & Development

TABLE 3.3: Weather historical information.

idWeatherMeasurement

Measurement identifier

Station 1D Station identifier

Latitude Latitude of the station

Longitude Longitude of the station

Year Year of the collected measurement

Month Month of the collected measurement

Day Day of the collected measurement

T MED Value of the daily mean temperature in celsius
HR_MED Value of the daily mean relative humidity in percent

The air pollution historical information used as input for the predictive models

was provided by the OpenWeather API. Each record had an ID (idWeatherMea-

surement), the coordinates of the station (latitude, longitude), date of the mea-

surement, an average count of 10-micrometer particles (PM10), and an average

count of 2.5-micrometer particles (PM2_5), as shown in Table [3.4]

TABLE 3.4: Air pollution historical information.

idParticlesMeasurement | Measurement identifier

Location Location of the station

Latitude Latitude of the station

Longitude Longitude of the station

Date Date of the collected measurement
PM10 Value of PM10

PM2 5 Value of PM2.5
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3.3.2 Measurement Error Alert

This submodule was designed to receive alerts from the biometric sign error de-
tection module and subsequently send alerts to the HCAlert platform. After a set
short duration, it sends a notification to the data extraction submodule to exe-
cute the data extraction of biometric signs from HCAlert, concerning the specific

patient dataset where the error was found.

3.3.3 Basal Value Monitoring Notification

The basal value update notification submodule was designed to receive notifica-
tions from the basal value monitoring module; it subsequently notifies the HCAlert

platform with new basal value recommendations for a specific patient.

3.3.4 Patients Risk Information Delivery

The patient risk information delivery submodule extracts information regarding
the last five days of vital sign predictions and the calculated early warning scores

stored in the database. It then sends this information to the HCAlert platform.

3.4 Biometric Signs Errors Detection

The HCAlert platform’s operational efficiency is affected by the patients’ inac-
curate vital sign measurements, which can result in inaccurate clinical protocol
adjustment alerts and future vital sign projections. It is necessary to guarantee

that the system receives data that obey certain quality levels.
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Prior to the implementation of the current project, measurements are vali-
dated by nurses who identified instances of anomalous readings, reporting poten-
tial causes, such as deterioration in the patient’s condition, measurement errors,

cold fingers during measurements, etc.

The biometric sign error detection module consists of three components:

e Validation of clinical rules: This component compares the measurements
taken by the patient with a set of business rules defined according to Hope
Care guidelines. For example, a measurement of oxygen saturation above
100 or below 20 cannot be correct since a percentage value cannot exceed
100, and a value below 20 corresponds to situations of compromised brain
function and even comas. The medical team involved in this research work

validated all ranges used to filter the vital signs.

e Patient pattern modelling: The objective of this component is to approx-
imate a probability density function for each metric in the patient’s measure-
ments. These probability density models are then stored in the database,
eliminating the need to repeat the function modelling each time a new in-
ference is made. This module runs monthly to create a new probability
function that captures the variability of the new measurements entered by

the patient.

e Validation of atypical measurements based on the patient’s history:
This module uses the probability density models stored in the database,
which are associated with each patient’s vital signs, to determine whether
a newly recorded measurement falls within the normal patterns for that
specific patient. Considering these variations could be due to disease exac-
erbation, improvements from a new medication, or other factors, these need
to be validated by a nurse and, if necessary, by the patients themselves, to

determine the true cause of the variation.
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The operationalization of this module is presented in Figure The system

begins with the measurement and input of a vital signal by a patient in the HCAlert

application. The measurement is compared and validated based on clinical rules,

according to the type of measurement performed. The following clinical rules are

defined, where the value is considered erroneous and discarded in the following

cases:

e Oxygen saturation above 100 or below 20;

Body temperature below 30 or above 40;

Systolic blood pressure below 50 or above 350;
Diastolic blood pressure below 40 or above 200;

Pulse rate less than or equal to 30, or greater than 250.

Figure[3.4] presents the architecture of the Biometric sign error detection mod-

ule.

Database

Validation of
clinical rules

1

Data Extraction

Error Detection Alert
— Biometric Signs

Errors Detection

Communication | P

Manager
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atypical

measurements.

2

(Cyclic Process)

HC Alert

Platform
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FIGURE 3.4: Biometric sign error detection module architecture.
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In the event of an incorrect measurement, a type 1 alert is triggered, recom-

mending a new measurement of the vital signal by the patient.

If there is no inconsistency with the rules, the system then determines if the
measurement, is atypical for a patient. If it is not considered atypical, the verifi-
cation process is concluded without any identified errors. If an atypical value is
recorded, a type 2 alert is triggered, and human verification of this alert is rec-
ommended to a nurse and the patient. This is done to verify whether this value
corresponds to a health deterioration, an improvement in the clinical condition,

Oor a measurement error.

Suggesting the nurse
to investigate the
cause of the abnormal
measurement and to
contact the patient

Atypical
Measurement
Validation

‘Atypical value
detected

Start
peprfa;'ri‘st . Clinical Rules
Validation
measurement

Suggesting the
patient to repeat|
a measurement.

FIGURE 3.5: Biometric sign error detection implementation.

Probability density functions were applied in order to model the pattern of
vital signs of each patient and assess the probability that a newly measured value
fits the distribution function computed for that specific patient’s vital sign. The
process of training a model for a given patient begins with the request for all the
vital sign measurements made by this patient. From this request, as shown in
Figure [3.6] a distribution function is trained and stored in the database for each

vital sign recorded, with the following steps:

1. From all the measurements collected for the patient, only the measurements
made for specific vital signs in training are used.
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2. Existing outliers in the database, prior to modelling, are removed. Outliers
are removed based on the standard deviation by calculating the standard
score (z-score), which corresponds to the number of standard deviations
by which a newly recorded value deviates from the mean of the observed
measurements. If the z-score is greater than 3, which corresponds to a value
that is three times the standard deviation away from the mean of the data,

the value is not used in the modelling.

3. The following distributions are tested: normal, exponential, Pareto, double
Weibull, t, generalized extreme value distribution, gamma, lognormal, beta,
and uniform. For each distribution, the density and weights of the histogram
are computed. Subsequently, an estimation of the function parameters is
performed based on the data. The maximum likelihood estimation (MLE)

is used to identify the values that best fit the data.

4. The goodness-of-fit is calculated with a test of the sum of squares of the

residuals for each distribution found.

5. The model with the best goodness-of-fit, which implies a lower value in the
sum of squares of the residuals, is stored for the vital signs of the patient

under study.

Fit various
probability

Probabilistic models development

FIGURE 3.6: Biometric sign error detection model development.

The inference starts with the reception of a vital sign measurement taken by
a patient and entered into the HCAlert system. The system selects the model
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corresponding to the probability density function that models the distribution of
the vital signs measured for the patient who entered it into the system, as is present
in Figure [3.7]

This model is then used to test the null hypothesis, which corresponds to
checking whether the value that has been measured is outside the typical pattern
of the patient, based on the selected distribution and the parameters adjusted
according to the empirical distribution of the patient. If the p-value is less than
0.05, it implies that the null hypothesis is not rejected, which means that there is
a probability that the measurement may correspond to an error, exacerbation, or
improvement of the condition. A reminder should be sent to both the nurse and

the patient to investigate the situation.

Query for selecting the
Reception of a vital probability density
signal measurement function that models
performed by the the distribution of vital

Null hypothesis test:
The measured value is
outside the normal
pattern of vital signal for
the patient

Generation of
measurement error
warning if the null
hypothesis is rejected

patient signal measurements
for a specific patient

Inference Process

FIGURE 3.7: Biometric sign error detection inference process.

3.5 Basal Value Monitoring

The deterioration or improvement of COPD reflected in the negative or positive
evolution of the patient’s baseline values may be due to several explanatory factors,
such as weather conditions, exposure to particulate matter, a change in medication
or lifestyle, among others. The recorded baseline values are indicative of the
severity of a condition, as outlined by the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) [38| strategy for the diagnosis, management, and prevention
of COPD.

Values below or above the standards result in the patient’s category changing
into one of the GOLD I-GOLD IV [3§] categories, depending on the severity of the
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patient’s condition, with GOLD I being the most severe condition. It is important
to identify and monitor any deterioration in a patient’s baseline values in order to

adjust the clinical protocol and treatment guidelines.

Figure presents a clinical protocol defined by the Hope Care SA medical
team; it is based on the GOLD strategy and addresses patients whose basal values
are within a normal range and, thus, do not belong to categories GOLD I-GOLD
IV. Consequently, the range of colors isn’t associated with the GOLD categories.
The color is associated with the severity of the COPD patient’s condition: Cate-
gory I (red) corresponds to a higher degree of deterioration in their health condi-
tion, while Category V (green) corresponds to the lowest or non-deterioration of

their health condition. Some fields are filled with the expression "N /D" because

there is no defined range of values for that specific category.

Oximetry Oximetry
Systolic Dlastollc Pulse (with oxygen | (without oxygen | Temperature Weight Steps
therapy) therapy)

# steps
Color mm Hg | mm Hg weekly
average

1 o-70 N/D
__- N/D ___ N/D

80-90 40-50 N/D N/D N/D N/D N/D 50 80
N/D N/D N/D N/D N/D N/D N/D
Rules to be
denied for N/D
each patient
N/D N/D

140-160 90 -100 0-12000 N/D

--- e e e e e e
| RSN R
Absence of

128h
measurements

F1GURE 3.8: Clinical protocol defined by the Hope Care SA Medical Team and
based on the GOLD clinical protocols.

3.5.1 Basal Value Monitoring Module Architecture

This module, as shown in Figure uses the list of metrics to be monitored

and the history of vital signs recorded by each patient as input. Based on these
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measurements, the patient’s current baseline value and the forecast of the evolution
of the same value are determined. In case there is a substantial difference between
the most recently recorded value and the historical baseline value, an alert should
be triggered, containing the previous baseline value, the newly calculated value,
and the difference. The newly calculated baseline value is suggested as a change

to the clinical protocol.

New Basal Communication

Values Update
Notification

Manager

Case new basal values calculated differ
from baseline value per vital sign.

Calculation of Comparison with Database

median values baseline value Update Basal
recorded from the patient's Values
per vital sign clinical protocol

Vitals Signs Info Per
Basal Values Monitoring Patient

FIGURE 3.9: Basal value monitoring module architecture.

The following variables are also used as input to the module:

e Number of months considered: This indicates the past time window that is
analyzed for the baseline calculation. The default value is 3 months, which
indicates that when this module runs, the measurements taken from the
last 3 months are extracted for the baseline calculation. This value can be

configured by rules in the system.

e Minimum number of records: This corresponds to the minimum number of
measurements taken by the patient, so that the calculated baseline infor-
mation is considered reliable. If the patient does not have a satisfactory
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number of measurements in the time horizon under study, the module will
not provide recommendations. For example, a patient with only five SpO2
measurements over 3 months will not be considered for updating the baseline
value. This value is configurable by a rule, and value 50 is used by default

in the system.

e Patience: In case the patient does not present enough measurements of a
certain parameter in the defined time horizon, the system expands the time
horizon of the search to include more months of history until it finds an
acceptable amount of records. For example, with a patience of 3 months
and a minimum of 50 required measurements, if the patient only has 30
measurements, an additional month will be incorporated into the analysis,
and the module will be rerun using the past four months, reducing the pa-
tience counter by 1. In case patience reaches zero, and the minimum value
of measurements defined is not reached, the system will not provide any rec-
ommendation for the given parameter due to the lack of consistency in the
measurements. The default value for patience, which can be configurable by

a rule, is 3.

The default values in the system are set and adjusted after testing with histor-
ical values recorded by patients in the HCAlert platform, provided by Hope Care
SA.

3.5.2 Basal Value Monitoring Module Implementation

In this section, we present the implementation details of the basal value monitoring
module. Figure [3.10| shows an activity diagram, which represents the operations

performed by the module.
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FIGURE 3.10: Basal value monitoring module implementation

As presented and detailed in the previous section, the system inputs are the
list of metrics under evaluation, the patient’s vital signs history, the number of
months to be considered, the minimum number of records, the baseline value of

the patient’s clinical protocol, and patience.

For each metric under evaluation, the system performs the following process:

1. A flag representing the current patience is initialized to zero.

2. The measurements are related to the period of months corresponding to the

last X months from the date of execution of the module, where X is the sum
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between the system input “number of months to consider” and the current

patience value.
3. The number of measurements performed by the patient is calculated.

(a) In case the number of measurements is not sufficient, the current pa-

tience is incremented by 1.

(i) If the current patience value is equal to the user-defined patience
value, no recommendation is displayed, and the cycle continues to

the next measurement in the list.

(ii) If the current patience value is less than the set patience value, the

system summarizes the run from step 2.

(b) In case the measurements are sufficient, the system summarizes the run

in step 4.

4. The median of the patient’s measured values of a given vital sign is calcu-

lated.

5. The median value is compared with the baseline value recorded in the clinical

protocol.

(a) If the values are very different, a recommendation is made to update
the baseline value to reflect the new median value recorded in the time
interval under consideration. This recommendation should be evaluated

by a medical professional.

(b) If the values are similar, the baseline value is not adjusted, and the
system summarizes in step 1, with a new iteration of a new metric

under evaluation.

6. The cycle ends when all metrics in the list have been processed.

This process is run independently for each patient in the system. It is worth
noting the use of the median as the metric calculated for the baseline value. This is

due to the fact that it better handles extreme values outside of a patient’s normal
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patterns, such as exacerbation, which should not be considered for the calculation

of a baseline value, as it does not correspond to a normal patient pattern.

3.6 Vital Signs Prediction Module

3.6.1 Predictive Model Development

Data Treatment

For the predictive model development and evaluation, 91 patients who were
flagged as having COPD were included. Each patient was monitored remotely
and provided health status information for tracking their health status. The vital
sign information was then gathered by each medical center. These patients were
from different districts of the country, such as Aveiro (Anadia), Leiria (Obidos,
Pombal), Santarém (Ourém) Castelo Branco (Fundao), Coimbra (Cantanhede,
Cernache, Assafarge, Antanhol, Condeixa-A-Nova, Mira, Almargem Bispo), Lis-
boa (Amadora, Rinchoa, Queluz, Algueirdo, Tapada Das Merces, Rio de Mouro),
and Faro (Quarteira, Albufeira, Tavira, Olhao, Loulé, Lagos, Portimao, and Castro

Marim).

Meteorological variables (temperature, humidity, wind, and rain) and exterior
particle matter concentrations (PM10, PM2.5) were obtained from the nearest
IPMA (Portuguese Institute for the Ocean and Atmosphere) and EPA (Environ-
mental Protection Agency) stations. To analyze the source and transport path-
ways of the air masses and relate the air masses with aerosols, we used the NOAA

HYSPLIT model |39} [40].

Information about the weather, air quality, and vital signs was analyzed. The
data processing module was divided into four sub-phases: data cleaning, data
transformation, patient datasets selection, and environmental data integration, as

is present in Figure [3.11
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Data Patients' Datasets Environmental

Data Cleaning Transformation Selection Data Integration

Data Preparation

FIGURE 3.11: Data preparation pipeline.

During the data cleaning process, a thorough analysis was conducted on out-
liers (values that deviated significantly from the rest of the dataset and could
potentially introduce anomalies in the results obtained from algorithms and anal-
ysis systems) based on the distribution of values in Figures [3.12H3.15, as well as

on null values within the vital signs.
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FIGURE 3.12: Oxygen saturation level value distribution of all patients analyzed
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FIGURE 3.14: Systolic blood pressure level value distribution of all patients
analyzed

38



Chapter 3. Intelligent Clinical Decision Support System Design € Development

364 36.6 36.8

Body temperature levels recorded from all patients

120
100

&0

60
4
2

36.2

Count

=

=]

370 372 374 376

=]

FIGURE 3.15: Body temperature level value distribution of all patients analyzed

Regarding vital signs, any values that met the following criteria were identified

as outliers and subsequently removed:

e For oxygen saturation (SpO2), any values below or equal to 70% and above
100%. Since we have detected many measurements at exactly 70%, we sus-

pect these are measurement errors;
e For body temperature, all values below 30 °C and above 40 °C;

e For systolic blood pressure (SBP), any values below 50 mmHg and above

350 mmHg;
e For heart rate (HR), any values below 39 BPM and above 250 BPM.

e For diastolic blood pressure (DBP), any values below 40 mmHg or above 200
mmHg.

In the data transformation process, we adjusted the format of historical records
related to the vital sign data of patients. The data, initially in a format of one
record per day per parameter, were converted to one record per day with all the

39



Chapter 3. Intelligent Clinical Decision Support System Design € Development

collected vital sign values for that day. Specifically, there was a change in the
granularity of each data row from one row per measurement of a specific vital
sign at a specific moment in time for a specific patient to one row for each day of
measurements taken for a specific patient, with columns representing the measured
vital signs (data pivoting). After the format change, every time segment with over
10 consecutive days of missing data was removed and only patients with over 180

records whose vital sign data were fully complete were selected.

In the data integration process, the historical records of each patient’s vital
signs were supplemented with information regarding weather data (average daily
temperature, average relative humidity, and amount of daily precipitation) and air
particle data (10 pm particles and 2.5 pm particles, as these two dimensions have

a greater impact on the patients’ respiratory capacity).
Modelling and Evaluation

Following the data treatment, we modeled the development and evaluation. As
a result of the data treatment phase, only 14 datasets were considered for the model
training and evaluation phase. Since the ICDSS was designed to assist COPD
patients with different health profiles, we developed models using 14 different
datasets and incorporated the best models in the system. Figure [3.16] shows the

steps of the development and evaluation phase.

Model Models Training
Architectures with
Selection Hyperparameters

Models Final Models
Evaluation Selection

Feature
Selection

Modelling

F1GURE 3.16: Modelling and evaluation pipeline

We employed multivariate machine learning models capable of conducting the
multi-step-ahead time series prediction of vital signs. Multi-step-ahead forecasting
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involves predicting multiple future time steps in a time series [4I]. In our case,
it would mean predicting the vital sign values for the following 5 days. The
vital signs chosen for prediction include SpO2, heart rate, body temperature, and
systolic blood pressure, which are utilized in the early warning score calculation

module to assess the risk of deterioration.

During the feature selection process, we conducted a comprehensive correlation
analysis between vital signs and clinical validation, resulting in the identification

of the most relevant vital signs for predicting health variations in COPD patients.

Figure shows an example of a correlation between SpO2 values (Spo2 1 day),
the pm25 external parameter (PM25), relative humidity (HR_MED), and SpO2
values (SpO2) of the previous day, using the dataset for the patient with ID no.

156.
1.0
Spo2 1 day 0.072 0.022 | 1kl
0.8
spo2 0.062 0.024 | ek
0.6
HR MED 0.22 -0.23 041 0.4
PR _QTD - 0.2
- 0.0
T MED
- -0.2
pm25 IR
- -0.4

pm25

spo2
HR_MED
FR QTD
T MED

ey
]
=]
L |
™
[=]
[=H
5]

F1GURE 3.17: Correlation matrix between Spo2, Spo2 from the previous day,

relative humidity, the levels of precipitation, the pm25 concentration, the exter-

nal temperature values, and SpO2 level from the previous day, using the dataset
for the patient with ID no. 156.
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For multi-step-ahead time series prediction, all vital signs receive the previous
day’s value (n — 1) as input to forecast the value for the current day (n). To
predict the value of SpO2, we selected the following inputs: the SpO2 value of
the previous day, the relative humidity value of the previous day, the levels of
precipitation from the previous day, the pm25 value from the previous day, and

the external temperature value from the previous day.

Regarding the other vital signs, based on the analysis of the correlation between
the four vital signs analyzed in Figure [3.18] and the clinical insight provided by
the Hope Care SA medical team suggesting that SpO2 influences heart rate, body
temperature, and systolic blood pressure, we decided to use only the SpO2 value
from the previous day and the specific vital sign in question from the previous day

as inputs.

1.0

Pulse 1 day 0.8

0.6

Systolic 1 day 0.4

- 0.2

Body Temperature 1 day 0.0
- —0.2

spo2

--0.4

spo2

Pulse 1 day
Systolic 1 day

Body Temperature 1 day

FIGURE 3.18: Correlation matrix of values of SpO2 parameter with the pulse
rate, systolic blood pressure and body temperature values of the following day,
using the dataset for the patient with ID no. 156.
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To ensure the selection of the most optimal model architecture for predicting
a specific vital sign, we trained and evaluated six distinct machine learning mod-
els. These models encompassed a diverse range of architectures, namely ARIMA
(autoregressive integrated moving average), LSTM (long short-term memory),
BILSTM (bidirectional long short-term memory), GRU (gated recurrent unit),
Light GBM (light gradient boosting machine), and XGBoost (extreme gradient

boosting).

The training process was preceded by essential hyperparameter tuning, which
is a critical step in developing machine learning models. This tuning allowed
us to optimize the models for the best possible performance. In our case, the
models’ performance was assessed using the root mean square error (RMSE), which
measures the difference between prediction and the ground truth in the regression

algorithm evaluation.

Table presents an example of the RMSEs achieved for the fifth-day predic-
tions via different machine learning model architectures for each vital sign predic-

tion using the dataset for the patient with ID no. 156.

TABLE 3.5: Root mean square error values for the 5th-day predictions of dif-
ferent model architectures trained using the dataset for the patient with ID no.

156.

Model SpO2 | Heart Rate | Systolic Blood Pressure | Body Temperature
ARIMA | 2.080718 | 7.089329 9.783878 0.247163
XGBoost | 0.817778 |  0.96435 2.407083 0.302518

Light GBM | 0.064668 | 0.380769 2.170715 0.058705

GRU 0.083168 | 0.110159 0.130179 0.131379

LSTM 0.092241 | 0.573169 0.135822 0.137075
BILSTM | 0.084948 | 0.113384 0.132097 0.130094

As a result of our evaluation, we saved the models that demonstrated the
lowest root mean square error (RMSE) for each vital sign. Consequently, we had
4 distinct models for each of the 14 patient-specific datasets, with each model
specialized in predicting a specific vital sign.
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Table presents an example of the RMSEs for the 5th-day predictions
achieved by the best machine learning model architectures for each vital sign

prediction using the dataset for the patient with ID no. 156.

TABLE 3.6: Root mean square error values for the 5th-day predictions using the
best model architectures trained on the dataset for the patient with ID no. 156

Vital Sign Predicted Type RMSE
SpO2 Light GBM | 0.064668
Heart Rate GRU 0.110159

Systolic Blood Pressure GRU 0.130179
Body Temperature Light GBM | 0.058705

3.6.2 Production

In this section, we present the incorporation of the previously described predictive

models into the ICDSS.

The vital signs prediction module presented in Figure is composed of two
sub-processes: a data pre-processing stage followed by the application of predictive
models. The data pre-processing stage is essential to ensure that the data is in the
correct format and that the vital sign measurements are appropriately integrated

with the external measurements, as previously mentioned in Section

The vital signs prediction process takes place daily, and the resulting pre-
dictions are stored in the database for future reference. Subsequently, the early
warning module utilizes this data to assess and calculate the risk of a patient

experiencing deterioration within the following five days.

When a new patient is integrated into the system, the prediction for each vital
sign is calculated as the average of the predictions from all the models that predict
the particular vital sign. After a period of 6 months, the error (root mean squared
error—RMSE) of each predictive model is analyzed by measuring the distance

between the values predicted by each model and the actual values of the vital
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signs for each patient. The model with the lowest error is the one associated with

the patient.

Select last five days
of vital signs and
environmental data Data Predictive Models

_—— — — Pre-Processing Application

Database

Vital Signs Predictions Module

Insert vital signs predictions

....................................................................................................

FIGURE 3.19: Vital signs predictions module architecture

3.7 Early Warning Score Calculation Module

In this module, the risk of a patient experiencing deterioration is assessed using
the early warning score (EWS) clinical protocol. The EWS is utilized for monitor-
ing and detecting the risk of health deterioration in patients and it is calculated
by combining vital signs and clinical data, such as heart rate, blood pressure,
respiration rate, body temperature, oxygen saturation (SpO2), and degree of con-
sciousness. Individual scores for each vital sign are then totaled up, resulting in a

total EWS score.

The higher the overall EWS score, the more likely a patient is suffering from a
health deterioration. This clinical protocol presented in Table is indicated by

Hope Care SA’s medical team.

45



Chapter 3. Intelligent Clinical Decision Support System Design & Development

TABLE 3.7: Early warning score clinical protocol suggested by Hope Care SA’s
medical team

Description 0 Points | 1 Point | 2 Points | 3 Points
Difference between the
predicted value for the
Sp0O2 <3% 3-5% 6-7% >7%
day and the value from
the previous day
>115 or
Heart Rate | BPM Value 46-100 | 101-110 | 111-115
<46
Percentage difference
Systolic
between the predicted
Blood <20% | >=20% | >=23% | >=25%
value for the day
Pressure
and the baseline value
Body Temperature value
<37.5 | 37.5-37.9 | 38-384 | =>38.5
Temperature | in Celsius

Similar to the vital signs prediction module, the early warning score calculation

is performed daily, and the resulting scores are stored in the database.
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Demonstration and Evaluation

4.1 System Demonstration

To demonstrate how the ICDSS addresses the research question, we present a
system trial with the incorporation of a new patient. We use the patient with ID
no. 300. The patient health information used in this trial consists of historical
information for a three-year period consisting of HRMS monitoring provided by

Hope Care SA through the HCAlert platform.

The monitoring for the patient with ID no. 300 was initiated on 21th of April,
2022. The ICDSS received a notification from the HCAlert platform, regarding
the need to incorporate this new patient, leading to the creation of a new record
in the database. All vital signs monitored for the patient with ID no. 300 were
transmitted to the HCAlert platform and subsequently extracted by the ICDSS,
starting from 21th of April. These vital signs underwent analysis through the
biometric sign error detection module. As no outliers were detected in the vital

signs, they were seamlessly integrated into the database..

Table presents the last five days of data extracted from the database for
vital sign predictions on the 25th of April, 2022.
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TABLE 4.1: Last 5 days of data extracted from the database for vital sign
predictions on the 25th of April.
Systolic
Heart Body T HR PR
SpO2 | Blood pm25
Date Rate | Temperature MED | MED | QTD
(%) | Pressure (Count)
(BPM) (°C) (°C) | (%) | (mm)
(mmHg)
2022-04-21 | 61.0 36.2 95.0 95.0 9.60 | 63.25 | 1.86 1.66
2022-04-22 | 63.0 36.0 95.0 93.0 7.53 | 82.97 | 23.25 0.93
2022-04-23 | 59.0 36.5 96.0 96.0 8.95 | 69.24 | 1.91 0.58
2022-04-24 | 65.0 36.2 96.0 100.0 10.79 | 67.82 | 0.29 1.14
2022-04-25 | 57.0 35.9 96.0 102.0 12.35 | 65.43 | 0.01 2.63

By the 25th of April, a sufficient amount of vital sign data is available to provide
insights into the patient’s risk of health deterioration. The ICDSS proceeds with
the prediction of vital signs and subsequently calculates the early warning score.
Various models are employed to forecast the patient’s vital signs for the initial
6 months of integration. The risk information regarding the patient’s potential

deterioration is provided to the HCAlert platform through a JSON file.

Table [4.2] presents the vital sign prediction values for the 26th of April. The

predicted vital signs are then used to calculate the risk.

TABLE 4.2: Predicted Values of Vital Signs from 26th of April to 30th of April

Systolic
Heart Body
SpO2 Blood
Date Rate Temperature
(%) Pressure
(BPM) (Celsius)
(mmHg)
2022-04-26 | 95.028053 | 63.863962 | 98.327346 | 36.244274
2022-04-27 | 94.801013 | 64.027884 | 98.783749 | 36.162657
2022-04-28 | 94.948091 | 64.413307 | 99.589877 | 36.218256
2022-04-29 | 95.127560 | 64.438053 | 99.516291 | 36.246443
2022-04-30 | 95.054558 | 64.429125 | 99.496265 | 36.196343
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Table presents the values of the early warning score calculated on the 25th
of April.

TABLE 4.3: Calculated values of the early warning score from 26th of April to
30th of April.

Systolic
SpO2 | Heart Body
Date Blood
(%) | Rate Temperature
Pressure
2022-04-26 0 1 0 0
2022-04-27 0 1 0 0
2022-04-28 0 1 0 0
2022-04-29 0 1 0 0
2022-04-30 0 1 0 0

Listing [4.Tjpresents part of the structure of a part of the JSON file concerning
the predicted vital signs and early warning score calculated from the 26th of April

to the 30th of April.
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Listing 4.1 Structure of the JSON file provided to HCAlert for patient
risk information on the 25th of April.

1 | {'predict_date': '2022-04-26',
2 'global_ews_score': 1,
3 'vitals’:

" '{”Sp02”2 {

5 "predict_value": "95.02805293812013",

6 "predict_score": "0", "units": "{\%}"},
7 "pulse": {

8 "predict_value": "63.86396198309728",

9 "predict_score": "1", "units": "BPM"},

10 | "systolic": {

11 "predict_value": "98.32734618907372",

12 "predict_score": "0", "units": "mmHg"},
13 | "body_temperature": {

14 "predict_value": "36.244273924492624",

15 "predict_score": "0", "units": "©C"}}}

After an evaluation spanning over 6 months, we focused on identifying the
most suitable models to enhance the care of patient 300. Our selection process
prioritized models with the lowest root mean square error (RMSE), as shown in

Table 4.4].
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TABLE 4.4: Root mean square error (RMSE) values of the top selected models

for predicting the vital signs of patient 300.

Dataset used
Value
to train the Model Parameter
(RMSE)
model
304 BILSTM Spo2 0.285014
181 GRU Heart Rate 1.520008
Systolic
184 BILSTM 1.904305
Blood Pressure
181 GRU Body Temperature | 0.250580

We analyzed the patient’s data from the previous 6 months; we provide a new
basal value that reflects the patient‘s health condition, which is, consequently,

used for the patient‘s clinical protocol adjustment, as shown in Listing4.2]
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Listing 4.2 Suggested new basal values for patient 300 to the HCAlert

platform.
1 {
2 | 'spo2': {
3 'median_value': 96.0,
4 'number_of_months': 6},
5 'body_temperature': {
6 'median_value': 35.6,
7 'number_of_months': 67},

8 'pulse': {

9 'median_value': 73.0,
10 'number_of_months': 67},
1 'systolic': {

12 'median_value': 99.0,
13 'number_of _months': 6}
14 }

15

During the course of 6 months, while closely monitoring patient 300’s health,
we detected an error involving one of the SpO2 measurements. Initially, this
measurement seemed to comply with the clinical rules and was considered valid.
However, upon atypical measurement validation, it became evident that the prob-
ability of this value (p = 0.01599) belonging to the distribution of SpO2 values
for patient 300 was relatively low, falling below the threshold of 0.05. Due to this

fact, the measurement was discarded from the dataset.

Figure presents the distribution of SpO2 values of patient 300 analyzed for

the error alert validation.
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FIGURE 4.1: Distribution of SpO2 values analyzed of patient 300.

On the 25th of October, the ICDSS provided essential health information about
the risk of patient deterioration. However, this risk was generated using predictions

from the selected best models, as mentioned earlier.

Table presents the last five days of extracted data from the database for

vital sign predictions on the 25th of October.
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TABLE 4.5: Last 5 days of data extracted from the database for vital sign
predictions on the 25th of October.

Systolic
Heart Body T HR PR
SpO2 | Blood pm25
Date Rate | Temperature MED | MED | QTD
(%) | Pressure (Count)
(BPM) (°C) (°C) | (%) | (mm)
(mmHg)
2022-10-21 | 68.0 35.60 96.0 96.0 15.05 | 79.13 | 3.94 1.94
2022-10-22 74.0 35.80 96.0 96.0 14.91 | 74.00 | 18.72 1.20
2022-10-23 | 70.0 35.90 95.0 94.0 14.15 | 67.11 | 5.45 2.91
2022-10-24 72.0 35.80 97.0 93.0 14.32 | 72.58 | 1.47 1.93
2022-10-25 | 76.0 35.00 95.0 98.0 16.13 | 64.89 | 7.87 1.94

Table presents the vital sign prediction values from the 25th of October.

The predicted vital signs are then used to calculate the risk.

TABLE 4.6: Predicted vital sign values from the 26th of October to 30th of

October.
Systolic
Body
SpO2 Heart Rate Blood
Date Temperature
(%) (BPM) Pressure
(°C)
(mmHg)
2022-10-26 | 96.386055 | 70.779388 | 95.078346 | 35.292265
2022-10-27 | 96.228622 | 72.117355 | 94.664948 | 35.597720
2022-10-28 | 96.208916 | 72.186485 | 94.973228 | 35.796912
2022-10-29 | 96.297836 | 73.253487 | 95.260201 | 35.886715
2022-10-30 | 96.020462 | 72.828354 | 96.042572 | 35.796912

Table presents the early warning score values calculated on the 25th of
October.
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TABLE 4.7: Calculated early warning score values from the 26th of October to
the 30th of October.

Systolic
Body
SpO2 | Heart Rate | Blood
Date Temperature
(%) (BPM) Pressure
(°C)
(mmHg)
2022-10-26 0 1 0 0
2022-10-27 0 1 0 0
2022-10-28 0 1 0 0
2022-10-29 0 1 0 0
2022-10-30 0 1 0 0

Listing [4.3] presents the structure of a JSON file concerning the predicted vital
signs and early warning score calculated from the 26th of October to the 30th of
October.
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Listing 4.3 Structure of the JSON file provided to HCAlert for patient
risk information on the 25th of October.

1 {'predict_date': '2022-10-26',

2 'global_ews_score': 1,

3 'vitals': '{

4 "spo2":{

5 "predict_value": "96.38605499267578",

6 "predict_score": "0", "units": "\%"},

7 "pulse": {

8 "predict_value": "70.85945892333984",

9 "predict_score": "1", "units": "BPM"},
10 "systolic": {

11 "predict_value": "94.98711395263672",
12 "predict_score": "0", "units": "mmHg"},
13 "body_temperature": {

14 "predict_value": "36.07156866129014",
15 "predict_score": "0", "units": "©€C"}}'},
16
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4.2 System Evaluation

We performed a set of white-box tests, evaluating each module for its functionality
(unit tests) and integration with the related modules of the system (integrated
tests). Afterward, we conducted a survey to gather feedback from two medical
professionals to evaluate the system based on a set of criteria inspired by Prat et
al. [42]. Based on the positive feedback collected from the survey, it appears that
the system was well-designed and valuable for managing the treatment of COPD

patients.

Table shows the evaluation given by two medical professionals specialized
in COPD disease. The sample was slightly small, but highly significant since
these medical professionals had experience in this disease. They were asked to
answer questions, indicating a number between 1 and 5, where 1 corresponds to

not relevant or not useful and 5 corresponds to very relevant or very useful [43].
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TABLE 4.8: Results of the evaluation of the system by medical professionals.

Criteria Questions Objective Statement Eval 1 | Eval 2
Indicate the importance of an
Clinical Importance of the
smart clinical decision support
Impact intelligent clinical
system capable of provide a 5 5
on Patients decision support system for
5-day Early Warning Scores
Treatment monitoring patients with COPD
for monitoring patients with COPD.
Indicate the impact of a smart
Tmpact of a clinical
Patients Life | clinical decision support system
intelligent decision
Quality providing a 5-day Early Warning 5 5
support system on the quality
Impact Scores on the quality of life of
of life of a patient with COPD
a patient with COPD.
Indicate the usefulness of a Usefulness of a
system for healthcare professionals clinical intelligent
that generates information whenever decision support 4 5
Utility there are changes in system that notifies patients
patients’ baseline values. baseline values modifications
Indicate the importance of a system Importance of a
that provides short time horizon clinical intelligent
(in minutes) Early Warning Scores decision support system 5 5
for the clinical follow-up of patients on the clinical follow-up
with COPD. of patients with COPD.
Indicate the usefulness of a real-time Usefulness of a clinical
alert system for healthcare professionals intelligent decision support 5 5
whenever an abnormal measurement system that notifies abnormal
occurs for a specific patient. measurements detections
Indicate the relevance of involving
Clinical validation on the
. healthcare professionals in defining
Consistency definition of intervals for 5 5
. clinical intervals for abnormal
with the abnormal measurements
L. measurements.
organization
Indicate the relevance of involving Clinical validation on the
healthcare professionals in defining definition of the basal value 4 5
the formula for calculating the basal value. calculation formula
Indicate the relevance of involving Clinical validation on the
healthcare professionals in selecting selection of environmental
environmental and clinical parameters and biometric signs that 5 5
(e.g., vital signs) that most influence most influence the clinical
the clinical progression of patients with COPD. | progression of patients with COPD
Relevance of the adoption
Indicate the relevance
Integration Early Warning Score
of the adopted Early Warning
with matrix for clinical
Score matrix for clinical 5 4
clinical decision-making and
decision-making and adjustment of
protocols adjustment of therapeutic

therapeutic protocols for patients.

protocols for patients
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

In this dissertation, we developed a system prototype that answers our research
question: “Is it possible to automatically monitor and analyse the risk of a poten-
tial health deterioration of COPD patients?”. This system aims to provide early
information concerning a patients health status evolution in order to support the

treatment of patients with COPD.

As mentioned in Section 3| the ICDSS comprises two primary components:
the vital signs prediction module and the early warning score calculation module.

These components specifically address the research question.

The vital signs prediction module, as mentioned in Section [3.6] generates vital
sign predictions using different types of model architectures. These predictive
models are optimized using a fine-tuning process, with each model corresponding
to a specific patient with a specific health profile. As demonstrated in Section
[3.6.2] the integration of predictive models developed using data from fourteen
different patients shows that the ICDSS has the flexibility to predict vital signs
and, in turn, calculate the patient deterioration risk for various health profiles.
This system has the ability to evolve and adapt to every patient condition since
the first stage corresponds to using an ensemble of models to predict vital signs

and the second stage corresponds to only using models with the lowest RMSE.
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The early warning score calculation module uses vital sign records and deter-

mines the patient health deterioration based on a clinical protocol.

The ICDSS is also composed of three other modules: biometric sign error

detection, basal value monitoring, and the communication manager.

The biometric sign error detection ensures the quality of all information con-
cerning vital signs by validating, in a two-phase process, whether the vital sign
values fall within the normal range for general COPD patients and subsequently,

within the specific patient’s normal range using a probability density function.

The basal value monitoring analyzes the vital signs and suggests recommenda-
tions for new basal values to the patient if they deviate from the baseline provided
by the HCAlert platform. The communication manager deals with all connections
between the ICDSS modules, the HCAlert platform, and weather information

sources.

The ICDSS system completed the white-box tests, including unit tests and

integration tests.

All of these tests validate its functionality and contribution to preventing and
potentially improving patient treatment by offering an early indication of the pa-

tient’s risk for deterioration.

Despite our ability to leverage real-time telemonitoring patient data, we em-
ployed clinical historical longitudinal data that was gathered over a substantial
period of time (2-3 years) through a telemonitoring application. This extended
time frame enabled us to formulate conclusions regarding the system’s validity,
supported by the early warning score implementation and the errors of the ap-

plied predictive models.
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5.2 Limitations

The non-approval of the incorporation of new patients by the ethics committee
associated with the HC PSI project made the testing and analysis of the ICDSS ef-
fectiveness in providing quality information regarding patient health deterioration

risk difficult.

The scarcity of data was a limitation in our study, and two key aspects con-
tributed to this challenge. Firstly, the measurements we had access to were not
collected at hourly intervals, which restricted our ability to capture fine-grained
variations in the data. The absence of hourly data points hindered our capacity
to discern short-term patterns and trends, potentially hiding crucial insights that

might have emerged with more frequent data collection.

Another significant data gap stemmed from the lack of information concerning
home sensors, specifically data related to humidity levels. Humidity is a vital en-
vironmental factor that influences various aspects of indoor comfort, air quality,
and overall well-being. All houses are different, with varying insulation and heat-
ing, leading to distinct risk profiles. Even two houses in the same location can
exhibit varying humidity levels and significantly different temperatures (better in-
sulated houses, air conditioning/heating, dehumidifiers, etc). The absence of the
essential sensor data limited our ability to comprehensively assess the interplay
between different environmental parameters, potentially leading to an incomplete

understanding of the complex dynamics within the studied environment.

Despite the limitations, the system was validated, end-to-end, and clinically
recognized as important for COPD monitoring, being adjustable enough to inte-
grate these data sources if included in the project and handle a lower granularity

of information to make predictions.

5.3 Communication

During this dissertation, we have contribute to the scientific community with a
publication regarding the mentioned artifact. This article is named "Intelligent
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Clinical Decision Support System for Managing COPD Patients" and is in ed-
itorial process for MDPI’s special issue Transforming Precision Medicine: The

Intersection of Digital Health and AI[44).

5.4 Future work

As part of our future work, we will aim to identify some potential advancements
to pursue. Firstly, we will aim to validate the effectiveness of the ICDSS (clinical
deterioration surveillance system) by obtaining real-time patient data through
the HCAlert platform. Analyzing these data over an extended period will help
us assess the accuracy and quality of early information provided by the ICDSS,

particularly regarding a patient’s risk of deterioration.

To enhance the robustness of our research, we will seek to access a more ex-

tensive and diverse dataset that includes patient data from different countries.

Expanding our data collection to the international stage will ensure that our

findings are relevant to a broader population.

Adopting a more inclusive approach involves considering a broader range of
age-related values. By including individuals across various age groups, we could

reveal some patterns and trends that may be present within different life stages.

To achieve more precise and detailed analyses, we propose incorporating more
daily frequent recordings. This higher data capture frequency will enable us to
detect subtle fluctuations and temporal dynamics that might be missed in less

frequent sampling, providing real-time insights into patients’ vital signs.

Additionally, the integration of sensor technology to monitor indoor humidity
and temperature levels would facilitate the extraction of valuable insights regard-

ing the relationship between environmental factors and health deterioration.

By pursuing these advancements, we seek to increase the importance and reli-
ability of our research, which could ultimately contribute to better patient treat-

ment.
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